51
|
Liu T, Liang X, Lei C, Huang Q, Song W, Fang R, Li C, Li X, Mo H, Sun N, Lv H, Liu Z. High-Fat Diet Affects Heavy Metal Accumulation and Toxicity to Mice Liver and Kidney Probably via Gut Microbiota. Front Microbiol 2020; 11:1604. [PMID: 32849333 PMCID: PMC7399142 DOI: 10.3389/fmicb.2020.01604] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/18/2020] [Indexed: 11/13/2022] Open
Abstract
Previous studies proved that heavy metals could increase the risk of disease by acting on the gut microbiota. Meanwhile, gut microbiota played important roles in detoxifying heavy metals. However, the response of gut microbiota to heavy metals and which microbes dominated this detoxification processes are still unclear. This study investigated the difference of high-fat-diet (HFD) and normal-diet (ND) gut microbiota and their response to and detoxification effects on arsenic (As), cadmium (Cd), and lead (Pb) exposure. Results showed that gut microbiota of ND and HFD was significantly different and responded to As, Pb, and Cd exposure differently, too. When exposed to 100 ppm As, Cd, or Pb, HFD-fed mice accumulated more heavy metals in the liver and kidney along with more severe functional damage than ND-fed mice, indicated by a more dramatic increase of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and urinary total protein (TPU), urinary uric acid (UUA), and urinary creatinine (Ucrea) content. Among ND gut microbiota, relative abundance of Bacteroides, Lactobacillus, Butyricimonas, and Dorea was significantly increased by arsenic (As) exposure; relative abundance of Faecoccus and Lactobacillus was significantly increased by Cd exposure; relative abundance of Desulfovibrio, Plasmodium, and Roseburia were significantly increased by Pb exposure. However, among HFD gut microbiota, those microbes were not significantly changed. Bivariate association analysis found weak positive correlations between content of fecal excreted heavy metals and richness of total fecal microbiota as well as abundance of some of the heavy metal-enriched microbes. Our study concluded that HFD increased disease risk of heavy metal exposure probably via its gut microbiota which excreted less heavy metal through feces.
Collapse
Affiliation(s)
- Ting Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xue Liang
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Lei
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qinhong Huang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiqi Song
- Department of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Rong Fang
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chen Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Mo
- The Public Laboratory, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ning Sun
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Research Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haoran Lv
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhihua Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
52
|
Ma J, Zhou Y, Wang D, Guo Y, Wang B, Xu Y, Chen W. Associations between essential metals exposure and metabolic syndrome (MetS): Exploring the mediating role of systemic inflammation in a general Chinese population. ENVIRONMENT INTERNATIONAL 2020; 140:105802. [PMID: 32474217 DOI: 10.1016/j.envint.2020.105802] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/02/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Essential metals have been reported to be associated with metabolic diseases. However, the relationships between essential metals exposure and Metabolic Syndrome (MetS) is still uncertain, and the underlying mechanisms of the association remain unclear. OBJECTIVES To investigate the associations of urinary essential metals with MetS prevalence; and further to explore potential role of systemic inflammation biomarker, C-reactive protein (CRP), in relationships between essential metals exposure and MetS prevalence in a cross-sectional study. METHODS Concentrations of 8 urinary essential metals and plasma C-reactive protein (CRP) were quantified in 3272 adults from Wuhan-Zhuhai cohort. Urinary essential metals were adjusted by the corresponding urinary creatinine concentrations and reported as μg/mmol creatinine. Multivariable logistic regression and linear regression models were used to evaluate dose-response relationships between essential metals, plasma CRP, and MetS prevalence. Mediation analysis was performed to investigate the role of plasma CRP in the associations between urinary essential metals and MetS prevalence. RESULTS In the single-metal models, we observed positive dose-dependent relationships of urinary copper and zinc with MetS prevalence. Compared with the lowest quartiles of urinary metals, the ORs (95% CI) of MetS in the highest quartiles were 1.40 (1.03, 1.91) for urinary copper and 2.07 (1.51, 2.84) for zinc, respectively. The dose-dependent relationships of zinc and copper with MetS remained significant in the multiple-metal models and Bayesian kernel machine regression (BKMR) models. No significant associations were observed between others essential metals (e.g. manganese, iron, cobalt, selenium, chromium, molybdenum) and MetS in this general population (all P value > 0.05). In addition, urinary copper and zinc increased monotonically with plasma CRP elevation, and plasma CRP was positively associated with the MetS prevalence. Mediation analysis indicated that plasma CRP mediated 5.2% and 3.2% in the associations of urinary copper and zinc with MetS prevalence, respectively. CONCLUSIONS Elevated concentrations of urinary copper and zinc were associated with increased prevalence of MetS. Systemic inflammation may play an important role in the associations of copper and zinc exposure with MetS.
Collapse
Affiliation(s)
- Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yanjun Guo
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yiju Xu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
53
|
Vrijheid M, Fossati S, Maitre L, Márquez S, Roumeliotaki T, Agier L, Andrusaityte S, Cadiou S, Casas M, de Castro M, Dedele A, Donaire-Gonzalez D, Grazuleviciene R, Haug LS, McEachan R, Meltzer HM, Papadopouplou E, Robinson O, Sakhi AK, Siroux V, Sunyer J, Schwarze PE, Tamayo-Uria I, Urquiza J, Vafeiadi M, Valentin A, Warembourg C, Wright J, Nieuwenhuijsen MJ, Thomsen C, Basagaña X, Slama R, Chatzi L. Early-Life Environmental Exposures and Childhood Obesity: An Exposome-Wide Approach. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:67009. [PMID: 32579081 PMCID: PMC7313401 DOI: 10.1289/ehp5975] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Chemical and nonchemical environmental exposures are increasingly suspected to influence the development of obesity, especially during early life, but studies mostly consider single exposure groups. OBJECTIVES Our study aimed to systematically assess the association between a wide array of early-life environmental exposures and childhood obesity, using an exposome-wide approach. METHODS The HELIX (Human Early Life Exposome) study measured child body mass index (BMI), waist circumference, skinfold thickness, and body fat mass in 1,301 children from six European birth cohorts age 6-11 y. We estimated 77 prenatal exposures and 96 childhood exposures (cross-sectionally), including indoor and outdoor air pollutants, built environment, green spaces, tobacco smoking, and biomarkers of chemical pollutants (persistent organic pollutants, metals, phthalates, phenols, and pesticides). We used an exposure-wide association study (ExWAS) to screen all exposure-outcome associations independently and used the deletion-substitution-addition (DSA) variable selection algorithm to build a final multiexposure model. RESULTS The prevalence of overweight and obesity combined was 28.8%. Maternal smoking was the only prenatal exposure variable associated with higher child BMI (z-score increase of 0.28, 95% confidence interval: 0.09, 0.48, for active vs. no smoking). For childhood exposures, the multiexposure model identified particulate and nitrogen dioxide air pollution inside the home, urine cotinine levels indicative of secondhand smoke exposure, and residence in more densely populated areas and in areas with fewer facilities to be associated with increased child BMI. Child blood levels of copper and cesium were associated with higher BMI, and levels of organochlorine pollutants, cobalt, and molybdenum were associated with lower BMI. Similar results were found for the other adiposity outcomes. DISCUSSION This first comprehensive and systematic analysis of many suspected environmental obesogens strengthens evidence for an association of smoking, air pollution exposure, and characteristics of the built environment with childhood obesity risk. Cross-sectional biomarker results may suffer from reverse causality bias, whereby obesity status influenced the biomarker concentration. https://doi.org/10.1289/EHP5975.
Collapse
Affiliation(s)
- Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Léa Maitre
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Sandra Márquez
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Lydiane Agier
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, INSERM, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209 Joint Research Center, Grenoble, France
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Solène Cadiou
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, INSERM, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209 Joint Research Center, Grenoble, France
| | - Maribel Casas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Montserrat de Castro
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Audrius Dedele
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - David Donaire-Gonzalez
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | | | - Line S Haug
- Norwegian Institute of Public Health, Oslo, Norway
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | | | | | - Oliver Robinson
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | | | - Valerie Siroux
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, INSERM, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209 Joint Research Center, Grenoble, France
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Ibon Tamayo-Uria
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Division of Immunology and Immunotherapy, CIMA, Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Jose Urquiza
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Antonia Valentin
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Charline Warembourg
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mark J Nieuwenhuijsen
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Xavier Basagaña
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, INSERM, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209 Joint Research Center, Grenoble, France
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
54
|
Ferrari F, Dunson DB. Bayesian Factor Analysis for Inference on Interactions. J Am Stat Assoc 2020; 116:1521-1532. [PMID: 34898761 PMCID: PMC8654343 DOI: 10.1080/01621459.2020.1745813] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/06/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
This article is motivated by the problem of inference on interactions among chemical exposures impacting human health outcomes. Chemicals often co-occur in the environment or in synthetic mixtures and as a result exposure levels can be highly correlated. We propose a latent factor joint model, which includes shared factors in both the predictor and response components while assuming conditional independence. By including a quadratic regression in the latent variables in the response component, we induce flexible dimension reduction in characterizing main effects and interactions. We propose a Bayesian approach to inference under this Factor analysis for INteractions (FIN) framework. Through appropriate modifications of the factor modeling structure, FIN can accommodate higher order interactions. We evaluate the performance using a simulation study and data from the National Health and Nutrition Examination Survey (NHANES). Code is available on GitHub.
Collapse
|
55
|
Tong J, Liang CM, Huang K, Xiang HY, Qi J, Feng LL, Lai YP, Shao SS, Wu XY, Tao FB. Prenatal serum thallium exposure and 36-month-old children's attention-deficit/hyperactivity disorder symptoms: Ma'anshan birth cohort study. CHEMOSPHERE 2020; 244:125499. [PMID: 32050328 DOI: 10.1016/j.chemosphere.2019.125499] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Thallium (Tl) is a highly toxic heavy metal that has been suggested to be responsible for oxidative stress and mitochondrial dysfunction. However, few studies have focused on the relationship of prenatal Tl exposure with children's neurobehavioural development. The purpose of our study was to investigate the association between prenatal Tl exposure and attention-deficit/hyperactivity disorder (ADHD) symptoms in 36-month-old children. We used data from 2851 mother-newborn pairs from the Ma'anshan Birth Cohort Study (MABC); serum Tl concentration was assessed in the first, second and third trimesters of pregnancy as well as in the umbilical cord blood. We assessed ADHD symptoms in the children using the Chinese version of the Conners abbreviated symptom questionnaire (C-ASQ). The adjusted odds ratio (OR) for the risk of ADHD symptoms was 2.00 [95% confidence interval (CI): 1.20, 3.32] and 2.08 (95% CI: 1.26, 3.43) for the third (60.25-75.21 ng/L) and fourth quartiles of serum Tl (>75.21 ng/L), respectively, in the second trimester of pregnancy, in comparison with the first quartile of serum Tl (<50.86 ng/L). The risk of ADHD symptoms was elevated among boys exposed to the fourth quartile of serum Tl in the second trimester of pregnancy (adjusted OR 2.08, 95% CI: 1.13, 3.83). Our results demonstrated that high levels of Tl exposure in the second trimester of pregnancy were related to a higher risk of ADHD symptoms in 36-month-old children, and the association of higher serum Tl exposure in the second trimester with ADHD symptoms was only found in boys.
Collapse
Affiliation(s)
- Juan Tong
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Chun-Mei Liang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, People's Republic of China
| | - Kung Huang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, People's Republic of China
| | - Hai-Yun Xiang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Juan Qi
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Lan-Lan Feng
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ya-Ping Lai
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Shan-Shan Shao
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, People's Republic of China
| | - Xiao-Yan Wu
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, People's Republic of China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, Anhui Medical University, Hefei, Anhui, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
56
|
Di Ciaula A, Gentilini P, Diella G, Lopuzzo M, Ridolfi R. Biomonitoring of Metals in Children Living in an Urban Area and Close to Waste Incinerators. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061919. [PMID: 32187971 PMCID: PMC7143875 DOI: 10.3390/ijerph17061919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The impact of waste incinerators is usually examined by measuring environmental pollutants. Biomonitoring has been limited, until now, to few metals and to adults. We explored accumulation of a comprehensive panel of metals in children free-living in an urban area hosting two waste incinerators. Children were divided by georeferentiation in exposed and control groups, and toenail concentrations of 23 metals were thereafter assessed. The percentage of children having toenail metal concentrations above the limit of detection was higher in exposed children than in controls for Al, Ba, Mn, Cu, and V. Exposed children had higher absolute concentrations of Ba, Mn, Cu, and V, as compared with those living in the reference area. The Tobit regression identified living in the exposed area as a significant predictor of Ba, Ni, Cu, Mn, and V concentrations, after adjusting for covariates. The concentrations of Ba, Mn, Ni, and Cu correlated with each other, suggesting a possible common source of emission. Exposure to emissions derived from waste incinerators in an urban setting can lead to body accumulation of specific metals in children. Toenail metal concentration should be considered a noninvasive and adequate biomonitoring tool and an early warning indicator which should integrate the environmental monitoring of pollutants.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Division of Internal Medicine, Hospital of Bisceglie (ASL BAT), 76011 Bisceglie, Italy
- International Society of Doctors for Environment (ISDE), 52100 Arezzo, Italy; (P.G.); (R.R.)
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence:
| | - Patrizia Gentilini
- International Society of Doctors for Environment (ISDE), 52100 Arezzo, Italy; (P.G.); (R.R.)
| | - Giusy Diella
- Department of Biomedical Science and Human Oncology, University of Study of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (M.L.)
| | - Marco Lopuzzo
- Department of Biomedical Science and Human Oncology, University of Study of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (M.L.)
| | - Ruggero Ridolfi
- International Society of Doctors for Environment (ISDE), 52100 Arezzo, Italy; (P.G.); (R.R.)
| |
Collapse
|
57
|
Henríquez-Hernández LA, Romero D, González-Antuña A, Gonzalez-Alzaga B, Zumbado M, Boada LD, Hernández AF, López-Flores I, Luzardo OP, Lacasaña M. Biomonitoring of 45 inorganic elements measured in plasma from Spanish subjects: A cross-sectional study in Andalusian population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135750. [PMID: 31841855 DOI: 10.1016/j.scitotenv.2019.135750] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/24/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Heavy metals and other toxic elements are frequently detected in humans. Rare earth elements (REE) have arisen as a novel group of substances considered as emerging pollutants due to its dependence for high tech industry. We designed a study aimed to conduct the biomonitoring a total of 45 inorganic elements in the population of Andalusia (Spain). A total of 419 participants were recruited and their plasma samples analyzed. Concentration of elements, including elements in the ATSDR's priority pollutant list and REE were measured by ICP-MS in the blood plasma of participants. Arsenic, copper, lead, selenium, antimony, strontium, and bismuth were detected in ˃98% of subjects. Median values of arsenic, mercury and lead were 1.49, 1.46, and 5.86 ng/mL, respectively. These concentrations did not exceed reference values published by international agencies. We observed a positive correlation between age and plasma concentrations of arsenic, mercury, antimony and strontium. Sum of elements was lower in the group of subjects younger than 45 years old (P = 0.002). Positive correlations were observed between body mass index (BMI) and plasma concentrations of barium, cerium, osmium, tin, and ytterbium. 7 out of 26 REEs showed a percentage of detection ≥ 90%. Bismuth, yttrium, and cerium were quantified at the highest concentrations (median value = 7.7, 0.19, and 0.16 ng/mL, respectively). We found that plasma levels of 6 REEs were higher among males, and a positive correlation between REEs and age was detected. The present results suggest a potential interaction with the human physiology that deserves additional research. Given the high persistence of these elements in the environment, and the significant technological dependence on them, future studies are needed to elucidate the potential sources of exposure and possible adverse effects on health, especially in the most vulnerable populations.
Collapse
Affiliation(s)
- L A Henríquez-Hernández
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - D Romero
- Department of Statistics and Operational Research, Faculty of Sciences, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - A González-Antuña
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - B Gonzalez-Alzaga
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Andalusian School of Public Health, Granada, Spain
| | - M Zumbado
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - L D Boada
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - A F Hernández
- Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, Granada, Spain
| | - I López-Flores
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | - O P Luzardo
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain.
| | - M Lacasaña
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Andalusian School of Public Health, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
58
|
Duan W, Wang Y, Li Z, Fu G, Mao L, Song Y, Qu Y, Ye L, Zhou Q, Yang F, Hu Z, Xu S. Thallium exposure at low concentration leads to early damage on multiple organs in children: A case study followed-up for four years. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113319. [PMID: 31882189 DOI: 10.1016/j.envpol.2019.113319] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/12/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Thallium (TI) is one of the most toxic heavy metals and priority pollutant metals. The emerging TI environmental pollution worldwide has posed a great threat to human health. However, based on the World Health Organization (WHO), the risk and severity of adverse health effects of TI in the range of 5-500 μg/L are uncertain. Moreover, evidence regarding the adverse impacts of TI on children's health is still insufficient. Herein, we aim to investigate the early adverse effects of TI on children's health and provide references for the WHO to establish stricter safety limits of TI. From 2015 to 2019, urinary TI and many clinical laboratory parameters related to blood routine, hepatic, renal, myocardial, coagulation function and serum electrolyte were measured in six children aged 1-9 years. The urinary TI concentration ranged from 13.4 μg/L to 60.1 μg/L with a mean of 36.1 μg/L and a median of 34.8 μg/L in six children in 2015. Although only four children felt a little poor appetite, several laboratory abnormalities indicated early damage in liver, renal, and myocardial functions in all children in 2015. After treatment and following up for four years, although the children's TI concentration decreased below 5 μg/L, their liver and renal functions did not completely recover, and their myocardial function worsened. Results indicated that impaired liver, renal, and myocardial functions were closely associated with elevated urinary TI concentration in children. Considering the increasing use of TI in high-technology industries and emerging TI environmental-contamination zones worldwide, establishing stricter safety limits of TI and paying more attention to the adverse health effects of TI on children are urgently required. SUMMARY: We found that a relatively low concentration of thallium (13.4 μg/L to 60.1 μg/L) impaired liver, renal, and myocardial function in six children. After treatment and following up these children for four years, although their urinary TI concentration decreased below 5 μg/L, their liver and renal functions did not completely recover, and their myocardial function worsened.
Collapse
Affiliation(s)
- Weixia Duan
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, People's Republic of China
| | - Yongyi Wang
- Department of Occupational Disease and Poisoning, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, People's Republic of China
| | - Zhiqiang Li
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, People's Republic of China
| | - Guanyan Fu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, People's Republic of China
| | - Longchun Mao
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, People's Republic of China
| | - Yunbo Song
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, People's Republic of China
| | - Yaping Qu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, People's Republic of China
| | - Lvsu Ye
- Department of Occupational Disease and Poisoning, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, People's Republic of China
| | - Qu Zhou
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, People's Republic of China
| | - Fucheng Yang
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, People's Republic of China
| | - Zhide Hu
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Shangcheng Xu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing, People's Republic of China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
59
|
Wang G, DiBari J, Bind E, Steffens AM, Mukherjee J, Azuine RE, Singh GK, Hong X, Ji Y, Ji H, Pearson C, Zuckerman BS, Cheng TL, Wang X. Association Between Maternal Exposure to Lead, Maternal Folate Status, and Intergenerational Risk of Childhood Overweight and Obesity. JAMA Netw Open 2019; 2:e1912343. [PMID: 31577354 PMCID: PMC6777254 DOI: 10.1001/jamanetworkopen.2019.12343] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
IMPORTANCE The first pediatric lead screening typically occurs at 1-year well-child care visits. However, data on the extent of maternal lead exposure and its long-term consequences for child health are lacking. OBJECTIVE To investigate the associations between maternal red blood cell (RBC) lead levels and intergenerational risk of overweight or obesity (OWO) and whether adequate maternal folate status is associated with a reduction in OWO risk. DESIGN, SETTING, AND PARTICIPANTS Prospective birth cohort study. The analysis was conducted from July 14, 2018, to August 2, 2019, at Johns Hopkins Bloomberg School of Public Health. This study included 1442 mother-child pairs recruited at birth from October 27, 2002, to October 10, 2013, and followed up prospectively at Boston Medical Center. MAIN OUTCOMES AND MEASURES Child body mass index (BMI) z score, calculated according to US national reference data, and OWO, defined as BMI at or exceeding the 85th percentile for age and sex. Maternal RBC lead levels and plasma folate levels were measured in samples obtained 24 to 72 hours after delivery; child whole-blood lead level was obtained from the first pediatric lead screening. RESULTS The mean (SD) age of mothers and children was 28.6 (6.5) years and 8.1 (3.1) years, respectively; 50.1% of children were boys. The median maternal RBC lead level and plasma folate level were 2.5 (interquartile range [IQR], 1.7-3.8) μg/dL and 32.2 (IQR, 22.1-44.4) nmol/L, respectively. The median child whole-blood lead level and child BMI z score were 1.4 (IQR, 1.4-2.0) μg/dL and 0.78 (IQR, -0.08 to 1.71), respectively. Maternal RBC lead level was associated with child OWO risk in a dose-response fashion, with an odds ratio (OR) of 1.65 (95% CI, 1.18-2.32) for high maternal RBC lead level (≥5.0 μg/dL) compared with low maternal RBC lead level (<2.0 μg/dL). Child OWO was highest among children of OWO mothers with high RBC lead levels (adjusted OR, 4.24; 95% CI, 2.64-6.82) compared with children of non-OWO mothers with low RBC lead levels. Children of OWO mothers with high RBC lead levels had 41% lower OWO risk (OR, 0.59; 95% CI, 0.36-0.95; P = .03) if their mothers had adequate plasma folate levels (≥20.4 nmol/L) compared with their counterparts. CONCLUSIONS AND RELEVANCE In this sample of a US urban population, findings suggest that maternal elevated lead exposure was associated with increased risk of intergenerational OWO independent of postnatal blood lead levels. Adequate maternal folate status appeared to be associated with lower OWO risk. If confirmed by additional studies, these findings have implications for prenatal lead screening and management to minimize adverse health consequences on children.
Collapse
Affiliation(s)
- Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jessica DiBari
- Division of Research, Office of Epidemiology and Research, Maternal and Child Health Bureau, Health Resources and Services Administration, Rockville, Maryland
| | - Eric Bind
- Metals Laboratory, Environmental and Chemical Laboratory Services, State of New Jersey Department of Health, Trenton
| | - Andrew M. Steffens
- Metals Laboratory, Environmental and Chemical Laboratory Services, State of New Jersey Department of Health, Trenton
| | - Jhindan Mukherjee
- Metals Laboratory, Environmental and Chemical Laboratory Services, State of New Jersey Department of Health, Trenton
| | - Romuladus E. Azuine
- Division of Research, Office of Epidemiology and Research, Maternal and Child Health Bureau, Health Resources and Services Administration, Rockville, Maryland
| | - Gopal K. Singh
- Office of Health Equity, Health Resources and Services Administration, Rockville, Maryland
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Yuelong Ji
- Center on the Early Life Origins of Disease, Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Barry S. Zuckerman
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Tina L. Cheng
- Division of General Pediatrics and Adolescent Medicine, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Division of General Pediatrics and Adolescent Medicine, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
60
|
Mayengbam S, Mickiewicz B, Trottier SK, Mu C, Wright DC, Reimer RA, Vogel HJ, Shearer J. Distinct Gut Microbiota and Serum Metabolites in Response to Weight Loss Induced by Either Dairy or Exercise in a Rodent Model of Obesity. J Proteome Res 2019; 18:3867-3875. [PMID: 31533430 DOI: 10.1021/acs.jproteome.9b00304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Energy imbalance is a primary cause of obesity. While the classical approach to attenuate weight gain includes an increase in energy expenditure through exercise, dietary manipulation such as the inclusion of dairy products has also been proven effective. In the present study, we explored the potential mechanisms by which dairy and exercise attenuate weight gain in diet-induced obese rats. Male Sprague-Dawley rats were fed a high fat, high-sugar (HFHS) diet to induce obesity for 8 weeks. Rats were then further grouped into either control (HFHS + casein) or dairy diet (HFHS + nonfat skim milk) with and without treadmill exercise for 6 weeks. Serum and fresh fecal samples were collected for gut microbiota, serum metabolomics, and metallomics analysis. Diet and exercise resulted in distinct separation in both gut microbiota and serum metabolite profiles. Most intriguingly, obesogenic bacteria including Desulfovibrio and Oribacterium were reduced, and bioactive molecules such as mannose and arginine were significantly increased in the dairy group. Correlations of at least six bacterial genera with serum metal ions and metabolites were also found. Results reveal distinct impacts of dairy and exercise on the gut microbiota and in the modulation of circulating metabolites with the former primarily responsible for driving microbial alterations known to attenuate weight gain.
Collapse
Affiliation(s)
- Shyamchand Mayengbam
- Alberta Children's Hospital Research Institute , Alberta Children's Hospital , Calgary T3B 6A8 , Alberta , Canada
| | | | - Sarah K Trottier
- Department of Human Health and Nutritional Sciences , University of Guelph , Guelph N1G 2W1 , Ontario , Canada
| | - Chunlong Mu
- Alberta Children's Hospital Research Institute , Alberta Children's Hospital , Calgary T3B 6A8 , Alberta , Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences , University of Guelph , Guelph N1G 2W1 , Ontario , Canada
| | - Raylene A Reimer
- Alberta Children's Hospital Research Institute , Alberta Children's Hospital , Calgary T3B 6A8 , Alberta , Canada
| | | | - Jane Shearer
- Alberta Children's Hospital Research Institute , Alberta Children's Hospital , Calgary T3B 6A8 , Alberta , Canada
| |
Collapse
|
61
|
Nakayama SF, Espina C, Kamijima M, Magnus P, Charles MA, Zhang J, Wolz B, Conrad A, Murawski A, Iwai-Shimada M, Zaros C, Caspersen IH, Kolossa-Gehring M, Meltzer HM, Olsen SF, Etzel RA, Schüz J. Benefits of cooperation among large-scale cohort studies and human biomonitoring projects in environmental health research: An exercise in blood lead analysis of the Environment and Child Health International Birth Cohort Group. Int J Hyg Environ Health 2019; 222:1059-1067. [PMID: 31327570 PMCID: PMC6732228 DOI: 10.1016/j.ijheh.2019.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022]
Abstract
A number of prospective cohort studies are ongoing worldwide to investigate the impact of foetal and neonatal exposures to chemical substances on child health. To assess multiple exposure (mixture) effects and low prevalence health outcomes it is useful to pool data from several studies and conduct mega-data-analysis. To discuss a path towards data harmonization, representatives from several large-scale birth cohort studies and a biomonitoring programme formed a collaborative group, the Environment and Child Health International Birth Cohort Group (ECHIBCG). In this study, an intra-laboratory trial was performed to harmonize existing blood lead measurements within the groups' studies. Then, decentralized analyses were conducted in individual countries' laboratories to evaluate blood lead levels (BLL) in each study. The measurements of pooled BLL samples in French, German and three Japanese laboratories resulted in an overall mean blood lead concentration of 8.66 μg l-1 (95% confidence interval: 8.59-8.72 μg l-1) with 3.0% relative standard deviation. Except for China's samples, BLL from each study were comparable with mean concentrations below or close to 10 μg l-1. The decentralized multivariate analyses revealed that all models had coefficients of determination below 0.1. Determinants of BLL were current smoking, age >35 years and overweight or obese status. The three variables were associated with an increase in BLL in each of the five studies, most strongly in France by almost 80% and the weakest effect being in Norway with only 15%; for Japan, with the far largest sample (~18,000), the difference was 36%. This study successfully demonstrated that the laboratory analytical methods were sufficiently similar to allow direct comparison of data and showed that it is possible to harmonize the epidemiological data for joint analysis. This exercise showed the challenges in decentralized data analyses and reinforces the need for data harmonization among studies.
Collapse
Affiliation(s)
- Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan.
| | - Carolina Espina
- International Agency for Research on Cancer (IARC), Section of Environment and Radiation, Lyon, France
| | - Michihiro Kamijima
- Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Jun Zhang
- Ministry of Education - Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Birgit Wolz
- Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Bonn, Germany
| | - André Conrad
- German Environment Agency, Section Toxicology, Health Related Monitoring, Berlin, Germany
| | - Aline Murawski
- German Environment Agency, Section Toxicology, Health Related Monitoring, Berlin, Germany
| | - Miyuki Iwai-Shimada
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Cécile Zaros
- Ined, Inserm, EFS, Elfe Joint Unit, Paris, France
| | - Ida Henriette Caspersen
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Marike Kolossa-Gehring
- German Environment Agency, Section Toxicology, Health Related Monitoring, Berlin, Germany
| | - Helle Margrete Meltzer
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Sjurdur F Olsen
- Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark; Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Ruth A Etzel
- Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Joachim Schüz
- International Agency for Research on Cancer (IARC), Section of Environment and Radiation, Lyon, France
| |
Collapse
|
62
|
Gilardi F, Lenglet S, Wiskott K, Augsburger M, Fracasso T, Thomas A. Measurement of trace elements in post-mortem human visceral and subcutaneous adipose tissues. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2019. [DOI: 10.1016/j.toxac.2019.03.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
63
|
Moynihan M, Telléz-Rojo MM, Colacino J, Jones A, Song PXK, Cantoral A, Mercado-García A, Peterson KE. Prenatal Cadmium Exposure Is Negatively Associated With Adiposity in Girls Not Boys During Adolescence. Front Public Health 2019; 7:61. [PMID: 31032242 PMCID: PMC6473031 DOI: 10.3389/fpubh.2019.00061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/27/2019] [Indexed: 01/20/2023] Open
Abstract
Introduction: Cadmium is a pervasive toxic metal that remains a public health concern and exposure in early life has been associated with growth deficits in infancy and childhood. Growth during adolescence also may be sensitive to effects of cadmium exposure, given the changes in distribution of lean and adipose tissue that vary by sex during puberty. This study examines whether prenatal and concurrent cadmium exposures are associated with adiposity measures at ages 8-15 years in a well-characterized birth cohort. Methods: The sample included 185 participants from the ELEMENT birth cohorts in Mexico City with complete data on urinary cadmium exposures, anthropometry and covariates [child age and sex, household socioeconomic status, and maternal smoking history and body mass index (BMI)]. Maternal third trimester and adolescent urines were analyzed for cadmium using an Inductively Coupled Plasma Mass Spectrometer. Trained personnel obtained anthropometry including height, weight, waist circumference and subscapular, suprailiac, and triceps skinfold thickness. BMI z-scores for age and sex were calculated using the World Health Organization's reference standard. Linear regression models were used to estimate the association of prenatal and concurrent urinary cadmium levels with adolescent anthropometry, adjusting for covariates. Results: Among 87 males and 98 females, median age was 10 years (IQR 9 -11 years). Pregnant women and children had median urinary cadmium concentrations of 0.19 μg/L (IQR 0.12- 0.27 μg/L) and 0.14 μg/L (IQR 0.11- 0.18 μg/L), respectively. Regression models showed inverse relationships between prenatal cadmium exposure and adolescent adiposity. An IQR increase in prenatal cadmium was associated with percent decreases in BMI z-score (-27%, p = 0.01), waist circumference (-3%, p = 0.01), and subscapular (-11%, p = 0.01), suprailiac (-11%, p = 0.02), and triceps (-8%, p < 0.01) skinfold thickness. When stratified by sex, these relationships remained statistically significant in females but not males. Conclusions: Prenatal cadmium exposure was negatively associated with measures of both abdominal and peripheral adiposity in girls, but not in boys. These results emphasize the sex-dependent effects of in utero cadmium exposure on adiposity in adolescence.
Collapse
Affiliation(s)
- Meghan Moynihan
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Martha Maria Telléz-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Justin Colacino
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.,Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Andrew Jones
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.,Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, United States
| | - Peter X K Song
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Alejandra Cantoral
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Adriana Mercado-García
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Karen E Peterson
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.,Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
64
|
Planchart A, Green A, Hoyo C, Mattingly CJ. Heavy Metal Exposure and Metabolic Syndrome: Evidence from Human and Model System Studies. Curr Environ Health Rep 2019; 5:110-124. [PMID: 29460222 DOI: 10.1007/s40572-018-0182-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Metabolic syndrome (MS) describes the co-occurrence of conditions that increase one's risk for heart disease and other disorders such as diabetes and stroke. The worldwide increase in the prevalence of MS cannot be fully explained by lifestyle factors such as sedentary behavior and caloric intake alone. Environmental exposures, such as heavy metals, have been implicated, but results are conflicting and possible mechanisms remain unclear. To assess recent progress in determining a possible role between heavy metal exposure and MS, we reviewed epidemiological and model system data for cadmium (Cd), lead (Pb), and mercury (Hg) from the last decade. RECENT FINDINGS Data from 36 epidemiological studies involving 17 unique countries/regions and 13 studies leveraging model systems are included in this review. Epidemiological and model system studies support a possible association between heavy metal exposure and MS or comorbid conditions; however, results remain conflicting. Epidemiological studies were predominantly cross-sectional and collectively, they highlight a global interest in this question and reveal evidence of differential susceptibility by sex and age to heavy metal exposures. In vivo studies in rats and mice and in vitro cell-based assays provide insights into potential mechanisms of action relevant to MS including altered regulation of lipid and glucose homeostasis, adipogenesis, and oxidative stress. Heavy metal exposure may contribute to MS or comorbid conditions; however, available data are conflicting. Causal inference remains challenging as epidemiological data are largely cross-sectional; and variation in study design, including samples used for heavy metal measurements, age of subjects at which MS outcomes are measured; the scope and treatment of confounding factors; and the population demographics vary widely. Prospective studies, standardization or increased consistency across study designs and reporting, and consideration of molecular mechanisms informed by model system studies are needed to better assess potential causal links between heavy metal exposure and MS.
Collapse
Affiliation(s)
- Antonio Planchart
- Department of Biological Sciences, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA.,Center for Human Health and the Environment, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA
| | - Adrian Green
- Department of Biological Sciences, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA.,Center for Human Health and the Environment, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA
| | - Carolyn J Mattingly
- Department of Biological Sciences, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA. .,Center for Human Health and the Environment, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA.
| |
Collapse
|
65
|
Lewicka I, Kocyłowski R, Grzesiak M, Gaj Z, Sajnóg A, Barałkiewicz D, von Kaisenberg C, Suliburska J. Relationship between pre-pregnancy body mass index and mineral concentrations in serum and amniotic fluid in pregnant women during labor. J Trace Elem Med Biol 2019; 52:136-142. [PMID: 30732874 DOI: 10.1016/j.jtemb.2018.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/10/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022]
Abstract
The aim of the study was to determine the correlations between body mass index (BMI) values before pregnancy and the concentrations of selected elements (Mg, Co, Cu, Zn, Sr, Cd, Ba, Pb, U, Ca, Cr, Al, Mn, V, Fe) in blood serum and amniotic fluid (AF) in pregnant women. Elemental analysis of serum and amniotic fluid in 225 Polish women (Caucasian/white) showed a relationship between the concentration of minerals in the above-mentioned samples and the pre-pregnancy BMI. Analysis of blood serum was performed by using ICP-MS and it demonstrated that iron concentration was significantly lower in overweight and obese women. Being underweight in pregnant women was associated with a significantly lower concentration of magnesium and cobalt in the blood serum. Both underweight and overweight women were associated with significantly lower concentrations of calcium and strontium in the blood serum. The concentration of cobalt was significantly higher in underweight women. The concentration of lead in the blood serum of overweight and obese women was significantly higher than in other groups. Analysis of the AF showed that the concentration of copper was significantly lower in overweight and obese women, and the concentration of manganese and vanadium significantly higher than in other groups of women. A deficiency in essential minerals and an excess of heavy metals in women may be associated with abnormal body weight and this is important in the etiopathogenesis of pregnancy and fetal development disorders.
Collapse
Affiliation(s)
- Iwona Lewicka
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Rafał Kocyłowski
- Department of Obstetric, Perinatology and Gynecology, Polish Mother's Memorial Hospital Research Institute, ul. Rzgowska281/289, 93-338 Łódz, Poland; PreMediCare New Med Medical Centre, ul. Drużbickiego 13, 61-693 Poznań, Poland.
| | - Mariusz Grzesiak
- Department of Obstetric, Perinatology and Gynecology, Polish Mother's Memorial Hospital Research Institute, ul. Rzgowska281/289, 93-338 Łódz, Poland.
| | - Zuzanna Gaj
- Department of Obstetric, Perinatology and Gynecology, Polish Mother's Memorial Hospital Research Institute, ul. Rzgowska281/289, 93-338 Łódz, Poland; Scientific Laboratory of the Center of Medical Laboratory Diagnostics and Screening, Polish Mother's Memorial Hospital-Research Institute, ul. Rzgowska281/289, Łódz, 93-338, Poland.
| | - Adam Sajnóg
- Department of Trace Element Analysis by Spectroscopy Method, Faculty of Chemistry, Adam Mickiewicz University in Poznań, ul. Umultowska89b, 61-614 Poznan, Poland.
| | - Danuta Barałkiewicz
- Department of Trace Element Analysis by Spectroscopy Method, Faculty of Chemistry, Adam Mickiewicz University in Poznań, ul. Umultowska89b, 61-614 Poznan, Poland.
| | - Constantin von Kaisenberg
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Joanna Suliburska
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznań, Poland.
| |
Collapse
|
66
|
Qi J, Lai Y, Liang C, Yan S, Huang K, Pan W, Feng L, Jiang L, Zhu P, Hao J, Tong S, Tao F. Prenatal thallium exposure and poor growth in early childhood: A prospective birth cohort study. ENVIRONMENT INTERNATIONAL 2019; 123:224-230. [PMID: 30537637 DOI: 10.1016/j.envint.2018.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/13/2018] [Accepted: 12/04/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Thallium (Tl) exposure remains a public health problem with potential impacts on humans. Studies have suggested that prenatal exposure to thallium may be associated with fetal growth, but no studies are known have explored its association with early childhood anthropometry. OBJECTIVE To investigate the effects of prenatal Tl exposures on early child growth and development aged 0-2 years in a prospective birth cohort study. METHODS 3080 pregnant women and their children participated in the study, which were recruited from a birth cohort in China. Serum samples collected in the first and second trimester of pregnant subjects and umbilical cord blood of infants were analyzed for Tl exposure assessment. Infant length or standing height and weight were obtained from medical records and 2 years planned visits. We used length/height and weight to calculate z-scores for weight-for-age (WAZ), height-for-age (HAZ), weight-for-height (WHZ), and body mass index-for-age (zBMI) based on World Health Organization standards. Linear mixed model was used to investigate the association between serum concentrations of Tl and the children's anthropometric characteristics (WAZ, HAZ, WHZ, and zBMI), and stratification analysis by sex was also examined. RESULTS The median (P25-P75) of Tl levels in the first trimester, second trimester and umbilical cord serum were 61.7 (50.7-77.0), 60.1 (50.9-74.8) and 38.4 (33.6-43.9) ng/L, respectively. Paired Mann-Whitney tests found Tl concentrations in umbilical cord serum were significantly less than that in maternal serum during the first and second trimesters (all p < 0.01). Using adjusted linear mixed model, no significant relationships were observed between maternal Tl exposure and child growth parameters. However, the umbilical cord serum Tl levels may contributed to decreased WAZ (β = -0.382, 95% confidence interval (CI): -0.670, -0.095) and HAZ (β = -0.427, 95% CI: -0.702, -0.152). When stratified by sex, the umbilical cord serum Tl levels were negatively related to WAZ (β = -0.450, 95% CI: -0.853, -0.048) and HAZ (β = -0.775, 95% CI: -1.160, -0.391) for girls. Among boys, overall Tl exposures were not significantly associated with early children anthropometric outcomes. CONCLUSIONS In the present study, our results suggested that prenatal Tl exposures may have a sex specific effect on child anthropometric measurements in the first 2 years of life. Umbilical cord serum Tl levels tended to be reduced child's stature and weight in young girls.
Collapse
Affiliation(s)
- Juan Qi
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Yaping Lai
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Chunmei Liang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health (MCH) Center, Ma'anshan, People's Republic of China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, People's Republic of China
| | - Weijun Pan
- Ma'anshan Maternal and Child Health (MCH) Center, Ma'anshan, People's Republic of China
| | - Lanlan Feng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Liu Jiang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, People's Republic of China
| | - Jiahu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, People's Republic of China
| | - Shilu Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China; School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Shanghai Children's Medical Centre, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, People's Republic of China.
| |
Collapse
|
67
|
Zhou J, Du B, Hu Y, Liang J, Liu H, Fan X, Zhang L, Cui H, Liu X, Zhou J. A new criterion for the health risk assessment of Se and Pb exposure to residents near a smelter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:218-227. [PMID: 30340168 DOI: 10.1016/j.envpol.2018.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/30/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
There is an increasing evidence linking protective effect of selenium (Se) against Pb toxicology; however, Pb exposure risk assessments usually consider only the environmental Pb contamination and dietary intake. Based on the current understanding of mechanisms of SePb interactions, the physiological function/toxicology of Se and the toxicology of Pb, a new criterion for Se and Pb exposure assessment is developed. Additionally, seven existing criteria were also used to assess the resident health risks around a smelter in China. The Pb concentrations in locally-produced foods exceeded the national tolerance limits of China and the Se in the foods were similar to those in areas with adequate Se levels. In accordance with the illustrated assessments of the new criterion and seven existing criteria, we found a large knowledge gap between the new and traditional assessments of exposure to Pb and/or Se. The new assessment criteria suggested that almost all the residents were facing the Se deficiency and 58% of the residents not only had the adverse health of Se deficiency, but also had the health risks of Pb toxicity. The Pb and Se in the hair and urine may partly support the new criterion. This study suggested that the process of Se counteracting the Pb toxicity may result in Se deficiency. Pb exposure combined Se intake should be considered in future assessments of Pb exposure (or Se intake).
Collapse
Affiliation(s)
- Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resource and Environment, Anhui Science and Technology University, Fengyang, Anhui, 233100, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Buyun Du
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, No. 8 Jiang-wang-miao Street, Nanjing, Jiangsu, 210042, China
| | - Yuanmei Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Jiani Liang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Hailong Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Xingjun Fan
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Ligan Zhang
- School of Resource and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Xiaoli Liu
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China; Jiangxi Engineering Research Center of Eco-Remediation of Heavy Metal Pollution, Jiangxi Academy of Science, Nanchang, 330096, China.
| |
Collapse
|
68
|
Noor N, Zong G, Seely EW, Weisskopf M, James-Todd T. Urinary cadmium concentrations and metabolic syndrome in U.S. adults: The National Health and Nutrition Examination Survey 2001-2014. ENVIRONMENT INTERNATIONAL 2018; 121:349-356. [PMID: 30243183 PMCID: PMC6786759 DOI: 10.1016/j.envint.2018.08.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Low to moderate acute cadmium exposure has been associated with increased risk of chronic diseases, such as cardiovascular and kidney disease. Little is known about the association between urinary cadmium levels-an indicator of longer-term exposure-and metabolic syndrome (MetS). METHODS We analysed data from 3982 participants aged 20-<80 years of the National Health and Nutrition Examination Survey 2001-2014. Urinary cadmium levels were measured and adjusted for creatinine using spot urine samples. Cadmium levels were evaluated in quintiles (Q). MetS was defined by National Cholesterol Education Program's Adult Treatment Panel III report criteria. Prevalence odds ratios (OR) and 95% confidence intervals (CI) were calculated using multivariable logistic regression accounting for complex survey design, while adjusting for potential confounders and stratifying by sex and smoking status. RESULTS In the overall study population, there was a marginal inverse association between urinary cadmium and MetS (adj. OR for Q5 versus Q1: 0.7; 95% CI: 0.5-1.0). Sex stratified models were similar. When examining individual components of MetS, participants with higher levels of urinary cadmium had decreased odds of abdominal obesity (adj. OR for Q5 versus Q1 0.4; 95% CI: 0.3-0.6), but increased odds for low HDL (adj. OR for Q5 versus Q1 2.1; 95% CI: 1.4-3.1). Among current smokers, higher urinary cadmium was associated with increased odds of MetS, hypertension, and low HDL even after accounting for serum cotinine-a marker of smoking intensity. CONCLUSIONS Higher levels of urinary cadmium, a marker of long term exposure, were not associated with an increased risk of MetS in the overall study population. However, higher urine cadmium was associated with altered MetS components. Current smokers were the most vulnerable group, with higher long-term cadmium exposure being associated with increased risk of MetS, low HDL, and hypertension.
Collapse
Affiliation(s)
- Nudrat Noor
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, United States of America
| | - Geng Zong
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, United States of America
| | - Ellen W Seely
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Ave., 3rd Floor, Boston, MA 02115, United States of America
| | - Marc Weisskopf
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, United States of America; Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, United States of America
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, United States of America; Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, United States of America; Division of Women's Health, Department of Medicine, Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02120, United States of America.
| |
Collapse
|
69
|
Ye L, Qiu S, Li X, Jiang Y, Jing C. Antimony exposure and speciation in human biomarkers near an active mining area in Hunan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1-8. [PMID: 29852442 DOI: 10.1016/j.scitotenv.2018.05.267] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Antimony (Sb) exposure threatens human health. To identify human biomarkers for Sb exposure, we analyzed 480 environmental samples from an active Sb mining area in Hunan, China. Elevated Sb concentrations exceeding the reference level were detected in drinking water (70% of n = 83 total samples), foods (80%, n = 188), urine (95%, n = 63), saliva (44%, n = 48), hair (80%, n = 51) and nails (83%, n = 47). Drinking water contributed 85%-100% of the average daily dose (ADD) of Sb, and the total ADD (11.7 μg/kg bodyweight/day) was up to thirty times higher than the oral reference dose (0.4 μg/kg bodyweight/day) as recommended by USEPA. A positive correlation was found between ADD and Sb content in hair (p = 0.02), but not in urine (p = 0.051), saliva (p = 0.52) or nails (p = 0.85), suggesting that hair is the best non-invasive biomarker. Micro X-ray fluorescence analysis indicated that Sb is distributed in discrete spots in hair and nails, and Sb distribution is correlated with other metals. Methylated Sb species were predominant in urine (46%-100%) and saliva (74%-100%) in collected samples, implying that the human metabolic system adopts methylation as an effective pathway to detoxify and excrete Sb.
Collapse
Affiliation(s)
- Li Ye
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixin Qiu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhai Li
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxuan Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
70
|
Yabe J, Nakayama SMM, Ikenaka Y, Yohannes YB, Bortey-Sam N, Kabalo AN, Ntapisha J, Mizukawa H, Umemura T, Ishizuka M. Lead and cadmium excretion in feces and urine of children from polluted townships near a lead-zinc mine in Kabwe, Zambia. CHEMOSPHERE 2018; 202:48-55. [PMID: 29554507 DOI: 10.1016/j.chemosphere.2018.03.079] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/24/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Lead (Pb) and cadmium (Cd) are toxic metals that exist ubiquitously in the environment. Children in polluted areas are particularly vulnerable to metal exposure, where clinical signs and symptoms could be nonspecific. Absorbed metals are excreted primarily in urine and reflect exposure from all sources. We analyzed Pb and Cd concentrations in blood, feces and urine of children from polluted townships near a lead-zinc mine in Kabwe, Zambia, to determine concurrent childhood exposure to the metals. Moreover, the study determined the Pb and Cd relationships among urine, feces and blood as well as accessed the potential of urine and fecal analysis for biomonitoring of Pb and Cd exposure in children. Fecal Pb (up to 2252 mg/kg, dry weight) and urine Pb (up to 2914 μg/L) were extremely high. Concentrations of Cd in blood (Cd-B) of up to 7.7 μg/L, fecal (up to 4.49 mg/kg, dry weight) and urine (up to 18.1 μg/L) samples were elevated. metal levels were higher in younger children (0-3 years old) than older children (4-7). Positive correlations were recorded for Pb and Cd among blood, urine and fecal samples whereas negative correlations were recorded with age. These findings indicate children are exposed to both metals at their current home environment. Moreover, urine and feces could be useful for biomonitoring of metals due to their strong relationships with blood levels. There is need to conduct a clinical evaluation of the affected children to fully appreciate the health impact of these metal exposure.
Collapse
Affiliation(s)
- John Yabe
- The University of Zambia, School of Veterinary Medicine, P.O. Box 32379, Lusaka, Zambia
| | - Shouta M M Nakayama
- Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Yoshinori Ikenaka
- Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Yared B Yohannes
- Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Nesta Bortey-Sam
- Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | | | - John Ntapisha
- Ministry of Health, District Health Office, P.O. Box 80735, Kabwe, Zambia
| | - Hazuki Mizukawa
- Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Takashi Umemura
- Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Mayumi Ishizuka
- Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
| |
Collapse
|
71
|
Fábelová L, Vandentorren S, Vuillermoz C, Garnier R, Lioret S, Botton J. Hair concentration of trace elements and growth in homeless children aged <6years: Results from the ENFAMS study. ENVIRONMENT INTERNATIONAL 2018; 114:318-325. [PMID: 29150339 DOI: 10.1016/j.envint.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Growth is an important indicator of health in early childhood. This is a critical developmental period, during which a number of factors, including exposure to metals, might play a role in later physical and metabolic functions. OBJECTIVE To study the association between exposure to arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb) and selenium (Se), and physical growth of children from homeless families aged <6years. METHODS This study was based on data of the cross-sectional survey (ENFAMS), which was conducted by the Observatoire du Samu Social on a random sample of homeless sheltered families in the Paris region during winter 2013. Families with children under 6years (N=324) were interviewed in 17 languages using face-to-face questionnaires. A nurse took anthropometric measures and collected hair samples where As, Cd, Hg, Pb and Se levels were measured. We calculated weight-for-age Z-score (WAZ), height-for-age Z-score (HAZ) and BMI-for-age Z-score (BMIZ) of children, using the 2006 WHO Child Growth Standards as a reference. Associations between ln-transformed metal exposures and growth outcomes were tested by multivariable linear regression models with adjustment for potential confounders (including maternal anthropometrical and socio-demographical characteristics, gestational age, child birthweight, breastfeeding, food insecurity of the child). Due to missing data (1.6% to 14.2% depending on the variables), we used multiple imputation by chained equations. RESULTS A strong positive correlation was found between Pb and Cd levels (r=0.65; p<0.001). Positive associations between Se level and HAZ (β=0.61; p=0.05) and between Cd and BMIZ (β=0.21; p=0.03) and negative associations between As and HAZ (β=-0.18; p=0.05) were no more significant after multiple imputation. A weak negative trend was observed between Cd and HAZ (β=-0.14; p=0.14), while positive trends were found between Se and both WAZ (β=0.55; p=0.10) and HAZ (β=0.51; p=0.06) after multiple imputation. CONCLUSION Overall, our results found no strong association between exposure to metals and physical growth of homeless children but we observed some trends that were consistent with previous studies. More research is required studying these associations longitudinally, along with higher sample sizes, for better understanding the sources of exposure in homeless population and the potential effects on growth.
Collapse
Affiliation(s)
- Lucia Fábelová
- U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Research Centre (CRESS), Early Origin of the Child's Health and Development (ORCHAD) Team, Inserm, Villejuif, France.
| | - Stéphanie Vandentorren
- INSERM, Sorbonne Universités, UPMC Univ Paris 06, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP UMRS 1136), Department of Social Epidemiology, Paris, France; French Institute for Public Health Surveillance, Saint-Maurice, France
| | - Cécile Vuillermoz
- INSERM, Sorbonne Universités, UPMC Univ Paris 06, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP UMRS 1136), Department of Social Epidemiology, Paris, France
| | - Robert Garnier
- Centre antipoison et de toxicovigilance de Paris, France
| | - Sandrine Lioret
- U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Research Centre (CRESS), Early Origin of the Child's Health and Development (ORCHAD) Team, Inserm, Villejuif, France
| | - Jérémie Botton
- U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Research Centre (CRESS), Early Origin of the Child's Health and Development (ORCHAD) Team, Inserm, Villejuif, France; Faculty of Pharmacy, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
72
|
Mudumbi JBN, Ntwampe SKO, Mekuto L, Matsha T, Itoba-Tombo EF. The role of pollutants in type 2 diabetes mellitus (T2DM) and their prospective impact on phytomedicinal treatment strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:262. [PMID: 29610974 DOI: 10.1007/s10661-018-6634-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is the most common form of diabetes and it is characterized by high blood sugar and abnormal sera lipid levels. Although the specific reasons for the development of these abnormalities are still not well understood, traditionally, genetic and lifestyle behavior have been reported as the leading causes of this disease. In the last three decades, the number of diabetic patients has drastically increased worldwide, with current statistics suggesting the number is to double in the next two decades. To combat this incurable ailment, orthodox medicines, to which economically disadvantaged patients have minimal access to, have been used. Thus, a considerable amalgamation of medicinal plants has recently been proven to possess therapeutic capabilities to manage T2DM, and this has prompted studies primarily focusing on the healing aspect of these plants, and ultimately, their commercialization. Hence, this review aims to highlight the potential threat of pollutants, i.e., polyfluoroalkyl compounds (PFCs), endocrine disrupting chemicals (EDCs) and heavy metals, to medicinal plants, and their prospective impact on the phytomedicinal therapy strategies for T2DM. It is further suggested that auxiliary research be undertaken to better comprehend the factors that influence the uptake of these compounds by these plants. This should include a comprehensive risk assessment of phytomedicinal products destined for the treatment of T2DM. Regulations that control the use of PFC-precursors in certain developing countries are also long overdue.
Collapse
Affiliation(s)
- John Baptist Nzukizi Mudumbi
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa.
| | - Seteno Karabo Obed Ntwampe
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, University of Johannesburg, PO Box 17011, Johannesburg, Gauteng, 2028, South Africa
| | - Tandi Matsha
- Department of Bio-Medical sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
| | - Elie Fereche Itoba-Tombo
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| |
Collapse
|
73
|
Satarug S. Dietary Cadmium Intake and Its Effects on Kidneys. TOXICS 2018; 6:E15. [PMID: 29534455 PMCID: PMC5874788 DOI: 10.3390/toxics6010015] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022]
Abstract
Cadmium (Cd) is a food-chain contaminant that has high rates of soil-to-plant transference. This phenomenon makes dietary Cd intake unavoidable. Although long-term Cd intake impacts many organ systems, the kidney has long been considered to be a critical target of its toxicity. This review addresses how measurements of Cd intake levels and its effects on kidneys have traditionally been made. These measurements underpin the derivation of our current toxicity threshold limit and tolerable intake levels for Cd. The metal transporters that mediate absorption of Cd in the gastrointestinal tract are summarized together with glomerular filtration of Cd and its sequestration by the kidneys. The contribution of age differences, gender, and smoking status to Cd accumulation in lungs, liver, and kidneys are highlighted. The basis for use of urinary Cd excretion to reflect body burden is discussed together with the use of urinary N-acetyl-β-d-glucosaminidase (NAG) and β2-microglobulin (β2-MG) levels to quantify its toxicity. The associations of Cd with the development of chronic kidney disease and hypertension, reduced weight gain, and zinc reabsorption are highlighted. In addition, the review addresses how urinary Cd threshold levels have been derived from human population data and their utility as a warning sign of impending kidney malfunction.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Centre for Kidney Disease Research and Translational Research Institute, The University of Queensland Diamantina Institute and Centre for Health Services Research, Woolloongabba, Brisbane 4102, Australia.
| |
Collapse
|