51
|
Kodama S, Podyma-Inoue KΑ, Uchihashi T, Kurioka K, Takahashi H, Sugauchi A, Takahashi K, Inubushi T, Kogo M, Tanaka S, Watabe T. Progression of melanoma is suppressed by targeting all transforming growth factor‑β isoforms with an Fc chimeric receptor. Oncol Rep 2021; 46:197. [PMID: 34296292 PMCID: PMC8317165 DOI: 10.3892/or.2021.8148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/02/2021] [Indexed: 01/15/2023] Open
Abstract
Melanoma is an aggressive type of cancer originating from the skin that arises from neoplastic changes in melanocytes. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine and is known to contribute to melanoma progression by inducing the epithelial-mesenchymal transition (EMT) program and creating an environment that favors tumor progression. There are three TGF-β isoforms, TGF-β1, TGF-β2 and TGF-β3, all of which engage in pro-tumorigenic activities by activating SMAD signaling pathways. All TGF-β isoforms activate signaling pathways by binding to their TGF-β type I (TβRI) and type II (TβRII) receptors. Thus, effective targeting of all TGF-β isoforms is of great importance. In the present study, chimeric proteins comprising the extracellular domains of TβRI and/or TβRII fused with the Fc portion of human immunoglobulin (IgG) were validated in the melanoma context. The Fc chimeric receptor comprising both TβRI and TβRII (TβRI-TβRII-Fc) effectively trapped all TGF-β isoforms. Conversely, TβRII-Fc chimeric receptor, that comprises TβRII only, was able to interact with TGF-β1 and TGF-β3 isoforms, but not with TGF-β2, which is a poor prognostic factor for melanoma patients. Accordingly, it was revealed that TβRI-TβRII-Fc chimeric receptor suppressed the EMT program in melanoma cells in vitro induced by any of the three TGF-β isoforms, as revealed by decreased expression of mesenchymal markers. Conversely, TβRII-Fc chimeric receptor inhibited the EMT program induced by TGF-β1 and TGF-β3. In addition, it was established that tumor growth in subcutaneous mouse melanoma was inhibited by TβRI-TβRII-Fc chimeric receptor indicating that Fc chimeric receptor could be applied to modify the tumor microenvironment (TME) of melanoma. Therefore, designing of Fc chimeric receptors targeting TGF-β signals that affect various components of the TME may result in the development of effective anti-melanoma agents.
Collapse
Affiliation(s)
- Shingo Kodama
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565‑0871, Japan
| | - Katarzyna Α Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo 113‑8549, Japan
| | - Toshihiro Uchihashi
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565‑0871, Japan
| | - Kyoko Kurioka
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565‑0871, Japan
| | - Hitomi Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo 113‑8549, Japan
| | - Akinari Sugauchi
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565‑0871, Japan
| | - Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo 113‑8549, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Osaka 565‑0871, Japan
| | - Mikihiko Kogo
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565‑0871, Japan
| | - Susumu Tanaka
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Osaka 565‑0871, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo 113‑8549, Japan
| |
Collapse
|
52
|
Tumor Promoting Effect of BMP Signaling in Endometrial Cancer. Int J Mol Sci 2021; 22:ijms22157882. [PMID: 34360647 PMCID: PMC8346149 DOI: 10.3390/ijms22157882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
The effects of bone morphogenetic proteins (BMPs), members of the transforming growth factor-β (TGF-β) family, in endometrial cancer (EC) have yet to be determined. In this study, we analyzed the TCGA and MSK-IMPACT datasets and investigated the effects of BMP2 and of TWSG1, a BMP antagonist, on Ishikawa EC cells. Frequent ACVR1 mutations and high mRNA expressions of BMP ligands and receptors were observed in EC patients of the TCGA and MSK-IMPACT datasets. Ishikawa cells secreted higher amounts of BMP2 compared with ovarian cancer cell lines. Exogenous BMP2 stimulation enhanced EC cell sphere formation via c-KIT induction. BMP2 also induced EMT of EC cells, and promoted migration by induction of SLUG. The BMP receptor kinase inhibitor LDN193189 augmented the growth inhibitory effects of carboplatin. Analyses of mRNAs of several BMP antagonists revealed that TWSG1 mRNA was abundantly expressed in Ishikawa cells. TWSG1 suppressed BMP7-induced, but not BMP2-induced, EC cell sphere formation and migration. Our results suggest that BMP signaling promotes EC tumorigenesis, and that TWSG1 antagonizes BMP7 in EC. BMP signaling inhibitors, in combination with chemotherapy, might be useful in the treatment of EC patients.
Collapse
|
53
|
Papaccio F, Kovacs D, Bellei B, Caputo S, Migliano E, Cota C, Picardo M. Profiling Cancer-Associated Fibroblasts in Melanoma. Int J Mol Sci 2021; 22:7255. [PMID: 34298873 PMCID: PMC8306538 DOI: 10.3390/ijms22147255] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022] Open
Abstract
Solid tumors are complex systems characterized by dynamic interactions between neoplastic cells, non-tumoral cells, and extracellular components. Among all the stromal cells that populate tumor microenvironment, fibroblasts are the most abundant elements and are critically involved in disease progression. Cancer-associated fibroblasts (CAFs) have pleiotropic functions in tumor growth and extracellular matrix remodeling implicated in local invasion and distant metastasis. CAFs additionally participate in the inflammatory response of the tumor site by releasing a variety of chemokines and cytokines. It is becoming clear that understanding the dynamic, mutual melanoma-fibroblast relationship would enable treatment options to be amplified. To better characterize melanoma-associated fibroblasts, here we analyzed low-passage primary CAFs derived from advanced-stage primary skin melanomas, focusing on the immuno-phenotype. Furthermore, we assessed the expression of several CAF markers and the production of growth factors. To deepen the study of CAF-melanoma cell crosstalk, we employed CAF-derived supernatants and trans-well co-culture systems to evaluate the influences of CAFs on (i) the motogenic ability of melanoma cells, (ii) the chemotherapy-induced cytotoxicity, and (iii) the release of mediators active in modulating tumor growth and spread.
Collapse
Affiliation(s)
- Federica Papaccio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (B.B.); (S.C.); (M.P.)
| | - Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (B.B.); (S.C.); (M.P.)
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (B.B.); (S.C.); (M.P.)
| | - Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (B.B.); (S.C.); (M.P.)
| | - Emilia Migliano
- Department of Plastic and Regenerative Surgery, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy;
| | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy;
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (B.B.); (S.C.); (M.P.)
| |
Collapse
|
54
|
TGF-β-dependent reprogramming of amino acid metabolism induces epithelial-mesenchymal transition in non-small cell lung cancers. Commun Biol 2021; 4:782. [PMID: 34168290 PMCID: PMC8225889 DOI: 10.1038/s42003-021-02323-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT)—a fundamental process in embryogenesis and wound healing—promotes tumor metastasis and resistance to chemotherapy. While studies have identified signaling components and transcriptional factors responsible in the TGF-β-dependent EMT, whether and how intracellular metabolism is integrated with EMT remains to be fully elucidated. Here, we showed that TGF-β induces reprogramming of intracellular amino acid metabolism, which is necessary to promote EMT in non-small cell lung cancer cells. Combined metabolome and transcriptome analysis identified prolyl 4-hydroxylase α3 (P4HA3), an enzyme implicated in cancer metabolism, to be upregulated during TGF-β stimulation. Further, knockdown of P4HA3 diminished TGF-β-dependent changes in amino acids, EMT, and tumor metastasis. Conversely, manipulation of extracellular amino acids induced EMT-like responses without TGF-β stimulation. These results suggest a previously unappreciated requirement for the reprogramming of amino acid metabolism via P4HA3 for TGF-β-dependent EMT and implicate a P4HA3 inhibitor as a potential therapeutic agent for cancer. Through metabolome and transcriptome analyses, Nakasuka et al find that TGF-β-induced epithelial–mesenchymal transition (EMT) in non-small cell lung cancer cells is associated with reprogramming of amino acid metabolism. They also identify P4HA3 as a key enzyme involved in these changes altogether providing insights into potential mechanisms of metastasis.
Collapse
|
55
|
Yaginuma T, Gao J, Nagata K, Muroya R, Fei H, Nagano H, Chishaki S, Matsubara T, Kokabu S, Matsuo K, Kiyoshima T, Yoshioka I, Jimi E. p130Cas induces bone invasion by oral squamous cell carcinoma by regulating tumor epithelial-mesenchymal transition and cell proliferation. Carcinogenesis 2021; 41:1038-1048. [PMID: 31996896 DOI: 10.1093/carcin/bgaa007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/27/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Bone invasion is a critical factor in determining the prognosis of oral squamous cell carcinoma (OSCC) patients. Transforming growth factor β (TGF-β) is abundantly expressed in the bone matrix and is involved in the acquisition of aggressiveness by tumors. TGF-β is also important to cytoskeletal changes during tumor progression. In this study, we examined the relationship between TGF-β signaling and cytoskeletal changes during bone invasion by OSCC. Immunohistochemical staining of OSCC samples from five patients showed the expression of p130Cas (Crk-associated substrate) in the cytoplasm and phosphorylated Smad3 expression in the nucleus in OSCC cells. TGF-β1 induced the phosphorylation of Smad3 and p130Cas, as well as epithelial-mesenchymal transition (EMT) accompanied by the downregulation of the expression of E-cadherin, a marker of epithelial cells, and the upregulation of the expression of N-cadherin, or Snail, a marker of mesenchymal cells, in human HSC-2 cells and mouse squamous cell carcinome VII (SCCVII) cells. SB431542, a specific inhibitor of Smad2/3 signaling, abrogated the TGF-β1-induced phosphorylation of p130Cas and morphological changes. Silencing p130Cas using an short hairpin RNA (shRNA) or small interfering RNA in SCCVII cells suppressed TGF-β1-induced cell migration, invasion, EMT and matrix metalloproteinase-9 (MMP-9) production. Compared with control SCCVII cells, SCCVII cells with silenced p130Cas strongly suppressed zygomatic and mandibular destruction in vivo by reducing the number of osteoclasts, cell proliferation and MMP-9 production. Taken together, these results showed that the expression of TGF-β/p130Cas might be a new target for the treatment of OSCC bone invasion.
Collapse
Affiliation(s)
- Tatsuki Yaginuma
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Manazuru, Kokurakita-ku, Kitakyushu, Japan.,Division of Oral Medicine, Department of Oral and Maxillofacial Reconstructive Surgery, Kyushu Dental University, Manazuru, Kokurakita-ku, Kitakyushu, Japan.,Laboratory of Molecular and Cellular Biochemistry, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Kengo Nagata
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Ryusuke Muroya
- Laboratory of Molecular and Cellular Biochemistry, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Huang Fei
- Laboratory of Molecular and Cellular Biochemistry, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Haruki Nagano
- Laboratory of Molecular and Cellular Biochemistry, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Sakura Chishaki
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Manazuru, Kokurakita-ku, Kitakyushu, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Manazuru, Kokurakita-ku, Kitakyushu, Japan
| | - Kou Matsuo
- Division of Oral Pathology, Department of Health Improvement, Kyushu Dental University, Manazuru, Kokurakita-ku, Kitakyushu, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Izumi Yoshioka
- Division of Oral Medicine, Department of Oral and Maxillofacial Reconstructive Surgery, Kyushu Dental University, Manazuru, Kokurakita-ku, Kitakyushu, Japan
| | - Eijiro Jimi
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Manazuru, Kokurakita-ku, Kitakyushu, Japan.,Laboratory of Molecular and Cellular Biochemistry, Maidashi, Higashi-ku, Fukuoka, Japan.,Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
56
|
Tamura Y, Morikawa M, Tanabe R, Miyazono K, Koinuma D. Anti-pyroptotic function of TGF-β is suppressed by a synthetic dsRNA analogue in triple negative breast cancer cells. Mol Oncol 2021; 15:1289-1307. [PMID: 33342034 PMCID: PMC8096786 DOI: 10.1002/1878-0261.12890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/27/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Development of innovative therapeutic modalities would address an unmet clinical need in the treatment of triple negative breast cancer (TNBC). Activation of retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) such as melanoma differentiation-associated gene 5 (MDA5) and RIG-I in cancer cells is suggested to suppress tumor progression by inducing cell death. Transfection of polyI:C, a conventionally used synthetic double-stranded RNA (dsRNA) analogue that activates RLRs, has been evaluated in clinical trials. However, detailed mechanisms of tumor suppression by RLRs, especially interactions with other signaling pathways, remain elusive. Here, we showed that transfection of polyI:C suppressed transforming growth factor-β (TGF-β) signaling in a MDA5- and RIG-I-dependent manner. We found that suppression of TGF-β signaling by polyI:C promoted cancer cell death, which was attenuated by forced expression of constitutively active Smad3. More detailed analysis suggested that cell death by polyI:C transfection exhibited characteristics of pyroptosis, which is distinct from apoptosis. Therapeutic efficacy of polyI:C transfection was also demonstrated using a mouse model. These results indicated that intratumor administration of polyI:C and related dsRNA analogues may be promising treatments for TNBC through inhibition of the anti-pyroptotic function of TGF-β.
Collapse
Affiliation(s)
- Yusuke Tamura
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoJapan
| | - Masato Morikawa
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoJapan
| | - Ryo Tanabe
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoJapan
| | - Kohei Miyazono
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoJapan
| | - Daizo Koinuma
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoJapan
| |
Collapse
|
57
|
Kubota SI, Takahashi K, Mano T, Matsumoto K, Katsumata T, Shi S, Tainaka K, Ueda HR, Ehata S, Miyazono K. Whole-organ analysis of TGF-β-mediated remodelling of the tumour microenvironment by tissue clearing. Commun Biol 2021; 4:294. [PMID: 33674758 PMCID: PMC7935961 DOI: 10.1038/s42003-021-01786-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/02/2021] [Indexed: 01/06/2023] Open
Abstract
Tissue clearing is one of the most powerful strategies for a comprehensive analysis of disease progression. Here, we established an integrated pipeline that combines tissue clearing, 3D imaging, and machine learning and applied to a mouse tumour model of experimental lung metastasis using human lung adenocarcinoma A549 cells. This pipeline provided the spatial information of the tumour microenvironment. We further explored the role of transforming growth factor-β (TGF-β) in cancer metastasis. TGF-β-stimulated cancer cells enhanced metastatic colonization of unstimulated-cancer cells in vivo when both cells were mixed. RNA-sequencing analysis showed that expression of the genes related to coagulation and inflammation were up-regulated in TGF-β-stimulated cancer cells. Further, whole-organ analysis revealed accumulation of platelets or macrophages with TGF-β-stimulated cancer cells, suggesting that TGF-β might promote remodelling of the tumour microenvironment, enhancing the colonization of cancer cells. Hence, our integrated pipeline for 3D profiling will help the understanding of the tumour microenvironment.
Collapse
Affiliation(s)
- Shimpei I Kubota
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kei Takahashi
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Mano
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Matsumoto
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Osaka, Japan
| | - Takahiro Katsumata
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoi Shi
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuki Tainaka
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Osaka, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Environmental Science Center, The University of Tokyo, Tokyo, Japan.
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
58
|
Takahashi K, Ehata S, Miyauchi K, Morishita Y, Miyazawa K, Miyazono K. Neurotensin receptor 1 signaling promotes pancreatic cancer progression. Mol Oncol 2021; 15:151-166. [PMID: 33034134 PMCID: PMC7782081 DOI: 10.1002/1878-0261.12815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is one of the cancers with the poorest prognosis, with a 5-year survival rate of approximately 5-10%. Thus, it is urgent to identify molecular targets for the treatment of pancreatic cancer. Using serial transplantations in a mouse pancreatic orthotopic inoculation model, we previously produced highly malignant pancreatic cancer sublines with increased tumor-forming abilities in vivo. Here, we used these sublines to screen molecular targets for the treatment of pancreatic cancer. Among the genes with increased expression levels in the sublines, we focused on those encoding cell surface receptors that may be involved in the interactions between cancer cells and the tumor microenvironment. Based on our previous RNA-sequence analysis, we found increased expression levels of neurotensin (NTS) receptor 1 (NTSR1) in highly malignant pancreatic cancer sublines. Furthermore, re-analysis of clinical databases revealed that the expression level of NTSR1 was increased in advanced pancreatic cancer and that high NTSR1 levels were correlated with a poor prognosis. Overexpression of NTSR1 in human pancreatic cancer cells Panc-1 and SUIT-2 accelerated their tumorigenic and metastatic abilities in vivo. In addition, RNA-sequence analysis showed that MAPK and NF-κB signaling pathways were activated upon NTS stimulation in highly malignant cancer sublines and also revealed many new target genes for NTS in pancreatic cancer cells. NTS stimulation increased the expression of MMP-9 and other pro-inflammatory cytokines and chemokines in pancreatic cancer cells. Moreover, the treatment with SR48692, a selective NTSR1 antagonist, suppressed the activation of the MAPK and NF-κB signaling pathways and induction of target genes in pancreatic cancer cells in vitro, while the administration of SR48692 attenuated the tumorigenicity of pancreatic cancer cells in vivo. These findings suggest that NTSR1 may be a prognostic marker and a molecular target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Shogo Ehata
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
- Environmental Science CenterThe University of TokyoBunkyo‐kuJapan
| | - Kensuke Miyauchi
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Yasuyuki Morishita
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Keiji Miyazawa
- Department of BiochemistryGraduate School of MedicineUniversity of YamanashiChuoJapan
| | - Kohei Miyazono
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| |
Collapse
|
59
|
Cai C, Zeng Q, Zhou G, Mu X. Identification of novel transcription factor-microRNA-mRNA co-regulatory networks in pulmonary large-cell neuroendocrine carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:133. [PMID: 33569435 PMCID: PMC7867924 DOI: 10.21037/atm-20-7759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Large cell neuroendocrine carcinoma (LCNEC) of the lung is a rare neuroendocrine neoplasm. Previous studies have shown that microRNAs (miRNAs) are widely involved in tumor regulation through targeting critical genes. However, it is unclear which miRNAs play vital roles in the pathogenesis of LCNEC, and how they interact with transcription factors (TFs) to regulate cancer-related genes. Methods To determine the novel TF-miRNA-target gene feed-forward loop (FFL) model of LCNEC, we integrated multi-omics data from Gene Expression Omnibus (GEO), Transcriptional Regulatory Relationships Unraveled by Sentence-Based Text Mining (TRRUST), Transcriptional Regulatory Element Database (TRED), and The experimentally validated microRNA-target interactions database (miRTarBase database). First, expression profile datasets for mRNAs (GSE1037) and miRNAs (GSE19945) were downloaded from the GEO database. Overlapping differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were identified through integrative analysis. The target genes of the FFL were obtained from the miRTarBase database, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed on the target genes. Then, we screened for key miRNAs in the FFL and performed gene regulatory network analysis based on key miRNAs. Finally, the TF-miRNA-target gene FFLs were constructed by the hypergeometric test. Results A total of 343 DEGs and 60 DEMs were identified in LCNEC tissues compared to normal tissues, including 210 down-regulated and 133 up-regulated genes, and 29 down-regulated and 31 up-regulated miRNAs. Finally, the regulatory network of TF-miRNA-target gene was established. The key regulatory network modules included ETS1-miR195-CD36, TAOK1-miR7-1-3P-GRIA1, E2F3-miR195-CD36, and TEAD1-miR30A-CTHRC1. Conclusions We constructed the TF-miRNA-target gene regulatory network, which is helpful for understanding the complex LCNEC regulatory mechanisms.
Collapse
Affiliation(s)
- Cunliang Cai
- Department of Respiratory and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Qianli Zeng
- The South China Center for Innovative Pharmaceuticals, Guangzhou, China
| | - Guiliang Zhou
- The South China Center for Innovative Pharmaceuticals, Guangzhou, China
| | - Xiangdong Mu
- Department of Respiratory and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
60
|
Zhang H, Wu S, Ye S, Ma H, Liu Z. Preliminary RNA-microarray analysis of long non-coding RNA expression in abnormally invasive placenta. Exp Ther Med 2021; 21:13. [PMID: 33235622 PMCID: PMC7678644 DOI: 10.3892/etm.2020.9445] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are reported to have important roles in placental development and function, but the role of lncRNAs in abnormally invasive placenta (AIP) remains elusive. In the present study, the differential expression profiles of lncRNAs were analyzed to identify novel targets for further study of AIP. A total of 10 lncRNAs were chosen for validation by reverse transcription-quantitative PCR. To further determine the functions of dysregulated lncRNAs and their corresponding mRNAs, functional enrichment analysis, coexpression analysis were performed. A total of 329 lncRNAs and 179 mRNAs were identified to be differently expressed between the invasive and control group. Gene ontology analysis revealed that the 10 most significantly enriched functions included upregulated mRNAs and the most significantly enriched term was related to the proteinaceous extracellular matrix (ECM). In the pathway analysis, the two most significantly enriched pathways were the TGF-β signaling pathway for upregulated mRNAs and the pentose phosphate pathway for downregulated mRNAs. Furthermore, for certain dysregulated lncRNAs, their associated mRNAs were also dysregulated. Of note, BMP and activin membrane-bound inhibitor and TGF-β-induced, as the target genes of the TGF-β pathway, were indicated to be closely related to the ECM and invasive placental cells. Their nearby lncRNAs G008916 and vault RNA2-1 were also significantly dysregulated. In conclusion, significant lncRNAs with the potential to serve as biomarkers for AIP were identified.
Collapse
Affiliation(s)
- Huishan Zhang
- Department of Fetal Medicine Research, Foshan Fetal Medicine Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan, Guangdong 528000, P.R. China
| | - Shuzhen Wu
- Department of Obstetrics, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan, Guangdong 528000, P.R. China
| | - Shaoxin Ye
- Department of Fetal Medicine Research, Foshan Fetal Medicine Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan, Guangdong 528000, P.R. China
- Department of Obstetrics, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan, Guangdong 528000, P.R. China
| | - Huiting Ma
- Department of Fetal Medicine Research, Foshan Fetal Medicine Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan, Guangdong 528000, P.R. China
| | - Zhengping Liu
- Department of Fetal Medicine Research, Foshan Fetal Medicine Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan, Guangdong 528000, P.R. China
- Department of Obstetrics, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan, Guangdong 528000, P.R. China
| |
Collapse
|
61
|
Sakakitani S, Podyma-Inoue KA, Takayama R, Takahashi K, Ishigami-Yuasa M, Kagechika H, Harada H, Watabe T. Activation of β2-adrenergic receptor signals suppresses mesenchymal phenotypes of oral squamous cell carcinoma cells. Cancer Sci 2020; 112:155-167. [PMID: 33007125 PMCID: PMC7780019 DOI: 10.1111/cas.14670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Metastasis is a primary reason related to the mortality of oral squamous cell carcinoma (OSCC) patients. A program called epithelial-mesenchymal transition (EMT) has been shown to play a critical role in promoting metastasis in epithelium-derived carcinoma. During EMT, epithelial cancer cells acquire motile mesenchymal phenotypes and detach from primary tumors. Recent lines of evidence have suggested that EMT confers cancer cells with tumor-initiating ability. Therefore, selective targeting of EMT would lead to the development of effective therapeutic agents. In this study, using a chemical biology approach, we identified isoxsuprine, a β2-adrenergic receptor (β2-AR) agonist as a low-molecular-weight compound that interferes with the acquisition of mesenchymal phenotypes of oral cancer cells. Treatment of multiple types of oral cancer cells with isoxsuprine led to the downregulation of mesenchymal cell markers that was accompanied by reduced cell motility. Similar inhibitory effects were also observed for isoprenaline, a non-selective β-adrenergic receptor (β-AR) agonist. In addition, inhibition of cell migration upon treatment with isoxsuprine was reverted by a non-selective β-AR antagonist, propranolol, and the CRISPR/Cas9 system-mediated deletion of the β2-AR gene, suggesting that the effects exerted by isoxsuprine involved signals mediated by β2-AR. In addition, in a subcutaneous xenograft model of oral cancer cells, the administration of isoxsuprine effectively suppressed primary tumor growth, suggesting β2-AR signals to be a promising cancer therapeutic target for treatment of OSCC.
Collapse
Affiliation(s)
- Shintaro Sakakitani
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Katarzyna A Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Rina Takayama
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mari Ishigami-Yuasa
- Department of Organic and Medicinal Chemistry, Chemical Biology Screening Center, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroyuki Kagechika
- Department of Organic and Medicinal Chemistry, Chemical Biology Screening Center, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
62
|
Bellei B, Migliano E, Picardo M. A Framework of Major Tumor-Promoting Signal Transduction Pathways Implicated in Melanoma-Fibroblast Dialogue. Cancers (Basel) 2020; 12:cancers12113400. [PMID: 33212834 PMCID: PMC7697272 DOI: 10.3390/cancers12113400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Melanoma cells reside in a complex stromal microenvironment, which is a critical component of disease onset and progression. Mesenchymal or fibroblastic cell type are the most abundant cellular element of tumor stroma. Factors secreted by melanoma cells can activate non-malignant associated fibroblasts to become melanoma associate fibroblasts (MAFs). MAFs promote tumorigenic features by remodeling the extracellular matrix, supporting tumor cells proliferation, neo-angiogenesis and drug resistance. Additionally, environmental factors may contribute to the acquisition of pro-tumorigenic phenotype of fibroblasts. Overall, in melanoma, perturbed tissue homeostasis contributes to modulation of major oncogenic intracellular signaling pathways not only in tumor cells but also in neighboring cells. Thus, targeted molecular therapies need to be considered from the reciprocal point of view of melanoma and stromal cells. Abstract The development of a modified stromal microenvironment in response to neoplastic onset is a common feature of many tumors including cutaneous melanoma. At all stages, melanoma cells are embedded in a complex tissue composed by extracellular matrix components and several different cell populations. Thus, melanomagenesis is not only driven by malignant melanocytes, but also by the altered communication between melanocytes and non-malignant cell populations, including fibroblasts, endothelial and immune cells. In particular, cancer-associated fibroblasts (CAFs), also referred as melanoma-associated fibroblasts (MAFs) in the case of melanoma, are the most abundant stromal cells and play a significant contextual role in melanoma initiation, progression and metastasis. As a result of dynamic intercellular molecular dialogue between tumor and the stroma, non-neoplastic cells gain specific phenotypes and functions that are pro-tumorigenic. Targeting MAFs is thus considered a promising avenue to improve melanoma therapy. Growing evidence demonstrates that aberrant regulation of oncogenic signaling is not restricted to transformed cells but also occurs in MAFs. However, in some cases, signaling pathways present opposite regulation in melanoma and surrounding area, suggesting that therapeutic strategies need to carefully consider the tumor–stroma equilibrium. In this novel review, we analyze four major signaling pathways implicated in melanomagenesis, TGF-β, MAPK, Wnt/β-catenin and Hyppo signaling, from the complementary point of view of tumor cells and the microenvironment.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy;
- Correspondence: ; Tel.: +39-0652666246
| | - Emilia Migliano
- Department of Plastic and Regenerative Surgery, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy;
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy;
| |
Collapse
|
63
|
Liang Y, Liang N, Yin L, Xiao F. Cellular and molecular mechanisms of xenobiotics-induced premature senescence. Toxicol Res (Camb) 2020; 9:669-675. [PMID: 33178427 DOI: 10.1093/toxres/tfaa073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 01/10/2023] Open
Abstract
Premature senescence, which share common features with replicative senescence such as morphology, senescence-associated galactosidase (SA-β-gal) activity, cell cycle regulation, and gene expression, can be triggered by the exposure of various xenobiotics including environmental pollutant, peroxides, and anticancer drugs. The exact mechanisms underlying the senescence onset and stabilization are still obscure. In this review, we summarized the possible cellular and molecular mechanisms of xenobiotics-induced premature senescence, including induction of reactive oxygen species (ROS), tumor suppressors, and DNA damage; disequilibrium of calcium homeostasis; activation of transforming growth factor-β (TGF-β); and blockage of aryl hydrocarbon receptor (AHR) pathway. The deeper understanding of the molecular mechanisms underlying xenobiotics-induced senescence may shed light on new therapeutic strategies for age-related pathologies and extend healthy lifespan.
Collapse
Affiliation(s)
- Yuehui Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, No. 238 Shangmayuanling Road, Kaifu District, Changsha, Hunan 410078, PR China
| | - Ningjuan Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, No. 238 Shangmayuanling Road, Kaifu District, Changsha, Hunan 410078, PR China
| | - Lirong Yin
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, No. 238 Shangmayuanling Road, Kaifu District, Changsha, Hunan 410078, PR China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, No. 238 Shangmayuanling Road, Kaifu District, Changsha, Hunan 410078, PR China
| |
Collapse
|
64
|
Ling Z, Cheng B, Tao X. Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: Challenges and opportunities. Int J Cancer 2020; 148:1548-1561. [PMID: 33091960 DOI: 10.1002/ijc.33352] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy representing 90% of all forms of oral cancer worldwide. Although great efforts have been made in the past decades, the 5-year survival rate of OSCC patients is no more than 60% due to tumor metastasis and subsequent recurrence. The metastasis from the primary site is due to a complex process known as epithelial-to-mesenchymal transition (EMT). During the EMT, epithelial cells gradually acquire the structural and functional characteristics of mesenchymal cells, leading to the upregulation of cell migration and the promotion of tumor cell dissemination. Therefore, EMT attracted broad attention due to its close relationship with cancer invasion and metastasis. Therefore, in the present review, an extensive description of the current research on OSCC and the role of EMT in this cancer type is provided, including diverse EMT markers, regulatory networks and crucial EMT-inducing transcription factors in OSCC. Moreover, a brief summary was made regarding the current application of EMT-correlated indexes in the prognostic analysis of OSCC patients, and the potential therapeutic approaches against OSCC and difficulties in the development of an effective anti-EMT treatment are discussed. Our aim is to provide novel insights to develop new strategies to combat OSCC by targeting EMT.
Collapse
Affiliation(s)
- Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
65
|
Hofman P. New insights into the interaction of the immune system with non-small cell lung carcinomas. Transl Lung Cancer Res 2020; 9:2199-2213. [PMID: 33209644 PMCID: PMC7653157 DOI: 10.21037/tlcr-20-178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The basis of current and future lung cancer immunotherapy depends mainly on our knowledge of the molecular mechanisms of interactions between cancer and immune cells (ICs), as well as on interactions occurring between the different populations of intra-tumor ICs. These interactions are very complex, as virtually all immune cell types, including macrophages, neutrophils, mast cells, natural killer (NK) cells, dendritic cells and T and B lymphocytes can infiltrate lung cancer tissues at the same time. Moreover these interactions lead to progressive emergence of an imbalance in ICs. Initially ICs have an anti-tumor effect but then induce immune tolerance and eventually tumor progression and dissemination. All the cells of innate and adaptive intra-tumor immunity engage in this progressive phenotypic switch. A majority of non-small cell lung carcinoma (NSCLC) patients do not benefit from the expected positive responses associated with current immunotherapy. Thus, there is urgent need to better understand the different roles of the associated cancer ICs. This review summarizes some of the new insights into this domain, with particular focus on: the myeloid cell population associated with tumors, the tertiary lymphoid structures (TLSs), the role of the P2 purinergic receptors (P2R) and ATP, and the new concept of the “liquid microenvironment” implying blood circulating ICs.
Collapse
Affiliation(s)
- Paul Hofman
- CHU Nice, FHU OncoAge, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, Nice, France.,CNRS, INSERM, IRCAN, FHU OncoAge, Team 4, Hospital-Integrated Biobank, Université Côte d'Azur, Nice, France.,CHU Nice, FHU OncoAge, Hospital-Integrated Biobank, Université Côte d'Azur, Nice, France
| |
Collapse
|
66
|
Xue Y, Beyer G, Mayerle J. FAPα in pancreatic stellate cells upregulated by TGFβ1: a novel insight into pancreatic cancer progress. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:910. [PMID: 32953710 PMCID: PMC7475386 DOI: 10.21037/atm-20-2559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yonggan Xue
- Department of Medicine II, University Hospital, LMU Munich, Germany
| | - Georg Beyer
- Department of Medicine II, University Hospital, LMU Munich, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Germany
| |
Collapse
|
67
|
Ancel J, Dewolf M, Deslée G, Nawrocky-Raby B, Dalstein V, Gilles C, Polette M. Clinical Impact of the Epithelial-Mesenchymal Transition in Lung Cancer as a Biomarker Assisting in Therapeutic Decisions. Cells Tissues Organs 2020; 211:91-109. [PMID: 32750701 DOI: 10.1159/000510103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/11/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most common solid cancers and represents the leading cause of cancer death worldwide. Over the last decade, research on the epithelial-mesenchymal transition (EMT) in lung cancer has gained increasing attention. Here, we review clinical and histological features of non-small-cell lung cancer associated with EMT. We then aimed to establish potential clinical implications of EMT in current therapeutic options, including surgery, radiation, targeted therapy against oncogenic drivers, and immunotherapy.
Collapse
Affiliation(s)
- Julien Ancel
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Maxime Dewolf
- Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Gaëtan Deslée
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Béatrice Nawrocky-Raby
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Véronique Dalstein
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Laboratoire de Pathologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Christine Gilles
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium,
| | - Myriam Polette
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Laboratoire de Pathologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| |
Collapse
|
68
|
Shi Y, Wang X, Xu Z, He Y, Guo C, He L, Huan C, Cai C, Huang J, Zhang J, Li Y, Zeng C, Zhang X, Wang L, Ke Y, Cheng H. PDLIM5 inhibits STUB1-mediated degradation of SMAD3 and promotes the migration and invasion of lung cancer cells. J Biol Chem 2020; 295:13798-13811. [PMID: 32737199 DOI: 10.1074/jbc.ra120.014976] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor β (TGFβ) signaling plays an important role in regulating tumor malignancy, including in non-small cell lung cancer (NSCLC). The major biological responses of TGFβ signaling are determined by the effector proteins SMAD2 and SMAD3. However, the regulators of TGFβ-SMAD signaling are not completely revealed yet. Here, we showed that the scaffolding protein PDLIM5 (PDZ and LIM domain protein 5, ENH) critically promotes TGFβ signaling by maintaining SMAD3 stability in NSCLC. First, PDLIM5 was highly expressed in NSCLC compared with that in adjacent normal tissues, and high PDLIM5 expression was associated with poor outcome. Knockdown of PDLIM5 in NSCLC cells decreased migration and invasion in vitro and lung metastasis in vivo In addition, TGFβ signaling and TGFβ-induced epithelial-mesenchymal transition was repressed by PDLIM5 knockdown. Mechanistically, PDLIM5 knockdown resulted in a reduction of SMAD3 protein levels. Overexpression of SMAD3 reversed the TGFβ-signaling-repressing and anti-migration effects induced by PDLIM5 knockdown. Notably, PDLIM5 interacted with SMAD3 but not SMAD2 and competitively suppressed the interaction between SMAD3 and its E3 ubiquitin ligase STUB1. Therefore, PDLIM5 protected SMAD3 from STUB1-mediated proteasome degradation. STUB1 knockdown restored SMAD3 protein levels, cell migration, and invasion in PDLIM5-knockdown cells. Collectively, our findings indicate that PDLIM5 is a novel regulator of basal SMAD3 stability, with implications for controlling TGFβ signaling and NSCLC progression.
Collapse
Affiliation(s)
- Yueli Shi
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyu Wang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyong Xu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying He
- Key Laboratory for Translational Medicine, First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Chunyi Guo
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingjuan He
- Department of Pharmacy, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caijuan Huan
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Changhong Cai
- Department of Cardiology, Lishui Central Hospital, Lishui, China
| | - Jiaqi Huang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Li
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunlai Zeng
- Department of Cardiology, Lishui Central Hospital, Lishui, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Linrun Wang
- Department of Pharmacy, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China; Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
69
|
An Y, Zhang S, Zhang J, Yin Q, Han H, Wu F, Zhang X. Overexpression of lncRNA NLIPMT Inhibits Colorectal Cancer Cell Migration and Invasion by Downregulating TGF-β1. Cancer Manag Res 2020; 12:6045-6052. [PMID: 32765103 PMCID: PMC7381797 DOI: 10.2147/cmar.s247764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Background NLIPMT, as a tumor suppressive lncRNA, has only been investigated in breast cancer, while its roles in other types of cancer remain unknown. This study aimed to explore the role of NLIPMT in colorectal cancer (CRC). Methods Expression levels of NLIPMT and TGF-β1 in two types of CRC tissue (Non-tumor tissues and tumor tissues) were measured and compared by qRT-PCR and paired t-test, respectively. Correlations between the expression of NLIPMT and TGF-β1 were analyzed by performing linear regression. The effects of transfections on cell invasion and migration were evaluated by Transwell assays. Results We found that NLIPMT was downregulated, while TGF-β1 was upregulated in CRC. In CRC tumor, a negative correlation was found between the expression of NLIPMT and TGF-β1. In CRC cells, overexpression of NLIPMT resulted in downregulation, while silencing of NLIPMT resulted in upregulation of TGF-β1. Analysis of cell invasion and migration showed that overexpression of NLIPMT suppressed the tumor cell invasion and migration. In contrast, overexpression of TGF-β1 could promote CRC cell invasion and migration and also reduce the role of NLIPMT. Through the overall survival evaluation, NLIPMT-high groups of CRC represented better survival rate compared to that of the NLIPMT-low group patients. Conclusion The expression of lncRNA NLIPMT was negatively correlated with TGF-β1 in CRC. Overexpression of NLIPMT inhibited the colorectal cancer cell migration and invasion by downregulating TGF-β1. Furthermore, the expression of NLIPMT in CRC patients predicted better prognosis, which suggested that NLIPMT could be considered as a novel diagnosis biomarker.
Collapse
Affiliation(s)
- Yongkang An
- The First Affiliated Hospital of Henan University of TCM, Anorectal Disease Clinic, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Shuangxi Zhang
- The First Affiliated Hospital of Henan University of TCM, Anorectal Disease Clinic, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Jing Zhang
- The First Affiliated Hospital of Henan University of TCM, Anorectal Disease Clinic, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Qing Yin
- The Affiliated Hospital of Henan Academy of TCM, Nursing Department, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Haitao Han
- The First Affiliated Hospital of Henan University of TCM, Anorectal Disease Clinic, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Fang Wu
- The First Affiliated Hospital of Henan University of TCM, Medical and Nursing Joint, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Xiangan Zhang
- The First Affiliated Hospital of Henan University of TCM, Anorectal Disease Clinic, Zhengzhou City, Henan Province 450000, People's Republic of China
| |
Collapse
|
70
|
Vitamin D Prevents Pancreatic Cancer-Induced Apoptosis Signaling of Inflammatory Cells. Biomolecules 2020; 10:biom10071055. [PMID: 32679840 PMCID: PMC7408286 DOI: 10.3390/biom10071055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Combined approaches based on immunotherapy and drugs supporting immune effector cell function might increase treatment options for pancreatic ductal adenocarcinoma (PDAC), vitamin D being a suitable drug candidate. In this study, we evaluated whether treatment with the vitamin D analogue, calcipotriol, counterbalances PDAC induced and SMAD4-associated intracellular calcium [Ca2+]i alterations, cytokines release, immune effector function, and the intracellular signaling of peripheral blood mononuclear cells (PBMCs). Calcipotriol counteracted the [Ca2+]i depletion of PBMCs induced by SMAD4-expressing PDAC cells, which conditioned media augmented the number of calcium flows while reducing whole [Ca2+]i. While calcipotriol inhibited spontaneous and PDAC-induced tumor necrosis factor alpha (TNF-α) release by PBMC and reduced intracellular transforming growth factor beta (TGF-β), it did not counteract the lymphocytes proliferation induced in allogenic co-culture by PDAC-conditioned PBMCs. Calcipotriol mainly antagonized PDAC-induced apoptosis and partially restored PDAC-inhibited NF-κB signaling pathway. In conclusion, alterations induced by PDAC cells in the [Ca2+]i of immune cells can be partially reverted by calcipotriol treatment, which promotes inflammation and antagonizes PBMCs apoptosis. These effects, together with the dampening of intracellular TGF-β, might result in an overall anti-tumor effect, thus supporting the administration of vitamin D in PDAC patients.
Collapse
|
71
|
Takagi K, Imura J, Shimomura A, Noguchi A, Minamisaka T, Tanaka S, Nishida T, Hatta H, Nakajima T. Establishment of highly invasive pancreatic cancer cell lines and the expression of IL-32. Oncol Lett 2020; 20:2888-2896. [PMID: 32782605 PMCID: PMC7400074 DOI: 10.3892/ol.2020.11825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Compared to tumors of other organs, pancreatic cancer is highly aggressive; with one of its biological features being that, despite a prominent fibrotic stroma, there is remarkable infiltration of tumor cells. This characteristic is considered to be the main reason for the poor prognosis of patients with pancreatic cancer. Therefore, in order to elucidate the factors that contribute to this high invasiveness, a selective invasion method was used to establish four highly invasive subclones from six human pancreatic cancer cell lines. The results demonstrated that two cell lines did not exhibit enhanced invasiveness. Microarray analysis revealed that, in the highly invasive cell lines, several genes were expressed at high levels, compared with the original cell lines. These highly expressed genes were recognized only in highly invasive cells. Among them, IL-32 was most strongly upregulated in the highly invasive cells, compared with cells with a low invasive potential, as well as the original cells. RT-qPCR and western blot analysis confirmed the high levels of expression of IL-32 in highly invasive cells at the RNA and protein levels. In addition, immunohistochemical analysis of resected surgical materials revealed that the tumor cells expressed IL-32 and, in particular, many IL-32 positive cells were seen at the invasive front of the tumor tissue. IL-32 is a cytokine that is widely involved in the development of cancer and has recently received considerable attention. This cytokine has multiple splice variants and shows a wide variety of behaviors, depending on the tumor type and primary organ. Although some hypotheses have been proposed to explain the activity of IL-32, a unified view has not been agreed. In the present study, through the establishment of highly invasive cells from pancreatic cancer and a comprehensive gene analysis, it is suggested that IL-32 may serve an important role as a molecule involved in the invasiveness of this neoplasm.
Collapse
Affiliation(s)
- Kohji Takagi
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Johji Imura
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Akiko Shimomura
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Akira Noguchi
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Takashi Minamisaka
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Shinichi Tanaka
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Takeshi Nishida
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Hideki Hatta
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Takahiko Nakajima
- Department of Diagnostic Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama 930-0194, Japan
| |
Collapse
|
72
|
Takahashi K, Akatsu Y, Podyma-Inoue KA, Matsumoto T, Takahashi H, Yoshimatsu Y, Koinuma D, Shirouzu M, Miyazono K, Watabe T. Targeting all transforming growth factor-β isoforms with an Fc chimeric receptor impairs tumor growth and angiogenesis of oral squamous cell cancer. J Biol Chem 2020; 295:12559-12572. [PMID: 32631954 DOI: 10.1074/jbc.ra120.012492] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/26/2020] [Indexed: 01/06/2023] Open
Abstract
Tumor progression is governed by various growth factors and cytokines in the tumor microenvironment (TME). Among these, transforming growth factor-β (TGF-β) is secreted by various cell types residing in the TME and promotes tumor progression by inducing the epithelial-to-mesenchymal transition (EMT) of cancer cells and tumor angiogenesis. TGF-β comprises three isoforms, TGF-β1, -β2, and -β3, and transduces intracellular signals via TGF-β type I receptor (TβRI) and TGF-β type II receptor (TβRII). For the purpose of designing ligand traps that reduce oncogenic signaling in the TME, chimeric proteins comprising the ligand-interacting ectodomains of receptors fused with the Fc portion of immunoglobulin are often used. For example, chimeric soluble TβRII (TβRII-Fc) has been developed as an effective therapeutic strategy for targeting TGF-β ligands, but several lines of evidence indicate that TβRII-Fc more effectively traps TGF-β1 and TGF-β3 than TGF-β2, whose expression is elevated in multiple cancer types. In the present study, we developed a chimeric TGF-β receptor containing both TβRI and TβRII (TβRI-TβRII-Fc) and found that TβRI-TβRII-Fc trapped all TGF-β isoforms, leading to inhibition of both the TGF-β signal and TGF-β-induced EMT of oral cancer cells, whereas TβRII-Fc failed to trap TGF-β2. Furthermore, we found that TβRI-TβRII-Fc suppresses tumor growth and angiogenesis more effectively than TβRII-Fc in a subcutaneous xenograft model of oral cancer cells with high TGF-β expression. These results suggest that TβRI-TβRII-Fc may be a promising tool for targeting all TGF-β isoforms in the TME.
Collapse
Affiliation(s)
- Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Akatsu
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Biomedicine Group, Pharmaceutical Research Laboratories, and Pharmaceutical Group, Nippon Kayaku Co. Ltd., Tokyo, Japan
| | - Katarzyna A Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Hitomi Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasuhiro Yoshimatsu
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
73
|
Yoshimatsu Y, Wakabayashi I, Kimuro S, Takahashi N, Takahashi K, Kobayashi M, Maishi N, Podyma‐Inoue KA, Hida K, Miyazono K, Watabe T. TNF-α enhances TGF-β-induced endothelial-to-mesenchymal transition via TGF-β signal augmentation. Cancer Sci 2020; 111:2385-2399. [PMID: 32385953 PMCID: PMC7385392 DOI: 10.1111/cas.14455] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) consists of various components including cancer cells, tumor vessels, cancer-associated fibroblasts (CAFs), and inflammatory cells. These components interact with each other via various cytokines, which often induce tumor progression. Thus, a greater understanding of TME networks is crucial for the development of novel cancer therapies. Many cancer types express high levels of TGF-β, which induces endothelial-to-mesenchymal transition (EndMT), leading to formation of CAFs. Although we previously reported that CAFs derived from EndMT promoted tumor formation, the molecular mechanisms underlying these interactions remain to be elucidated. Furthermore, tumor-infiltrating inflammatory cells secrete various cytokines, including TNF-α. However, the role of TNF-α in TGF-β-induced EndMT has not been fully elucidated. Therefore, this study examined the effect of TNF-α on TGF-β-induced EndMT in human endothelial cells (ECs). Various types of human ECs underwent EndMT in response to TGF-β and TNF-α, which was accompanied by increased and decreased expression of mesenchymal cell and EC markers, respectively. In addition, treatment of ECs with TGF-β and TNF-α exhibited sustained activation of Smad2/3 signals, which was presumably induced by elevated expression of TGF-β type I receptor, TGF-β2, activin A, and integrin αv, suggesting that TNF-α enhanced TGF-β-induced EndMT by augmenting TGF-β family signals. Furthermore, oral squamous cell carcinoma-derived cells underwent epithelial-to-mesenchymal transition (EMT) in response to humoral factors produced by TGF-β and TNF-α-cultured ECs. This EndMT-driven EMT was blocked by inhibiting the action of TGF-βs. Collectively, our findings suggest that TNF-α enhances TGF-β-dependent EndMT, which contributes to tumor progression.
Collapse
Affiliation(s)
- Yasuhiro Yoshimatsu
- Department of BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Division of PharmacologyGraduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Ikumi Wakabayashi
- Department of BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Shiori Kimuro
- Department of BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Naoya Takahashi
- Department of BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Kazuki Takahashi
- Department of BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Miho Kobayashi
- Department of BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Nako Maishi
- Department of Vascular Biology and Molecular PathologyGraduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Katarzyna A. Podyma‐Inoue
- Department of BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular PathologyGraduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Kohei Miyazono
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Tetsuro Watabe
- Department of BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
74
|
Kim BR, Jung SH, Han AR, Park G, Kim HJ, Yuan B, Battula VL, Andreeff M, Konopleva M, Chung YJ, Cho BS. CXCR4 Inhibition Enhances Efficacy of FLT3 Inhibitors in FLT3-Mutated AML Augmented by Suppressed TGF-b Signaling. Cancers (Basel) 2020; 12:cancers12071737. [PMID: 32629802 PMCID: PMC7407511 DOI: 10.3390/cancers12071737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Given the proven importance of the CXCL12/CXCR4 axis in the stroma–acute myeloid leukemia (AML) interactions and the rapid emergence of resistance to FLT3 inhibitors, we investigated the efficacy and safety of a novel CXCR4 inhibitor, LY2510924, in combination with FLT3 inhibitors in preclinical models of AML with FLT3-ITD mutations (FLT3-ITD-AML). Quizartinib, a potent FLT3 inhibitor, induced apoptosis in FLT3-ITD-AML, while LY2510924 blocked surface CXCR4 without inducing apoptosis. LY2510924 significantly reversed stroma-mediated resistance against quizartinib mainly through the MAPK pathway. In mice with established FLT3-ITD-AML, LY2510924 induced durable mobilization and differentiation of leukemia cells, resulting in enhanced anti-leukemia effects when combined with quizartinib, whereas transient effects were seen on non-leukemic blood cells in immune-competent mice. Sequencing of the transcriptome of the leukemic cells surviving in vivo treatment with quizartinib and LY2510924 revealed that genes related to TGF-β signaling may confer resistance against the drug combination. In co-culture experiments of FLT3-ITD-AML and stromal cells, both silencing of TGF-β in stromal cells or TGF-β-receptor kinase inhibitor enhanced apoptosis by combined treatment. Disruption of the CXCL12/CXCR4 axis in FLT3-ITD-AML by LY2510924 and its negligible effects on normal immunocytes could safely enhance the potency of quizartinib, which may be further improved by blockade of TGF-β signaling.
Collapse
Affiliation(s)
- Bo-Reum Kim
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-R.K.); (A.-R.H.); (H.-J.K.)
| | - Seung-Hyun Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - A-Reum Han
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-R.K.); (A.-R.H.); (H.-J.K.)
| | - Gyeongsin Park
- Department of Pathology, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Hee-Je Kim
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-R.K.); (A.-R.H.); (H.-J.K.)
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Bin Yuan
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (B.Y.); (V.L.B.); (M.A.)
| | - Venkata Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (B.Y.); (V.L.B.); (M.A.)
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (B.Y.); (V.L.B.); (M.A.)
| | - Marina Konopleva
- Department of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yeun-Jun Chung
- Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: (Y.-J.C.); (B.-S.C.)
| | - Byung-Sik Cho
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-R.K.); (A.-R.H.); (H.-J.K.)
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (B.Y.); (V.L.B.); (M.A.)
- Correspondence: (Y.-J.C.); (B.-S.C.)
| |
Collapse
|
75
|
Dao T, Salahuddin S, Charfi C, Sicard AA, Jenabian MA, Annabi B. Pharmacological targeting of neurotensin response by diet-derived EGCG in macrophage-differentiated HL-60 promyelocytic leukemia cells. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
76
|
Hong E, Park S, Ooshima A, Hong CP, Park J, Heo JS, Lee S, An H, Kang JM, Park SH, Park JO, Kim SJ. Inhibition of TGF-β signalling in combination with nal-IRI plus 5-Fluorouracil/Leucovorin suppresses invasion and prolongs survival in pancreatic tumour mouse models. Sci Rep 2020; 10:2935. [PMID: 32076068 PMCID: PMC7031242 DOI: 10.1038/s41598-020-59893-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies. TGF-β is strongly expressed in both the epithelial and stromal compartments of PDAC, and dysregulation of TGF-β signalling is a frequent molecular disturbance in PDAC progression and metastasis. In this study, we investigated whether blockade of TGF-β signalling synergizes with nal-IRI/5-FU/LV, a chemotherapy regimen for malignant pancreatic cancer, in an orthotopic pancreatic tumour mouse model. Compared to nal-IRI/5-FU/LV treatment, combining nal-IRI/5-FU/LV with vactosertib, a TGF-β signalling inhibitor, significantly improved long-term survival rates and effectively suppressed invasion to surrounding tissues. Through RNA-sequencing analysis, we identified that the combination treatment results in robust abrogation of tumour-promoting gene signatures and positive enrichment of tumour-suppressing and apoptotic gene signatures. Particularly, the expression of tumour-suppressing gene Ccdc80 was induced by vactosertib and further induced by vactosertib in combination with nal-IRI/5-FU/LV. Ectopic expression of CCDC80 suppressed migration and colony formation concomitant with decreased expression of epithelial-to-mesenchymal transition (EMT) markers in pancreatic cancer cells. Collectively, these results indicate that combination treatment of vactosertib with nal-IRI/5-FU/LV improves overall survival rates in a mouse model of pancreatic cancer by suppressing invasion through CCDC80. Therefore, combination therapy of nal-IRI/5-FU/LV with vactosertib could provide clinical benefits to pancreatic cancer patients.
Collapse
Affiliation(s)
- Eunji Hong
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea.,Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea
| | - Sujin Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea.
| | - Akira Ooshima
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Chang Pyo Hong
- TheragenEtex Bio Institute, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Jinah Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Jin Sun Heo
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Siyoung Lee
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Haein An
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Jin Muk Kang
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Seok Hee Park
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea
| | - Joon Oh Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea.,TheragenEtex Bio Institute, Suwon, Gyeonggi-do, 16229, Republic of Korea.,Medpacto Inc., Seoul, Republic of Korea
| |
Collapse
|
77
|
MiRNAs and LncRNAs: Dual Roles in TGF-β Signaling-Regulated Metastasis in Lung Cancer. Int J Mol Sci 2020; 21:ijms21041193. [PMID: 32054031 PMCID: PMC7072809 DOI: 10.3390/ijms21041193] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/26/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most malignant cancers around the world, with high morbidity and mortality. Metastasis is the leading cause of lung cancer deaths and treatment failure. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs), two groups of small non-coding RNAs (nc-RNAs), are confirmed to be lung cancer oncogenes or suppressors. Transforming growth factor-β (TGF-β) critically regulates lung cancer metastasis. In this review, we summarize the dual roles of miRNAs and lncRNAs in TGF-β signaling-regulated lung cancer epithelial-mesenchymal transition (EMT), invasion, migration, stemness, and metastasis. In addition, lncRNAs, competing endogenous RNAs (ceRNAs), and circular RNAs (circRNAs) can act as miRNA sponges to suppress miRNAs, thereby mediating TGF-β signaling-regulated lung cancer invasion, migration, and metastasis. Through this review, we hope to cast light on the regulatory mechanisms of miRNAs and lncRNAs in TGF-β signaling-regulated lung cancer metastasis and provide new insights for lung cancer treatment.
Collapse
|
78
|
Wu S, Zhang H, Liu Y, Wang R, Ye S, Zeng M, Liu Z. [Long non-coding RNAs show different expression profiles and display competing endogenous RNA potential in placenta accreta spectrum disorders]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1253-1259. [PMID: 31801721 DOI: 10.12122/j.issn.1673-4254.2019.10.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the expression profile of long non-coding RNAs (lncRNA) and identify potential lncRNA-related competing endogenous RNAs (ceRNA) in placenta accrete spectrum disorders (PAS). METHODS Five tissue specimens of placental implantation and 5 adjacent normal placental tissues were collected from cesarean section deliveries complicated by PAS in our hospital between December, 2017 and June, 2018. Human microarrays were used to identify the lncRNAs that were differentially expressed in PAS, and 5 of the identified lncRNAs were further validated using qRT-PCR. GO and KEGG pathway analyses were performed to indentify the most significant enrichment functions. A ceRNA network was constructed based on ENST00000511361 (RP5-875H18.4), NR_027457 (LINC00221) and NR_126415 (FOXP4-AS1) to pinpoint the potential lncRNAs-related ceRNA. RESULTS A total of 329 lncRNAs and 179 mRNAs were identified to have differential expression in PAS. The results of qRT-PCR were consistent with the human microarrays results. Transforming growth factor-β (TGF-β) signaling pathway was the most significantly enriched pathway. The constructed ceRNA network suggested that RP5-875H18.4--miRNA-218--SLIT2 had a potential ceRNA regulatory mechanism in PAS. CONCLUSIONS The differentially expressed lncRNAs are involved in the occurrence and progression of PAS possibly by regulating the TGF-β signaling pathway. The ceRNA network of RP5-875H18.4--miRNA-218--SLIT2 may play a role in the occurrence of PAS.
Collapse
Affiliation(s)
- Shuzhen Wu
- Department of Obstetrics, Foshan Maternal and Child Health Hospital Affiliated to Southern Medical University, Foshan 528000, China
| | - Huishan Zhang
- Department of Obstetrics, Foshan Maternal and Child Health Hospital Affiliated to Southern Medical University, Foshan 528000, China.,Foshan Fetal Medicine Institute, Foshan 528000, China
| | - Yan Liu
- Department of Obstetrics, Foshan Maternal and Child Health Hospital Affiliated to Southern Medical University, Foshan 528000, China
| | - Rui Wang
- Department of Obstetrics, Foshan Maternal and Child Health Hospital Affiliated to Southern Medical University, Foshan 528000, China
| | - Shaoxin Ye
- Department of Obstetrics, Foshan Maternal and Child Health Hospital Affiliated to Southern Medical University, Foshan 528000, China.,Foshan Fetal Medicine Institute, Foshan 528000, China
| | - Meng Zeng
- Department of Obstetrics, Foshan Maternal and Child Health Hospital Affiliated to Southern Medical University, Foshan 528000, China
| | - Zhengping Liu
- Department of Obstetrics, Foshan Maternal and Child Health Hospital Affiliated to Southern Medical University, Foshan 528000, China.,Foshan Fetal Medicine Institute, Foshan 528000, China
| |
Collapse
|
79
|
Xu Z, Ding W, Deng X. PM 2.5, Fine Particulate Matter: A Novel Player in the Epithelial-Mesenchymal Transition? Front Physiol 2019; 10:1404. [PMID: 31849690 PMCID: PMC6896848 DOI: 10.3389/fphys.2019.01404] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) refers to the conversion of epithelial cells to mesenchymal phenotype, which endows the epithelial cells with enhanced migration, invasion, and extracellular matrix production abilities. These characteristics link EMT with the pathogenesis of organ fibrosis and cancer progression. Recent studies have preliminarily established that fine particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) is correlated with EMT initiation. In this pathological process, PM2.5 particles, excessive reactive oxygen species (ROS) derived from PM2.5, and certain components in PM2.5, such as ions and polyaromatic hydrocarbons (PAHs), have been implicated as potential EMT mediators that are linked to the activation of transforming growth factor β (TGF-β)/SMADs, NF-κB, growth factor (GF)/extracellular signal-regulated protein kinase (ERK), GF/phosphatidylinositol 3-kinase (PI3K)/Akt, wingless/integrated (Wnt)/β-catenin, Notch, Hedgehog, high mobility group box B1 (HMGB1)-receptor for advanced glycation end-products (RAGE), and aryl hydrocarbon receptor (AHR) signaling cascades and to cytoskeleton rearrangement. These pathways directly and indirectly transduce pro-EMT signals that regulate EMT-related gene expression in epithelial cells, finally inducing the characteristic alterations in morphology and functions of epithelia. In addition, novel associations between autophagy, ATP citrate lyase (ACLY), and exosomes with PM2.5-induced EMT have also been summarized. However, some debates and paradoxes remain to be consolidated. This review discusses the potential molecular mechanisms underlying PM2.5-induced EMT, which might account for the latent role of PM2.5 in cancer progression and fibrogenesis.
Collapse
Affiliation(s)
- Zihan Xu
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobei Deng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
80
|
TGF-β Signaling in Cellular Senescence and Aging-Related Pathology. Int J Mol Sci 2019; 20:ijms20205002. [PMID: 31658594 PMCID: PMC6834140 DOI: 10.3390/ijms20205002] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022] Open
Abstract
Aging is broadly defined as the functional decline that occurs in all body systems. The accumulation of senescent cells is considered a hallmark of aging and thought to contribute to the aging pathologies. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that regulates a myriad of cellular processes and has important roles in embryonic development, physiological tissue homeostasis, and various pathological conditions. TGF-β exerts potent growth inhibitory activities in various cell types, and multiple growth regulatory mechanisms have reportedly been linked to the phenotypes of cellular senescence and stem cell aging in previous studies. In addition, accumulated evidence has indicated a multifaceted association between TGF-β signaling and aging-associated disorders, including Alzheimer’s disease, muscle atrophy, and obesity. The findings regarding these diseases suggest that the impairment of TGF-β signaling in certain cell types and the upregulation of TGF-β ligands contribute to cell degeneration, tissue fibrosis, inflammation, decreased regeneration capacity, and metabolic malfunction. While the biological roles of TGF-β depend highly on cell types and cellular contexts, aging-associated changes are an important additional context which warrants further investigation to better understand the involvement in various diseases and develop therapeutic options. The present review summarizes the relationships between TGF-β signaling and cellular senescence, stem cell aging, and aging-related diseases.
Collapse
|
81
|
Papoutsoglou P, Louis C, Coulouarn C. Transforming Growth Factor-Beta (TGFβ) Signaling Pathway in Cholangiocarcinoma. Cells 2019; 8:cells8090960. [PMID: 31450767 PMCID: PMC6770250 DOI: 10.3390/cells8090960] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma is a deadly cancer worldwide, associated with a poor prognosis and limited therapeutic options. Although cholangiocarcinoma accounts for less than 15% of liver primary cancer, its silent nature restricts early diagnosis and prevents efficient treatment. Therefore, it is of clinical relevance to better understand the molecular basis of cholangiocarcinoma, including the signaling pathways that contribute to tumor onset and progression. In this review, we discuss the genetic, molecular, and environmental factors that promote cholangiocarcinoma, emphasizing the role of the transforming growth factor β (TGFβ) signaling pathway in the progression of this cancer. We provide an overview of the physiological functions of TGFβ signaling in preserving liver homeostasis and describe how advanced cholangiocarcinoma benefits from the tumor-promoting effects of TGFβ. Moreover, we report the importance of noncoding RNAs as effector molecules downstream of TGFβ during cholangiocarcinoma progression, and conclude by highlighting the need for identifying novel and clinically relevant biomarkers for a better management of patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Panagiotis Papoutsoglou
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), UMR_S 1241, 35033 Rennes, France
| | - Corentin Louis
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), UMR_S 1241, 35033 Rennes, France
| | - Cédric Coulouarn
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), UMR_S 1241, 35033 Rennes, France.
| |
Collapse
|
82
|
Enhanced morphological and functional differences of pancreatic cancer with epithelial or mesenchymal characteristics in 3D culture. Sci Rep 2019; 9:10871. [PMID: 31350453 PMCID: PMC6659675 DOI: 10.1038/s41598-019-47416-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer, composed of heterogeneous cancer cells, alters epithelial to mesenchymal features during growth and metastasis. In this study, we aimed to characterize pancreatic ductal adenocarcinoma (PDAC) cells showing epithelial or mesenchymal features in 3D culture. In 3D culture, PK-1 cells had high E-cadherin and low vimentin expression and exhibited a round-like appearance encircled by flat cells. PANC-1 cells had high vimentin and low E-cadherin expression and formed grape-like spheres. PK-1 cells had secretary granules and many microvilli, desmosomes, and adherens junctions, while PANC-1 cells had few microvilli, adherens junction, and no desmosomes. Cytokeratin 7, trypsin, CA19-9, and E-cadherin were highly expressed in PK-1 cells but not in PANC-1 cells. Ki-67 was diffusely expressed in PANC-1 spheres but was restricted to the peripheral flat cells of PK-1 spheres. PANC-1 and PK-1 cells were positive for transforming growth factor (TGF) β receptor II and phosphorylated smad2/3, but PK-1 cells were smad4 negative. Taken together, 3D culture enhanced morphofunctional differences of PDAC cells showing epithelial or mesenchymal characteristics, and epithelial phenotype maintenance may be due to the ineffectiveness of the TGF- β pathway. Clarification of heterogeneity using 3D culture may be useful for development of individualized diagnostic and therapeutic methods in patients with PDAC.
Collapse
|
83
|
Akatsu Y, Takahashi N, Yoshimatsu Y, Kimuro S, Muramatsu T, Katsura A, Maishi N, Suzuki HI, Inazawa J, Hida K, Miyazono K, Watabe T. Fibroblast growth factor signals regulate transforming growth factor-β-induced endothelial-to-myofibroblast transition of tumor endothelial cells via Elk1. Mol Oncol 2019; 13:1706-1724. [PMID: 31094056 PMCID: PMC6670013 DOI: 10.1002/1878-0261.12504] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/31/2019] [Accepted: 05/14/2019] [Indexed: 02/04/2023] Open
Abstract
The tumor microenvironment contains various components, including cancer cells, tumor vessels, and cancer-associated fibroblasts, the latter of which are comprised of tumor-promoting myofibroblasts and tumor-suppressing fibroblasts. Multiple lines of evidence indicate that transforming growth factor-β (TGF-β) induces the formation of myofibroblasts and other types of mesenchymal (non-myofibroblastic) cells from endothelial cells. Recent reports show that fibroblast growth factor 2 (FGF2) modulates TGF-β-induced mesenchymal transition of endothelial cells, but the molecular mechanisms behind the signals that control transcriptional networks during the formation of different groups of fibroblasts remain largely unclear. Here, we studied the roles of FGF2 during the regulation of TGF-β-induced mesenchymal transition of tumor endothelial cells (TECs). We demonstrated that auto/paracrine FGF signals in TECs inhibit TGF-β-induced endothelial-to-myofibroblast transition (End-MyoT), leading to suppressed formation of contractile myofibroblast cells, but on the other hand can also collaborate with TGF-β in promoting the formation of active fibroblastic cells which have migratory and proliferative properties. FGF2 modulated TGF-β-induced formation of myofibroblastic and non-myofibroblastic cells from TECs via transcriptional regulation of various mesenchymal markers and growth factors. Furthermore, we observed that TECs treated with TGF-β were more competent in promoting in vivo tumor growth than TECs treated with TGF-β and FGF2. Mechanistically, we showed that Elk1 mediated FGF2-induced inhibition of End-MyoT via inhibition of TGF-β-induced transcriptional activation of α-smooth muscle actin promoter by myocardin-related transcription factor-A. Our data suggest that TGF-β and FGF2 oppose and cooperate with each other during the formation of myofibroblastic and non-myofibroblastic cells from TECs, which in turn determines the characteristics of mesenchymal cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Yuichi Akatsu
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Biomedicine Group, Pharmaceutical Research Laboratories, Pharmaceutical Group, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Naoya Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Yasuhiro Yoshimatsu
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Shiori Kimuro
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Tomoki Muramatsu
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Japan
| | - Akihiro Katsura
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi I Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| |
Collapse
|
84
|
Kim CL, Choi SH, Mo JS. Role of the Hippo Pathway in Fibrosis and Cancer. Cells 2019; 8:cells8050468. [PMID: 31100975 PMCID: PMC6562634 DOI: 10.3390/cells8050468] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway is the key player in various signaling processes, including organ development and maintenance of tissue homeostasis. This pathway comprises a core kinases module and transcriptional activation module, representing a highly conserved mechanism from Drosophila to vertebrates. The central MST1/2-LATS1/2 kinase cascade in this pathway negatively regulates YAP/TAZ transcription co-activators in a phosphorylation-dependent manner. Nuclear YAP/TAZ bind to transcription factors to stimulate gene expression, contributing to the regenerative potential and regulation of cell growth and death. Recent studies have also highlighted the potential role of Hippo pathway dysfunctions in the pathology of several diseases. Here, we review the functional characteristics of the Hippo pathway in organ fibrosis and tumorigenesis, and discuss its potential as new therapeutic targets.
Collapse
Affiliation(s)
- Cho-Long Kim
- Department of Biomedical Sciences, Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Sue-Hee Choi
- Department of Biomedical Sciences, Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Jung-Soon Mo
- Genomic Instability Research Center (GIRC), Ajou University School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
85
|
Taguchi L, Miyakuni K, Morishita Y, Morikawa T, Fukayama M, Miyazono K, Ehata S. c-Ski accelerates renal cancer progression by attenuating transforming growth factor β signaling. Cancer Sci 2019; 110:2063-2074. [PMID: 30972853 PMCID: PMC6550129 DOI: 10.1111/cas.14018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/03/2019] [Accepted: 04/07/2019] [Indexed: 12/11/2022] Open
Abstract
Although transforming growth factor beta (TGF‐β) is known to be involved in the pathogenesis and progression of many cancers, its role in renal cancer has not been fully investigated. In the present study, we examined the role of TGF‐β in clear cell renal carcinoma (ccRCC) progression in vitro and in vivo. First, expression levels of TGF‐β signaling pathway components were examined. Microarray and immunohistochemical analyses showed that the expression of c‐Ski, a transcriptional corepressor of Smad‐dependent TGF‐β and bone morphogenetic protein (BMP) signaling, was higher in ccRCC tissues than in normal renal tissues. Next, a functional analysis of c‐Ski effects was carried out. Bioluminescence imaging of renal orthotopic tumor models demonstrated that overexpression of c‐Ski in human ccRCC cells promoted in vivo tumor formation. Enhancement of tumor formation was also reproduced by the introduction of a dominant‐negative mutant TGF‐β type II receptor into ccRCC cells. In contrast, introduction of the BMP signaling inhibitor Noggin failed to accelerate tumor formation, suggesting that the tumor‐promoting effect of c‐Ski depends on the inhibition of TGF‐β signaling rather than of BMP signaling. Finally, the molecular mechanism of the tumor‐suppressive role of TGF‐β was assessed. Although TGF‐β signaling did not affect tumor angiogenesis, apoptosis of ccRCC cells was induced by TGF‐β. Taken together, these findings suggest that c‐Ski suppresses TGF‐β signaling in ccRCC cells, which, in turn, attenuates the tumor‐suppressive effect of TGF‐β.
Collapse
Affiliation(s)
- Luna Taguchi
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kosuke Miyakuni
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Teppei Morikawa
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Environmental Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
86
|
Lien HC, Lee YH, Juang YL, Lu YT. Fibrillin-1, a novel TGF-beta-induced factor, is preferentially expressed in metaplastic carcinoma with spindle sarcomatous metaplasia. Pathology 2019; 51:375-383. [PMID: 31010590 DOI: 10.1016/j.pathol.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 11/28/2022]
Abstract
TGF-β induces epithelial-mesenchymal transition (EMT), which is involved in tumour progression. This study aims to identify and characterise novel factors potentially related to TGF-β-mediated tumour aggression in breast cancer. We treated the human mammary epithelial cell line MCF10A with TGF-β and observed TGF-β-dependent upregulation of FBN1, involving demethylation of CpG sites, in MCF10A cells undergoing EMT. The biological importance of fibrillin-1, encoded by FBN1, was evaluated through immunohistochemistry on 225 breast cancer specimens of various subtypes. Fibrillin-1 expression was observed only in metaplastic carcinoma of the breast (MCB) (51.7%), and the expression was observed in spindle sarcomatous metaplasia (SSM), but not in other metaplasia, including matrix-producing, pleomorphic, and squamous metaplasia, and carcinomatous components of both MCB and non-MCB. Fibrillin-1 expression was also restricted to the SSM of non-mammary carcinosarcomas of various organs. Overall, fibrillin-1 expression was enriched in MCB and non-mammary carcinosarcoma with SSM (93.7% and 93.3%, respectively), but not in MCBs and non-mammary carcinosarcoma without SSM. FBN1 knockdown in MDA-MB-231 cells with high FBN1 expression did not compromise migration, invasion, and tumourigenesis, and did not alter the expression of other EMT-related markers. In conclusion, fibrillin-1 is a novel TGF-β-induced marker. Fibrillin-1 expression in SSM, but not in other metaplasia and carcinomatous components, in both MCBs and non-mammary carcinosarcomas, together with the inability of FBN1-knockdown to compromise migration and invasion, indicates that fibrillin-1 is a marker induced solely in spindle metaplasia during EMT and does not induce EMT nor lead to tumour aggressiveness.
Collapse
Affiliation(s)
- Huang-Chun Lien
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan; Department of Pathology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan.
| | - Yi-Hsuan Lee
- Department of Pathology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Yu-Lin Juang
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Yueh-Tong Lu
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
87
|
Jiang L, Wang R, Fang L, Ge X, Chen L, Zhou M, Zhou Y, Xiong W, Hu Y, Tang X, Li G, Li Z. HCP5 is a SMAD3-responsive long non-coding RNA that promotes lung adenocarcinoma metastasis via miR-203/SNAI axis. Am J Cancer Res 2019; 9:2460-2474. [PMID: 31131047 PMCID: PMC6525996 DOI: 10.7150/thno.31097] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/23/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction: Transforming growth factor-beta (TGFβ) signaling plays a vital role in lung adenocarcinoma (LUAD) progression. However, the involvement of TGFβ-regulated long non-coding RNAs (lncRNAs) in metastasis of LUAD remains poorly understood. Methods: We performed bioinformatic analyses to identify putative lncRNAs regulated by TGF-β/SMAD3 and validated the results by quantitative PCR in LUAD cells. We performed luciferase reporter and chromatin immunoprecipitation assays to demonstrate the transcriptional regulation of the lncRNA histocompatibility leukocyte antigen complex P5 (HCP5) we decided to focus on. Stable HCP5 knockdown and HCP5-overexpressing A549 cell variants were generated respectively, to study HCP5 function and understand its mechanism of action. We also confirmed our findings in mouse xenografts and metastasis models. We analyzed the correlation between the level of lncRNA expression with EGFR, KRAS mutations, smoke state and prognostic of LUAD patients. Results: We found that the lncRNA HCP5 is induced by TGFβ and transcriptionally regulated by SMAD3, which promotes LUAD tumor growth and metastasis. Moreover, HCP5 is overexpressed in tumor tissues of patients with LUAD, specifically in patients with EGFR and KRAS mutations and current smoker. HCP5 high expression level is positively correlated with poor prognosis of patients with LUAD. Finally, we demonstrated that upregulation of HCP5 increases the expression of Snail and Slug by sponging the microRNA-203 (miR-203) and promoting epithelial-mesenchymal transition (EMT) in LUAD cells. Conclusions: Our work demonstrates that the lncRNA HCP5 is transcriptionally regulated by SMAD3 and acts as a new regulator in the TGFβ/SMAD signaling pathway. Therefore, HCP5 can serve as a potential therapeutic target in LUAD.
Collapse
|
88
|
Harel T, Levy-Lahad E, Daana M, Mechoulam H, Horowitz-Cederboim S, Gur M, Meiner V, Elpeleg O. Homozygous stop-gain variant in LRRC32, encoding a TGFβ receptor, associated with cleft palate, proliferative retinopathy, and developmental delay. Eur J Hum Genet 2019; 27:1315-1319. [PMID: 30976112 DOI: 10.1038/s41431-019-0380-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 02/03/2023] Open
Abstract
The transforming growth factor-beta (TGFβ) signaling pathway is essential for palatogenesis and retinal development. Glycoprotein A repetitions predominant (GARP), encoded by LRRC32, is a TGFβ cell surface receptor that has been studied primarily in the context of cellular immunity. We identified a homozygous stop-gain variant in LRRC32 (c.1630C>T; p.(Arg544Ter)) in two families with developmental delay, cleft palate, and proliferative retinopathy. Garp-null mice have palate defects and die within 24 h after birth. Our study establishes LRRC32 as a candidate disease-associated gene in humans and lends further support to the role of the TGFβ pathway in palatogenesis and retinal development.
Collapse
Affiliation(s)
- Tamar Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel.
| | - Ephrat Levy-Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Muhannad Daana
- Child Development Centers, Clalit and Maccabi Health Care Services, Jerusalem District, Jerusalem, Israel
| | - Hadas Mechoulam
- Center for Pediatric Ophthalmology, Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Smadar Horowitz-Cederboim
- Medical Genetics Institute, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Gur
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel
| | - Vardiella Meiner
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel
| | - Orly Elpeleg
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel.,Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
89
|
Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis 2019; 36:171-198. [PMID: 30972526 DOI: 10.1007/s10585-019-09966-1] [Citation(s) in RCA: 337] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) constitutes the scaffold of tissues and organs. It is a complex network of extracellular proteins, proteoglycans and glycoproteins, which form supramolecular aggregates, such as fibrils and sheet-like networks. In addition to its biochemical composition, including the covalent intermolecular cross-linkages, the ECM is also characterized by its biophysical parameters, such as topography, molecular density, stiffness/rigidity and tension. Taking these biochemical and biophysical parameters into consideration, the ECM is very versatile and undergoes constant remodeling. This review focusses on this remodeling of the ECM under the influence of a primary solid tumor mass. Within this tumor stroma, not only the cancer cells but also the resident fibroblasts, which differentiate into cancer-associated fibroblasts (CAFs), modify the ECM. Growth factors and chemokines, which are tethered to and released from the ECM, as well as metabolic changes of the cells within the tumor bulk, add to the tumor-supporting tumor microenvironment. Metastasizing cancer cells from a primary tumor mass infiltrate into the ECM, which variably may facilitate cancer cell migration or act as barrier, which has to be proteolytically breached by the infiltrating tumor cell. The biochemical and biophysical properties therefore determine the rates and routes of metastatic dissemination. Moreover, primed by soluble factors of the primary tumor, the ECM of distant organs may be remodeled in a way to facilitate the engraftment of metastasizing cancer cells. Such premetastatic niches are responsible for the organotropic preference of certain cancer entities to colonize at certain sites in distant organs and to establish a metastasis. Translational application of our knowledge about the cancer-primed ECM is sparse with respect to therapeutic approaches, whereas tumor-induced ECM alterations such as increased tissue stiffness and desmoplasia, as well as breaching the basement membrane are hallmark of malignancy and diagnostically and histologically harnessed.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| |
Collapse
|
90
|
Bruchard M, Ghiringhelli F. Deciphering the Roles of Innate Lymphoid Cells in Cancer. Front Immunol 2019; 10:656. [PMID: 31024531 PMCID: PMC6462996 DOI: 10.3389/fimmu.2019.00656] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
Cancer is a complex disease and the role played by innate lymphoid cells (ILCs) in cancer development has begun to be uncovered over recent years. We aim to provide an exhaustive summary of the knowledge acquired on the role of ILCs in cancer. ILCs are classified into 3 different categories, ILC1s, ILC2s, and ILC3s, each encompassing specific and unique functions. ILC1s exhibit NK cells characteristics and can exert anti-tumor functions, but surprisingly their IFNγ production is not associated with a better immune response. In response to TGF-β or IL-12, ILC1s were shown to exert pro-tumor functions and to favor tumor growth. ILC2s role in cancer immune response is dependent on cytokine context. The production of IL-13 by ILC2s is associated with a negative outcome in cancer. ILC2s can also produce IL-5, leading to eosinophil activation and an increased anti-tumor immune response in lung cancer. ILC3s produce IL-22, which could promote tumor growth. In contrast, ILC3s recognize tumor cells and facilitate leukocyte tumor entry, increasing anti-tumor immunity. In some contexts, ILC3s were found at the edge of tertiary lymphoid structures, associated with a good prognostic. We are at the dawn of our understanding of ILCs role in cancer. This review aims to thoroughly analyze existing data and to provide a comprehensive overview of our present knowledge on the impact of ILCs in cancer.
Collapse
Affiliation(s)
- Melanie Bruchard
- INSERM UMR1231, Dijon, France.,University of Burgundy and Franche-Comté, Dijon, France
| | - Francois Ghiringhelli
- INSERM UMR1231, Dijon, France.,University of Burgundy and Franche-Comté, Dijon, France
| |
Collapse
|
91
|
Li A, Zhang Y, Wang Z, Dong H, Fu N, Han X. The roles and signaling pathways of prolyl-4-hydroxylase 2 in the tumor microenvironment. Chem Biol Interact 2019; 303:40-49. [PMID: 30817904 DOI: 10.1016/j.cbi.2019.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Abstract
Tumor hypoxia is a well-known microenvironmental factor that causes cancer progression and resistance to cancer treatment. Proline hydroxylases (PHDs), a small protein family, belong to an evolutionarily conserved superfamily of dioxygenases, considered the central regulator of the molecular hypoxia response. Prolyl-4-hydroxylase 2 (PHD2), one member of PHDs family, regulates the stability of the hypoxia-inducible factor-1 alpha (HIF-1α) in response to oxygen availability. During hypoxia, the inhibition of PHD2 permits the accumulation of HIF-1α, allowing the cellular adaptation to oxygen limitation, causing activation of numerous genes, which enhances the angiogenesis, metastasis and invasiveness. Accurate regulation of oxygen homeostasis is essential, and which implies PHD2 may have a regulatory role in the pathogenesis of cancer. Although ample evidence exists for a positive correlation between HIFs and tumor formation, metastasis and poor prognosis, the function of the PHD2 in carcinogenesis is less well understood. Despite their original role as the oxygen sensors of the cell and many of the its functions are clearly conveyed through the HIF system, PHD2 is currently known to display HIF-independent and hydroxylase-independent functions in cancer cells and stroma in the control of different cellular pathways. In this review, we summarize the recent advances in the structure, regulation and functions of PHD2 in cancer microenvironment.
Collapse
Affiliation(s)
- Anqi Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Zuojun Wang
- Department of Pharmacy, Linqu Country People's Hospital, 438 Shanwang Road, Linqu, 262600, China
| | - Hailing Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Nange Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.
| |
Collapse
|
92
|
ADP-ribosylation and intracellular traffic: an emerging role for PARP enzymes. Biochem Soc Trans 2019; 47:357-370. [DOI: 10.1042/bst20180416] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022]
Abstract
AbstractADP-ribosylation is an ancient and reversible post-translational modification (PTM) of proteins, in which the ADP-ribose moiety is transferred from NAD+ to target proteins by members of poly-ADP-ribosyl polymerase (PARP) family. The 17 members of this family have been involved in a variety of cellular functions, where their regulatory roles are exerted through the modification of specific substrates, whose identification is crucial to fully define the contribution of this PTM. Evidence of the role of the PARPs is now available both in the context of physiological processes and of cell responses to stress or starvation. An emerging role of the PARPs is their control of intracellular transport, as it is the case for tankyrases/PARP5 and PARP12. Here, we discuss the evidence pointing at this novel aspect of PARPs-dependent cell regulation.
Collapse
|
93
|
Sapalidis K, Sardeli C, Pavlidis E, Koimtzis G, Koulouris C, Michalopoulos N, Mantalovas S, Tsiouda T, Passos I, Kosmidis C, Giannakidis D, Surlin V, Katsaounis A, Alexandrou V, Amaniti A, Zarogoulidis P, Huang H, Li Q, Mogoanta S, Kesisoglou I. Scar tissue to lung cancer; pathways and treatment. J Cancer 2019; 10:810-818. [PMID: 30854086 PMCID: PMC6400809 DOI: 10.7150/jca.30300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/15/2018] [Indexed: 12/12/2022] Open
Abstract
Lung cancer still remains diagnosed at a late stage although we have novel diagnostic techniques at our disposal. However; for metastatic disease we have novel therapies based on pharmacogenomics. Tumor heterogenity provides us different treatments. There are several reasons for carcinogenesis; fibrosis and scar tissue provides an environment that induces malignancy. In the current review we will try and elucidate the pathways involved from scar tissue to carcinogenesis.
Collapse
Affiliation(s)
- Konstantinos Sapalidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Chrysanthi Sardeli
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efstathios Pavlidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Georgios Koimtzis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Charilaos Koulouris
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Nikolaos Michalopoulos
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Stylianos Mantalovas
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Theodora Tsiouda
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Ioannis Passos
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Christoforos Kosmidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Dimitrios Giannakidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Valeriu Surlin
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Athanasios Katsaounis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Vyron Alexandrou
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Aikaterini Amaniti
- Anaisthisiology Department, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Paul Zarogoulidis
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece.,Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Haidong Huang
- The Diagnostic and Therapeutic Center of Respiratory Diseases, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Qiang Li
- The Diagnostic and Therapeutic Center of Respiratory Diseases, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Stelian Mogoanta
- Department of Surgery, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Isaac Kesisoglou
- Third Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| |
Collapse
|
94
|
Pirfenidone, an Anti-Fibrotic Drug, Suppresses the Growth of Human Prostate Cancer Cells by Inducing G₁ Cell Cycle Arrest. J Clin Med 2019; 8:jcm8010044. [PMID: 30621175 PMCID: PMC6351920 DOI: 10.3390/jcm8010044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/25/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022] Open
Abstract
Pirfenidone (PFD) is an anti-fibrotic drug used to treat idiopathic pulmonary fibrosis by inducing G1 cell cycle arrest in fibroblasts. We hypothesize that PFD can induce G1 cell cycle arrest in different types of cells, including cancer cells. To investigate the effects of PFD treatment on the growth of human prostate cancer (PCa) cells, we used an androgen-sensitive human PCa cell line (LNCaP) and its sublines (androgen-low-sensitive E9 and F10 cells and androgen-insensitive AIDL cells), as well as an androgen-insensitive human PCa cell line (PC-3). PFD treatment suppressed the growth of all PCa cells. Transforming growth factor β1 secretion was significantly increased in PFD-treated PCa cells. In both LNCaP and PC-3 cells, PFD treatment increased the population of cells in the G0/G1 phase, which was accompanied by a decrease in the S/G2 cell population. CDK2 protein expression was clearly decreased in PFD-treated LNCaP and PC-3 cells, whereas p21 protein expression was increased in only PFD-treated LNCaP cells. In conclusion, PFD may serve as a novel therapeutic drug that induces G1 cell cycle arrest in human PCa cells independently of androgen sensitivity. Thus, in the tumor microenvironment, PFD might target not only fibroblasts, but also heterogeneous PCa cells of varying androgen-sensitivity levels.
Collapse
|
95
|
YAP/TAZ Signaling as a Molecular Link between Fibrosis and Cancer. Int J Mol Sci 2018; 19:ijms19113674. [PMID: 30463366 PMCID: PMC6274979 DOI: 10.3390/ijms19113674] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022] Open
Abstract
Tissue fibrosis is a pathological condition that is associated with impaired epithelial repair and excessive deposition of extracellular matrix (ECM). Fibrotic lesions increase the risk of cancer in various tissues, but the mechanism linking fibrosis and cancer is unclear. Yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ) are core components of the Hippo pathway, which have multiple biological functions in the development, homeostasis, and regeneration of tissues and organs. YAP/TAZ act as sensors of the structural and mechanical features of the cell microenvironment. Recent studies have shown aberrant YAP/TAZ activation in both fibrosis and cancer in animal models and human tissues. In fibroblasts, ECM stiffness mechanoactivates YAP/TAZ, which promote the production of profibrotic mediators and ECM proteins. This results in tissue stiffness, thus establishing a feed-forward loop of fibroblast activation and tissue fibrosis. In contrast, in epithelial cells, YAP/TAZ are activated by the disruption of cell polarity and increased ECM stiffness in fibrotic tissues, which promotes the proliferation and survival of epithelial cells. YAP/TAZ are also involved in the epithelial–mesenchymal transition (EMT), which contributes to tumor progression and cancer stemness. Importantly, the crosstalk with transforming growth factor (TGF)-β signaling and Wnt signaling is essential for the profibrotic and tumorigenic roles of YAP/TAZ. In this article, we review the latest advances in the pathobiological roles of YAP/TAZ signaling and their function as a molecular link between fibrosis and cancer.
Collapse
|
96
|
Harada M, Morikawa M, Ozawa T, Kobayashi M, Tamura Y, Takahashi K, Tanabe M, Tada K, Seto Y, Miyazono K, Koinuma D. Palbociclib enhances activin-SMAD-induced cytostasis in estrogen receptor-positive breast cancer. Cancer Sci 2018; 110:209-220. [PMID: 30343527 PMCID: PMC6317929 DOI: 10.1111/cas.13841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022] Open
Abstract
Cyclin‐dependent kinase (CDK) 4 and CDK6 inhibitors are effective therapeutic options for hormone receptor (HR)‐positive, human epidermal growth factor receptor 2 (HER2)‐negative advanced breast cancer. Although CDK4/6 inhibitors mainly target the cyclin D‐CDK4/6‐retinoblastoma tumor suppressor protein (RB) axis, little is known about the clinical impact of inhibiting phosphorylation of other CDK4/6 target proteins. Here, we focused on other CDK4/6 targets, SMAD proteins. We showed that a CDK4/6 inhibitor palbociclib and activin‐SMAD2 signaling cooperatively inhibited cell cycle progression of a luminal‐type breast cancer cell line T47D. Palbociclib enhanced SMAD2 binding to the genome by inhibiting CDK4/6‐mediated linker phosphorylation of the SMAD2 protein. We also showed that cyclin G2 plays essential roles in SMAD2‐dependent cytostatic response. Moreover, comparison of the SMAD2 ChIP‐seq data of T47D cells with those of Hs578T (triple‐negative breast cancer cells) indicated that palbociclib augmented different SMAD2‐mediated functions based on cell type, and enhanced SMAD2 binding to the target regions on the genome without affecting its binding pattern. In summary, palbociclib enhances the cytostatic effects of the activin‐SMAD2 signaling pathway, whereas it possibly strengthens the tumor‐promoting aspect in aggressive breast cancer.
Collapse
Affiliation(s)
- Mayumi Harada
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masato Morikawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takayuki Ozawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mai Kobayashi
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Tamura
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kei Takahashi
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiko Tanabe
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiichiro Tada
- Department of Breast Surgery, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|