51
|
Worm J, Falkenberg K, Olesen J. Histamine and migraine revisited: mechanisms and possible drug targets. J Headache Pain 2019; 20:30. [PMID: 30909864 PMCID: PMC6734463 DOI: 10.1186/s10194-019-0984-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/18/2019] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE To review the existing literature on histamine and migraine with a focus on the molecule, its receptors, its use in inducing migraine, and antihistamines in the treatment of migraine. BACKGROUND Histamine has been known to cause a vascular type headache for almost a hundred years. Research has focused on antihistamines as a possible treatment and histamine as a migraine provoking agent but there has been little interest in this field for the last 25 years. In recent years two additional histamine (H3 and H4) receptors have been discovered and a series of non-sedating antihistamines have been developed. It is therefore timely to review the field again. METHODS For this review the PubMed/MEDLINE database was searched for eligible studies. We searched carefully for all articles on histamine, antihistamines and histamine receptors in relation to migraine and the nervous system. The following search terms were used: histamine, migraine disorders, migraine, headache, antihistamines, histamine antagonists, clinical trials, induced headache, histamine H3 receptor, histamine H4 receptor and pharmacology. Four hundred thirty-six titles were read, 135 abstracts were read, 112 articles were read in full and 53 articles were used in this review. Review process resulted in 12 articles added to a total of 65. FINDINGS Early studies of H1 and H2 antihistamines lack scientific strength and show conflicting results. Most of the antihistaminic drugs used in these trials bind also to other receptors which makes it difficult to conclude on the antihistaminic effect. Histamine is an efficient inducer of migraine attacks in migraine patients by an H1 mechanism most likely extracerebrally. These findings merit further investigation of antihistamines in clinical drug trials. The H3 and H4 receptors are found in primarily in CNS and immune tissues, respectively. H3 is likely to be involved in antinociception and has been linked with cognitive, neurodegenerative and sleep disorders. The only marketed H3 agent, pitolisant, is a brain penetrant H3 antagonist/inverse agonist which increases central histamine and causes headache. The experimental H3 agonist Nα-methylhistamine has shown promising results as a migraine preventative in studies of uncertain quality. With the current limited knowledge of the H4 receptor it is questionable whether or not the receptor is involved in migraine. CONCLUSION There is insufficient support for first generation antihistamines (both H1 and H2) as preventive migraine medications and sedation and weight gain are unacceptable side effects. Non-sedating H1 antihistamines need to be appropriately tested. Central H3 receptors seem to have a role in migraine that merit further investigation. The histaminergic system may be a goal for novel migraine drugs.
Collapse
Affiliation(s)
- Jacob Worm
- Danish Headache Center and Department of Neurology N39, University of Copenhagen, Rigshospitalet Glostrup, DK-2600 Copenhagen, Denmark
| | - Katrine Falkenberg
- Danish Headache Center and Department of Neurology N39, University of Copenhagen, Rigshospitalet Glostrup, DK-2600 Copenhagen, Denmark
| | - Jes Olesen
- Danish Headache Center and Department of Neurology N39, University of Copenhagen, Rigshospitalet Glostrup, DK-2600 Copenhagen, Denmark
| |
Collapse
|
52
|
Nurkhametova D, Kudryavtsev I, Guselnikova V, Serebryakova M, Giniatullina RR, Wojciechowski S, Tore F, Rizvanov A, Koistinaho J, Malm T, Giniatullin R. Activation of P2X7 Receptors in Peritoneal and Meningeal Mast Cells Detected by Uptake of Organic Dyes: Possible Purinergic Triggers of Neuroinflammation in Meninges. Front Cell Neurosci 2019; 13:45. [PMID: 30814932 PMCID: PMC6381076 DOI: 10.3389/fncel.2019.00045] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/28/2019] [Indexed: 12/24/2022] Open
Abstract
Extracellular ATP activates inflammasome and triggers the release of multiple cytokines in various immune cells, a process primarily mediated by P2X7 receptors. However, the expression and functional properties of P2X7 receptors in native mast cells in tissues such as meninges where migraine pain originates from have not been explored. Here we report a novel model of murine cultured meningeal mast cells and using these, as well as easily accessible peritoneal mast cells, studied the mechanisms of ATP-mediated mast cell activation. We show that ATP induced a time and dose-dependent activation of peritoneal mast cells as analyzed by the uptake of organic dye YO-PRO1 as well as 4,6-diamidino-2-phenylindole (DAPI). Both YO-PRO1 and DAPI uptake in mast cells was mediated by the P2X7 subtype of ATP receptors as demonstrated by the inhibitory effect of P2X7 antagonist A839977. Consistent with this, significant YO-PRO1 uptake was promoted by the P2X7 agonist 2′,3′-O-(benzoyl-4-benzoyl)-ATP (BzATP). Extracellular ATP-induced degranulation of native and cultured meningeal mast cells was shown with Toluidine Blue staining. Taken together, these data demonstrate the important contribution of P2X7 receptors to ATP-driven activation of mast cells, suggesting these purinergic mechanisms as potential triggers of neuroinflammation and pain sensitization in migraine.
Collapse
Affiliation(s)
- Dilyara Nurkhametova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Igor Kudryavtsev
- Department of Immunology, Institute of Experimental Medicine, St. Petersburg, Russia.,Department of Fundamental Medicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Guselnikova
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Department of General and Special Morphology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Maria Serebryakova
- Department of Immunology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Raisa R Giniatullina
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sara Wojciechowski
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Fatma Tore
- School of Medicine, Biruni University, Istanbul, Turkey
| | - Albert Rizvanov
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Jari Koistinaho
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tarja Malm
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
53
|
Abstract
Mast cells are best recognized for their role in allergy and anaphylaxis, but increasing evidence supports their role in neurogenic inflammation leading to pain and itch. Mast cells act as a "power house" by releasing algogenic and pruritogenic mediators, which initiate a reciprocal communication with specific nociceptors on sensory nerve fibers. Consequently, nerve fibers release inflammatory and vasoactive neuropeptides, which in turn activate mast cells in a feedback mechanism, thus promoting a vicious cycle of mast cell and nociceptor activation leading to neurogenic inflammation and pain/pruritus. Mechanisms underlying mast cell differentiation, activation, and intercellular interactions with inflammatory, vascular, and neural systems are deeply influenced by their microenvironment, imparting enormous heterogeneity and complexity in understanding their contribution to pain and pruritus. Neurogenic inflammation is central to both pain and pruritus, but specific mediators released by mast cells to promote this process may vary depending upon their location, stimuli, underlying pathology, gender, and species. Therefore, in this review, we present the contribution of mast cells in pathological conditions, including distressing pruritus exacerbated by psychologic stress and experienced by the majority of patients with psoriasis and atopic dermatitis and in different pain syndromes due to mastocytosis, sickle cell disease, and cancer.
Collapse
Affiliation(s)
- Kalpna Gupta
- Vascular Biology Center, Division of Hematology/Oncology/Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ilkka T Harvima
- Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
54
|
Ramachandran R, Wang Z, Saavedra C, DiNardo A, Corr M, Powell SB, Yaksh TL. Role of Toll-like receptor 4 signaling in mast cell-mediated migraine pain pathway. Mol Pain 2019; 15:1744806919867842. [PMID: 31342858 PMCID: PMC6688145 DOI: 10.1177/1744806919867842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/09/2019] [Accepted: 06/04/2019] [Indexed: 01/27/2023] Open
Abstract
Degranulation of meningeal mast cells leading to the sensitization of trigeminal vascular afferent processing is believed to be one of the mechanisms underlying the migraine pain pathway. Recent work suggests that Toll-like receptor 4 (TLR4) may be involved in signaling states of central sensitization. Using a murine model of light aversion produced by compound 48/80 (2 mg/kg, intraperitoneal) mast cell degranulation, employed as a surrogate marker for photophobia observed in migraineurs, we examined the role of TLR4 in migraine-like behavior and neuronal activation. Using a two-chambered light/dark box, we found that compound 48/80 administration in male and female C57Bl/6 mice produced light aversion lasting up to 2 h, and that pre-treatment with sumatriptan (1 mg/kg, i.p.) reliably prevented this effect. Genetic deletion and pharmacological blockade of TLR4 with TAK-242 (3 mg/kg, i.p.) reversed the light aversive effects of compound 48/80 in males but not in females. Assessing the downstream signaling pathway in mutant mice, we found that the TLR4-mediated, light aversion was dependent upon myeloid differentiation primary response gene 88 but not Toll-interleukin-1 receptor domain-containing adapter-inducing interferon-β signaling. In separate groups, male mice sacrificed at 10 min following compound 48/80 revealed a significant increase in the incidence of evoked p-extracellular signal–regulated kinases (+) neurons in the nucleus caudalis of wild type but not Tlr4−/− mice or in mice pre-treated with sumatriptan. This study thus provides the first evidence for involvement of TLR4 signaling through MyD88 in initiating and maintaining migraine-like behavior and nucleus caudalis neuronal activation in the mouse.
Collapse
Affiliation(s)
- Roshni Ramachandran
- Department of Anesthesiology, University of California
San Diego, La Jolla CA, USA
| | - Zhenping Wang
- Department of Dermatology, University of California
San Diego, La Jolla, CA, USA
| | - Christian Saavedra
- Department of Anesthesiology, University of California
San Diego, La Jolla CA, USA
| | - Anna DiNardo
- Department of Dermatology, University of California
San Diego, La Jolla, CA, USA
| | - Maripat Corr
- Division of Rheumatology, Allergy, and Immunology,
University of California San Diego, La Jolla, CA, USA
| | - Susan B Powell
- Department of Psychiatry, University of California San
Diego, La Jolla, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California
San Diego, La Jolla CA, USA
| |
Collapse
|
55
|
Hassler SN, Ahmad FB, Burgos-Vega CC, Boitano S, Vagner J, Price TJ, Dussor G. Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice. Cephalalgia 2019; 39:111-122. [PMID: 29848111 PMCID: PMC6081257 DOI: 10.1177/0333102418779548] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Pain is the most debilitating symptom of migraine. The cause of migraine pain likely requires activation of meningeal nociceptors. Mast cell degranulation, with subsequent meningeal nociceptor activation, has been implicated in migraine pathophysiology. Degranulating mast cells release serine proteases that can cleave and activate protease activated receptors. The purpose of these studies was to investigate whether protease activated receptor 2 is a potential generator of nociceptive input from the meninges by using selective pharmacological agents and knockout mice. METHODS Ratiometric Ca++ imaging was performed on primary trigeminal and dural cell cultures after application of 2at-LIGRL-NH2, a specific protease activated receptor 2 agonist. Cutaneous hypersensitivity and facial grimace was measured in wild-type and protease activated receptor 2-/- mice after dural application of 2at-LIGRL-NH2 or compound 48-80, a mast cell degranulator. Behavioral experiments were also conducted in mice after dural application of 2at-LIGRL-NH2 (2AT) in the presence of either C391, a selective protease activated receptor 2 antagonist, or sumatriptan. RESULTS 2at-LIGRL-NH2 evoked Ca2+ signaling in mouse trigeminal neurons, dural fibroblasts and in meningeal afferents. Dural application of 2at-LIGRL-NH2 or 48-80 caused dose-dependent grimace behavior and mechanical allodynia that were attenuated by either local or systemic application of C391 as well as in protease activated receptor 2-/- mice. Nociceptive behavior after dural injection of 2at-LIGRL-NH2 was also attenuated by sumatriptan. CONCLUSIONS Functional protease activated receptor 2 receptors are expressed on both dural afferents and fibroblasts and activation of dural protease activated receptor 2 produces migraine-like behavioral responses. Protease activated receptor 2 may link resident immune cells to meningeal nociceptor activation, driving migraine-like pain and implicating protease activated receptor 2 as a therapeutic target for migraine in humans.
Collapse
Affiliation(s)
- Shayne N Hassler
- School of Brain and Behavioral Sciences, University of Texas at Dallas, TX, USA
| | - Fatima B Ahmad
- School of Brain and Behavioral Sciences, University of Texas at Dallas, TX, USA
| | | | - Scott Boitano
- Department of Physiology, University of Arizona, AZ, USA
- Arizona Respiratory Center, University of Arizona, AZ, USA
- Bio5 Institute, University of Arizona, AZ, USA
| | | | - Theodore J Price
- School of Brain and Behavioral Sciences, University of Texas at Dallas, TX, USA
| | - Gregory Dussor
- School of Brain and Behavioral Sciences, University of Texas at Dallas, TX, USA
| |
Collapse
|
56
|
Conti P, D'Ovidio C, Conti C, Gallenga CE, Lauritano D, Caraffa A, Kritas SK, Ronconi G. Progression in migraine: Role of mast cells and pro-inflammatory and anti-inflammatory cytokines. Eur J Pharmacol 2018; 844:87-94. [PMID: 30529470 DOI: 10.1016/j.ejphar.2018.12.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 02/08/2023]
Abstract
Migraine is a common painful neurovascular disorder usually associated with several symptoms, such as photophobia, phonophobia, nausea, vomiting and inflammation, and involves immune cells. Mast cells (MCs) are immune cells derived from hematopoietic pluripotent stem cells which migrate and mature close to epithelial, blood vessels, and nerves. In almost all vascularized tissues there are MCs that produce, contain and release biologically active products including cytokines, arachidonic acid compounds, and proteases. In addition, MCs participate in innate and adaptive immune responses. Innate responses in the central nervous system (CNS) occur during neuroinflammatory phenomena, including migraine. Antigens found in the environment have a crucial role in inflammatory response, causing a broad range of diseases including migraine. They can be recognized by several innate immune cells, such as macrophages, microglia, dendritic cells and MCs, which can be activated trough Toll-like receptor (TLR) signaling. MCs reside close to primary nociceptive neurons, associate with nerves, and are capable of triggering local inflammation. MCs are involved in the pathophysiology of various tissues and organs, especially where there is an increase of angiogenesis. Activated MCs release preformed mediators include histamine, heparin, proteases (tryptase, chimase), hydrolases, cathepsin, carboxypeptidases, and peroxidase, and they also generate pro-inflammatory cytokines/chemokines. In addition, activated macrophages, microglia and MCs in the CNS release pro-inflammatory cytokines which provoke an increase of arachidonic acid product levels and lead to migraine and other neurological manifestations including fatigue, nausea, headaches and brain fog. Innate immunity and pro-inflammatory interleukin (IL)-1 cytokine family members can be inhibited by IL-37, a relatively new member of the IL-1 family. In this article, we report that some pro-inflammatory cytokines inducing migraine may be inhibited by IL-37, a natural suppressor of inflammation, and innate and acquired immunity.
Collapse
Affiliation(s)
- Pio Conti
- Immunology Division, Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy.
| | - Cristian D'Ovidio
- Section of Legal Medicine, Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Italy.
| | - Chiara Conti
- Department of Psychological, Health, and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Carla Enrica Gallenga
- Department of Biomedical Sciences and Specialist Surgery, Section of Ophthalmology, University of Ferrara, Italy.
| | - Dorina Lauritano
- University of Milan-Bicocca, Medicine and Surgery Department, Centre of Neuroscience of Milan, Italy.
| | | | - Spiros K Kritas
- Department of Microbiology and Infectious Diseases, Aristotle University of Thessaloniki, Macedonia, Greece.
| | - Gianpaolo Ronconi
- UOS Clinica dei Pazienti del Territorio, Policlinico Gemelli, Rome, Italy.
| |
Collapse
|
57
|
Gebhardt M, Kropp P, Hoffmann F, Zettl UK. Headache in the course of multiple sclerosis: a prospective study. J Neural Transm (Vienna) 2018; 126:131-139. [PMID: 30506270 DOI: 10.1007/s00702-018-1959-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/22/2018] [Indexed: 01/03/2023]
Abstract
Multiple sclerosis (MS) is the most common immune-mediated inflammatory disease of the central nervous system (CNS). Early diagnosis and treatment is important to prevent progression of disability in the course of the chronic disease. Therefore, correct and fast identification of early symptoms is vital. Headache is generally not recognized as an early symptom of MS, although numerous studies could show a high prevalence of headache in MS patients. The most common misdiagnosis is migraine. The aim of this study is to investigate the prevalence as well as the phenomenology of headache in MS especially with regard to the progression of the disease. In a prospective, multicenter study, we unbiasedly recruited 150 patients with manifest MS based on the criteria of McDonald. 50 patients at the timepoint of initial diagnosis and 100 of them with a long-term course of the disease were included. Based on a semi-structured interview, we evaluated the occurrence of headache over the last 4 weeks as well as case history, clinical-neurological investigation and questionnaires about depression, fatigue, and quality of life. Prevalence of headache in all patients was 67%. Patients at the timepoint of symptom manifestation of MS showed the highest prevalence of headache that was ever been recorded of 78%. In general, patients with headache were younger, had a shorter duration of the disease, and were less physically affected. We noticed frequent occurrence of migraine and migraine-like headache. In the course of the disease, patients without disease-modifying drug (DMD) complained more frequently headaches than patients with any kind of therapy. Headache is an important early symptom of MS. This could be shown especially among 78% of patients with clinically isolated syndrome (CIS). Therefore, young people with frequent headache should undergo MRI of the head and in the case of abnormal findings a consecutive detailed differential diagnosis. This could reduce the latency until final diagnosis of MS, which is in general much too long. That way these patients could get the earliest possible treatment, which is important to stop the progression of the disease.
Collapse
Affiliation(s)
- Marcel Gebhardt
- Klinik für Neurologie, Krankenhaus Martha-Maria Halle-Dölau, Röntgenstraße 1, 06120, Halle, Germany.
| | - Peter Kropp
- Institute of Medical Psychology and Medical Sociology, Medical Faculty, University of Rostock, Gehlsheimer Straße 20, 18147, Rostock, Germany
| | - Frank Hoffmann
- Klinik für Neurologie, Krankenhaus Martha-Maria Halle-Dölau, Röntgenstraße 1, 06120, Halle, Germany
| | - Uwe K Zettl
- Neuroimmunological Section, Department of Neurology, University of Rostock, Rostock, Germany
| |
Collapse
|
58
|
Guo L, Zhao L, Ming P, Hong L, Liu A, Li R. Sumatriptan inhibits the electrophysiological activity of ASICs in rat trigeminal ganglion neurons. Eur J Pharmacol 2018; 841:98-103. [PMID: 30336137 DOI: 10.1016/j.ejphar.2018.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023]
Abstract
Sumatriptan, a selective serotonin 5-HT1 receptor agonist, is an effective therapeutic for migraine attacks. However, the molecular mechanisms underlying sumatriptan migraine relief are still not fully understood. Here, we found that acid-sensing ion channels (ASICs), pH sensors, are peripheral targets of sumatriptan against migraine. Sumatriptan can inhibit the electrophysiological activity of ASICs in the trigeminal ganglion (TG) neurons. In the present study, sumatriptan decreased proton-gated currents mediated by ASICs in a concentration-dependent manner. In addition, sumatriptan shifted concentration-response curves for protons downwards, with a decrease of 37.3 ± 4.6% in the maximum current response but with no significant change in the pH0.5 value. Sumatriptan inhibition of ASIC currents was blocked by 5-HT1D receptor antagonist BRL 15572, but not by 5-HT1B antagonist SB 224289. Moreover, the sumatriptan inhibition of ASICs can be mimicked by the 5-HT1D receptor agonist L-694,247, but not by the 5-HT1B agonist CP-93129. Sumatriptan inhibition of ASIC currents was also reversed by G-protein αi subunit inhibitor PTX and 8-Br-cAMP, suggesting the inhibition may involve the intracellular signal transduction. Finally, sumatriptan decreased the number of action potentials induced by acid stimuli in rat TG neurons. Our results indicated that the anti-migraine drug, sumatriptan, inhibited ASICs in rat TG neurons via 5-HT1D receptor subtype and a cAMP-dependent signal pathway. These observations add to the understanding of the mechanisms that underlie the clinical effectiveness of anti-migraine sumatriptan.
Collapse
Affiliation(s)
- Longhua Guo
- Clinical Laboratory, The People's Hospital of Longhua, Shenzhen, PR China; Key Laboratory on Innovation Research for Medicine Laboratory Technology, The People's Hospital of Longhua, Shenzhen, PR China
| | - Ling Zhao
- Clinical Laboratory, The People's Hospital of Longhua, Shenzhen, PR China; Key Laboratory on Innovation Research for Medicine Laboratory Technology, The People's Hospital of Longhua, Shenzhen, PR China
| | - Pinghong Ming
- Clinical Laboratory, The People's Hospital of Longhua, Shenzhen, PR China; Key Laboratory on Innovation Research for Medicine Laboratory Technology, The People's Hospital of Longhua, Shenzhen, PR China
| | - Ling Hong
- Clinical Laboratory, The People's Hospital of Longhua, Shenzhen, PR China; Key Laboratory on Innovation Research for Medicine Laboratory Technology, The People's Hospital of Longhua, Shenzhen, PR China
| | - Aisheng Liu
- Clinical Laboratory, The People's Hospital of Longhua, Shenzhen, PR China; Key Laboratory on Innovation Research for Medicine Laboratory Technology, The People's Hospital of Longhua, Shenzhen, PR China
| | - Rukai Li
- Clinical Laboratory, Shenzhen Baoan Shiyan People's Hospital, No. 11 Jixiang Road, Shiyan street, Baoan District, Shenzhen, PR China.
| |
Collapse
|
59
|
Graif Y, Shohat T, Machluf Y, Farkash R, Chaiter Y. Association between asthma and migraine: A cross-sectional study of over 110 000 adolescents. CLINICAL RESPIRATORY JOURNAL 2018; 12:2491-2496. [PMID: 30004178 DOI: 10.1111/crj.12939] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Epidemiological studies have reported an association between asthma and migraine, mainly in adults. OBJECTIVE To examine the association between specialist-diagnosed asthma and migraine among adolescents. METHODS The electronic database of a recruitment center was retrospectively searched for all 17-year-old draftees during the years 1987-2010. Diagnoses of asthma and migraine were made by certified specialists. The prevalence of migraine was compared among draftees with and without asthma. Covariate data on socio-demographics and associated medical conditions were recorded. RESULTS A total of 113 671 adolescents were available for analysis. Asthma was diagnosed among 4.0% and migraine among 1.9%. Migraine was significantly more prevalent among adolescents with asthma [174 of the 4581 subjects (3.8%)] compared to those without asthma [1946 of the 109 090 (1.8%)] [OR = 2.17 (95% CI 1.86-2.55; P < 0.001)]. Rates of migraine among subjects with and without allergic rhinitis were 6.3% and 1.7%, respectively [OR = 4.04 (95% CI 3.58-4.56; P < 0.001)]. On multivariate analysis, there was a significant association between migraine and both asthma [OR = 1.42 (95% CI 1.19-1.68)] and allergic rhinitis [OR = 3.18 (95% CI 2.80-3.63)]. Other factors significantly associated with migraine were female gender, urban area of residence, recent immigration to Israel, having three or fewer siblings, and abnormal body mass index. CONCLUSION Clinicians should be aware that asthma and allergic rhinitis are potential risk factors for migraine in adolescents. A combined finding of these conditions and recurrent headache is highly suggestive of migraine and warrants a different diagnosis and treatment approach from sinusitis.
Collapse
Affiliation(s)
- Yael Graif
- Allergy and Immunology Clinic, Pulmonary Institute, Rabin Medical Center, Petach Tikva, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamy Shohat
- Israel Center for Disease Control, Ministry of Health, Ramat Gan, Israel.,Department of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yossy Machluf
- Medical Corps, Israel Defense Forces, Tel Hashomer, Israel.,Shamir Research Institute, University of Haifa, Kazerin, Israel
| | | | - Yoram Chaiter
- Medical Corps, Israel Defense Forces, Tel Hashomer, Israel
| |
Collapse
|
60
|
Nurkhametova D, Kudryavtsev I, Khayrutdinova O, Serebryakova M, Altunbaev R, Malm T, Giniatullin R. Purinergic Profiling of Regulatory T-cells in Patients With Episodic Migraine. Front Cell Neurosci 2018; 12:326. [PMID: 30319363 PMCID: PMC6167492 DOI: 10.3389/fncel.2018.00326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/07/2018] [Indexed: 01/03/2023] Open
Abstract
Objectives: Immune responses in migraine are poorly characterized, yet implicated in the disease pathogenesis. This study was carried out to characterize purinergic profiles of T-cells in patients with episodic migraine without aura (MWoA) to provide mechanistic evidence for ATP and adenosine involvement in modulation of immune regulation in migraine. Methods: Peripheral blood samples were obtained from patients with migraine (n = 16) and age-matched control subjects (n = 21). Subsets of T-cells were identified by flow cytometry based on specific membrane markers. Results: Migraine patients showed reduced total T-cell counts in the peripheral blood. Whereas the total number of CD3+CD4+, CD3+CD8+, or regulatory T lymphocytes (Treg) was not changed, the proportion of Treg CD45R0+CD62L- and CD45R0-CD62L- cells was increased. Interestingly, in migraine, less Treg cells expressed CD39 and CD73 suggesting disrupted ATP breakdown to adenosine. The negative correlations were observed between the duration of migraine and the relative number of CD73+CD39- Tregs and total number of CD73-positive CD45R0+CD62L+ Tregs. Conclusion: Obtained data indicate that T-cell populations are altered in episodic migraine and suggest the involvement of Tregs in the pathophysiology of this disorder. Reduced expression of CD39 and CD73 suggests promotion of ATP-dependent pro-inflammatory and reduction of adenosine-mediated anti-inflammatory mechanisms in migraine.
Collapse
Affiliation(s)
- Dilyara Nurkhametova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institute of Experimental Medicine, St. Petersburg, Russia
- Department of Fundamental Medicine, Far Eastern Federal University, Vladivostok, Russia
| | - Olga Khayrutdinova
- Department of Neurology and Rehabilitation, Kazan State Medical University, Kazan, Russia
| | - Maria Serebryakova
- Department of Immunology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Rashid Altunbaev
- Department of Neurology and Rehabilitation, Kazan State Medical University, Kazan, Russia
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
61
|
Verkest C, Piquet E, Diochot S, Dauvois M, Lanteri-Minet M, Lingueglia E, Baron A. Effects of systemic inhibitors of acid-sensing ion channels 1 (ASIC1) against acute and chronic mechanical allodynia in a rodent model of migraine. Br J Pharmacol 2018; 175:4154-4166. [PMID: 30079481 DOI: 10.1111/bph.14462] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/28/2018] [Accepted: 07/26/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Acid-sensing ion channels (ASICs) are neuronal proton sensors emerging as potential therapeutic targets in pain of the orofacial region. Amiloride, a non-specific ASIC blocker, has been shown to exert beneficial effects in animal models of migraine and in patients. We explored the involvement of the ASIC1-subtype in cutaneous allodynia, a hallmark of migraine affecting cephalic and extra-cephalic regions in about 70% of migrainers. EXPERIMENTAL APPROACH We investigated the effects of systemic injections of amiloride and mambalgin-1, a specific inhibitor of ASIC1a- and ASIC1b-containing channels, on cephalic and extra-cephalic mechanical sensitivity in a rodent model of acute and chronic migraine induced by i.p. injections of isosorbide dinitrate. KEY RESULTS I.v. injections of these inhibitors reversed cephalic and extra-cephalic acute cutaneous mechanical allodynia in rats, a single injection inducing a delay in the subsequent establishment of chronic allodynia. Both mambalgin-1 and amiloride also reversed established chronic allodynia. The anti-allodynic effects of mambalgin-1 were not altered in ASIC1a-knockout mice, showing the ASIC1a subtype is not involved in these effects which were comparable to those of the anti-migraine drug sumatriptan and of the preventive drug topiramate on acute and chronic allodynia respectively. A single daily injection of mambalgin-1 also had a significant preventive effect on allodynia chronification. CONCLUSIONS AND IMPLICATIONS These pharmacological data support the involvement of peripheral ASIC1-containing channels in migraine cutaneous allodynia as well as in its chronification. They highlight the therapeutic potential of ASIC1 inhibitors as both an acute and prophylactic treatment for migraine.
Collapse
Affiliation(s)
- Clément Verkest
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France.,FHU InovPain, Université Côte d'Azur, Nice, France
| | - Emilie Piquet
- FHU InovPain, Université Côte d'Azur, Nice, France.,CHU Nice, Hopital Cimiez, Département d'évaluation et de traitement de la douleur, Nice, France
| | - Sylvie Diochot
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France.,FHU InovPain, Université Côte d'Azur, Nice, France
| | - Mélodie Dauvois
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Michel Lanteri-Minet
- FHU InovPain, Université Côte d'Azur, Nice, France.,CHU Nice, Hopital Cimiez, Département d'évaluation et de traitement de la douleur, Nice, France.,Inserm/UdA, U1107, Neuro-Dol, Trigeminal Pain and Migraine, Université d'Auvergne, Clermont-Ferrand, France
| | - Eric Lingueglia
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France.,FHU InovPain, Université Côte d'Azur, Nice, France
| | - Anne Baron
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France.,FHU InovPain, Université Côte d'Azur, Nice, France
| |
Collapse
|
62
|
Artero-Morales M, González-Rodríguez S, Ferrer-Montiel A. TRP Channels as Potential Targets for Sex-Related Differences in Migraine Pain. Front Mol Biosci 2018; 5:73. [PMID: 30155469 PMCID: PMC6102492 DOI: 10.3389/fmolb.2018.00073] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Chronic pain is one of the most debilitating human diseases and represents a social and economic burden for our society. Great efforts are being made to understand the molecular and cellular mechanisms underlying the pathophysiology of pain transduction. It is particularly noteworthy that some types of chronic pain, such as migraine, display a remarkable sex dimorphism, being up to three times more prevalent in women than in men. This gender prevalence in migraine appears to be related to sex differences arising from both gonadal and genetic factors. Indeed, the functionality of the somatosensory, immune, and endothelial systems seems modulated by sex hormones, as well as by X-linked genes differentially expressed during development. Here, we review the current data on the modulation of the somatosensory system functionality by gonadal hormones. Although this is still an area that requires intense investigation, there is evidence suggesting a direct regulation of nociceptor activity by sex hormones at the transcriptional, translational, and functional levels. Data are being accumulated on the effect of sex hormones on TRP channels such as TRPV1 that make pivotal contributions to nociceptor excitability and sensitization in migraine and other chronic pain syndromes. These data suggest that modulation of TRP channels' expression and/or activity by gonadal hormones provide novel pathways for drug intervention that may be useful for targeting the sex dimorphism observed in migraine.
Collapse
Affiliation(s)
- Maite Artero-Morales
- Instituto de Biología Molecular y Celular, Universitas Miguel Hernández, Elche, Spain
| | | | | |
Collapse
|
63
|
Mason BN, Russo AF. Vascular Contributions to Migraine: Time to Revisit? Front Cell Neurosci 2018; 12:233. [PMID: 30127722 PMCID: PMC6088188 DOI: 10.3389/fncel.2018.00233] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/16/2018] [Indexed: 01/29/2023] Open
Abstract
Migraine is one of the most prevalent and disabling neurovascular disorders worldwide. However, despite the increase in awareness and research, the understanding of migraine pathophysiology and treatment options remain limited. For centuries, migraine was considered to be a vascular disorder. In fact, the throbbing, pulsating quality of the headache is thought to be caused by mechanical changes in vessels. Moreover, the most successful migraine treatments act on the vasculature and induction of migraine can be accomplished with vasoactive agents. However, over the past 20 years, the emphasis has shifted to the neural imbalances associated with migraine, and vascular changes have generally been viewed as an epiphenomenon that is neither sufficient nor necessary to induce migraine. With the clinical success of peripherally-acting antibodies that target calcitonin gene-related peptide (CGRP) and its receptor for preventing migraine, this neurocentric view warrants a critical re-evaluation. This review will highlight the likely importance of the vasculature in migraine.
Collapse
Affiliation(s)
- Bianca N Mason
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States.,Department of Neurology, University of Iowa, Iowa City, IA, United States.,Center for the Prevention and Treatment of Visual Loss, Iowa VA Health Care System, Iowa City, IA, United States
| |
Collapse
|
64
|
Friesen C, Singh M, Singh V, Schurman JV. An observational study of headaches in children and adolescents with functional abdominal pain: Relationship to mucosal inflammation and gastrointestinal and somatic symptoms. Medicine (Baltimore) 2018; 97:e11395. [PMID: 30045261 PMCID: PMC6078717 DOI: 10.1097/md.0000000000011395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/12/2018] [Indexed: 01/28/2023] Open
Abstract
Headaches and abdominal pain are among the most common pediatric pain conditions. Mast cells have been implicated in the pathophysiology of migraines, as well as functional dyspepsia (FD) and irritable bowel syndrome (IBS). The primary aims of the current study were to assess headache prevalence in patients with FD and to assess the association between headaches and mucosal mast cells and eosinophils. An additional aim was to explore associations of headache with other symptoms.We conducted a cross-sectional retrospective chart review of 235 consecutive patients with chronic abdominal pain. All patients had completed a standardized questionnaire as part of their routine clinical evaluation. Both gastrointestinal and non-gastrointestinal somatic symptoms were included in the analysis. All patients diagnosed with FD had undergone upper endoscopy with biopsies obtained from the gastric antrum and duodenum and these specimens were utilized to assess eosinophil and mast cell densities, respectively.Overall, 86% of patients fulfilled Rome IV criteria for FD. Headache was reported by 73.8% of FD patients versus 45.2% of non-FD patients (P = .001). Duodenal mast cell densities were significantly increased in those reporting headaches. Headache was not associated with any specific gastrointestinal symptoms but was associated with a wide array of non-gastrointestinal symptoms including fatigue, dizziness, muscle pain, joint pain, and chest pain.Headaches are common in children and adolescents with abdominal pain and, utilizing Rome IV criteria, are specifically associated with FD. In patients with FD, headaches are associated with increased duodenal mast cell density and a variety of somatic symptoms, all of which are possibly the result of mast cell activation.
Collapse
Affiliation(s)
- Craig Friesen
- Division of Gastroenterology, Hepatology, and Nutrition
| | - Meenal Singh
- Division of Gastroenterology, Hepatology, and Nutrition
| | | | - Jennifer V. Schurman
- Division of Developmental and Behavioral Sciences, Children's Mercy Kansas City, Kansas City, MO
| |
Collapse
|
65
|
Levy D, Labastida-Ramirez A, MaassenVanDenBrink A. Current understanding of meningeal and cerebral vascular function underlying migraine headache. Cephalalgia 2018; 39:1606-1622. [PMID: 29929378 DOI: 10.1177/0333102418771350] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The exact mechanisms underlying the onset of a migraine attack are not completely understood. It is, however, now well accepted that the onset of the excruciating throbbing headache of migraine is mediated by the activation and increased mechanosensitivity (i.e. sensitization) of trigeminal nociceptive afferents that innervate the cranial meninges and their related large blood vessels. OBJECTIVES To provide a critical summary of current understanding of the role that the cranial meninges, their associated vasculature, and immune cells play in meningeal nociception and the ensuing migraine headache. METHODS We discuss the anatomy of the cranial meninges, their associated vasculature, innervation and immune cell population. We then debate the meningeal neurogenic inflammation hypothesis of migraine and its putative contribution to migraine pain. Finally, we provide insights into potential sources of meningeal inflammation and nociception beyond neurogenic inflammation, and their potential contribution to migraine headache.
Collapse
Affiliation(s)
- Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Alejandro Labastida-Ramirez
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Antoinette MaassenVanDenBrink
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
66
|
Meyer N, Zenclussen AC. Mast cells-Good guys with a bad image? Am J Reprod Immunol 2018; 80:e13002. [DOI: 10.1111/aji.13002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Nicole Meyer
- Experimental Obstetrics and Gynecology; Medical Faculty; Otto-von-Guericke University; Magdeburg Germany
| | - Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology; Medical Faculty; Otto-von-Guericke University; Magdeburg Germany
| |
Collapse
|
67
|
Mahmoudi J, Mohaddes G, Erfani M, Sadigh-Eteghad S, Karimi P, Rajabi M, Reyhani-Rad S, Farajdokht F. Cerebrolysin attenuates hyperalgesia, photophobia, and neuroinflammation in a nitroglycerin-induced migraine model in rats. Brain Res Bull 2018; 140:197-204. [DOI: 10.1016/j.brainresbull.2018.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
|
68
|
Rua R, McGavern DB. Advances in Meningeal Immunity. Trends Mol Med 2018; 24:542-559. [PMID: 29731353 PMCID: PMC6044730 DOI: 10.1016/j.molmed.2018.04.003] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/26/2022]
Abstract
The central nervous system (CNS) is an immunologically specialized tissue protected by a blood-brain barrier. The CNS parenchyma is enveloped by a series of overlapping membranes that are collectively referred to as the meninges. The meninges provide an additional CNS barrier, harbor a diverse array of resident immune cells, and serve as a crucial interface with the periphery. Recent studies have significantly advanced our understanding of meningeal immunity, demonstrating how a complex immune landscape influences CNS functions under steady-state and inflammatory conditions. The location and activation state of meningeal immune cells can profoundly influence CNS homeostasis and contribute to neurological disorders, but these cells are also well equipped to protect the CNS from pathogens. In this review, we discuss advances in our understanding of the meningeal immune repertoire and provide insights into how this CNS barrier operates immunologically under conditions ranging from neurocognition to inflammatory diseases.
Collapse
Affiliation(s)
- Rejane Rua
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
69
|
Russi AE, Walker-Caulfield ME, Brown MA. Mast cell inflammasome activity in the meninges regulates EAE disease severity. Clin Immunol 2018; 189:14-22. [DOI: 10.1016/j.clim.2016.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022]
|
70
|
Abstract
Acid-sensing ion channels (ASICs) are a family of ion channels, consisting of four members; ASIC1 to 4. These channels are sensitive to changes in pH and are expressed throughout the central and peripheral nervous systems-including brain, spinal cord, and sensory ganglia. They have been implicated in a number of neurological conditions such as stroke and cerebral ischemia, traumatic brain injury, and epilepsy, and more recently in migraine. Their expression within areas of interest in the brain in migraine, such as the hypothalamus and PAG, their demonstrated involvement in preclinical models of meningeal afferent signaling, and their role in cortical spreading depression (the electrophysiological correlate of migraine aura), has enhanced research interest into these channels as potential therapeutic targets in migraine. Migraine is a disorder with a paucity of both acute and preventive therapies available, in which at best 50% of patients respond to available medications, and these medications often have intolerable side effects. There is therefore a great need for therapeutic development for this disabling condition. This review will summarize the understanding of the structure and CNS expression of ASICs, the mechanisms for their potential role in nociception, recent work in migraine, and areas for future research and drug development.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Denmark Hill, London, SE5 9PJ, UK
| | - Eric B Gonzales
- TCU and UNTHSC School of Medicine (applicant for LCME accreditation), Department of Medical Education, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, BSB-14, Richardson, TX, 75080, USA.
| |
Collapse
|
71
|
Brown MA. Studies of Mast Cells: Adventures in Serendipity. Front Immunol 2018; 9:520. [PMID: 29593744 PMCID: PMC5859373 DOI: 10.3389/fimmu.2018.00520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/28/2018] [Indexed: 01/14/2023] Open
Abstract
Like many of us who had the great fortune to work with Bill Paul, my science life was immeasurably altered by my interactions with him. Although intimidating at first because of his stature in the immunology world, it was soon clear that he not only truly cared about the specific research we were doing together, but he wished to convey to his trainees an approach to science that was open, always questioning, and infinitely fun. His enthusiasm was infectious and after my training with him, despite stresses due to funding and publishing hurdles, I never regretted the path I took. My research took a sharp turn from the studies of adaptive immunity I had planned on pursuing after my fellowship with Bill to a life long quest to understand the wonders of the mast cell, a relatively rare innate immune cell. This came about because Bill’s curiosity and expectation of the unexpected allowed him to view, in retrospect, a rather mundane observation we made together involving a non-physiological transformed mast cell line as something that might be really interesting. I have never forgotten that lesson: Look at the data with an eye on the big picture. Sometimes the unexpected is more interesting than predicted results. His example in this regard was incredibly important when as an independent investigator a mistake in mouse sex determination led to unexpected and very confusing data. Yet, these data ultimately revealed a role for mast cells in male-specific protection in experimental autoimmune encephalomyelitis, the mouse model of multiple sclerosis. Bill’s influence in immunology is far-reaching and will continue to be felt as those of us who train our own students and post-doctoral fellows pass on his wisdom and approach to scientific research.
Collapse
Affiliation(s)
- Melissa A Brown
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
72
|
Jansen-Olesen I, Hougaard Pedersen S. PACAP and its receptors in cranial arteries and mast cells. J Headache Pain 2018; 19:16. [PMID: 29460121 PMCID: PMC5818390 DOI: 10.1186/s10194-017-0822-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/09/2017] [Indexed: 01/03/2023] Open
Abstract
Background In migraineurs pituitary adenylate cyclase activating peptide1–38 (PACAP1–38) is a potent migraine provoking substance and the accompanying long lasting flushing suggests degranulation of mast cells. Infusion of the closely related vasoactive intestinal peptide (VIP) either induces headache or flushing. This implicates the pituitary adenylate cyclase activating peptide type I receptor (PAC1) to be involved in the pathophysiology of PACAP1–38 provoked headaches. Here we review studies characterizing the effects of mainly PACAP but also of VIP on cerebral and meningeal arteries and mast cells. Discussion PACAP1–38, PACAP1–27 and VIP dilate cerebral and meningeal arteries from several species including man. In rat cerebral and meningeal arteries the dilation seems to be mediated preferably via vasoactive intestinal peptide receptor type 1 (VPAC1) receptors while, in human, middle meningeal artery dilation induced via vasoactive intestinal peptide receptor type 2 (VPAC2) receptors cannot be ruled out. PACAP1–38 is a strong degranulator of peritoneal and dural mast cells while PACAP1–27 and VIP only have weak effects. More detailed characterization studies suggest that mast cell degranulation is not mediated via the known receptors for PACAP1–38 but rather via a still unknown receptor coupled to phospholipase C. Conclusion It is suggested that PACAP1–38 might induce migraine via degranulation of dural mast cells via a yet unknown receptor.
Collapse
Affiliation(s)
- Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Neurology, Danish Headache Center, Glostrup Research Institute, Nordre Ringvej 69, 2600, Glostrup, Denmark.
| | - Sara Hougaard Pedersen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
73
|
Eller-Smith OC, Nicol AL, Christianson JA. Potential Mechanisms Underlying Centralized Pain and Emerging Therapeutic Interventions. Front Cell Neurosci 2018; 12:35. [PMID: 29487504 PMCID: PMC5816755 DOI: 10.3389/fncel.2018.00035] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
Centralized pain syndromes are associated with changes within the central nervous system that amplify peripheral input and/or generate the perception of pain in the absence of a noxious stimulus. Examples of idiopathic functional disorders that are often categorized as centralized pain syndromes include fibromyalgia, chronic pelvic pain syndromes, migraine, and temporomandibular disorder. Patients often suffer from widespread pain, associated with more than one specific syndrome, and report fatigue, mood and sleep disturbances, and poor quality of life. The high degree of symptom comorbidity and a lack of definitive underlying etiology make these syndromes notoriously difficult to treat. The main purpose of this review article is to discuss potential mechanisms of centrally-driven pain amplification and how they may contribute to increased comorbidity, poorer pain outcomes, and decreased quality of life in patients diagnosed with centralized pain syndromes, as well as discuss emerging non-pharmacological therapies that improve symptomology associated with these syndromes. Abnormal regulation and output of the hypothalamic-pituitary-adrenal (HPA) axis is commonly associated with centralized pain disorders. The HPA axis is the primary stress response system and its activation results in downstream production of cortisol and a dampening of the immune response. Patients with centralized pain syndromes often present with hyper- or hypocortisolism and evidence of altered downstream signaling from the HPA axis including increased Mast cell (MC) infiltration and activation, which can lead to sensitization of nearby nociceptive afferents. Increased peripheral input via nociceptor activation can lead to “hyperalgesic priming” and/or “wind-up” and eventually to central sensitization through long term potentiation in the central nervous system. Other evidence of central modifications has been observed through brain imaging studies of functional connectivity and magnetic resonance spectroscopy and are shown to contribute to the widespreadness of pain and poor mood in patients with fibromyalgia and chronic urological pain. Non-pharmacological therapeutics, including exercise and cognitive behavioral therapy (CBT), have shown great promise in treating symptoms of centralized pain.
Collapse
Affiliation(s)
- Olivia C Eller-Smith
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Andrea L Nicol
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Julie A Christianson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
74
|
Affiliation(s)
- Parisa Gazerani
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Brian Edwin Cairns
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
75
|
Gebhardt M, Kropp P, Jürgens TP, Hoffmann F, Zettl UK. Headache in the first manifestation of Multiple Sclerosis - Prospective, multicenter study. Brain Behav 2017; 7:e00852. [PMID: 29299379 PMCID: PMC5745239 DOI: 10.1002/brb3.852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 01/03/2023] Open
Abstract
Objectives Multiple sclerosis (MS) is the most frequent immune-mediated inflammation of the central nervous system that can lead to early disability. Headaches have not been considered as MS-related symptoms initially, whereas higher prevalence rates were reported since 2000. Postmortem histological analyses of MS patients' brains revealed lymphoid follicle-like structures in the cerebral meninges which suggest a possible pathophysiological explanation for the high headache prevalence in MS. The aim of this study was to evaluate headache characteristics during the first clinical event of MS. Methods In a prospective, multicenter study, 50 patients with the diagnosis of CIS or MS were recruited. All participants were screened for the presence of headache within the last 4 weeks with help of the Rostock Headache Questionnaire (Rokoko). Results Thirty-nine of fifty questioned patients (78%) reported headaches within the last 4 weeks. Most patients suffered from throbbing and pulsating headaches (25, 50%), 15 (30%) reported stabbing, 14 (28%) dull and constrictive headaches. Conclusions Headaches were prevalent in 78% of patients in our population with newly diagnosed CIS and MS. It is among the highest prevalence rates reported so far in patients with CIS or MS. Thus, headache, especially of a migraneous subtype, is a frequent symptom within the scope of the first manifestation of multiple sclerosis. If it were possible to define a MS-typical headache, patients with these headaches and with typical MRI results would be classified as CIS or early MS instead of radiologically isolated syndrome and treated accordingly with an immunomodulatory therapy.
Collapse
Affiliation(s)
| | - Peter Kropp
- Institute of Medical Psychology and Medical SociologyMedical FacultyUniversity of RostockRostockGermany
| | - Tim P. Jürgens
- Department of NeurologyUniversity Medical Center RostockRostockGermany
| | | | - Uwe K. Zettl
- Department of NeurologyNeuroimmunological SectionUniversity of RostockRostockGermany
| |
Collapse
|
76
|
Khaiboullina SF, Mendelevich EG, Shigapova LH, Shagimardanova E, Gazizova G, Nikitin A, Martynova E, Davidyuk YN, Bogdanov EI, Gusev O, van den Maagdenberg AMJM, Giniatullin RA, Rizvanov AA. Cerebellar Atrophy and Changes in Cytokines Associated with the CACNA1A R583Q Mutation in a Russian Familial Hemiplegic Migraine Type 1 Family. Front Cell Neurosci 2017; 11:263. [PMID: 28900389 PMCID: PMC5581831 DOI: 10.3389/fncel.2017.00263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/14/2017] [Indexed: 01/03/2023] Open
Abstract
Background: Immune mechanisms recently emerged as important contributors to migraine pathology with cytokines affecting neuronal excitation. Therefore, elucidating the profile of cytokines activated in various forms of migraine, including those with a known genetic cause, can help in diagnostic and therapeutic approaches. Methods: Here we (i) performed exome sequencing to identify the causal gene mutation and (ii) measured, using Bio-Plex technology, 22 cytokines in serum of patients with familial migraine (two with hemiplegic migraine and two with migraine with aura) from a Russian family that ethnically belongs to the Tatar population. MRI scanning was used to assess cerebellar atrophy associated with migraine in mutation carriers. Results: Whole-exome sequencing revealed the R583Q missense mutation in the CACNA1A gene in the two patients with hemiplegic migraine and cerebellar ataxia with atrophy, confirming a FHM1 disorder. Two further patients did not have the mutation and suffered from migraine with aura. Elevated serum levels of pro-inflammatory and pro-nociceptive IL-6 and IL-18 were found in all four patients (compared to a reference panel), whereas pro-apoptotic SCGF-β and TRAIL were higher only in the patients with the FHM1 mutation. Also, cytokines CXCL1, HGF, LIF, and MIF were found particularly high in the two mutation carriers, suggesting a possible role of vascular impairment and neuroinflammation in disease pathogenesis. Notably, some “algesic” cytokines, such as β-NGF and TNFβ, remained unchanged or even were down-regulated. Conclusion: We present a detailed genetic, neurological, and biochemical characterization of a small Russian FHM1 family and revealed evidence for higher levels of specific cytokines in migraine patients that support migraine-associated neuroinflammation in the pathology of migraine.
Collapse
Affiliation(s)
- Svetlana F Khaiboullina
- Department of Genetics, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | | | - Leyla H Shigapova
- Department of Genetics, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Elena Shagimardanova
- Department of Genetics, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Guzel Gazizova
- Department of Genetics, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Alexey Nikitin
- Federal Research and Clinical Center, Federal Medical-Biological Agency of RussiaMoscow, Russia
| | - Ekaterina Martynova
- Department of Genetics, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Yuriy N Davidyuk
- Department of Genetics, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| | - Enver I Bogdanov
- Department of Neurology, Kazan State Medical UniversityKazan, Russia
| | - Oleg Gusev
- Department of Genetics, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,Innovation Center, RIKENYokohama, Japan.,Preventive Medicine and Diagnosis Innovation Program, RIKENYokohama, Japan
| | | | - Rashid A Giniatullin
- Department of Genetics, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| | - Albert A Rizvanov
- Department of Genetics, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| |
Collapse
|
77
|
Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev 2017; 79:119-133. [DOI: 10.1016/j.neubiorev.2017.05.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 12/13/2022]
|
78
|
Domínguez C, Vieites-Prado A, Pérez-Mato M, Sobrino T, Rodríguez-Osorio X, López A, Campos F, Martínez F, Castillo J, Leira R. Role of adipocytokines in the pathophysiology of migraine: A cross-sectional study. Cephalalgia 2017; 38:904-911. [PMID: 28677995 DOI: 10.1177/0333102417720213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Obesity is a risk factor for migraine and headache chronification. Adipocytokines may be involved in this correlation. Objective To relate serum adipocytokine levels to clinical and biochemical parameters associated with migraine. Methods We measured levels of leptin, adiponectin and other inflammatory (interleukin 6, interleukin 10, tumor necrosis factor α, high sensitivity C-reactive protein) and endothelial (pentraxin 3, soluble TNF-like weak inducer of apoptosis) molecules potentially related to migraine pathophysiology in a group of migraine patients (IHS 2013) and healthy controls. Results One hundred and eleven patients (mean age 39.7 years, 93% female) and 24 healthy controls (mean age 35.9 years, 90% female) were included. Fifty-six patients were diagnosed with episodic migraine (mean age 35.1 years, 98.2% female) and 55 patients with chronic migraine (mean age 44.4 years, 89.5% female). Leptin serum levels (15.2 ng/mL, SD = 10.5 vs . 3.1 ng/mL, SD = 0.9; p < 0.001) and adiponectin serum levels (72.3 µg/mL, SD = 38.5 vs . 37.7 µg/mL, SD = 16.9; p < 0.001) were significantly increased in migraine patients. Leptin serum levels (15.5 ng/mL, SD = 9.7 vs . 10.8 ng/mL, SD = 6.0; p < 0.001) and adiponectin serum levels (65.8 µg/mL, SD = 42.9 vs . 33.2 µg/mL, SD = 31.0; p < 0.001) were significantly higher in chronic compared to episodic migraine patients. We found a positive correlation between leptin levels and inflammatory biomarkers: IL6 (r = 0.498; p < 0.001), TNF-α (r = 0.389; p < 0.001), and hs-CRP (r = 0.422; p < 0.001). Conclusions Leptin and adiponectin are increased in migraineurs. There is a correlation between adipocytokine levels and other inflammation-related molecules. This suggests a potential role of adipocytokines in migraine pathophysiology and chronification.
Collapse
Affiliation(s)
- Clara Domínguez
- 1 Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alba Vieites-Prado
- 2 Clinical Neurosciences Research Laboratory, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Pérez-Mato
- 2 Clinical Neurosciences Research Laboratory, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás Sobrino
- 2 Clinical Neurosciences Research Laboratory, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Xiana Rodríguez-Osorio
- 1 Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana López
- 1 Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Campos
- 2 Clinical Neurosciences Research Laboratory, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Martínez
- 1 Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Castillo
- 1 Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Santiago de Compostela, Spain.,2 Clinical Neurosciences Research Laboratory, University of Santiago de Compostela, Santiago de Compostela, Spain.,3 Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Rogelio Leira
- 1 Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
79
|
Shelukhina I, Mikhailov N, Abushik P, Nurullin L, Nikolsky EE, Giniatullin R. Cholinergic Nociceptive Mechanisms in Rat Meninges and Trigeminal Ganglia: Potential Implications for Migraine Pain. Front Neurol 2017; 8:163. [PMID: 28496430 PMCID: PMC5406407 DOI: 10.3389/fneur.2017.00163] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/07/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Parasympathetic innervation of meninges and ability of carbachol, acetylcholine (ACh) receptor (AChR) agonist, to induce headaches suggests contribution of cholinergic mechanisms to primary headaches. However, neurochemical mechanisms of cholinergic regulation of peripheral nociception in meninges, origin place for headache, are almost unknown. METHODS Using electrophysiology, calcium imaging, immunohistochemistry, and staining of meningeal mast cells, we studied effects of cholinergic agents on peripheral nociception in rat hemiskulls and isolated trigeminal neurons. RESULTS Both ACh and carbachol significantly increased nociceptive firing in peripheral terminals of meningeal trigeminal nerves recorded by local suction electrode. Strong nociceptive firing was also induced by nicotine, implying essential role of nicotinic AChRs in control of excitability of trigeminal nerve endings. Nociceptive firing induced by carbachol was reduced by muscarinic antagonist atropine, whereas the action of nicotine was prevented by the nicotinic blocker d-tubocurarine but was insensitive to the TRPA1 antagonist HC-300033. Carbachol but not nicotine induced massive degranulation of meningeal mast cells known to release multiple pro-nociceptive mediators. Enzymes terminating ACh action, acetylcholinesterase (AChE) and butyrylcholinesterase, were revealed in perivascular meningeal nerves. The inhibitor of AChE neostigmine did not change the firing per se but induced nociceptive activity, sensitive to d-tubocurarine, after pretreatment of meninges with the migraine mediator CGRP. This observation suggested the pro-nociceptive action of endogenous ACh in meninges. Both nicotine and carbachol induced intracellular Ca2+ transients in trigeminal neurons partially overlapping with expression of capsaicin-sensitive TRPV1 receptors. CONCLUSION Trigeminal nerve terminals in meninges, as well as dural mast cells and trigeminal ganglion neurons express a repertoire of pro-nociceptive nicotinic and muscarinic AChRs, which could be activated by the ACh released from parasympathetic nerves. These receptors represent a potential target for novel therapeutic interventions in trigeminal pain and probably in migraine.
Collapse
Affiliation(s)
- Irina Shelukhina
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Nikita Mikhailov
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Polina Abushik
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Leniz Nurullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan, Russian Federation.,Open Laboratory of Neuropharmacology, Kazan Federal University, Kazan, Russian Federation
| | - Evgeny E Nikolsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan, Russian Federation.,Open Laboratory of Neuropharmacology, Kazan Federal University, Kazan, Russian Federation
| | - Rashid Giniatullin
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
80
|
Kilinc E, Guerrero-Toro C, Zakharov A, Vitale C, Gubert-Olive M, Koroleva K, Timonina A, Luz LL, Shelukhina I, Giniatullina R, Tore F, Safronov BV, Giniatullin R. Serotonergic mechanisms of trigeminal meningeal nociception: Implications for migraine pain. Neuropharmacology 2016; 116:160-173. [PMID: 28025094 DOI: 10.1016/j.neuropharm.2016.12.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 12/02/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
Serotonergic mechanisms play a central role in migraine pathology. However, the region-specific effects of serotonin (5-HT) mediated via multiple types of receptors in the nociceptive system are poorly understood. Using extracellular and patch-clamp recordings, we studied the action of 5-HT on the excitability of peripheral and central terminals of trigeminal afferents. 5-HT evoked long-lasting TTX-sensitive firing in the peripheral terminals of meningeal afferents, the origin site of migraine pain. Cluster analysis revealed that in majority of nociceptive fibers 5-HT induced either transient or persistent spiking activity with prevailing delta and theta rhythms. The 5-HT3-receptor antagonist MDL-72222 or 5-HT1B/D-receptor antagonist GR127935 largely reduced, but their combination completely prevented the excitatory pro-nociceptive action of 5-HT. The 5-HT3 agonist mCPBG activated spikes in MDL-72222-dependent manner but the 5HT-1 receptor agonist sumatriptan did not affect the nociceptive firing. 5-HT also triggered peripheral CGRP release in meninges, which was blocked by MDL-72222.5-HT evoked fast membrane currents and Ca2+ transients in a fraction of trigeminal neurons. Immunohistochemistry showed expression of 5-HT3A receptors in fibers innervating meninges. Endogenous release of 5-HT from degranulated mast cells increased nociceptive firing. Low pH but not histamine strongly activated firing. 5-HT reduced monosynaptic inputs from trigeminal Aδ- and C-afferents to the upper cervical lamina I neurons and this effect was blocked by MDL-72222. Consistent with central inhibitory effect, 5-HT reduced CGRP release in the brainstem slices. In conclusion, 5-HT evokes powerful pro-nociceptive peripheral and anti-nociceptive central effects in trigeminal system transmitting migraine pain.
Collapse
Affiliation(s)
- Erkan Kilinc
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Abant Izzet Baysal University, Medical Faculty, Department of Physiology, 14280, Bolu, Turkey.
| | - Cindy Guerrero-Toro
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Andrey Zakharov
- Laboratory of Neurobiology, Kazan Federal University, 420008, Kazan, Russia; Department of Physiology, Kazan State Medical University, 420012, Kazan, Russia.
| | - Carmela Vitale
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Max Gubert-Olive
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Ksenia Koroleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Laboratory of Neurobiology, Kazan Federal University, 420008, Kazan, Russia
| | - Arina Timonina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Liliana L Luz
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| | - Irina Shelukhina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia.
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Fatma Tore
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Biruni University, School of Medicine, 34010, Istanbul, Turkey.
| | - Boris V Safronov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135, Porto, Portugal.
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Laboratory of Neurobiology, Kazan Federal University, 420008, Kazan, Russia.
| |
Collapse
|
81
|
Jacobs B, Dussor G. Neurovascular contributions to migraine: Moving beyond vasodilation. Neuroscience 2016; 338:130-144. [PMID: 27312704 PMCID: PMC5083225 DOI: 10.1016/j.neuroscience.2016.06.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022]
Abstract
Migraine is the third most common disease worldwide, the most common neurological disorder, and one of the most common pain conditions. Despite its prevalence, the basic physiology and underlying mechanisms contributing to the development of migraine are still poorly understood and development of new therapeutic targets is long overdue. Until recently, the major contributing pathophysiological event thought to initiate migraine was cerebral and meningeal arterial vasodilation. However, the role of vasodilation in migraine is unclear and recent findings challenge its necessity. While vasodilation itself may not contribute to migraine, it remains possible that vessels play a role in migraine pathophysiology in the absence of vasodilation. Blood vessels consist of a variety of cell types that both release and respond to numerous mediators including growth factors, cytokines, adenosine triphosphate (ATP), and nitric oxide (NO). Many of these mediators have actions on neurons that can contribute to migraine. Conversely, neurons release factors such as norepinephrine and calcitonin gene-related peptide (CGRP) that act on cells native to blood vessels. Both normal and pathological events occurring within and between vascular cells could thus mediate bi-directional communication between vessels and the nervous system, without the need for changes in vascular tone. This review will discuss the potential contribution of the vasculature, specifically endothelial cells, to current neuronal mechanisms hypothesized to play a role in migraine. Hypothalamic activity, cortical spreading depression (CSD), and dural afferent input from the cranial meninges will be reviewed with a focus on how these mechanisms can influence or be impacted by blood vessels. Together, the data discussed will provide a framework by which vessels can be viewed as important potential contributors to migraine pathophysiology, even in light of the current uncertainty over the role of vasodilation in this disorder.
Collapse
Affiliation(s)
- Blaine Jacobs
- Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Gregory Dussor
- Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States.
| |
Collapse
|
82
|
Shang HQ, Wang Y, Mao YY, Kong LG, Sun GY, Xu L, Zhang DG, Han YC, Li JF, Wang HB, Fan ZM. Expression of artemin and GFRα3 in an animal model of migraine: possible role in the pathogenesis of this disorder. J Headache Pain 2016; 17:81. [PMID: 27600145 PMCID: PMC5013005 DOI: 10.1186/s10194-016-0673-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neurotrophic factors have been implicated in hyperalgesia and peripheral levels of these molecules are altered in migraine pathophysiology. Artemin, a vasculature-derived neurotrophic factor, contributes to pain modulation and trigeminal primary afferent sensitization through binding its selective receptor GFRα3. The distribution of artemin and GFRα3 in the dura mater raises an anatomy supports that they may be involved in migraine. In this study we evaluated the expression of artemin and GFRα3 in an animal migraine model that may be relevant for migraine. METHODS In this study, using a rat migraine model by administration of nitroglycerin (NTG), we investigated the expression of artemin in the dura mater and GFRα3 in the trigeminal ganglia (TG) by means of quantitative reverse transcription-polymerase chain reaction, western blot and immunofluorescence labeling. RESULTS Artemin immunoreactivity was found in the smooth muscle cells of dural vasculature and GFRα3 was present in cytoplasm of TG neurons. The mRNA levels of artemin and GFRα3 were significantly elevated after NTG treatment at 2 and 4 h respectively (P < 0.05). The expression of artemin protein was increased at 4 h and continually up to 8 h in the dura mater following NTG administration (P < 0.05). The expression of GFRα3 protein was elevated at 4 h and continually up to 10 h in the TG following NTG administration (P < 0.05). CONCLUSION The findings suggest that artemin and GFRα3 play an important role in the pathogenesis of migraine and may represent potential therapeutic targets for the treatment of migraine.
Collapse
Affiliation(s)
- Hai-Qiong Shang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China.,Shandong Provincial Key Laboratory of Otology, Jinan, 250022, People's Republic of China
| | - Yan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China.,Department of Otolaryngology, People's Hospital of Rizhao, Rizhao, 276800, People's Republic of China
| | - Yan-Yan Mao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China.,Shandong Provincial Key Laboratory of Otology, Jinan, 250022, People's Republic of China
| | - Li-Gang Kong
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China.,Shandong Provincial Key Laboratory of Otology, Jinan, 250022, People's Republic of China
| | - Gao-Ying Sun
- Shandong Provincial Key Laboratory of Otology, Jinan, 250022, People's Republic of China.,Institute of Eye and ENT, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250022, People's Republic of China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | - Dao-Gong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | - Yue-Chen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | - Jian-Feng Li
- Shandong Provincial Key Laboratory of Otology, Jinan, 250022, People's Republic of China.,Institute of Eye and ENT, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250022, People's Republic of China
| | - Hai-Bo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China.,Shandong Provincial Key Laboratory of Otology, Jinan, 250022, People's Republic of China.,Institute of Eye and ENT, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250022, People's Republic of China
| | - Zhao-Min Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China.
| |
Collapse
|
83
|
Mast cell activation disease and the modern epidemic of chronic inflammatory disease. Transl Res 2016; 174:33-59. [PMID: 26850903 DOI: 10.1016/j.trsl.2016.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/18/2022]
Abstract
A large and growing portion of the human population, especially in developed countries, suffers 1 or more chronic, often quite burdensome ailments which either are overtly inflammatory in nature or are suspected to be of inflammatory origin, but for which investigations to date have failed to identify specific causes, let alone unifying mechanisms underlying the multiple such ailments that often afflict such patients. Relatively recently described as a non-neoplastic cousin of the rare hematologic disease mastocytosis, mast cell (MC) activation syndrome-suspected to be of greatly heterogeneous, complex acquired clonality in many cases-is a potential underlying/unifying explanation for a diverse assortment of inflammatory ailments. A brief review of MC biology and how aberrant primary MC activation might lead to such a vast range of illness is presented.
Collapse
|
84
|
Karabulut KU, Egercioglu TU, Uyar M, Ucar Y. The change of neutrophils/lymphocytes ratio in migraine attacks: A case-controlled study. Ann Med Surg (Lond) 2016; 10:52-6. [PMID: 27551404 PMCID: PMC4983641 DOI: 10.1016/j.amsu.2016.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 02/08/2023] Open
Abstract
Objective As commonly seen symptoms, headaches are among the most frequently encountered health challenges in emergency rooms by healthcare professionals. Among one of the most commonly seen and primary headaches is migraine. Migraines are mostly accompanied by functional deficits. Aims To observe the changes of neutrophil/lymphocyte ratio occurring during migraine attacks. Method This is a retrospective study where hospital records of patients previously diagnosed with migraine and admitted to the emergency with the complaints of attacks between May 2014 and January 2015 were investigated. All patients in the study were evaluated as to age, gender and complete blood count. Additionally, a healthy control group was formed with individuals with no disorders. By also evaluating the same features in the controls, the values found in the patients and controls alike were compared. Results The values of white blood cell, lymphocyte, neutrophil, hemoglobin, thrombocyte and neutrophil/lymphocyte ratio determined in the patient group (n = 92) were statistically compared with those of the controls (n = 67). Neutrophil/lymphocyte ratio during the attacks was found higher in the patients, compared to the controls. Conclusion Neutrophil/lymphocyte ratio is a sign of inflammation, and we consider that this ratio will also increase during migraine attacks, as with other inflammatory and acute processes. A migraine headache is a frequent reason for emergency departments. During migraine attacks it is not fully understood that there is an inflammatory process. We think that the role of inflamation during attack. We think that this inflamation process increases the severity of the pain.
Collapse
Affiliation(s)
- Keziban Ucar Karabulut
- Department of Emergency Medicine, Baskent University, Faculty of Medicine, Ankara, Turkey
- Corresponding author. Baskent Universitesi, Konya Hastanesi, Hocacihan mah, Saray caddesi No:1, Selcuklu, Konya 42080 Turkey. Tel.: +90 3322570606.Baskent UniversitesiKonya HastanesiHocacihan mahSaray caddesi No:1SelcukluKonya42080Turkey
| | | | - Mehmet Uyar
- Department of Pubic Health, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | - Yildiz Ucar
- Department of Pulmonary Dissease, Diyarbakır Memorial Hospital, Diyarbakır, Turkey
| |
Collapse
|
85
|
Ciszek BP, O'Buckley SC, Nackley. AG. Persistent Catechol-O-methyltransferase-dependent Pain Is Initiated by Peripheral β-Adrenergic Receptors. Anesthesiology 2016; 124:1122-35. [PMID: 26950706 PMCID: PMC5015695 DOI: 10.1097/aln.0000000000001070] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Patients with chronic pain disorders exhibit increased levels of catecholamines alongside diminished activity of catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines. The authors found that acute pharmacologic inhibition of COMT in rodents produces hypersensitivity to mechanical and thermal stimuli via β-adrenergic receptor (βAR) activation. The contribution of distinct βAR populations to the development of persistent pain linked to abnormalities in catecholamine signaling requires further investigation. METHODS Here, the authors sought to determine the contribution of peripheral, spinal, and supraspinal βARs to persistent COMT-dependent pain. They implanted osmotic pumps to deliver the COMT inhibitor OR486 (Tocris, USA) for 2 weeks. Behavioral responses to mechanical and thermal stimuli were evaluated before and every other day after pump implantation. The site of action was evaluated in adrenalectomized rats receiving sustained OR486 or in intact rats receiving sustained βAR antagonists peripherally, spinally, or supraspinally alongside OR486. RESULTS The authors found that male (N = 6) and female (N = 6) rats receiving sustained OR486 exhibited decreased paw withdrawal thresholds (control 5.74 ± 0.24 vs. OR486 1.54 ± 0.08, mean ± SEM) and increased paw withdrawal frequency to mechanical stimuli (control 4.80 ± 0.22 vs. OR486 8.10 ± 0.13) and decreased paw withdrawal latency to thermal heat (control 9.69 ± 0.23 vs. OR486 5.91 ± 0.11). In contrast, adrenalectomized rats (N = 12) failed to develop OR486-induced hypersensitivity. Furthermore, peripheral (N = 9), but not spinal (N = 4) or supraspinal (N = 4), administration of the nonselective βAR antagonist propranolol, the β2AR antagonist ICI-118,511, or the β3AR antagonist SR59230A blocked the development of OR486-induced hypersensitivity. CONCLUSIONS Peripheral adrenergic input is necessary for the development of persistent COMT-dependent pain, and peripherally-acting βAR antagonists may benefit chronic pain patients.
Collapse
Affiliation(s)
- Brittney P. Ciszek
- Center for Pain Research and Innovation, Koury Oral Health Sciences Building, University of North Carolina, Chapel Hill NC 27599-7455
| | - Sandra C. O'Buckley
- Center for Pain Research and Innovation, Koury Oral Health Sciences Building, University of North Carolina, Chapel Hill NC 27599-7455
| | - Andrea G. Nackley.
- Center for Pain Research and Innovation, Koury Oral Health Sciences Building, University of North Carolina, Chapel Hill NC 27599-7455
| |
Collapse
|
86
|
Abstract
Drug-associated headache is a quite common phenomenon, e.g. as a side effect of distinct substances such as nitric oxide or as a result of medication overuse of analgesic drugs. A different drug-associated headache entity is headache in drug-induced aseptic meningitis (DIAM). This is a rare disorder and only described in few case reports or smaller case series. One of the main clinical features of DIAM despite fever is headache. Based on the literature, no typical or even pathognomonical clinical presentation of this headache entity can be described. Sometimes, migrainous features might be present, and treatment response to triptans was reported in single case reports. Headache in DIAM seems to be emerging from sterile meningeal inflammation, which is suggested to represent the underlying pathology in DIAM. Headache in DIAM usually ceases when treated sufficiently, mainly through termination or withdrawal of the causing agent. Migraine as a predisposing factor of DIAM has been discussed previously but remains unproven.
Collapse
Affiliation(s)
- Dagny Holle
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany,
| | | |
Collapse
|
87
|
Peng YH, Chen KF, Kao CH, Chen HJ, Hsia TC, Chen CH, Liao WC. Risk of Migraine in Patients With Asthma: A Nationwide Cohort Study. Medicine (Baltimore) 2016; 95:e2911. [PMID: 26945388 PMCID: PMC4782872 DOI: 10.1097/md.0000000000002911] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Asthma has been described as an "acephalic migraine" and "pulmonary migraine." However, no study has investigated the temporal frequency of migraine development in patients with asthma, and the results of previous studies may be difficult to generalize.We investigated the effect of asthma on the subsequent development of migraine by using a population-based data set in Taiwan.We retrieved our study sample from the National Health Insurance Research Database. Specifically, 25,560 patients aged 12 years and older with newly diagnosed asthma were identified as the asthma group, and 102,238 sex and age-matched patients without asthma were identified as the nonasthma group. Cox proportional-hazards regression models were employed to measure the risk of migraine for the asthmatic group compared with that for the nonasthmatic group.The risk of migraine in the asthmatic group was 1.45-fold higher (95% confidence interval 1.33-1.59) than that in the nonasthmatic group after adjustment for sex, age, the Charlson comorbidity index, common medications prescribed for patients with asthma, and annual outpatient department visits. An additional stratified analysis revealed that the risk of migraine remained significantly higher in both sexes and all age groups older than 20 years.Asthma could be an independent predisposing risk factor for migraine development in adults.
Collapse
Affiliation(s)
- Yi-Hao Peng
- From the Department of Respiratory Therapy, China Medical University (Y-HP, T-CH); Department of Respiratory Therapy, China Medical University Hospital (Y-HP); Department of Neurology, China Medical University Hospital, China Medical University, Taichung (K-FC); Department of Neurology, China Medical University Beigang Hospital, Yunlin (K-FC); Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University (C-HK); Department of Nuclear Medicine and PET Center, China Medical University Hospital (C-HK); Management Office for Health Data, China Medical University Hospital (H-JC); and Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University (T-CH, C-HC, W-CL), Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
88
|
Arumugam M, Parthasarathy V. Reduction of CD4+CD25+ regulatory T-cells in migraine: Is migraine an autoimmune disorder? J Neuroimmunol 2016; 290:54-9. [DOI: 10.1016/j.jneuroim.2015.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 01/08/2023]
|
89
|
Increased risk of migraine in patients with psoriasis: A Danish nationwide cohort study. J Am Acad Dermatol 2015; 73:829-35. [DOI: 10.1016/j.jaad.2015.08.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/15/2015] [Accepted: 08/20/2015] [Indexed: 11/22/2022]
|
90
|
Dussor G. ASICs as therapeutic targets for migraine. Neuropharmacology 2015; 94:64-71. [PMID: 25582295 PMCID: PMC4458434 DOI: 10.1016/j.neuropharm.2014.12.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 01/05/2023]
Abstract
Migraine is the most common neurological disorder and one of the most common chronic pain conditions. Despite its prevalence, the pathophysiology leading to migraine is poorly understood and the identification of new therapeutic targets has been slow. Several processes are currently thought to contribute to migraine including altered activity in the hypothalamus, cortical-spreading depression (CSD), and afferent sensory input from the cranial meninges. Decreased extracellular pH and subsequent activation of acid-sensing ion channels (ASICs) may contribute to each of these processes and may thus play a role in migraine pathophysiology. Although few studies have directly examined a role of ASICs in migraine, studies directly examining a connection have generated promising results including efficacy of ASIC blockers in both preclinical migraine models and in human migraine patients. The purpose of this review is to discuss the pathophysiology thought to contribute to migraine and findings that implicate decreased pH and/or ASICs in these events, as well as propose issues to be resolved in future studies of ASICs and migraine. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- Greg Dussor
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, GR-41, 800 West Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
91
|
Burgos-Vega C, Moy J, Dussor G. Meningeal afferent signaling and the pathophysiology of migraine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:537-64. [PMID: 25744685 DOI: 10.1016/bs.pmbts.2015.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Migraine is the most common neurological disorder. Attacks are complex and consist of multiple phases but are most commonly characterized by intense, unilateral, throbbing headache. The pathophysiology contributing to migraine is poorly understood and the disorder is not well managed with currently available therapeutics, often rendering patients disabled during attacks. The mechanisms most likely to contribute to the pain phase of migraine require activation of trigeminal afferent signaling from the cranial meninges and subsequent relay of nociceptive information into the central nervous system in a region of the dorsal brainstem known as the trigeminal nucleus caudalis. Events leading to activation of meningeal afferents are unclear, but nerve endings within this tissue are mechanosensitive and also express a variety of ion channels including acid-sensing ion channels and transient receptor-potential channels. These properties may provide clues into the pathophysiology of migraine by suggesting that decreased extracellular pH and environmental irritant exposure in the meninges contributes to headache. Neuroplasticity is also likely to play a role in migraine given that attacks are triggered by routine events that are typically nonnoxious in healthy patients and clear evidence of sensitization occurs during an attack. Where and how plasticity develops is also not clear but may include events directly on the afferents and/or within the TNC. Among the mediators potentially contributing to plasticity, calcitonin gene-related peptide has received the most attention within the migraine field but other mechanisms may also contribute. Ultimately, greater understanding of the molecules and mechanisms contributing to migraine will undoubtedly lead to better therapeutics and relief for the large number of patients across the globe who suffer from this highly disabling neurological disorder.
Collapse
Affiliation(s)
- Carolina Burgos-Vega
- Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Jamie Moy
- Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Gregory Dussor
- Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA.
| |
Collapse
|
92
|
Wei X, Yan J, Tillu D, Asiedu M, Weinstein N, Melemedjian O, Price T, Dussor G. Meningeal norepinephrine produces headache behaviors in rats via actions both on dural afferents and fibroblasts. Cephalalgia 2015; 35:1054-64. [PMID: 25601915 DOI: 10.1177/0333102414566861] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/06/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Stress is commonly reported to contribute to migraine although mechanisms by which this may occur are not fully known. The purpose of these studies was to examine whether norepinephrine (NE), the primary sympathetic efferent transmitter, acts on processes in the meninges that may contribute to the pain of migraine. METHODS NE was applied to rat dura using a behavioral model of headache. Primary cultures of rat trigeminal ganglia retrogradely labeled from the dura mater and of rat dural fibroblasts were prepared. Patch-clamp electrophysiology, Western blot, and ELISA were performed to examine the effects of NE. Conditioned media from NE-treated fibroblast cultures was applied to the dura using the behavioral headache model. RESULTS Dural injection both of NE and media from NE-stimulated fibroblasts caused cutaneous facial and hindpaw allodynia in awake rats. NE application to cultured dural afferents increased action potential firing in response to current injections. Application of NE to dural fibroblasts increased phosphorylation of ERK and caused the release of interleukin-6 (IL-6). CONCLUSIONS These data demonstrate that NE can contribute to pro-nociceptive signaling from the meninges via actions on dural afferents and dural fibroblasts. Together, these actions of NE may contribute to the headache phase of migraine.
Collapse
Affiliation(s)
- Xiaomei Wei
- Department of Pharmacology, The University of Arizona College of Medicine, USA
| | - Jin Yan
- Department of Pharmacology, The University of Arizona College of Medicine, USA
| | - Dipti Tillu
- Department of Pharmacology, The University of Arizona College of Medicine, USA
| | - Marina Asiedu
- Department of Pharmacology, The University of Arizona College of Medicine, USA School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Nicole Weinstein
- Department of Pharmacology, The University of Arizona College of Medicine, USA
| | - Ohannes Melemedjian
- Department of Pharmacology, The University of Arizona College of Medicine, USA
| | - Theodore Price
- Department of Pharmacology, The University of Arizona College of Medicine, USA School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Gregory Dussor
- Department of Pharmacology, The University of Arizona College of Medicine, USA School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| |
Collapse
|
93
|
Benromano T, Defrin R, Ahn AH, Zhao J, Pick CG, Levy D. Mild closed head injury promotes a selective trigeminal hypernociception: implications for the acute emergence of post-traumatic headache. Eur J Pain 2014; 19:621-8. [PMID: 25168788 DOI: 10.1002/ejp.583] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Headache is one of the most common symptoms following traumatic head injury. The mechanisms underlying the emergence of such post-traumatic headache (PTH) remain unknown but may be related to injury of deep cranial tissues or damage to central pain processing pathways, as a result of brain injury. METHODS A mild closed head injury in mice combined with the administration of cranial or hindpaw formalin tests was used to examine post-traumatic changes in the nociceptive processing from deep cranial tissues or the hindpaw. Histological analysis was used to examine post-traumatic pro-inflammatory changes in the calvarial periosteum, a deep cranial tissue. RESULTS At 48 h after head injury, mice demonstrated enhanced nociceptive responses following injection of formalin into the calvarial periosteum, a deep cranial tissue, but no facilitation of the nociceptive responses following injection of formalin into an extracranial tissue, the hindpaw. Mice also showed an increase in the number of activated periosteal mast cells 48 h following mild head trauma, suggesting an inflammatory response. CONCLUSION Our study demonstrates that mild closed head injury is associated with enhanced processing of nociceptive information emanating from trigeminal-innervated deep cranial tissues, but not from non-cranial tissues. Based on these finding as well as the demonstration of head injury-evoked degranulation of calvarial periosteal mast cells, we propose that inflammatory-evoked enhancement of peripheral cranial nociception, rather than changes in supraspinal pain mechanisms play a role in the initial emergence of PTH. Peripheral targeting of nociceptors that innervate the calvaria may be used to ameliorate PTH pain.
Collapse
Affiliation(s)
- T Benromano
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | |
Collapse
|
94
|
Nagata E, Fujii N, Hosomichi K, Mitsunaga S, Suzuki Y, Mashimo Y, Tsukamoto H, Satoh T, Osawa M, Inoue I, Hata A, Takizawa S. Possible association between dysfunction of vitamin D binding protein (GC Globulin) and migraine attacks. PLoS One 2014; 9:e105319. [PMID: 25147936 PMCID: PMC4141767 DOI: 10.1371/journal.pone.0105319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/21/2014] [Indexed: 01/03/2023] Open
Abstract
To identify the genetic causality of migraine and acute, severe melalgia, we performed a linkage analysis and exome sequencing in a family with four affected individuals. We identified a variant (R21L) in exon 2 of the GC globulin gene, which is involved in the transportation of vitamin D metabolites and acts as a chemotaxic factor; this variant was co-segregated within the family. To investigate the relationship between GC globulin and melalgia, we investigated the cytokine levels in serum samples from the patients and control subjects using a cytokine antibody array. GC globulin can bind to both MCP-1 and RANTES in human serum but has a higher affinity to MCP-1. In cell culture systems, MCP-1 was able to bind to overexpressed wild-type GC globulin but not to the GC globulin variant, and the GC globulin binding affinity to MCP-1 was significantly lower in sera from the patients than in sera from control subjects. A higher concentration of MCP-1 was also observed in sera from the patients. Thus, the dysfunctional GC globulin affected cytokine release, especially the release of MCP-1, and MCP-1 might play important roles in melalgia and migraine.
Collapse
Affiliation(s)
- Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
- * E-mail:
| | - Natsuko Fujii
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Kazuyoshi Hosomichi
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Japan
| | - Shigeki Mitsunaga
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Yoichi Suzuki
- Division of Genetic Epidemiology Research Support, Tohoku University School of Medicine, Sendai, Japan
| | - Yoichi Mashimo
- Department of Public Health, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideo Tsukamoto
- Educational and Research Center, Tokai University School of Medicine, Isehara, Japan
| | - Tadayuki Satoh
- Educational and Research Center, Tokai University School of Medicine, Isehara, Japan
| | - Motoki Osawa
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Ituro Inoue
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Japan
| | - Akira Hata
- Department of Public Health, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
95
|
Ripa P, Ornello R, Pistoia F, Carolei A, Sacco S. The renin-angiotensin system: a possible contributor to migraine pathogenesis and prophylaxis. Expert Rev Neurother 2014; 14:1043-55. [PMID: 25115162 DOI: 10.1586/14737175.2014.946408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presence of a tissue-based renin-angiotensin system, independent of the systemic one, has been identified in several organs including the brain. Experimental models have suggested the involvement of the renin-angiotensin system in neurogenic inflammation, susceptibility to oxidative stress, endothelial dysfunction, and neuromodulation of nociceptive transmission, thus potentially contributing to the pathogenesis of migraine. Genetic factors that increase susceptibility to migraine may include angiotensin-converting enzyme polymorphism, although available data are controversial. Clinical studies have suggested that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may be effective in migraine prophylaxis. However, further research should clarify whether the postulated preventive effect is attributable to a pharmacological action over and above the antihypertensive effect and should test their tolerability in subjects with normal blood pressure values. In patients with contraindications or not responding to conventional prophylactic drugs and in patients with comorbid arterial hypertension, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may be used for migraine prophylaxis.
Collapse
Affiliation(s)
- Patrizia Ripa
- Department of Biotechnological and Applied Clinical Sciences, Division of Clinical Neurology, University of L'Aquila, via Vetoio, 67100 L'Aquila, Italy
| | | | | | | | | |
Collapse
|
96
|
Erdener SE, Dalkara T. Modelling headache and migraine and its pharmacological manipulation. Br J Pharmacol 2014; 171:4575-94. [PMID: 24611635 DOI: 10.1111/bph.12651] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/13/2014] [Accepted: 02/14/2014] [Indexed: 12/22/2022] Open
Abstract
Similarities between laboratory animals and humans in anatomy and physiology of the cephalic nociceptive pathways have allowed scientists to create successful models that have significantly contributed to our understanding of headache. They have also been instrumental in the development of novel anti-migraine drugs different from classical pain killers. Nevertheless, modelling the mechanisms underlying primary headache disorders like migraine has been challenging due to limitations in testing the postulated hypotheses in humans. Recent developments in imaging techniques have begun to fill this translational gap. The unambiguous demonstration of cortical spreading depolarization (CSD) during migraine aura in patients has reawakened interest in studying CSD in animals as a noxious brain event that can activate the trigeminovascular system. CSD-based models, including transgenics and optogenetics, may more realistically simulate pain generation in migraine, which is thought to originate within the brain. The realization that behavioural correlates of headache and migrainous symptoms like photophobia can be assessed quantitatively in laboratory animals, has created an opportunity to directly study the headache in intact animals without the confounding effects of anaesthetics. Headache and migraine-like episodes induced by administration of glyceryltrinitrate and CGRP to humans and parallel behavioural and biological changes observed in rodents create interesting possibilities for translational research. Not unexpectedly, species differences and model-specific observations have also led to controversies as well as disappointments in clinical trials, which, in return, has helped us improve the models and advance our understanding of headache. Here, we review commonly used headache and migraine models with an emphasis on recent developments.
Collapse
Affiliation(s)
- S E Erdener
- Department of Neurology, Faculty of Medicine, Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
97
|
Abstract
Inflammatory and neuroinflammatory processes are increasingly recognized as critical pathophysiologic steps in the development of multiple chronic diseases and in the etiology of persistent pain and depression. Mast cells are immune cells now viewed as cellular sensors in inflammation and immunity. When stimulated, mast cells release an array of mediators to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, and may also regulate the activity of other immune cells, including central microglia. New evidence supports the involvement of peripheral and central mast cells in the development of pain processes as well as in the transition from acute, to chronic and neuropathic pain. That behavioral and endocrine states can increase the number and activation of peripheral and brain mast cells suggests that mast cells represent the immune cells that peripherally and centrally coordinate inflammatory processes in neuropsychiatric diseases such as depression and anxiety which are associated with chronic pelvic pain. Given that increasing evidence supports the activated mast cell as a director of common inflammatory pathways/mechanisms contributing to chronic and neuropathic pelvic pain and comorbid neuropsychiatric diseases, mast cells may be considered a viable target for the multifactorial management of both pain and depression.
Collapse
|
98
|
Duarte H, Teixeira AL, Rocha NP, Domingues RB. Increased serum levels of adiponectin in migraine. J Neurol Sci 2014; 342:186-8. [PMID: 24819919 DOI: 10.1016/j.jns.2014.04.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/15/2014] [Accepted: 04/22/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Inflammatory mediators, including adipokines, have been studied in migraine pathophysiology; however, their role is not yet well established. The aim of the present study was to investigate adiponectin (ADP) and its association with clinical parameters and psychiatric comorbidities in migraine patients compared with controls. METHODS This was a cross sectional study including migraine patients and controls. Beck depression and anxiety inventories, Headache impact test, and Allodynia symptom checklist were recorded. Adiponectin was measured by ELISA. RESULTS Sixty-eight migraine patients and sixty-five controls without headache were included. The ADP levels were significantly higher among patients with migraine (43.6±11.8 versus 36.6±9.7 ng/mL, P<0.0001). Adiponectin levels were not correlated with depression and anxiety scores, as well as with migraine severity and allodynia scores. CONCLUSION ADP levels were raised in migraine, independently of psychiatric comorbidities, migraine impact, and allodynia.
Collapse
Affiliation(s)
- Halina Duarte
- Neurosciences Postgraduation Program, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Antonio L Teixeira
- Neurosciences Postgraduation Program, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil; Interdisciplinar Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Natália P Rocha
- Interdisciplinar Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Renan B Domingues
- Neurosciences Postgraduation Program, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil; CHRU, Pole Neurologie, Université Lille 2, Lille, France; CAPES Foundation, Ministry of Education, Brasilia, DF, Brazil.
| |
Collapse
|
99
|
Abstract
Migraine is one of the most common neurological disorders. Despite its prevalence, the basic physiology of the molecules and mechanisms that contribute to migraine headache is still poorly understood, making the discovery of more effective treatments extremely difficult. The consistent presence of head-specific pain during migraine suggests an important role for activation of the peripheral nociceptors localized to the head. Accordingly, this review will cover the current understanding of the biological mechanisms leading to episodic activation and sensitization of the trigeminovascular pain pathway, focusing on recent advances regarding activation and modulation of ion channels.
Collapse
Affiliation(s)
- Jin Yan
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
100
|
Pryazhnikov E, Kislin M, Tibeykina M, Toptunov D, Ptukha A, Shatillo A, Gröhn O, Giniatullin R, Khiroug L. Opposite reactivity of meningeal versus cortical microvessels to the nitric oxide donor glyceryl trinitrate evaluated in vivo with two-photon imaging. PLoS One 2014; 9:e89699. [PMID: 24586970 PMCID: PMC3938546 DOI: 10.1371/journal.pone.0089699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/23/2014] [Indexed: 11/18/2022] Open
Abstract
Vascular changes underlying headache in migraine patients induced by Glyceryl trinitrate (GTN) were previously studied with various imaging techniques. Despite the long history of medical and experimental use of GTN, its effects on the brain vasculature are still poorly understood presumably due to low spatial resolution of the imaging modalities used so far. We took advantage of the micrometer-scale vertical resolution of two-photon microscopy to differentiate between the vasodynamic effects of GTN on meningeal versus cortical vessels imaged simultaneously in anesthetized rats through either thinned skull or glass-sealed cranial window. Intermediate and small calibre vessels were visualized in vivo by imaging intravascular fluorescent dextran, and detection of blood flow direction allowed identification of individual arterioles and venules. We found that i.p.-injected GTN induced a transient constriction of meningeal arterioles, while their cortical counterparts were, in contrast, dilated. These opposing effects of GTN were restricted to arterioles, whereas the effects on venules were insignificant. Interestingly, the NO synthase inhibitor L-NAME did not affect the diameter of meningeal vessels but induced a constriction of cortical vessels. The different cellular environment in cortex versus meninges as well as distinct vessel wall anatomical features probably play crucial role in the observed phenomena. These findings highlight differential region- and vessel-type-specific effects of GTN on cranial vessels, and may implicate new vascular mechanisms of NO-mediated primary headaches.
Collapse
Affiliation(s)
- Evgeny Pryazhnikov
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- Neurotar LTD, Helsinki, Finland
| | - Mikhail Kislin
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | | | | | - Anna Ptukha
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Artem Shatillo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Leonard Khiroug
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- Neurotar LTD, Helsinki, Finland
- * E-mail:
| |
Collapse
|