51
|
From Blood to Lesioned Brain: An In Vitro Study on Migration Mechanisms of Human Nasal Olfactory Stem Cells. Stem Cells Int 2017; 2017:1478606. [PMID: 28698717 PMCID: PMC5494110 DOI: 10.1155/2017/1478606] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/19/2017] [Indexed: 02/08/2023] Open
Abstract
Stem cell-based therapies critically rely on selective cell migration toward pathological or injured areas. We previously demonstrated that human olfactory ectomesenchymal stem cells (OE-MSCs), derived from an adult olfactory lamina propria, migrate specifically toward an injured mouse hippocampus after transplantation in the cerebrospinal fluid and promote functional recoveries. However, the mechanisms controlling their recruitment and homing remain elusive. Using an in vitro model of blood-brain barrier (BBB) and secretome analysis, we observed that OE-MSCs produce numerous proteins allowing them to cross the endothelial wall. Then, pan-genomic DNA microarrays identified signaling molecules that lesioned mouse hippocampus overexpressed. Among the most upregulated cytokines, both recombinant SPP1/osteopontin and CCL2/MCP-1 stimulate OE-MSC migration whereas only CCL2 exerts a chemotactic effect. Additionally, OE-MSCs express SPP1 receptors but not the CCL2 cognate receptor, suggesting a CCR2-independent pathway through other CCR receptors. These results confirm that OE-MSCs can be attracted by chemotactic cytokines overexpressed in inflamed areas and demonstrate that CCL2 is an important factor that could promote OE-MSC engraftment, suggesting improvement for future clinical trials.
Collapse
|
52
|
Abstract
Autoimmune dacryoadenitis, such as Sjögren syndrome, comprises multifactorial and complex diseases. Inflammation of the lacrimal gland plays a key role in the pathogenesis of diseases. Unfortunately, current treatment strategies, including artificial tears, anti-inflammatory drugs, punctual occlusion, and immunosuppressive drugs, are only palliative, and long-term administration of these strategies is associated with adverse effects that limit their utility. Hence, an effective and safe treatment for autoimmune dacryoadenitis is urgently needed. Mesenchymal stem cells (MSCs) have emerged as a promising tool for treating autoimmune dacryoadenitis, owing to their immunosuppressive properties, tissue repair functions, and powerful differentiation capabilities. A large number of studies have focused on the effect of MSCs on autoimmune diseases, such as autoimmune uveitis, inflammatory bowel disease, and collagen-induced arthritis, but few studies have, to date, unequivocally established the efficacy of MSCs for treating autoimmune dacryoadenitis. In this review, we discuss recent advances in MSC treatment for autoimmune dacryoadenitis.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Xilian Wang
- Tianjin Beichen Hospital, No. 7, Beiyi Road, Beichen District, Tianjin, 300400, China
| | - Hong Nian
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Dan Yang
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Ruihua Wei
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
53
|
Li F, Guo X, Chen SY. Function and Therapeutic Potential of Mesenchymal Stem Cells in Atherosclerosis. Front Cardiovasc Med 2017; 4:32. [PMID: 28589127 PMCID: PMC5438961 DOI: 10.3389/fcvm.2017.00032] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/01/2017] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a complicated disorder and largely attributable to dyslipidaemia and chronic inflammation. Despite therapeutic advances over past decades, atherosclerosis remains the leading cause of mortality worldwide. Due to their capability of immunomodulation and tissue regeneration, mesenchymal stem cells (MSCs) have evolved as an attractive therapeutic agent in various diseases including atherosclerosis. Accumulating evidences support the protective role of MSCs in all stages of atherosclerosis. In this review, we highlight the current understanding of MSCs including their characteristics such as molecular markers, tissue distribution, migratory property, immune-modulatory competence, etc. We also summarize MSC functions in animal models of atherosclerosis. MSC transplantation is able to modulate cytokine and chemokine secretion, reduce endothelial dysfunction, promote regulatory T cell function, decrease dyslipidemia, and stabilize vulnerable plaques during atherosclerosis development. In addition, MSCs may migrate to lesions where they develop into functional cells during atherosclerosis formation. Finally, the perspectives of MSCs in clinical atherosclerosis therapy are discussed.
Collapse
Affiliation(s)
- Feifei Li
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA.,The Department of Cardiovascular Surgery, Union Hospital, Wuhan, China
| | - Xia Guo
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA
| |
Collapse
|
54
|
Yin Y, Li X, He XT, Wu RX, Sun HH, Chen FM. Leveraging Stem Cell Homing for Therapeutic Regeneration. J Dent Res 2017; 96:601-609. [PMID: 28414563 DOI: 10.1177/0022034517706070] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Resident stem cell pools in many tissues/organs are responsible not only for tissue maintenance during physiologic turnover but also for the process of wound repair following injury. With inspiration from stem cell trafficking within the body under physiologic and pathologic conditions, recent advances have been made toward inducing stem cell mobilization and directing patients' own cells to sites of interest for treating a broad spectrum of diseases. An evolving body of work corroborates that delivering guidance cues can mobilize stem cells from the bone marrow and drive these cells toward a specific region. In addition, the transplantation of cell-friendly biomaterials incorporating certain biomolecules has led to the regeneration of lost/damaged tissue without the need for delivering cellular materials manipulated ex vivo. Recently, cell homing has resulted in remarkable biological discoveries in the laboratory as well as great curative successes in preclinical scenarios. Here, we review the biological evidence underlying in vivo cell mobilization and homing with the aim of leveraging endogenous reparative cells for therapeutic applications. Considering both the promise and the obstacles of this approach, we discuss how matrix components of the in vivo milieu can be modified to promote the native regenerative process and inspire future tissue-engineering design.
Collapse
Affiliation(s)
- Y Yin
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - X Li
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - X T He
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - R X Wu
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - H H Sun
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - F M Chen
- 1 State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
55
|
Leijs MJC, van Buul GM, Verhaar JAN, Hoogduijn MJ, Bos PK, van Osch GJVM. Pre-Treatment of Human Mesenchymal Stem Cells With Inflammatory Factors or Hypoxia Does Not Influence Migration to Osteoarthritic Cartilage and Synovium. Am J Sports Med 2017; 45:1151-1161. [PMID: 28114800 DOI: 10.1177/0363546516682710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are promising candidates as a cell-based therapy for osteoarthritis (OA), although current results are modest. Pre-treatment of MSCs before application might improve their therapeutic efficacy. HYPOTHESIS Pre-treatment of MSCs with inflammatory factors or hypoxia will improve their migration and adhesion capacities toward OA-affected tissues. STUDY DESIGN Controlled laboratory study. METHODS We used real-time polymerase chain reaction to determine the effects of different fetal calf serum (FCS) batches, platelet lysate (PL), hypoxia, inflammatory factors, factors secreted by OA tissues, and OA synovial fluid (SF) on the expression of 12 genes encoding chemokine or adhesion receptors. Migration of MSCs toward factors secreted by OA tissues was studied in vitro, and attachment of injected MSCs was evaluated in vivo in healthy and OA knees of male Wistar rats. RESULTS Different FCS batches, PL, or hypoxia did not influence the expression of the migration and adhesion receptor genes. Exposure to inflammatory factors altered the expression of CCR1, CCR4, CD44, PDGFRα, and PDGFRβ. MSCs migrated toward factors secreted by OA tissues in vitro. Neither pre-treatment with inflammatory factors nor the presence of OA influenced MSC migration in vitro or adhesion in vivo. CONCLUSION Factors secreted by OA tissues increase MSC migration in vitro. In vivo, no difference in MSC adhesion was found between OA and healthy knees. Pre-treatment with inflammatory factors influenced the expression of migration and adhesion receptors of MSCs but not their migration in vitro or adhesion in vivo. CLINICAL RELEVANCE To improve the therapeutic capacity of intra-articular injection of MSCs, they need to remain intra-articular for a longer period of time. Pre-treatment of MSCs with hypoxia or inflammatory factors did not increase the migration or adhesion capacity of MSCs and will therefore not likely prolong their intra-articular longevity. Alternative approaches to prolong the intra-articular presence of MSCs should be developed to increase the therapeutic effect of MSCs in OA.
Collapse
Affiliation(s)
- Maarten J C Leijs
- Department of Orthopaedics, Erasmus MC Rotterdam, the Netherlands.,Department of Radiology, Erasmus MC Rotterdam, the Netherlands
| | | | - Jan A N Verhaar
- Department of Orthopaedics, Erasmus MC Rotterdam, the Netherlands
| | | | - Pieter K Bos
- Department of Orthopaedics, Erasmus MC Rotterdam, the Netherlands
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC Rotterdam, the Netherlands.,Department of Otorhinolaryngology, Erasmus MC Rotterdam, the Netherlands
| |
Collapse
|
56
|
Tura-Ceide O, Lobo B, Paul T, Puig-Pey R, Coll-Bonfill N, García-Lucio J, Smolders V, Blanco I, Barberà JA, Peinado VI. Cigarette smoke challenges bone marrow mesenchymal stem cell capacities in guinea pig. Respir Res 2017; 18:50. [PMID: 28330488 PMCID: PMC5363047 DOI: 10.1186/s12931-017-0530-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/03/2017] [Indexed: 01/03/2023] Open
Abstract
Background Cigarette smoke (CS) is associated with lower numbers of circulating stem cells and might severely affect their mobilization, trafficking and homing. Our study was designed to demonstrate in an animal model of CS exposure whether CS affects the homing and functional capabilities of bone marrow-derived mesenchymal stem cells (BM-MSCs). Methods Guinea pigs (GP), exposed or sham-exposed to CS, were administered via tracheal instillation or by vascular administration with 2.5 × 106 BM-MSCs obtained from CS-exposed or sham-exposed animal donors. Twenty-four hours after cell administration, animals were sacrificed and cells were visualised into lung structures by optical microscopy. BM-MSCs from 8 healthy GP and from 8 GP exposed to CS for 1 month were isolated from the femur, cultured in vitro and assessed for their proliferation, migration, senescence, differentiation potential and chemokine gene expression profile. Results CS-exposed animals showed greater BM-MSCs lung infiltration than sham-exposed animals regardless of route of administration. The majority of BM-MSCs localized in the alveolar septa. BM-MSCs obtained from CS-exposed animals showed lower ability to engraft and lower proliferation and migration. In vitro, BM-MSCs exposed to CS extract showed a significant reduction of proliferative, cellular differentiation and migratory potential and an increase in cellular senescence in a dose dependent manner. Conclusion Short-term CS exposure induces BM-MSCs dysfunction. Such dysfunction was observed in vivo, affecting the cell homing and proliferation capabilities of BM-MSCs in lungs exposed to CS and in vitro altering the rate of proliferation, senescence, differentiation and migration capacity. Additionally, CS induced a reduction in CXCL9 gene expression in the BM from CS-exposed animals underpinning a potential mechanistic action of bone marrow dysfunction. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0530-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain.,Biomedical Research Networking Center in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Borja Lobo
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain
| | - Tanja Paul
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain
| | - Raquel Puig-Pey
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain
| | - Núria Coll-Bonfill
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain
| | - Jéssica García-Lucio
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain
| | - Valérie Smolders
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain.,Biomedical Research Networking Center in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joan A Barberà
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain.,Biomedical Research Networking Center in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Víctor I Peinado
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Villarroel, 170, Barcelona, 08036, Spain. .,Biomedical Research Networking Center in Respiratory Diseases (CIBERES), Madrid, Spain.
| |
Collapse
|
57
|
Zhou Y, Chen H, Li H, Wu Y. 3D culture increases pluripotent gene expression in mesenchymal stem cells through relaxation of cytoskeleton tension. J Cell Mol Med 2017; 21:1073-1084. [PMID: 28276635 PMCID: PMC5431137 DOI: 10.1111/jcmm.12946] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023] Open
Abstract
Three‐dimensional (3D) culture has been shown to improve pluripotent gene expression in mesenchymal stem cells (MSCs), but the underlining mechanisms were poorly understood. Here, we found that the relaxation of cytoskeleton tension of MSCs in 3D culture was critically associated with the expressional up‐regulation of Nanog. Cultured in spheroids, MSCs showed decreased integrin‐based cell–matrix adhesion but increased cadherin‐based cell–cell interaction. Different from that in 2D culture, where MSCs exhibited branched and multiple‐directed F‐actin stress bundles at the cell edge and strengthened stress fibres transversing the cell body, MSCs cultured in spheroids showed compact cell body, relaxed cytoskeleton tension with very thin cortical actin filament outlining the cell, and increased expression of Nanog along with reduced levels of Suv39h1 (H3K9 methyltransferase) and H3K9me3. Notably, pharmaceutical inhibition of actin polymerization with cytochalasin D or silencing Suv39h1 expression with siRNA in 2D‐cultured MSCs elevated the expression of Nanog via H3K9 demethylation. Thus, our data suggest that 3D culture increases the expression of Nanog through the relaxation of actin cytoskeleton, which mediates reduced Suv39h1 and H3K9me3 levels.
Collapse
Affiliation(s)
- Ying Zhou
- School of Life Sciences, Tsinghua University, Beijing, China.,The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Haiyan Chen
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Beijing, China
| | - Hong Li
- Department of General Surgery, Qingdao Municipal Hospital Qingdao, Qingdao, China
| | - Yaojiong Wu
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Beijing, China
| |
Collapse
|
58
|
Pourjafar M, Saidijam M, Mansouri K, Ghasemibasir H, Karimi dermani F, Najafi R. All-trans retinoic acid preconditioning enhances proliferation, angiogenesis and migration of mesenchymal stem cell in vitro and enhances wound repair in vivo. Cell Prolif 2017; 50:e12315. [PMID: 27862498 PMCID: PMC6529123 DOI: 10.1111/cpr.12315] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/10/2016] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Stem cell therapy is considered to be a suitable alternative in treatment of a number of diseases. However, there are challenges in their clinical application in cell therapy, such as to reduce survival and loss of transplanted stem cells. It seems that chemical and pharmacological preconditioning enhances their therapeutic efficacy. In this study, we investigated effects of all-trans retinoic acid (ATRA) on survival, angiogenesis and migration of mesenchymal stem cells (MSCs) in vitro and in a wound-healing model. MATERIALS AND METHODS MSCs were treated with a variety of concentrations of ATRA, and mRNA expression of cyclo-oxygenase-2 (COX-2), hypoxia-inducible factor-1 (HIF-1), C-X-C chemokine receptor type 4 (CXCR4), C-C chemokine receptor type 2 (CCR2), vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2) and Ang-4 were examined by qRT-PCR. Prostaglandin E2 (PGE2) levels were measured using an ELISA kit and MSC angiogenic potential was evaluated using three-dimensional tube formation assay. Finally, benefit of ATRA-treated MSCs in wound healing was determined with a rat excisional wound model. RESULTS In ATRA-treated MSCs, expressions of COX-2, HIF-1, CXCR4, CCR2, VEGF, Ang-2 and Ang-4 increased compared to control groups. Overexpression of the related genes was reversed by celecoxib, a selective COX-2 inhibitor. Tube formation and in vivo wound healing of ATRA-treated MSCs were also significantly enhanced compared to untreated MSCs. CONCLUSION Pre-conditioning of MSCs with ATRA increased efficacy of cell therapy by activation of survival signalling pathways, trophic factors and release of pro-angiogenic molecules.
Collapse
Affiliation(s)
- M. Pourjafar
- Research Center for Molecular MedicineHamedan University of Medical SciencesHamedanIran
| | - M. Saidijam
- Research Center for Molecular MedicineHamedan University of Medical SciencesHamedanIran
| | - K. Mansouri
- Medical Biology Research CenterKermanshah University of Medical, SciencesKermanshahIran
| | - H. Ghasemibasir
- Department of PathologyHamedan University of Medical SciencesHamedanIran
| | - F. Karimi dermani
- Research Center for Molecular MedicineHamedan University of Medical SciencesHamedanIran
| | - R. Najafi
- Research Center for Molecular MedicineHamedan University of Medical SciencesHamedanIran
- Endometrium and Endometriosis Research CenterHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
59
|
Li J, Xu Q, Teng B, Yu C, Li J, Song L, Lai YX, Zhang J, Zheng W, Ren PG. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Acta Biomater 2016; 42:389-399. [PMID: 27326916 DOI: 10.1016/j.actbio.2016.06.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED Reconstruction of critical size bone defects remains a major clinical challenge because of poor bone regeneration, which is usually due to poor angiogenesis during repair. Satisfactory vascularization is a prerequisite for the survival of grafts and the integration of new tissue with existing tissue. In this work, we investigated angiogenesis in 3D scaffolds by in vivo multiphoton microscopy during bone formation in a murine calvarial critical bone defect model and evaluated bone regeneration 8weeks post-implantation. The continuous release of bioactive lentiviral vectors (LV-pdgfb) from the scaffolds could be detected for 5days in vitro. In vivo, the released LV-pdgfb transfected adjacent cells and expressed PDGF-BB, facilitating angiogenesis and enhancing bone regeneration. The expression of both pdgfb and the angiogenesis-related genes vWF and VEGFR2 was significantly increased in the pdgfb gene-carrying scaffold (PHp) group. In addition, microCT scanning and histomorphology results proved that there was more new bone ingrowth in the PHp group than in the PLGA/nHA (PH) and control groups. MicroCT parameters, including BMD, BV/TV, Tb.Sp, and Tb.N indicated that there was significantly more new bone formation in the PHp group than in the other groups. With regard to neovascularization, 8weeks post-implantation, blood vessel areas (BVAs) were 9428±944μm(2), 4090±680.3μm(2), and none in the PHp, PH, and control groups, respectively. At each time point, BVAs in the PHp scaffolds were significantly higher than in the PH scaffolds. To our knowledge, this is the first use of multiphoton microscopy in bone tissue-engineering to investigate angiogenesis in scaffolds in vivo. This method represents a valuable tool for investigating neovascularization in bone scaffolds to determine if a certain scaffold is beneficial to neovascularization. We also proved that delivery of the pdgfb gene alone can improve both angiogenesis and bone regeneration Acronyms. STATEMENT OF SIGNIFICANCE Reconstruction of critical size bone defects remains a major clinical challenge because of poor bone regeneration, which is usually due to poor angiogenesis during repair. Satisfactory vascularization is a prerequisite for the survival of grafts and the integration of new tissue with existing tissue. In this work, we investigated angiogenesis in 3D scaffolds by in vivo multiphoton microscopy during bone formation in a murine calvarial critical bone defect model and evaluated bone regeneration 8weeks post-implantation. To verify that pdgfb-expressing vectors carried by the scaffolds can promote angiogenesis in 3D-printed scaffolds in vivo, we monitored angiogenesis within the implants by multiphoton microscopy. To our knowledge, this is the first study to dynamically investigate angiogenesis in bone tissue engineering scaffolds in vivo.
Collapse
Affiliation(s)
- Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Qiang Xu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Bin Teng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Chen Yu
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Orthopedics Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Orthopedics Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yu-Xiao Lai
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian Zhang
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wei Zheng
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Pei-Gen Ren
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
60
|
Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep 2016; 6:32993. [PMID: 27615560 PMCID: PMC5018733 DOI: 10.1038/srep32993] [Citation(s) in RCA: 406] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023] Open
Abstract
Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair.
Collapse
|
61
|
Yoon DS, Lee Y, Ryu HA, Jang Y, Lee KM, Choi Y, Choi WJ, Lee M, Park KM, Park KD, Lee JW. Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing. Acta Biomater 2016; 38:59-68. [PMID: 27109762 DOI: 10.1016/j.actbio.2016.04.030] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED In this study, we developed horseradish peroxidase (HRP)-catalyzed sprayable gelatin hydrogels (GH) as a bioactive wound dressing that can deliver cell-attracting chemotactic cytokines to the injured tissues for diabetic wound healing. We hypothesized that topical administration of chemokines using GH hydrogels might improve wound healing by inducing recruitment of the endogenous cells. Two types of chemokines (interleukin-8; IL-8, macrophage inflammatory protein-3α; MIP-3α) were simply loaded into GH hydrogels during in situ cross-linking, and then their wound-healing effects were evaluated in streptozotocin-induced diabetic mice. The incorporation of chemokines did not affect hydrogels properties including swelling ratio and mechanical stiffness, and the bioactivities of IL-8 and MIP-3α released from hydrogel matrices were stably maintained. In vivo transplantation of chemokine-loaded GH hydrogels facilitated cell infiltration into the wound area, and promoted wound healing with enhanced re-epithelialization/neovascularization and increased collagen deposition, compared with no treatment or the GH hydrogel alone. Based on our results, we suggest that cell-recruiting chemokine-loaded GH hydrogel dressing can serve as a delivery platform of various therapeutic proteins for wound healing applications. STATEMENT OF SIGNIFICANCE Despite development of materials combined with therapeutic agents for diabetic wound treatment, impaired wound healing by insufficient chemotactic responses still remain as a significant problem. In this study, we have developed enzyme-catalyzed gelatin (GH) hydrogels as a sprayable dressing material that can deliver cell-attracting chemokines for diabetic wound healing. The chemotactic cytokines (IL-8 and MIP-3α) were simply loaded within hydrogel during in situ gelling, and wound healing efficacy of chemokine-loaded GH hydrogels was investigated in STZ-induced diabetic mouse model. These hydrogels significantly promoted wound-healing efficacy with faster wound closure, neovascularization, and thicker granulation. Therefore, we expect that HRP-catalyzed in situ forming GH hydrogels can serve as an injectable/sprayable carrier of various therapeutic agents for wound healing applications.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Hyun Aae Ryu
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Yeonsue Jang
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Kyoung-Mi Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 120-752, South Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Yoorim Choi
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 120-752, South Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Woo Jin Choi
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Moses Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Kyung Min Park
- Division of Bioengineering, Incheon National University, Incheon 406-772, South Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 120-752, South Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| |
Collapse
|
62
|
Wang B, Yao K, Huuskes BM, Shen HH, Zhuang J, Godson C, Brennan EP, Wilkinson-Berka JL, Wise AF, Ricardo SD. Mesenchymal Stem Cells Deliver Exogenous MicroRNA-let7c via Exosomes to Attenuate Renal Fibrosis. Mol Ther 2016; 24:1290-301. [PMID: 27203438 DOI: 10.1038/mt.2016.90] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 04/20/2016] [Indexed: 02/07/2023] Open
Abstract
The advancement of microRNA (miRNA) therapies has been hampered by difficulties in delivering miRNA to the injured kidney in a robust and sustainable manner. Using bioluminescence imaging in mice with unilateral ureteral obstruction (UUO), we report that mesenchymal stem cells (MSCs), engineered to overexpress miRNA-let7c (miR-let7c-MSCs), selectively homed to damaged kidneys and upregulated miR-let7c gene expression, compared with nontargeting control (NTC)-MSCs. miR-let7c-MSC therapy attenuated kidney injury and significantly downregulated collagen IVα1, metalloproteinase-9, transforming growth factor (TGF)-β1, and TGF-β type 1 receptor (TGF-βR1) in UUO kidneys, compared with controls. In vitro analysis confirmed that the transfer of miR-let7c from miR-let7c-MSCs occurred via secreted exosomal uptake, visualized in NRK52E cells using cyc3-labeled pre-miRNA-transfected MSCs with/without the exosomal inhibitor, GW4869. The upregulated expression of fibrotic genes in NRK52E cells induced by TGF-β1 was repressed following the addition of isolated exosomes or indirect coculture of miR-let7c-MSCs, compared with NTC-MSCs. Furthermore, the cotransfection of NRK52E cells using the 3'UTR of TGF-βR1 confirmed that miR-let7c attenuates TGF-β1-driven TGF-βR1 gene expression. Taken together, the effective antifibrotic function of engineered MSCs is able to selectively transfer miR-let7c to damaged kidney cells and will pave the way for the use of MSCs for therapeutic delivery of miRNA targeted at kidney disease.
Collapse
Affiliation(s)
- Bo Wang
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Kevin Yao
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Brooke M Huuskes
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Hsin-Hui Shen
- Department of Microbiology, Monash University, Victoria, Australia
| | - Junli Zhuang
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin P Brennan
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | | | - Andrea F Wise
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Sharon D Ricardo
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| |
Collapse
|
63
|
Mortezaee K, Pasbakhsh P, Ragerdi Kashani I, Sabbaghziarani F, Omidi A, Zendedel A, Ghasemi S, Dehpour AR. Melatonin Pretreatment Enhances the Homing of Bone Marrow-derived Mesenchymal Stem Cells Following Transplantation in a Rat Model of Liver Fibrosis. IRANIAN BIOMEDICAL JOURNAL 2016; 20:207-16. [PMID: 27130910 PMCID: PMC4983675 DOI: 10.7508/ibj.2016.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Bone marrow-derived mesenchymal stem cells (BMMSCs) transplantation has been considered as a promising milestone in liver fibrosis treatment. However, low amounts of homing are a major obstacle. We aimed to investigate the role of melatonin pretreatment in BMMSC homing into experimental liver fibrosis. Methods: BMMSCs were obtained, grown, propagated and preconditioned with 5 µM melatonin and analyzed for multipotency and immunophenotypic features at passage three. The cells were labelled with CM-Dil and infused into the rats received the i.p. injection of carbon tetrachloride (CCl4) for five weeks to induce liver fibrosis. Animals were divided into two groups: One group received BMMSCs, whereas the other group received melatonin-pretreated BMMSCs (MT-BMMSCs). After cell injection at 72 h, animals were sacrificed, and the liver tissues were assessed for further evaluations: fibrosis using Masson’s trichrome and hematoxylin and eosin staining and homing using fluorescent microscopy and flow cytometry. Results: BMMSCs and MT-BMMSCs expressed a high level of CD44 but low levels of CD11b, CD45 and CD34 (for all P≤0.05) and were able to differentiate into adipocytes and Schwann cells. CCl4 induction resulted in extensive collagen deposition, tissue disruption and fatty accumulation with no obvious difference between the two groups. There was a significant increase in homing of MT-BMMSCs in both florescent microscopy (P≤0.001) and flow cytometry (P≤0.01) assays, as compared with non-treated BMMSCs. Conclusion: This study indicates the improved homing potential of BMMSCs in pretreatment with melatonin. Therefore, this strategy may represent an applied approach for improving the stem cell therapy of liver fibrosis.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parichehr Pasbakhsh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sabbaghziarani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Omidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Adib Zendedel
- Institute of Neuroanatomy, School of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Soudabeh Ghasemi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
64
|
Control of Cross Talk between Angiogenesis and Inflammation by Mesenchymal Stem Cells for the Treatment of Ocular Surface Diseases. Stem Cells Int 2016; 2016:7961816. [PMID: 27110252 PMCID: PMC4823508 DOI: 10.1155/2016/7961816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/29/2016] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is beneficial in the treatment of ischemic heart disease and peripheral artery disease. However, it facilitates inflammatory cell filtration and inflammation cascade that disrupt the immune and angiogenesis privilege of the avascular cornea, resulting in ocular surface diseases and even vision loss. Although great progress has been achieved, healing of severe ocular surface injury and immunosuppression of corneal transplantation are the most difficult and challenging step in the treatment of ocular surface disorders. Mesenchymal stem cells (MSCs), derived from various adult tissues, are able to differentiate into different cell types such as endothelial cells and fat cells. Although it is still under debate whether MSCs could give rise to functional corneal cells, recent results from different study groups showed that MSCs could improve corneal disease recovery through suppression of inflammation and modulation of immune cells. Thus, MSCs could become a promising tool for ocular surface disorders. In this review, we discussed how angiogenesis and inflammation are orchestrated in the pathogenesis of ocular surface disease. We overviewed and updated the knowledge of MSCs and then summarized the therapeutic potential of MSCs via control of angiogenesis, inflammation, and immune response in the treatment of ocular surface disease.
Collapse
|
65
|
Bing W, Pang X, Qu Q, Bai X, Yang W, Bi Y, Bi X. Simvastatin improves the homing of BMSCs via the PI3K/AKT/miR-9 pathway. J Cell Mol Med 2016; 20:949-61. [PMID: 26871266 PMCID: PMC4831354 DOI: 10.1111/jcmm.12795] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Bone marrow‐derived mesenchymal stem cells (BMSCs) have great therapeutic potential for many diseases. However, the homing of BMSCs to injury sites remains a difficult problem. Recent evidence indicates that simvastatin stimulates AKT phosphorylation, and p‐AKT affects the expression of chemokine (CXC motif) receptor‐4 (CXCR4). Therefore, simvastatin may improve the expression of CXCR4 in BMSCs, and microRNAs (miRs) may participate in this process. In this study, we demonstrated that simvastatin increased both the total and the surface expression of CXCR4 in BMSCs. Stromal cell‐derived factor‐1α (SDF‑1α)‐induced migration of BMSCs was also enhanced by simvastatin, and this action was inhibited by AMD 3100(a chemokine receptor antagonist for CXCR4). The PI3K/AKT pathway was activated by simvastatin in this process, and LY294002 reversed the overexpression of CXCR4 caused by simvastatin. MiR‐9 directly targeted CXCR4 in rat BMSCs, and simvastatin decreased miR‐9 expression. P‐AKT affected the expression of miR‐9; as the phosphorylation of AKT increased, miR‐9 expression decreased. In addition, LY294002 increased miR‐9 expression. Taken together, our results indicated that simvastatin improved the migration of BMSCs via the PI3K/AKT pathway. MiR‐9 also participated in this process, and the phosphorylation of AKT affected miR‐9 expression, suggesting that simvastatin might have beneficial effects in stem cell therapy.
Collapse
Affiliation(s)
- Weidong Bing
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xinyan Pang
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Qingxi Qu
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xiao Bai
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Wenwen Yang
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yanwen Bi
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xiaolu Bi
- School of Life Science of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
66
|
Stromal Derived Factor-1/CXCR4 Axis Involved in Bone Marrow Mesenchymal Stem Cells Recruitment to Injured Liver. Stem Cells Int 2016; 2016:8906945. [PMID: 26880995 PMCID: PMC4737461 DOI: 10.1155/2016/8906945] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/10/2015] [Accepted: 10/15/2015] [Indexed: 01/18/2023] Open
Abstract
The molecular mechanism of bone marrow mesenchymal stromal stem cells (BMSCs) mobilization and migration to the liver was poorly understood. Stromal cell-derived factor-1 (SDF-1) participates in BMSCs homing and migration into injury organs. We try to investigate the role of SDF-1 signaling in BMSCs migration towards injured liver. The expression of CXCR4 in BMSCs at mRNA level and protein level was confirmed by RT-PCR, flow cytometry, and immunocytochemistry. The SDF-1 or liver lysates induced BMSCs migration was detected by transwell inserts. CXCR4 antagonist, AMD3100, and anti-CXCR4 antibody were used to inhibit the migration. The Sprague-Dawley rat liver injury model was established by intraperitoneal injection of thioacetamide. The concentration of SDF-1 increased as modeling time extended, which was determined by ELISA method. The Dir-labeled BMSCs were injected into the liver of the rats through portal vein. The cell migration in the liver was tracked by in vivo imaging system and the fluorescent intensity was measured. In vivo, BMSCs migrated into injured liver which was partially blocked by AMD3100 or anti-CXCR4 antibody. Taken together, the results demonstrated that the migration of BMSCs was regulated by SDF-1/CXCR4 signaling which involved in BMSCs recruitment to injured liver.
Collapse
|
67
|
Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 2016; 7:7. [PMID: 26753925 PMCID: PMC4709937 DOI: 10.1186/s13287-015-0271-2] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are increasingly used as an intravenously applied cellular therapeutic. They were found to be potent in situations such as tissue repair or severe inflammation. Still, data are lacking with regard to the biodistribution of MSCs, their cellular or molecular target structures, and the mechanisms by which MSCs reach these targets. This review discusses current hypotheses for how MSCs can reach tissue sites. Both preclinical and clinical studies using MSCs applied intravenously or intra-arterially are discussed in the context of our current understanding of how MSCs might work in physiological and pathological situations.
Collapse
Affiliation(s)
- Johannes Leibacher
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, Frankfurt, Germany
| | - Reinhard Henschler
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, University of Frankfurt, Frankfurt, Germany. .,Blood Donor Center Zürich, Swiss Red Cross, Zürich, Switzerland.
| |
Collapse
|
68
|
Zheng B, von See MP, Yu E, Gunel B, Lu K, Vazin T, Schaffer DV, Goodwill PW, Conolly SM. Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo. Theranostics 2016; 6:291-301. [PMID: 26909106 PMCID: PMC4737718 DOI: 10.7150/thno.13728] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/01/2015] [Indexed: 12/13/2022] Open
Abstract
Stem cell therapies have enormous potential for treating many debilitating diseases, including heart failure, stroke and traumatic brain injury. For maximal efficacy, these therapies require targeted cell delivery to specific tissues followed by successful cell engraftment. However, targeted delivery remains an open challenge. As one example, it is common for intravenous deliveries of mesenchymal stem cells (MSCs) to become entrapped in lung microvasculature instead of the target tissue. Hence, a robust, quantitative imaging method would be essential for developing efficacious cell therapies. Here we show that Magnetic Particle Imaging (MPI), a novel technique that directly images iron-oxide nanoparticle-tagged cells, can longitudinally monitor and quantify MSC administration in vivo. MPI offers near-ideal image contrast, depth penetration, and robustness; these properties make MPI both ultra-sensitive and linearly quantitative. Here, we imaged, for the first time, the dynamic trafficking of intravenous MSC administrations using MPI. Our results indicate that labeled MSC injections are immediately entrapped in lung tissue and then clear to the liver within one day, whereas standard iron oxide particle (Resovist) injections are immediately taken up by liver and spleen. Longitudinal MPI-CT imaging also indicated a clearance half-life of MSC iron oxide labels in the liver at 4.6 days. Finally, our ex vivo MPI biodistribution measurements of iron in liver, spleen, heart, and lungs after injection showed excellent agreement (R2 = 0.943) with measurements from induction coupled plasma spectrometry. These results demonstrate that MPI offers strong utility for noninvasively imaging and quantifying the systemic distribution of cell therapies and other therapeutic agents.
Collapse
|
69
|
Shao J, Zhang W, Yang T. Using mesenchymal stem cells as a therapy for bone regeneration and repairing. Biol Res 2015; 48:62. [PMID: 26530042 PMCID: PMC4630918 DOI: 10.1186/s40659-015-0053-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023] Open
Abstract
Bone is a unique tissue which could regenerate completely after injury rather than heal itself with a scar. Compared with other tissues the difference is that, during bone repairing and regeneration, after the inflammatory phase the mesenchymal stem cells (MSCs) are recruited to the injury site and differentiate into either chondroblasts or osteoblasts precursors, leading to bone repairing and regeneration. Besides these two precursors, the MSCs can also differentiate into adipocyte precursors, skeletal muscle precursors and some other mesodermal cells. With this multilineage potentiality, the MSCs are probably used to cure bone injury and other woundings in the near future. Here we will introduce the recent developments in understanding the mechanism of MSCs action in bone regeneration and repairing.
Collapse
Affiliation(s)
- Jin Shao
- Department of Orthopaedics, Shanghai Pudong New Area Gongli Hospital, Second Military Medical University, Shanghai, 200135, China.
| | - Weiwei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Tieyi Yang
- Department of Orthopaedics, Shanghai Pudong New Area Gongli Hospital, Second Military Medical University, Shanghai, 200135, China.
| |
Collapse
|
70
|
Ramírez M, García-Castro J, Melen GJ, González-Murillo Á, Franco-Luzón L. Patient-derived mesenchymal stem cells as delivery vehicles for oncolytic virotherapy: novel state-of-the-art technology. Oncolytic Virother 2015; 4:149-55. [PMID: 27512678 PMCID: PMC4918392 DOI: 10.2147/ov.s66010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oncolytic virotherapy is gaining interest in the clinic as a new weapon against cancer. In vivo administration of oncolytic viruses showed important limitations that decrease their effectiveness very significantly: the antiviral immune response causes the elimination of the therapeutic effect, and the poor natural ability of oncolytic viruses to infect micrometastatic lesions significantly minimizes the effective dose of virus. This review will focus on updating the technical and scientific foundations of one of the strategies developed to overcome these limitations, ie, using cells as vehicles for oncolytic viruses. Among many candidates, a special type of adult stem cell, mesenchymal stem cells (MSCs), have already been used in the clinic as cell vehicles for oncolytic viruses, partly due to the fact that these cells are actively being evaluated for other indications. MSC carrier cells are used as Trojan horses loaded with oncoviruses, are administered systemically, and release their cargos at the right places. MSCs are equipped with an array of molecules involved in cell arrest in the capillaries (integrins and selectins), migration toward specific parenchymal locations within tissues (chemokine receptors), and invasion and degradation of the extracellular matrix (proteases). In addition to anatomical targeting capacity, MSCs have a well-recognized role in modulating immune responses by affecting cells of the innate (antigen-presenting cells, natural killer cells) and adaptive immune system (effector and regulatory lymphocytes). Therefore, carrier MSCs may also modulate the immune responses taking place after therapy, ie, the antiviral and the antitumor immune responses.
Collapse
Affiliation(s)
- Manuel Ramírez
- Oncohematología, Hospital Universitario Niño Jesús, Madrid, Spain
| | | | - Gustavo J Melen
- Oncohematología, Hospital Universitario Niño Jesús, Madrid, Spain
| | | | | |
Collapse
|
71
|
Hufnagel D, Li F, Cosar E, Krikun G, Taylor HS. The Role of Stem Cells in the Etiology and Pathophysiology of Endometriosis. Semin Reprod Med 2015; 33:333-40. [PMID: 26375413 DOI: 10.1055/s-0035-1564609] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human endometrium is a dynamic organ that normally undergoes repetitive cyclic regeneration. To enable this rapid regeneration, it is not surprising that the endometrium contains a reservoir of progenitor stem cells. However, this pool of cells that allows the growth of the endometrium also allows for unrestrained growth that can reach beyond the endometrium. In this review, we will address the role of stem cells in endometriosis. Recent characterization of stem cell populations within human endometrium has opened the possibility of understanding their physiologic as well as their pathologic roles. While stem cells are critical to the cyclic regeneration of a healthy endometrium, we have shown that both endometrium-derived and bone marrow-derived stem cells can migrate to ectopic sites and contribute to the development of endometriosis. Furthermore, endometriosis interferes with the normal stem cell trafficking to the uterus that is necessary for endometrial growth and repair. Altered stem cell mobility and engraftment characterize this disease.
Collapse
Affiliation(s)
- Demetra Hufnagel
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Fei Li
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Emine Cosar
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Graciela Krikun
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
72
|
Manieri NA, Mack MR, Himmelrich MD, Worthley DL, Hanson EM, Eckmann L, Wang TC, Stappenbeck TS. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis. J Clin Invest 2015; 125:3606-18. [PMID: 26280574 DOI: 10.1172/jci81423] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/08/2015] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapy is an emerging field of regenerative medicine; however, it is often unclear how these cells mediate repair. Here, we investigated the use of MSCs in the treatment of intestinal disease and modeled abnormal repair by creating focal wounds in the colonic mucosa of prostaglandin-deficient mice. These wounds developed into ulcers that infiltrated the outer intestinal wall. We determined that penetrating ulcer formation in this model resulted from increased hypoxia and smooth muscle wall necrosis. Prostaglandin I₂ (PGI₂) stimulated VEGF-dependent angiogenesis to prevent penetrating ulcers. Treatment of mucosally injured WT mice with a VEGFR inhibitor resulted in the development of penetrating ulcers, further demonstrating that VEGF is critical for mucosal repair. We next used this model to address the role of transplanted colonic MSCs (cMSCs) in intestinal repair. Compared with intravenously injected cMSCs, mucosally injected cMSCs more effectively prevented the development of penetrating ulcers, as they were more efficiently recruited to colonic wounds. Importantly, mucosally injected cMSCs stimulated angiogenesis in a VEGF-dependent manner. Together, our results reveal that penetrating ulcer formation results from a reduction of local angiogenesis and targeted injection of MSCs can optimize transplantation therapy. Moreover, local MSC injection has potential for treating diseases with features of abnormal angiogenesis and repair.
Collapse
|
73
|
Wang S, Guo L, Ge J, Yu L, Cai T, Tian R, Jiang Y, Zhao RC, Wu Y. Excess Integrins Cause Lung Entrapment of Mesenchymal Stem Cells. Stem Cells 2015; 33:3315-26. [PMID: 26148841 DOI: 10.1002/stem.2087] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are largely entrapped in the lungs after intravenous delivery. The underlying mechanisms have been poorly understood. Flow cytometry and Western blot analysis showed that the expression levels of many integrins such as β1, α5, and αVβ3 in MSCs increased markedly upon cultured expansion in 2D monolayers, whose ligands fibronectin and vitronectin were detected on the surface of vascular endothelial cells in the lungs by immunostaining and flow cytometry. Blockade of integrin β1, integrin α5, or integrins αVβ3 with functional blocking antibodies significantly decreased the amount of MSCs entrapped in the lungs following intravenous infusion as determined by real-time PCR and histological analysis; meanwhile, corresponding increases in the levels of circulating MSCs in the blood and MSCs homed to the ischemic myocardium and inflamed ear were found. Intriguingly, a short period of 3D spheroid culture of MSCs, which had been expanded for several passages in monolayers, substantially reduced the expression levels of many integrins and the number of MSCs entrapped in the lungs. Our results indicate that the excess expression and activation of integrins is a significant cause of lung entrapment of MSCs.
Collapse
Affiliation(s)
- Shan Wang
- School of Life Sciences, Tsinghua University, People's Republic of China.,The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
| | - Ling Guo
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
| | - Jianfeng Ge
- School of Life Sciences, Tsinghua University, People's Republic of China.,The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
| | - Lin Yu
- Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gynecological Diagnostic Technology Research, People's Republic of China
| | - Ting Cai
- School of Life Sciences, Tsinghua University, People's Republic of China.,The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
| | - Ruiyun Tian
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
| | - Yuyang Jiang
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, People's Republic of China
| | - Robert Ch Zhao
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Beijing, People's Republic of China
| | - Yaojiong Wu
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
| |
Collapse
|
74
|
Yao X, Liu Y, Gao J, Yang L, Mao D, Stefanitsch C, Li Y, Zhang J, Ou L, Kong D, Zhao Q, Li Z. Nitric oxide releasing hydrogel enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction. Biomaterials 2015; 60:130-40. [PMID: 25988728 DOI: 10.1016/j.biomaterials.2015.04.046] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 04/24/2015] [Accepted: 04/30/2015] [Indexed: 01/16/2023]
Abstract
Stem cell therapy has been proved to be an effective approach to ameliorate the heart remodeling post myocardial infarction (MI). However, poor cell engraftment and survival in ischemic myocardium limits the successful use of cellular therapy for treating MI. Here, we sought to transplant adipose derived-mesenchymal stem cells (AD-MSCs) with a hydrogel (NapFF-NO), naphthalene covalently conjugated a short peptide, FFGGG, and β-galactose caged nitric oxide (NO) donor, which can release NO molecule in response to β-galactosidase. AD-MSCs, either from transgenic mice that constitutively express GFP and firefly luciferase (Fluc), or express Fluc under the control of VEGFR2 promoter, were co-transplanted with NapFF-NO hydrogel into murine MI models. Improved cell survival and enhanced cardiac function were confirmed by bioluminescence imaging (BLI) and echocardiogram respectively. Moreover, increasing VEGFR2-luc expression was also tracked in real-time in vivo, indicating NapFF-NO hydrogel stimulated VEGF secretion of AD-MSCs. To investigate the therapeutic mechanism of NapFF-NO hydrogel, cell migration assay, paracrine action of AD-MSCs, and histology analysis were carried out. Our results revealed that condition medium from AD-MSCs cultured with NapFF-NO hydrogel could promote endothelial cell migration. Additionally, AD-MSCs showed significant improvement secretion of angiogenic factors VEGF and SDF-1α in the presence of NapFF-NO hydrogel. Finally, postmortem analysis confirmed that transplanted AD-MSCs with NapFF-NO hydrogel could ameliorate heart function by promoting angiogenesis and attenuating ventricular remodeling. In conclusion, NapFF-NO hydrogel can obviously improve therapeutic efficacy of AD-MSCs for MI by increasing cell engraftment and angiogenic paracrine action.
Collapse
Affiliation(s)
- Xinpeng Yao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yi Liu
- Department of Biology, School of Basic Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liang Yang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Duo Mao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Christina Stefanitsch
- Department for Health Sciences and Biomedicine, Danube University Krems, 3500 Krems, Austria
| | - Yang Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jun Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lailiang Ou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
75
|
Sakurai T, Kashida H, Hagiwara S, Nishida N, Watanabe T, Fujita J, Kudo M. Heat shock protein A4 controls cell migration and gastric ulcer healing. Dig Dis Sci 2015; 60:850-7. [PMID: 25655005 DOI: 10.1007/s10620-015-3561-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/22/2015] [Indexed: 01/16/2023]
Abstract
AIMS AND METHODS Heat shock protein A4 (HSPA4, also called Apg-2), a member of the HSP110 family, regulates the immune response in the gut. Here, we assessed the involvement of HSPA4 in gastric ulcer healing by using fibroblasts from wild-type and HSPA4-deficient mice, a murine gastric ulcer model, and samples from 65 patients with gastric cancer. RESULTS HSPA4 expression was inversely correlated with gastric ulcer healing following endoscopic resection of gastric cancer. In the human gastric mucosa, the expression of HSPA4 was inversely correlated with the expression of stromal cell-derived factor 1 (SDF-1), its cognate receptor CXC chemokine receptor 4 (CXCR4), the stromal cell marker vimentin, and the epithelial-mesenchymal transition regulator Twist. HSPA4 was overexpressed in stromal cells as well as in human gastric cancer cells. HSPA4 deficiency increased the expression of SDF-1 and CXCR4, as well as the number of fibroblast-specific protein 1-positive cells, leading to accelerated ulcer healing in the murine gastric ulcer model. Deletion of HSPA4 promoted cell migration in mouse fibroblasts through increased expression of SDF-1 and Twist. CONCLUSION HSPA4 regulates the expression of SDF-1 and Twist in fibroblasts, thereby controlling gastric ulcer healing.
Collapse
Affiliation(s)
- Toshiharu Sakurai
- Department of Gastroenterology and Hepatology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan,
| | | | | | | | | | | | | |
Collapse
|
76
|
Haque N, Kasim NHA, Rahman MT. Optimization of pre-transplantation conditions to enhance the efficacy of mesenchymal stem cells. Int J Biol Sci 2015; 11:324-34. [PMID: 25678851 PMCID: PMC4323372 DOI: 10.7150/ijbs.10567] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/20/2014] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered a potential tool for cell based regenerative therapy due to their immunomodulatory property, differentiation potentials, trophic activity as well as large donor pool. Poor engraftment and short term survival of transplanted MSCs are recognized as major limitations which were linked to early cellular ageing, loss of chemokine markers during ex vivo expansion, and hyper-immunogenicity to xeno-contaminated MSCs. These problems can be minimized by ex vivo expansion of MSCs in hypoxic culture condition using well defined or xeno-free media i.e., media supplemented with growth factors, human serum or platelet lysate. In addition to ex vivo expansion in hypoxic culture condition using well defined media, this review article describes the potentials of transient adaptation of expanded MSCs in autologous serum supplemented medium prior to transplantation for long term regenerative benefits. Such transient adaptation in autologous serum supplemented medium may help to increase chemokine receptor expression and tissue specific differentiation of ex vivo expanded MSCs, thus would provide long term regenerative benefits.
Collapse
Affiliation(s)
- Nazmul Haque
- 1. Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia. ; 2. Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- 1. Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia. ; 2. Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammad Tariqur Rahman
- 3. Department of Biotechnology, Faculty of Science, International Islamic University Malaysia, Kuantan, Malaysia
| |
Collapse
|
77
|
Yu Q, Liu L, Lin J, Wang Y, Xuan X, Guo Y, Hu S. SDF-1α/CXCR4 Axis Mediates The Migration of Mesenchymal Stem Cells to The Hypoxic-Ischemic Brain Lesion in A Rat Model. CELL JOURNAL 2015; 16:440-7. [PMID: 25685734 PMCID: PMC4297482 DOI: 10.22074/cellj.2015.504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 11/06/2013] [Indexed: 12/16/2022]
Abstract
Objective Transplantation of mesenchymal stem cells (MSCs) can promote functional
recovery of the brain after hypoxic-ischemic brain damage (HIBD). However, the mechanism regulating MSC migration to a hypoxic-ischemic lesion is poorly understood. Interaction between stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXC
chemokine receptor 4 (CXCR4) is crucial for homing and migration of multiple stem cell
types. In this study, we investigate the potential role of SDF-1α/CXCR4 axis in mediating
MSC migration in an HIBD model.
Materials and Methods In this experimental study, we first established the animal model of HIBD using the neonatal rat. Bone marrow MSCs were cultured and labeled with
5-bromo-21-deoxyuridine (BrdU) after which 6×106 cells were intravenously injected into
the rat. BrdU positive MSCs in the hippocampus were detected by immunohistochemical
analyses. The expression of hypoxia-inducible factor-1α (HIF-1α) and SDF-1α in the hippocampus of hypoxic-ischemic rats was detected by Western blotting. To investigate the
role of hypoxia and SDF-1α on migration of MSCs in vitro, MSCs isolated from normal
rats were cultured in a hypoxic environment (PO2=1%). Migration of MSCs was detected
by the transwell assay. The expression of CXCR4 was tested using Western blotting and
flow cytometry.
Results BrdU-labeled MSCs were found in the rat brain, which suggested that transplanted MSCs migrated to the site of the hypoxic-ischemic brain tissue. HIF-1α and SDF-1α significantly increased in the hippocampal formations of HIBD rats in a time-dependent
manner. They peaked on day 7 and were stably expressed until day 21. Migration of MSCs
in vitro was promoted by SDF-1α under hypoxia and inhibited by the CXCR4 inhibitor
AMD3100. The expression of CXCR4 on MSCs was elevated by hypoxia stimulation as
well as microdosage treatment of SDF-1α. Conclusion This observation illustrates that SDF-1α/CXCR4 axis mediate the migration
of MSCs to a hypoxic-ischemic brain lesion in a rat model.
Collapse
Affiliation(s)
- Qin Yu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China ; Institute of Bioengineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Lin
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Wang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaobo Xuan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Guo
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shaojun Hu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
78
|
Li Q, Ma L, Gao C. Biomaterials for in situ tissue regeneration: development and perspectives. J Mater Chem B 2015; 3:8921-8938. [DOI: 10.1039/c5tb01863c] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biomaterials are of fundamental importance to in situ tissue regeneration, which has emerged as a powerful method to treat tissue defects. The development and perspectives of biomaterials for in situ tissue regeneration were summarized.
Collapse
Affiliation(s)
- Qian Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
79
|
Fatkhudinov T, Bolshakova G, Arutyunyan I, Elchaninov A, Makarov A, Kananykhina E, Khokhlova O, Murashev A, Glinkina V, Goldshtein D, Sukhikh G. Bone marrow-derived multipotent stromal cells promote myocardial fibrosis and reverse remodeling of the left ventricle. Stem Cells Int 2015; 2015:746873. [PMID: 25685158 PMCID: PMC4320796 DOI: 10.1155/2015/746873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/28/2014] [Accepted: 12/28/2014] [Indexed: 02/07/2023] Open
Abstract
Cell therapy is increasingly recognized as a beneficial practice in various cardiac conditions, but its fundamentals remain largely unclear. The fates of transplanted multipotent stromal cells in postinfarction cardiac microenvironments are particularly understudied. To address this issue, labeled multipotent stromal cells were infused into rat myocardium at day 30 after myocardial infarction, against the background of postinfarction cardiosclerosis. Therapeutic effects of the transplantation were assessed by an exercise tolerance test. Histological examination at 14 or 30 days after the transplantation was conducted by means of immunostaining and quantitative image analysis. An improvement in the functional status of the cardiovascular system was observed after both the autologous and the allogeneic transplantations. Location of the label-positive cells within the heart was restricted to the affected part of myocardium. The transplanted cells could give rise to fibroblasts or myofibroblasts but not to cardiac myocytes or blood vessel cells. Both types of transplantation positively influenced scarring processes, and no expansion of fibrosis to border myocardium was observed. Left ventricular wall thickening associated with reduced dilatation index was promoted by transplantation of the autologous cells. According to the results, multipotent stromal cell transplantation prevents adverse remodeling and stimulates left ventricular reverse remodeling.
Collapse
Affiliation(s)
- Timur Fatkhudinov
- 1Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- 2Scientific Research Institute of Human Morphology, Russian Academy of Medical Sciences, 3 Tsurupa Street, Moscow 117418, Russia
- 3Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
- *Timur Fatkhudinov:
| | - Galina Bolshakova
- 1Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
| | - Irina Arutyunyan
- 1Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- 2Scientific Research Institute of Human Morphology, Russian Academy of Medical Sciences, 3 Tsurupa Street, Moscow 117418, Russia
| | - Andrey Elchaninov
- 1Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- 2Scientific Research Institute of Human Morphology, Russian Academy of Medical Sciences, 3 Tsurupa Street, Moscow 117418, Russia
- 3Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Andrey Makarov
- 1Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- 2Scientific Research Institute of Human Morphology, Russian Academy of Medical Sciences, 3 Tsurupa Street, Moscow 117418, Russia
| | - Evgeniya Kananykhina
- 1Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- 2Scientific Research Institute of Human Morphology, Russian Academy of Medical Sciences, 3 Tsurupa Street, Moscow 117418, Russia
| | - Oksana Khokhlova
- 4Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia
| | - Arkady Murashev
- 4Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia
| | - Valeria Glinkina
- 3Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Dmitry Goldshtein
- 5Research Centre of Medical Genetics of the Russian Academy of Medical Sciences, 1 Moskvorechie Street, Moscow 115478, Russia
| | - Gennady Sukhikh
- 1Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of the Russian Federation, 4 Oparina Street, Moscow 117997, Russia
| |
Collapse
|
80
|
Ge J, Guo L, Wang S, Zhang Y, Cai T, Zhao RCH, Wu Y. The size of mesenchymal stem cells is a significant cause of vascular obstructions and stroke. Stem Cell Rev Rep 2014; 10:295-303. [PMID: 24390934 DOI: 10.1007/s12015-013-9492-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Intravascular injection of mesenchymal stem cells (MSCs) has been found to cause considerable vascular obstructions which may lead to serious outcomes, particularly after intra-arterial injection. However, the underlying mechanisms have been poorly understood. METHODS In this study, we fractionated MSCs that had been cultured in monolayer for six passages into small (average diameter = 17.9 μm) and large (average diameter 30.4 μm) populations according to their sizes, and examined their vascular obstructions after intra-internal carotid artery injection in rats and mice in comparison with MSCs derived from 3D spheroids which were uniformly smaller in size (average diameter 12.6 μm). RESULTS We found that 3D MSCs did not cause detectable infarct in the brain as evidenced by MRI scan and TTC stain, 2D MSCs in small size caused a microinfarct in one of five animals, which was co-localized to the area of entrapped MSCs (labeled with DiI), while 2D MSCs in large size caused much larger infarcts in all five animals, and substantial amounts of DiI-positive MSCs were found in the infarct. Meanwhile, corresponding neurological defects were observed in the animals with stroke. In consistence, injection of 2D MSCs (average diameter 26.5) caused a marked loss of cortical neurons and their axons in Thy1-GFP transgenic mice and the activation of microglia in CX3CR1-GFP transgenic mice in the area with MSC entrapment. CONCLUSIONS Our results suggest that the size of MSCs is a significant cause of MSC caused vascular obstructions and stroke.
Collapse
Affiliation(s)
- Jianfeng Ge
- School of Life Sciences, Tsinghua University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
81
|
Cavnar SP, Ray P, Moudgil P, Chang SL, Luker KE, Linderman JJ, Takayama S, Luker GD. Microfluidic source-sink model reveals effects of biophysically distinct CXCL12 isoforms in breast cancer chemotaxis. Integr Biol (Camb) 2014; 6:564-76. [PMID: 24675873 DOI: 10.1039/c4ib00015c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemokines critically regulate chemotaxis in normal and pathologic states, but there is limited understanding of how multicellular interactions generate gradients needed for cell migration. Previous studies of chemotaxis of CXCR4+ cells toward chemokine CXCL12 suggest the requirement of cells expressing scavenger receptor CXCR7 in a source-sink system. We leveraged an established microfluidic device to discover that chemotaxis of CXCR4 cells toward distinct isoforms of CXCL12 required CXCR7 scavenging only under conditions with higher than optimal levels of CXCL12. Chemotaxis toward CXCL12-β and -γ isoforms, which have greater binding to extracellular molecules and have been largely overlooked, was less dependent on CXCR7 than the more commonly studied CXCL12-α. Chemotaxis of CXCR4+ cells toward even low levels of CXCL12-γ and CXCL12-β still occurred during treatment with a FDA-approved inhibitor of CXCR4. We also detected CXCL12-γ only in breast cancers from patients with advanced disease. Physiological gradient formation within the device facilitated interrogation of key differences in chemotaxis among CXCL12 isoforms and suggests CXCL12-γ as a biomarker for metastatic cancer.
Collapse
Affiliation(s)
- S P Cavnar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Chullikana A, Majumdar AS, Gottipamula S, Krishnamurthy S, Kumar AS, Prakash VS, Gupta PK. Randomized, double-blind, phase I/II study of intravenous allogeneic mesenchymal stromal cells in acute myocardial infarction. Cytotherapy 2014; 17:250-61. [PMID: 25484310 DOI: 10.1016/j.jcyt.2014.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 10/12/2014] [Accepted: 10/14/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Cell therapy is promising as an exploratory cardiovascular therapy. We have recently developed an investigational new drug named Stempeucel (bone marrow-derived allogeneic mesenchymal stromal cells) for patients with acute myocardial infarction (AMI) with ST-segment elevation. A phase I/II randomized, double-blind, single-dose study was conducted to assess the safety and efficacy of intravenous administration of Stempeucel versus placebo (multiple electrolytes injection). METHODS Twenty patients who had undergone percutaneous coronary intervention for AMI were randomly assigned (1:1) to receive intravenous Stempeucel or placebo and were followed for 2 years. RESULTS The number of treatment-emergent adverse events observed were 18 and 21 in the Stempeucel and placebo groups, respectively. None of the adverse events were related to Stempeucel according to the investigators and independent data safety monitoring board. There was no serious adverse event in the Stempeucel group and there were three serious adverse events in the placebo group, of which one had a fatal outcome. Ejection fraction determined by use of echocardiography showed improvement in both Stempeucel (43.06% to 47.80%) and placebo (43.44% to 45.33%) groups at 6 months (P = 0.26). Perfusion scores measured by use of single-photon emission tomography and infarct volume measured by use of magnetic resonance imaging showed no significant differences between the two groups at 6 months. CONCLUSIONS This study showed that Stempeucel was safe and well tolerated when administered intravenously in AMI patients 2 days after percutaneous coronary intervention. The optimal dose and route of administration needs further evaluation in larger clinical trials (http://clinicaltrials.gov/show/NCT00883727).
Collapse
Affiliation(s)
- Anoop Chullikana
- Stempeutics Research Pvt Ltd, Bangalore, India, and Stempeutics Research Manipal, India
| | - Anish Sen Majumdar
- Stempeutics Research Pvt Ltd, Bangalore, India, and Stempeutics Research Manipal, India
| | - Sanjay Gottipamula
- Stempeutics Research Pvt Ltd, Bangalore, India, and Stempeutics Research Manipal, India
| | - Sagar Krishnamurthy
- Stempeutics Research Pvt Ltd, Bangalore, India, and Stempeutics Research Manipal, India
| | | | | | | |
Collapse
|
83
|
Garg A, Houlihan DD, Aldridge V, Suresh S, Li KK, King AL, Sutaria R, Fear J, Bhogal RH, Lalor PF, Newsome PN. Non-enzymatic dissociation of human mesenchymal stromal cells improves chemokine-dependent migration and maintains immunosuppressive function. Cytotherapy 2014; 16:545-59. [PMID: 24629709 DOI: 10.1016/j.jcyt.2013.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/08/2013] [Accepted: 10/14/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Human bone marrow-derived mesenchymal stromal cells (MSC) can suppress inflammation; therefore their therapeutic potential is being explored in clinical trials. Poor engraftment of infused MSC limits their therapeutic utility; this may be caused by MSC processing before infusion, in particular the method of their detachment from culture. METHODS Enzymatic methods of detaching MSC (Accutase and TrypLE) were compared with non-enzymatic methods (Cell Dissociation Buffer [CDB], ethylenediamine tetra-acetic acid and scraping) for their effect on MSC viability, chemokine receptor expression, multi-potency, immunomodulation and chemokine-dependent migration. RESULTS TrypLE detachment preserved MSC viability and tri-lineage potential compared with non-enzymatic methods; however, this resulted in near complete loss of surface chemokine receptor expression. Of the non-enzymatic methods, CDB detachment preserved the highest viability while retaining significant tri-lineage differentiation potential. Once re-plated, CDB-detached MSC regained their original morphology and reached confluence, unlike with the use of other non-enzymatic methods. Viability was significantly reduced with the use of ethylenediamine tetra-acetic acid and further reduced with the use of cell scraping. Addition of 1% serum during CDB detachment led to higher MSC numbers entering autophagy and increased MSC recovery after re-plating. TrypLE and CDB-detached MSC suppressed CD3(+)CD4(+)CD25(-) T-cell proliferation, although TrypLE-detached MSC exhibited superior suppression at 1:20 ratio. CDB detachment retained surface chemokine receptor expression and consequently increased migration to CCL22, CXCL12 and CCL4, in contrast with TrypLE-detached MSC. CONCLUSIONS This study demonstrates that non-enzymatic detachment of MSC with the use of CDB minimizes the negative impact on cell viability, multipotency and immunomodulation while retaining chemokine-dependent migration, which may be of importance in MSC delivery and engraftment in sites of injury.
Collapse
Affiliation(s)
- Abhilok Garg
- Centre for Liver Research and National Institute for Health Research, Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, United Kingdom.
| | - Diarmaid D Houlihan
- Centre for Liver Research and National Institute for Health Research, Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, United Kingdom
| | - Victoria Aldridge
- Centre for Liver Research and National Institute for Health Research, Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, United Kingdom
| | - Shankar Suresh
- Centre for Liver Research and National Institute for Health Research, Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, United Kingdom
| | - Ka Kit Li
- Centre for Liver Research and National Institute for Health Research, Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, United Kingdom
| | - Andrew L King
- Centre for Liver Research and National Institute for Health Research, Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, United Kingdom
| | - Rupesh Sutaria
- Centre for Liver Research and National Institute for Health Research, Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, United Kingdom
| | - Janine Fear
- Centre for Liver Research and National Institute for Health Research, Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, United Kingdom
| | - Ricky H Bhogal
- Centre for Liver Research and National Institute for Health Research, Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, United Kingdom
| | - Patricia F Lalor
- Centre for Liver Research and National Institute for Health Research, Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, United Kingdom
| | - Philip N Newsome
- Centre for Liver Research and National Institute for Health Research, Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
84
|
Embryonic stem cells conditioned medium enhances Wharton's jelly-derived mesenchymal stem cells expansion under hypoxic condition. Cytotechnology 2014; 67:493-505. [PMID: 25326788 DOI: 10.1007/s10616-014-9708-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 02/19/2014] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are accepted as a promising tool for therapeutic purposes. However, low proliferation and early senescence are still main obstacles of MSCs expansion for using as cell-based therapy. Thus, clinical scale of cell expansion is needed to obtain a large number of cells serving for further applications. In this study, we investigated the value of embryonic stem cells conditioned medium (ESCM) for in vitro expansion of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) as compared to typical culture medium for MSCs, Dulbecco's modified Eagle's medium with 1.0 g/l glucose (DMEM-LG) supplemented with 10 % FBS, under hypoxic condition. The expanded cells from ESCM (ESCM-MSCs) and DMEM-LG (DMEM-MSCs) were characterized for both phenotype and biological activities including proliferation rate, population doubling time, cell cycle distribution and MSCs characteristics. ESCM and DMEM-LG could enhance WJ-MSCs proliferation as 204.66 ± 10.39 and 113.77 ± 7.89 fold increase at day 12, respectively. ESCM-MSCs could express pluripotency genes including Oct-4, Oct-3/4, Nanog, Klf-4, C-Myc and Sox-2 both in early and late passages whereas the downregulations of Oct-4 and Nanog were detected in late passage cells of DMEM-MSCs. The 2 cell populations also showed common MSCs characteristics including normal cell cycle, fibroblastic morphology, cell surface markers expressions (CD29(+), CD44(+), CD90(+), CD34(-), CD45(-)) and differentiation capacities into adipogenic, chondrogenic and osteogenic lineages. Moreover, our results revealed that ESCM exhibited as a rich source of several factors which are required for supportive WJ-MSCs proliferation. In conclusion, ESCM under hypoxic condition could accelerate WJ-MSCs expansion while maintaining their pluripotency properties. Our knowledge provide short term and cost-saving in WJ-MSCs expansion which has benefit to overcome insufficient cell numbers for clinical applications by reusing the discarded cell culture supernates from human ES culture system. Moreover, these findings can also apply for stem cell banking, regenerative medicine and pharmacological applications.
Collapse
|
85
|
Naderi-Meshkin H, Bahrami AR, Bidkhori HR, Mirahmadi M, Ahmadiankia N. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy. Cell Biol Int 2014; 39:23-34. [PMID: 25231104 DOI: 10.1002/cbin.10378] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 06/19/2014] [Indexed: 12/13/2022]
Abstract
Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies.
Collapse
Affiliation(s)
- Hojjat Naderi-Meshkin
- Stem Cell and Regenerative Medicine Research Department, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch, Mashhad, Iran
| | | | | | | | | |
Collapse
|
86
|
Guo L, Ge J, Wang S, Zhou Y, Wang X, Wu Y. A novel method for efficient delivery of stem cells to the ischemic brain. Stem Cell Res Ther 2014; 4:116. [PMID: 24405845 PMCID: PMC3854714 DOI: 10.1186/scrt327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/19/2013] [Accepted: 09/16/2013] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Rat middle cerebral artery occlusion (MCAO) model is the most commonly used animal model in ischemic stroke studies. In the model, to increase the amount of stem cells or drugs to enter the brain after delivery into the internal carotid artery (ICA), the pterygopalatine artery (PPA) is occluded. However, PPA occlusion is a technically demanding procedure which often causes complications. METHODS In this study, we developed an ICA injection needle to facilitate easy and efficient delivery of stem cells to the ischemic brain through the ICA without the need of PPA occlusion. We injected methylene blue and fluorescence dye DiI-labeled human mesenchymal stem cells (DiI-hMSCs) into the ICA in rats with the ICA injection needle (without PPA ligation) or the conventional micro-injection needle (with PPA ligation) and assessed their distributions. RESULTS When methylene blue was injected, evident blue stains were found in the brain of the injection side particularly the middle cerebral artery (MCA)-supplied areas but not in the PPA supplied areas. Similarly, when DiI-hMSCs were injected, the cells largely appeared in the MCA-supplied tissues, which were similar in quantity compared to conventional micro-injection needle injection with PPA occlusion. Moreover, hMSCs injected with the ICA needle or the micro-injection needle similarly improved the functional recovery of the infarcted brain. CONCLUSIONS Our results indicate that the ICA injection needle is easy to use and efficient in delivering cells to the ischemic brain tissue in rat MCAO model.
Collapse
|
87
|
Du Z, Wang L, Zhao Y, Cao J, Wang T, Liu P, Zhang Y, Yang X, Cheng X, Liu B, Lei D. Sympathetic denervation-induced MSC mobilization in distraction osteogenesis associates with inhibition of MSC migration and osteogenesis by norepinephrine/adrb3. PLoS One 2014; 9:e105976. [PMID: 25144690 PMCID: PMC4140837 DOI: 10.1371/journal.pone.0105976] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/25/2014] [Indexed: 01/16/2023] Open
Abstract
The sympathetic nervous system regulates bone formation and resorption under physiological conditions. However, it is still unclear how the sympathetic nerves affect stem cell migration and differentiation in bone regeneration. Distraction osteogenesis is an ideal model of bone regeneration due to its special nature as a self-engineering tissue. In this study, a rat model of mandibular distraction osteogenesis with transection of cervical sympathetic trunk was used to demonstrate that sympathetic denervation can deplete norepinephrine (NE) in distraction-induced bone callus, down-regulate β3-adrenergic receptor (adrb3) in bone marrow mesenchymal stem cells (MSCs), and promote MSC migration from perivascular regions to bone-forming units. An invitro Transwell assay was here used to demonstrate that NE can inhibit stroma-derived factor-1 (SDF-1)-induced MSC migration and expression of the migration-related gene matrix metalloproteinase-2 (MMP-2) and downregulate that of the anti-migration gene tissue inhibitor of metalloproteinase-3 (TIMP-3). Knockdown of adrb3 using siRNA abolishes inhibition of MSC migration. An in vitro osteogenic assay was used to show that NE can inhibit the formation of MSC bone nodules and expression of the osteogenic marker genes alkaline phosphatase (ALP), osteocalcin (OCN), and runt-related transcription factor-2 (RUNX2), but knockdown of adrb3 by siRNA can abolish such inhibition of the osteogenic differentiation of MSCs. It is here concluded that sympathetic denervation-induced MSC mobilization in rat mandibular distraction osteogenesis is associated with inhibition of MSC migration and osteogenic differentiation by NE/adrb3 in vitro. These findings may facilitate understanding of the relationship of MSC mobilization and sympathetic nervous system across a wide spectrum of tissue regeneration processes.
Collapse
Affiliation(s)
- Zhaojie Du
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, China
- Department of Oral and Maxillofacial Surgery, No. 425 Hospital of PLA, Sanya, China
| | - Lei Wang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, China
- * E-mail: (LW); (DL)
| | - Yinghua Zhao
- Department of Prosthodontics, Stomatology Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jian Cao
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, China
| | - Tao Wang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, China
| | - Peng Liu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, China
| | - Yabo Zhang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, China
| | - Xinjie Yang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, China
| | - Xiaobing Cheng
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, China
| | - Baolin Liu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, China
| | - Delin Lei
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, China
- * E-mail: (LW); (DL)
| |
Collapse
|
88
|
Chung E, Ahn W, Son Y. CXCL5 abundant in the wound fluid at the late phase of wound healing, possibly promoting migration of mesenchymal stem cells and vascular tube formation. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0004-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
89
|
Guo L, Zhou Y, Wang S, Wu Y. Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) spheroids. J Cell Mol Med 2014; 18:2009-19. [PMID: 25090911 PMCID: PMC4244016 DOI: 10.1111/jcmm.12336] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 04/28/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) hold profound promise in tissue repair/regeneration. However, MSCs undergo remarkable spontaneous differentiation and aging during monolayer culture expansion. In this study, we found that 2-3 days of three-dimensional (3D) spheroid culture of human MSCs (hMSCs) that had been expanded in monolayer for six passages increased their clonogenicity and differentiation potency to neuronal cells. Moreover, in accordance with these changes, the expression levels of miRNA which were involved in stem cell potency were changed and levels of histone H3 acetylation in K9 in promoter regions of Oct4, Sox2 and Nanog were elevated. Our results indicate that spheroid culture increases their multi-potency and changes the epigenetic status of pluripotent genes in hMSCs.
Collapse
Affiliation(s)
- Ling Guo
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | | | | | | |
Collapse
|
90
|
Li F, Zhao SZ. Mesenchymal stem cells: Potential role in corneal wound repair and transplantation. World J Stem Cells 2014; 6:296-304. [PMID: 25126379 PMCID: PMC4131271 DOI: 10.4252/wjsc.v6.i3.296] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/06/2014] [Accepted: 04/11/2014] [Indexed: 02/06/2023] Open
Abstract
Corneal diseases are a major cause of blindness in the world. Although great progress has been achieved in the treatment of corneal diseases, wound healing after severe corneal damage and immunosuppressive therapy after corneal transplantation remain problematic. Mesenchymal stem cells (MSCs) derived from bone marrow or other adult tissues can differentiate into various types of mesenchymal lineages, such as osteocytes, adipocytes, and chondrocytes, both in vivo and in vitro. These cells can further differentiate into specific cell types under specific conditions. MSCs migrate to injury sites and promote wound healing by secreting anti-inflammatory and growth factors. In addition, MSCs interact with innate and acquired immune cells and modulate the immune response through their powerful paracrine function. Over the last decade, MSCs have drawn considerable attention because of their beneficial properties and promising therapeutic prospective. Furthermore, MSCs have been applied to various studies related to wound healing, autoimmune diseases, and organ transplantation. This review discusses the potential functions of MSCs in protecting corneal tissue and their possible mechanisms in corneal wound healing and corneal transplantation.
Collapse
|
91
|
Pelekanos RA, Ting MJ, Sardesai VS, Ryan JM, Lim YC, Chan JKY, Fisk NM. Intracellular trafficking and endocytosis of CXCR4 in fetal mesenchymal stem/stromal cells. BMC Cell Biol 2014; 15:15. [PMID: 24885150 PMCID: PMC4065074 DOI: 10.1186/1471-2121-15-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/02/2014] [Indexed: 12/13/2022] Open
Abstract
Background Fetal mesenchymal stem/stromal cells (MSC) represent a developmentally-advantageous cell type with translational potential. To enhance adult MSC migration, studies have focussed on the role of the chemokine receptor CXCR4 and its ligand SDF-1 (CXCL12), but more recent work implicates an intricate system of CXCR4 receptor dimerization, intracellular localization, multiple ligands, splice variants and nuclear accumulation. We investigated the intracellular localization of CXCR4 in fetal bone marrow-derived MSC and role of intracellular trafficking in CXCR4 surface expression and function. Results We found that up to 4% of human fetal MSC have detectable surface-localized CXCR4. In the majority of cells, CXCR4 is located not at the cell surface, as would be required for ‘sensing’ migratory cues, but intracellularly. CXCR4 was identified in early endosomes, recycling endosomes, and lysosomes, indicating only a small percentage of CXCR4 travelling to the plasma membrane. Notably CXCR4 was also found in and around the nucleus, as detected with an anti-CXCR4 antibody directed specifically against CXCR4 isoform 2 differing only in N-terminal sequence. After demonstrating that endocytosis of CXCR4 is largely independent of endogenously-produced SDF-1, we next applied the cytoskeletal inhibitors blebbistatin and dynasore to inhibit endocytotic recycling. These increased the number of cells expressing surface CXCR4 by 10 and 5 fold respectively, and enhanced the number of cells migrating to SDF1 in vitro (up to 2.6 fold). These molecules had a transient effect on cell morphology and adhesion, which abated after the removal of the inhibitors, and did not alter functional stem cell properties. Conclusions We conclude that constitutive endocytosis is implicated in the regulation of CXCR4 membrane expression, and suggest a novel pharmacological strategy to enhance migration of systemically-transplanted cells.
Collapse
Affiliation(s)
- Rebecca A Pelekanos
- UQ Centre for Clinical Research, The University of Queensland, Herston QLD 4029, Australia.
| | | | | | | | | | | | | |
Collapse
|
92
|
Watson L, Elliman SJ, Coleman CM. From isolation to implantation: a concise review of mesenchymal stem cell therapy in bone fracture repair. Stem Cell Res Ther 2014; 5:51. [PMID: 25099622 PMCID: PMC4055164 DOI: 10.1186/scrt439] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Compromised bone-regenerating capability following a long bone fracture is often the result of reduced host bone marrow (BM) progenitor cell numbers and efficacy. Without surgical intervention, these malunions result in mobility restrictions, deformities, and disability. The clinical application of BM-derived mesenchymal stem cells (MSCs) is a feasible, minimally invasive therapeutic option to treat non-union fractures. This review focuses on novel, newly identified cell surface markers in both the mouse and human enabling the isolation and purification of osteogenic progenitor cells as well as their direct and indirect contributions to fracture repair upon administration. Furthermore, clinical success to date is summarized with commentary on autologous versus allogeneic cell sources and the methodology of cell administration. Given our clinical success to date in combination with recent advances in the identification, isolation, and mechanism of action of MSCs, there is a significant opportunity to develop improved technologies for defining therapeutic MSCs and potential to critically inform future clinical strategies for MSC-based bone regeneration.
Collapse
|
93
|
Ni NC, Li RK, Weisel RD. The promise and challenges of cardiac stem cell therapy. Semin Thorac Cardiovasc Surg 2014; 26:44-52. [PMID: 24952757 DOI: 10.1053/j.semtcvs.2014.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2014] [Indexed: 12/14/2022]
Abstract
After an extensive myocardial infarction, restoration of heart function depends on the ability of the heart to promote regeneration and prevent adverse ventricular remodeling. Preclinical research demonstrated that the transplantation of healthy stem cells restored heart function, but the stem cells obtained from older animals or patients were not as efficacious as those from younger individuals. In this paper, we review the successes and limitations discovered in preclinical studies and clinical trials examining cell therapy for damaged hearts. After the modest successes of the early clinical trials, research is now exploring the benefits of enhanced stem cell therapy. Cell based gene therapy markedly improves the angiogenesis achieved. Rejuvenating aged stems cells prior to transplantation restores the functional benefits attained. Transplanting healthy allogeneic stem cells from young donors into aged individuals can restore function if rejection can be prevented. Finally, modulating the cellular environment in aged individuals permits the full functional benefits of stem cell therapy to be realized. Significant challenges remain, but these approaches show promise that cell therapy may become routine therapy to improve functional recovery of older patients after an extensive myocardial infarction.
Collapse
Affiliation(s)
- Nathan C Ni
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.; Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.; Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Richard D Weisel
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.; Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada..
| |
Collapse
|
94
|
Zaher W, Harkness L, Jafari A, Kassem M. An update of human mesenchymal stem cell biology and their clinical uses. Arch Toxicol 2014; 88:1069-82. [PMID: 24691703 DOI: 10.1007/s00204-014-1232-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/18/2014] [Indexed: 12/13/2022]
Abstract
In the past decade, an increasing urge to develop new and novel methods for the treatment of degenerative diseases where there is currently no effective therapy has lead to the emerging of the cell therapy or cellular therapeutics approach for the management of those conditions where organ functions are restored through transplantation of healthy and functional cells. Stem cells, because of their nature, are currently considered among the most suitable cell types for cell therapy. There are an increasing number of studies that have tested the stromal stem cell functionality both in vitro and in vivo. Consequently, stromal (mesenchymal) stem cells (MSCs) are being introduced into many clinical trials due to their ease of isolation and efficacy in treating a number of disease conditions in animal preclinical disease models. The aim of this review is to revise MSC biology, their potential translation in therapy, and the challenges facing their adaptation in clinical practice.
Collapse
Affiliation(s)
- Walid Zaher
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital, University of Southern Denmark, 5000, Odense C, Denmark
| | | | | | | |
Collapse
|
95
|
Guo L, Ge J, Zhou Y, Wang S, Zhao RCH, Wu Y. Three-dimensional spheroid-cultured mesenchymal stem cells devoid of embolism attenuate brain stroke injury after intra-arterial injection. Stem Cells Dev 2014; 23:978-89. [PMID: 24341685 DOI: 10.1089/scd.2013.0338] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The therapeutic effect of mesenchymal stem cells (MSCs) in tissue repair/regeneration is substantially dampened by the loss of primitive properties and poor engraftment to target organs. In this study, the multipotency and cell sizes of human MSCs, which had been expanded in monolayer culture for several passages, were dramatically restored after an episode of three-dimensional (3D) spheroid culture. Unlike MSCs derived from monolayer, which caused embolism and blindness, MSCs derived from 3D spheroids did not cause vascular obstructions, after intra-carotid artery infusion in rats. Importantly, intra-carotid infusion of 1 million 3D spheroid MSCs in rats 24 h after middle cerebral artery occlusion and reperfusion resulted in engraftment of the cells into the lesion and significant (over 70%) reduction of infarct size along with restoration of neurologic function. Moreover, the enhanced effect of spheroid MSCs was coincided with significantly increased differentiation of the MSCs into neurons and markedly increased number of endogenous glial fibrillary acidic protein-positive neural progenitors in the peri-infarct boundary zone. However, the similarly administered monolayer MSCs resulted in a modest functional improvement. Our results suggest that 3D MSCs, in combination with intra-carotid delivery, may represent a novel therapeutic approach of MSCs for stroke.
Collapse
Affiliation(s)
- Ling Guo
- 1 The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University , Shenzhen, China
| | | | | | | | | | | |
Collapse
|
96
|
Flenkenthaler F, Windschüttl S, Fröhlich T, Schwarzer JU, Mayerhofer A, Arnold GJ. Secretome Analysis of Testicular Peritubular Cells: A Window into the Human Testicular Microenvironment and the Spermatogonial Stem Cell Niche in Man. J Proteome Res 2014; 13:1259-69. [DOI: 10.1021/pr400769z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Florian Flenkenthaler
- Laboratory
for Functional Genome Analysis LAFUGA, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie Windschüttl
- Anatomy
III - Cell Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Fröhlich
- Laboratory
for Functional Genome Analysis LAFUGA, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Artur Mayerhofer
- Anatomy
III - Cell Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Georg J. Arnold
- Laboratory
for Functional Genome Analysis LAFUGA, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
97
|
Bian XH, Zhou GY, Wang LN, Ma JF, Fan QL, Liu N, Bai Y, Guo W, Wang YQ, Sun GP, He P, Yang X, Su XS, Du F, Zhao GF, Miao JN, Ma L, Zheng LQ, Li DT, Feng JM. The role of CD44-hyaluronic acid interaction in exogenous mesenchymal stem cells homing to rat remnant kidney. Kidney Blood Press Res 2014; 38:11-20. [PMID: 24503496 DOI: 10.1159/000355749] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The aim of our study was to reveal the role of CD44-Hyaluronic acid (HA) in the homing and improving renal function of systemically transplanted MSCs in chronic renal failure. METHODS First, a remnant kidney model was established in rats and the expression of HA was determined using immunohistochemistry (IHC) and western blotting. Next, chemotaxis assay using flow cytometry, and cell migration assay of MSCs were performed in vitro. Then, MSCs were transplanted into rats, thus, sprague-Dawley (SD) rats were randomly divided into sham group, 5/6 nephrectomy (5/6 Nx) group, MSC group and MSC/Anti-CD44 group (n = 8 for all groups). Migration of MSCs to the kidney in these rats was assessed by using cell tracking experiments, and tissue damage was evaluated by morphological analysis using Masson's trichrome staining and periodic acid Schiff staining. RESULTS HA was significantly observed in 5/6 Nx group, but not in sham group. Meanwhile, HA was discovered induced MSCs migration remarkably (p < 0.05) and anti-CD44 antibody inhibited the migration significantly (p < 0.05) in vitro. In vivo, the GFP-MSCs were observed in MSC group and the cells reduced in MSC/Anti-CD44 groups, especially, in the tubulointerstitium. CONCLUSION Our findings reveal that CD44-HA has the potential to induce MSCs homing to injured tissue, while its effect on the ability of MSCs, improving tissue function, is not significant.
Collapse
Affiliation(s)
- Xiao-Hui Bian
- Departments of Nephrology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Liehn EA, Radu E, Schuh A. Chemokine contribution in stem cell engraftment into the infarcted myocardium. Curr Stem Cell Res Ther 2014; 8:278-83. [PMID: 23547962 PMCID: PMC3782704 DOI: 10.2174/1574888x11308040003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/23/2012] [Accepted: 03/31/2013] [Indexed: 02/06/2023]
Abstract
Modern life styles have made cardiovascular disease the leading cause of morbidity and mortality worldwide. Although current treatments substantially ameliorate patients’ prognosis after MI, they cannot restore the affected tissue or entirely re-establish organ function. Therefore, the main goal of modern cardiology should be to design strategies to reduce myocardial necrosis and optimize cardiac repair following MI. Cell-based therapy was considered a novel and potentially new strategy in regenerative medicine; however, its clinical implementation has not yielded the expected results. Chemokines seem to increase the efficiency of cell-therapy and may represent a reliable method to be exploited in the future. This review surveys current knowledge of cell therapy and highlights key insights into the role of chemokines in stem cell engraftment in infarcted myocardium and their possible clinical implications.
Collapse
Affiliation(s)
- Elisa A Liehn
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Germany.
| | | | | |
Collapse
|
99
|
Hart DA. Is Adipocyte Differentiation the Default Lineage for Mesenchymal Stem/Progenitor Cells after Loss of Mechanical Loading? A Perspective from Space Flight and Model Systems. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbise.2014.710079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
100
|
Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:561098. [PMID: 24381939 PMCID: PMC3870125 DOI: 10.1155/2013/561098] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/09/2013] [Accepted: 10/28/2013] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) are currently being investigated in numerous clinical trials of tissue repair and various immunological disorders based on their ability to secrete trophic factors and to modulate inflammatory responses. MSCs have been shown to migrate to sites of injury and inflammation in response to soluble mediators including the chemokine stromal cell-derived factor-(SDF-)1, but during in vitro culture expansion MSCs lose surface expression of key homing receptors particularly of the SDF-1 receptor, CXCR4. Here we review studies on enhancement of SDF-1-directed migration of MSCs with the premise that their improved recruitment could translate to therapeutic benefits. We describe our studies on approaches to increase the CXCR4 expression in in vitro-expanded cord blood-derived MSCs, namely, transfection, using the commercial liposomal reagent IBAfect, chemical treatment with the histone deacetylase inhibitor valproic acid, and exposure to recombinant complement component C1q. These methodologies will be presented in the context of other cell targeting and delivery strategies that exploit pathways involved in MSC migration. Taken together, these findings indicate that MSCs can be manipulated in vitro to enhance their in vivo recruitment and efficacy for tissue repair.
Collapse
|