51
|
Jayadevappa R, Chhatre S, Soukiasian HJ, Murgu S. Outcomes of patients with advanced non-small cell lung cancer and airway obstruction treated with photodynamic therapy and non-photodynamic therapy ablation modalities. J Thorac Dis 2019; 11:4389-4399. [PMID: 31737325 DOI: 10.21037/jtd.2019.04.60] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) patients with central airway obstruction (CAO) may have better survival on systemic therapy if the airway patency is successfully restored by bronchoscopic interventions. It remains unclear which therapeutic bronchoscopic modality [laser, stenting, external beam radiation, brachytherapy and photodynamic therapy (PDT)] used for restoring airway patency positively affects outcomes in these patients. We analyzed the effectiveness of PDT in terms of mortality, and time to subsequent treatments in patients with stage III and IV NSCLC. Methods Study used Surveillance, Epidemiology, and End Results (SEER) Medicare linked data. We categorized NSCLC patients diagnosed between 2000 and 2011 and with stage III and IV, into three treatment groups: PDT + radiation ± chemotherapy, non-PDT ablation therapy + radiation ± chemotherapy, and radiation + chemotherapy. We analyzed all-cause and cause-specific mortality using Cox proportional hazard models with an inverse probability weighted propensity score adjustment. Time to subsequent treatment was analyzed using GLM model. Results For the PDT group, hazard for all-cause and cause-specific mortality was comparable to the radiation + chemotherapy group (HR =1.03, 95% CI: 0.73-1.45; and HR =1.04, 95% CI: 0.71-1.51, respectively). The non-PDT ablation group had higher hazard for all-cause (HR =1.22, 95% CI: 1.13-1.33) and cause-specific mortality (HR =1.10, 95% CI: 1.01-1.20), compared to the radiation + chemotherapy group. The PDT group had longer time to follow-up treatment, compared to non-PDT ablation group. Conclusions In our exploratory study of stage III and IV NSCLC patients with CAO, addition of PDT demonstrated hazard of mortality comparable to radiation + chemotherapy group. However, addition of non-PDT ablation showed higher mortality compared to the radiation + chemotherapy group. Future studies should investigate the efficacy and effectiveness of multimodal therapy including radiation, chemo, immunotherapy and bronchoscopic interventions.
Collapse
Affiliation(s)
- Ravishankar Jayadevappa
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, USA.,Division of Urology, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA
| | - Sumedha Chhatre
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
52
|
Inhibition of breast cancer proliferation and metastasis by strengthening host immunity with a prolonged oxygen-generating phototherapy hydrogel. J Control Release 2019; 309:82-93. [DOI: 10.1016/j.jconrel.2019.07.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/10/2019] [Accepted: 07/20/2019] [Indexed: 01/07/2023]
|
53
|
Zhikhoreva AA, Belashov AV, Gorbenko DA, Avdonkina NA, Baldueva IA, Danilova AB, Gelfond ML, Nekhaeva TL, Semenova IV, Vasyutinskii OS. Morphological Changes in Malignant Tumor Cells at Photodynamic Treatment Assessed by Digital Holographic Microscopy. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2019. [DOI: 10.1134/s1990793119030242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
54
|
Ji J, Wang P, Zhou Q, Zhu L, Zhang H, Zhang Y, Zheng Z, Bhatta AK, Zhang G, Wang X. CCL8 enhances sensitivity of cutaneous squamous cell carcinoma to photodynamic therapy by recruiting M1 macrophages. Photodiagnosis Photodyn Ther 2019; 26:235-243. [DOI: 10.1016/j.pdpdt.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/09/2023]
|
55
|
Manda G, Hinescu ME, Neagoe IV, Ferreira LF, Boscencu R, Vasos P, Basaga SH, Cuadrado A. Emerging Therapeutic Targets in Oncologic Photodynamic Therapy. Curr Pharm Des 2019; 24:5268-5295. [DOI: 10.2174/1381612825666190122163832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
Abstract
Background:Reactive oxygen species sustain tumorigenesis and cancer progression through deregulated redox signalling which also sensitizes cancer cells to therapy. Photodynamic therapy (PDT) is a promising anti-cancer therapy based on a provoked singlet oxygen burst, exhibiting a better toxicological profile than chemo- and radiotherapy. Important gaps in the knowledge on underlining molecular mechanisms impede on its translation towards clinical applications.Aims and Methods:The main objective of this review is to critically analyse the knowledge lately gained on therapeutic targets related to redox and inflammatory networks underlining PDT and its outcome in terms of cell death and resistance to therapy. Emerging therapeutic targets and pharmaceutical tools will be documented based on the identified molecular background of PDT.Results:Cellular responses and molecular networks in cancer cells exposed to the PDT-triggered singlet oxygen burst and the associated stresses are analysed using a systems medicine approach, addressing both cell death and repair mechanisms. In the context of immunogenic cell death, therapeutic tools for boosting anti-tumor immunity will be outlined. Finally, the transcription factor NRF2, which is a major coordinator of cytoprotective responses, is presented as a promising pharmacologic target for developing co-therapies designed to increase PDT efficacy.Conclusion:There is an urgent need to perform in-depth molecular investigations in the field of PDT and to correlate them with clinical data through a systems medicine approach for highlighting the complex biological signature of PDT. This will definitely guide translation of PDT to clinic and the development of new therapeutic strategies aimed at improving PDT.
Collapse
Affiliation(s)
| | | | | | - Luis F.V. Ferreira
- CQFM-Centro de Fisica Molecular and IN-Institute for Nanosciences and Nanotechnologies and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - Paul Vasos
- Research Centre of the University of Bucharest, Bucharest, Romania
| | - Selma H. Basaga
- Molecular Biology Genetics & Program, Faculty of Engineering & Natural Sciences, Sabanci University, Istanbul, Turkey
| | | |
Collapse
|
56
|
Lee ES, Shin JM, Son S, Ko H, Um W, Song SH, Lee JA, Park JH. Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Adv Healthc Mater 2019; 8:e1801320. [PMID: 30666822 DOI: 10.1002/adhm.201801320] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy has emerged as a promising approach to treat cancer, since it facilitates eradication of cancer by enhancing innate and/or adaptive immunity without using cytotoxic drugs. Of the immunotherapeutic approaches, significant clinical potentials are shown in cancer vaccination, immune checkpoint therapy, and adoptive cell transfer. Nevertheless, conventional immunotherapies often involve immune-related adverse effects, such as liver dysfunction, hypophysitis, type I diabetes, and neuropathy. In an attempt to address these issues, polymeric nanomedicines are extensively investigated in recent years. In this review, recent advances in polymeric nanomedicines for cancer immunotherapy are highlighted and thoroughly discussed in terms of 1) antigen presentation, 2) activation of antigen-presenting cells and T cells, and 3) promotion of effector cells. Also, the future perspectives to develop ideal nanomedicines for cancer immunotherapy are provided.
Collapse
Affiliation(s)
- Eun Sook Lee
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jung Min Shin
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Soyoung Son
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Hyewon Ko
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Wooram Um
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Seok Ho Song
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Ah Lee
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Hyung Park
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| |
Collapse
|
57
|
Monro S, Colón KL, Yin H, Roque J, Konda P, Gujar S, Thummel RP, Lilge L, Cameron CG, McFarland SA. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chem Rev 2019; 119:797-828. [PMID: 30295467 PMCID: PMC6453754 DOI: 10.1021/acs.chemrev.8b00211] [Citation(s) in RCA: 813] [Impact Index Per Article: 162.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transition metal complexes are of increasing interest as photosensitizers in photodynamic therapy (PDT) and, more recently, for photochemotherapy (PCT). In recent years, Ru(II) polypyridyl complexes have emerged as promising systems for both PDT and PCT. Their rich photochemical and photophysical properties derive from a variety of excited-state electronic configurations accessible with visible and near-infrared light, and these properties can be exploited for both energy- and electron-transfer processes that can yield highly potent oxygen-dependent and/or oxygen-independent photobiological activity. Selected examples highlight the use of rational design in coordination chemistry to control the lowest-energy triplet excited-state configurations for eliciting a particular type of photoreactivity for PDT and/or PCT effects. These principles are also discussed in the context of the development of TLD1433, the first Ru(II)-based photosensitizer for PDT to enter a human clinical trial. The design of TLD1433 arose from a tumor-centered approach, as part of a complete PDT package that includes the light component and the protocol for treating non-muscle invasive bladder cancer. Briefly, this review summarizes the challenges to bringing PDT into mainstream cancer therapy. It considers the chemical and photophysical solutions that transition metal complexes offer, and it puts into context the multidisciplinary effort needed to bring a new drug to clinical trial.
Collapse
Affiliation(s)
- Susan Monro
- Department of Chemistry, Acadia University, Wolfville, Nova
Scotia B4P 2R6, Canada
| | - Katsuya L. Colón
- Department of Chemistry and Biochemistry, The University of
North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Huimin Yin
- Department of Chemistry, Acadia University, Wolfville, Nova
Scotia B4P 2R6, Canada
| | - John Roque
- Department of Chemistry and Biochemistry, The University of
North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie
University Halifax, Nova Scotia, Canada B3H 1X5
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie
University Halifax, Nova Scotia, Canada B3H 1X5
- Department of Pathology, Dalhousie University, Halifax,
Nova Scotia, Canada B3H 1X5
- Department of Biology, Dalhousie University, Halifax, Nova
Scotia, Canada B3H 1X5
- Centre for Innovative and Collaborative Health Services
Research, IWK Health Centre, Halifax, Nova Scotia, Canada B3K 6R8
| | - Randolph P. Thummel
- Department of Chemistry, University of Houston, Houston,
Texas 77204-5003, United States
| | - Lothar Lilge
- Princess Margaret Cancer Centre, University Health Network,
101 College Street, Toronto, Ontario, Canada M6R1Z7
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of
North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Sherri A. McFarland
- Department of Chemistry, Acadia University, Wolfville, Nova
Scotia B4P 2R6, Canada
- Department of Chemistry and Biochemistry, The University of
North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
- Department of Pathology, Dalhousie University, Halifax,
Nova Scotia, Canada B3H 1X5
| |
Collapse
|
58
|
Davis RW, Snyder E, Miller J, Carter S, Houser C, Klampatsa A, Albelda SM, Cengel KA, Busch TM. Luminol Chemiluminescence Reports Photodynamic Therapy-Generated Neutrophil Activity In Vivo and Serves as a Biomarker of Therapeutic Efficacy. Photochem Photobiol 2018; 95:430-438. [PMID: 30357853 DOI: 10.1111/php.13040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 01/26/2023]
Abstract
Inflammatory cells, most especially neutrophils, can be a necessary component of the antitumor activity occurring after administration of photodynamic therapy. Generation of neutrophil responses has been suggested to be particularly important in instances when the delivered photodynamic therapy (PDT) dose is insufficient. In these cases, the release of neutrophil granules and engagement of antitumor immunity may play an important role in eliminating residual disease. Herein, we utilize in vivo imaging of luminol chemiluminescence to noninvasively monitor neutrophil activation after PDT administration. Studies were performed in the AB12 murine model of mesothelioma, treated with Photofrin-PDT. Luminol-generated chemiluminescence increased transiently 1 h after PDT, followed by a subsequent decrease at 4 h after PDT. The production of luminol signal was not associated with the influx of Ly6G+ cells, but was related to oxidative burst, as an indicator of neutrophil function. Most importantly, greater levels of luminol chemiluminescence 1 h after PDT were prognostic of a complete response at 90 days after PDT. Taken together, this research supports an important role for early activity by Ly6G+ cells in the generation of long-term PDT responses in mesothelioma, and it points to luminol chemiluminescence as a potentially useful approach for preclinical monitoring of neutrophil activation by PDT.
Collapse
Affiliation(s)
- Richard W Davis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emma Snyder
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joann Miller
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shirron Carter
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Cassandra Houser
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Astero Klampatsa
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Steven M Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
59
|
Ao C, Xie J, Wang L, Li S, Li J, Jiang L, Liu H, Zeng K. 5-aminolevulinic acid photodynamic therapy for anal canal condyloma acuminatum: A series of 19 cases and literature review. Photodiagnosis Photodyn Ther 2018; 23:230-234. [PMID: 30224029 DOI: 10.1016/j.pdpdt.2018.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Anal canal condyloma acuminata are common, sexually transmitted lesions, most often caused by the human papillomavirus. The relatively high recurrence rate of anal canal condyloma acuminata can be attributed to the unsuccessful elimination of viruses in areas of subclinical and latent infection. This study aimed to observe and evaluate the effectiveness of 5-aminolevulinic acid-photodynamic therapy combined with monitoring of human papillomavirus load changes in patients with anal canal condyloma acuminata. METHODS A total of 19 patients with anal genital warts were recruited for this study. Firstly, visible warts around the anus were removed. Next, an anoscope examination was performed. Human papillomavirus detection, using real-time polymerase chain reaction assays, was performed before every cycle of treatment. Absorbent cotton rolls soaked with a concentration of 20% 5-aminolevulinic acid were inserted into the anus for 3 h. Finally, photodynamic therapy was applied to the lesions. Each patient required multiple PDT sessions to achieve complete response. RESULTS All patients achieved complete clinical remission one week after the last session of treatment, and human papillomavirus loads decreased significantly. Six months follow-up after completion of therapy, none of the patients had recurrence. CONCLUSIONS 5-aminolevulinic acid-photodynamic therapy is an effective and safe approach for anal canal condyloma acuminata. Dynamic human papillomavirus viral quantitative monitoring can aid in the evaluation of therapeutic effects and lead to better treatment outcomes.
Collapse
Affiliation(s)
- Chunping Ao
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jiajia Xie
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Li Wang
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Songshan Li
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Junpeng Li
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lifen Jiang
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hui Liu
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Kang Zeng
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
60
|
Davis RW, Papasavvas E, Klampatsa A, Putt M, Montaner LJ, Culligan MJ, McNulty S, Friedberg JS, Simone CB, Singhal S, Albelda SM, Cengel KA, Busch TM. A preclinical model to investigate the role of surgically-induced inflammation in tumor responses to intraoperative photodynamic therapy. Lasers Surg Med 2018; 50:440-450. [PMID: 29799130 DOI: 10.1002/lsm.22934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Inflammation is a well-known consequence of surgery. Although surgical debulking of tumor is beneficial to patients, the onset of inflammation in injured tissue may impede the success of adjuvant therapies. One marker for postoperative inflammation is IL-6, which is released as a consequence of surgical injuries. IL-6 is predictive of response to many cancer therapies, and it is linked to various molecular and cellular resistance mechanisms. The purpose of this study was to establish a murine model by which therapeutic responses to photodynamic therapy (PDT) can be studied in the context of surgical inflammation. MATERIALS AND METHODS Murine models with AB12 mesothelioma tumors were treated with either surgical resection or sham surgery with tumor incision but no resection. The timing and extent of IL-6 release in the tumor and/or serum was measured using enzyme-linked immunosorbent assay (ELISA) and compared to that measured in the serum of 27 consecutive, prospectively enrolled patients with malignant pleural mesothelioma (MPM) who underwent macroscopic complete resection (MCR). RESULTS MPM patients showed a significant increase in IL-6 at the time MCR was completed. Similarly, IL-6 increased in the tumor and serum of mice treated with surgical resections. However, investigations that combine resection with another therapy make it necessary to grow tumors for resection to a larger volume than those that receive secondary therapy alone. As the larger size may alter tumor biology independent of the effects of surgical injury, we assessed the tumor incision model. In this model, tumor levels of IL-6 significantly increased after tumor incision. CONCLUSION The tumor incision model induces IL-6 release as is seen in the surgical setting, yet it avoids the limitations of surgical resection models. Potential mechanisms by which surgical induction of inflammation and IL-6 could alter the nature and efficacy of tumor response to PDT are reviewed. These include a wide spectrum of molecular and cellular mechanisms through which surgically-induced IL-6 could change the effectiveness of therapies that are combined with surgery. The tumor incision model can be employed for novel investigations of the effects of surgically-induced, acute inflammation on therapeutic response to PDT (or potentially other therapies). Lasers Surg. Med. 50:440-450, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Richard W Davis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | | | - Astero Klampatsa
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Mary Putt
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Luis J Montaner
- Wistar Institute, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Melissa J Culligan
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Sally McNulty
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Joseph S Friedberg
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Charles B Simone
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Steven M Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
61
|
Srivatsan A, Sen A, Cheruku RR, Missert JR, Durrani FA, Guru K, Pandey RK. Whole body and local hyperthermia enhances the photosensitizing efficacy of 3-[(1'-hexyloxy)ethyl]-3-Devinylpyropheophorbide-a (HPPH). Lasers Surg Med 2018; 50:506-512. [PMID: 29737551 DOI: 10.1002/lsm.22932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2018] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVES In this study, we evaluated the impact of hyperthermia in photosensitizing efficacy of 3-[(1'-hexyloxy)ethyl-3-devinylpyropheophorbide-a (HPPH or Photochlor) for the treatment of cancer by photodynamic therapy (PDT). STUDY DESIGN/MATERIALS AND METHODS The outcome of both whole body hyperthermia (WBH) and local hyperthermia (LH) in combination with HPPH-PDT was determined in BALB/c and nude mice bearing Colon26 and U87 tumors, respectively. LH was performed by using an indigenously designed heating device, that was heated to the required temperature using a circulating water bath. The device which has flexible membrane on one side was placed on skin above the tumor. The temperature of the tumor was monitored using a thermocouple sensor placed on the surface of the tumor capable of measuring the temperature within 0.1°C. Uptake of the photosensitizer in tumors was determined by fluorescence using an IVIS or a Nuance Imaging System. The PDT was performed by exposing the tumors to 665 nm laser loght, (135 J/cm2 , 75 mW/cm2 ) at the maximal uptake time of HPPH. Tumor size was measured daily using vernier calipers. RESULTS The improved PDT efficacy (long-term percentage tumor cure) in combination with hyperthermia is possible due to an increase in tumor-uptake of the photosensitizer (PS), confirmed by in vivo fluorescence imaging and also by increased tumor perfusion and decreased hypoxia as have been reported previously (Sen et al. [2011] Cancer Res. 71:3872-3880 In Vivo. 20:689-695). Interestingly, compared to whole body hyperthermia, the 14 C- HPPH biodistribution data under local hyperthermia showed similar tumor-uptake in BALB/c mice bearing Colon26 tumors, but significantly lower uptake in other organs and in the blood. CONCLUSION Our study demonstrates that both, fever range whole body and local hyperthermia in combination with HPPH-PDT enhances the long-term tumor cure of BALB/c and nude mice implanted with Colon26 and U87 tumors respectively. Lasers Surg. Med. 50:506-512, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Avinash Srivatsan
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, 14263
| | - Arindam Sen
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, 14263
| | - Ravindra R Cheruku
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, 14263
| | - Joseph R Missert
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, 14263
| | - Farukh A Durrani
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, 14263
| | - Khurshid Guru
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York, 14263
| | - Ravindra K Pandey
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, 14263
| |
Collapse
|
62
|
Oh DS, Kim H, Oh JE, Jung HE, Lee YS, Park JH, Lee HK. Intratumoral depletion of regulatory T cells using CD25-targeted photodynamic therapy in a mouse melanoma model induces antitumoral immune responses. Oncotarget 2018; 8:47440-47453. [PMID: 28537894 PMCID: PMC5564577 DOI: 10.18632/oncotarget.17663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/21/2017] [Indexed: 12/24/2022] Open
Abstract
Tumor immunotherapy aims to overcome the immunosuppressive microenvironment within tumors, and various approaches have been developed. Tumor-associated T regulatory cells (Tregs) suppress the activation and expansion of tumor antigen-specific effector T cells, thus, providing a permissive environment for tumor growth. Therefore, optimal strategies need to be established to deplete tumor-infiltrated Tregs because systemic depletion of Tregs can result in reduced anti-tumor effector cells and autoimmunity. Here, to selectively deplete Tregs in tumors, we intratumorally injected anti-CD25 antibodies conjugated to Chlorin e6 (Ce6), a photosensitizer that absorbs light to generate reactive oxygen species. Local depletion of tumor-associated Tregs with photodynamic therapy (PDT) inhibited tumor growth, which was likely due to the altered tumor immune microenvironment that was characterized by increased infiltration of CD8+ effector T cells and the expression of IFN-γ and CD107a, which is a cytolytic granule exocytosis marker in tumor tissues. Furthermore, PDT-induced intratumoral Treg depletion did not influence adaptive immune responses in a murine influenza infection model. Thus, our results show that intratumoral Treg-targeted PDT could specifically modulate tumor microenvironments by depleting Tregs and could be used as a novel cancer immunotherapy technique.
Collapse
Affiliation(s)
- Dong Sun Oh
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
| | - Heegon Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.,KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Hi Eun Jung
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
| | - Yun Soo Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.,KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.,KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
| | - Heung Kyu Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, KAIST, Daejeon, 34141, Republic of Korea.,Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea.,KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
63
|
Pereira NAM, Laranjo M, Pina J, Oliveira ASR, Ferreira JD, Sánchez-Sánchez C, Casalta-Lopes J, Gonçalves AC, Sarmento-Ribeiro AB, Piñeiro M, Seixas de Melo JS, Botelho MF, Pinho E Melo TMVD. Advances on photodynamic therapy of melanoma through novel ring-fused 5,15-diphenylchlorins. Eur J Med Chem 2018; 146:395-408. [PMID: 29407966 DOI: 10.1016/j.ejmech.2017.12.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/14/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
Abstract
The synthesis, photophysical behaviour and photosensitization ability of novel 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine-fused 5,15-diphenylchlorins against melanoma cells are described. All studied chlorins were found to be extremely active against melanoma cell lines A375 showing IC50 values below 20 nM. Furthermore, a dihydroxymethyl diphenylchlorin was identified as an excellent candidate to allow modulating of different types of cell death, apoptosis vs. necrosis, by varying its concentration. This can be explored as a tool to improve the effectiveness of PDT since inflammatory response resulting from necrotic cell death after PDT can activate the antitumor immune response with implications also regarding the vascular damage. This feature combined with very low cytotoxicity against human melanoma cells in the absence of light activation and against human fibroblast HFF-1 cells makes this chlorin a candidate of choice as a photosensitizer for PDT. A comprehensive photophysical investigation including the determination of quantum yields for fluorescence, singlet oxygen sensitization and internal conversion, lifetimes and rate constants of all the excited state deactivation processes has been undertaken.
Collapse
Affiliation(s)
- Nelson A M Pereira
- CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Mafalda Laranjo
- Biophysics Institute, Faculty of Medicine of University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal; CIMAGO-Center of Investigation in Environment, Genetics and Oncobiology, Faculty of Medicine of University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal; iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal
| | - João Pina
- CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Andreia S R Oliveira
- CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - João Dias Ferreira
- Biophysics Institute, Faculty of Medicine of University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal
| | | | - João Casalta-Lopes
- Biophysics Institute, Faculty of Medicine of University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal; CIMAGO-Center of Investigation in Environment, Genetics and Oncobiology, Faculty of Medicine of University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal; Radiation Oncology Department, Coimbra Hospital and Universitary Center, Praceta Mota Pinto, 3000-993 Coimbra, Portugal; iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- CIMAGO-Center of Investigation in Environment, Genetics and Oncobiology, Faculty of Medicine of University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal; Laboratory of Oncobiology and Hematology and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal; iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- CIMAGO-Center of Investigation in Environment, Genetics and Oncobiology, Faculty of Medicine of University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal; Laboratory of Oncobiology and Hematology and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal; iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal
| | - Marta Piñeiro
- CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | | | - Maria Filomena Botelho
- Biophysics Institute, Faculty of Medicine of University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal; CIMAGO-Center of Investigation in Environment, Genetics and Oncobiology, Faculty of Medicine of University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal; iCBR, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-548 Coimbra, Portugal
| | | |
Collapse
|
64
|
Nesi-Reis V, Lera-Nonose DSSL, Oyama J, Silva-Lalucci MPP, Demarchi IG, Aristides SMA, Teixeira JJV, Silveira TGV, Lonardoni MVC. Contribution of photodynamic therapy in wound healing: A systematic review. Photodiagnosis Photodyn Ther 2017; 21:294-305. [PMID: 29289704 DOI: 10.1016/j.pdpdt.2017.12.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE We researched articles that used photodynamic therapy (PDT) for skin wound healing in humans. METHODS The systematic review was conducted through scientific articles that investigated the action of PDT on wound healing in humans, published from July 2005 to March 2017, in the data bases PubMed and LILACS. RESULTS The main types of wound described in selected articles in this review were chronic ulcer and non-melanoma skin cancer. For accomplishing the PDT, second generation of photosensitizing agents with laser or light emitting diode were used. The studies demonstrated that PDT contribute in several ways to the wound healing process: leading to cellular death; reducing or increasing inflammation; stimulating fibroblasts proliferation and, consequently, of collagen and elastin; raising transforming growth factor beta and metalloproteinases. Based on this, PDT provided good results in wound healing process, acting in several steps and accelerating tissue repair. CONCLUSIONS PDT improved healing in many wound models in humans, revealing itself as a promising therapeutic modality for stimulating wound healing and remodelling.
Collapse
Affiliation(s)
- Vanessa Nesi-Reis
- Graduate Program in Health Sciences, Universidade Estadual de Maringá, Avenida Colombo, 5790, Jardim Universitário, CEP 87020-900, Maringá, Paraná, Brazil.
| | | | - Jully Oyama
- Graduate Program in Bioscience and Physiopathology, Universidade Estadual de Maringá, Avenida Colombo, 5790, Jardim Universitário, CEP 87020-900, Maringá, Paraná, Brazil.
| | - Marielle Priscila Paula Silva-Lalucci
- Graduate Program in Bioscience and Physiopathology, Universidade Estadual de Maringá, Avenida Colombo, 5790, Jardim Universitário, CEP 87020-900, Maringá, Paraná, Brazil.
| | - Izabel Galhardo Demarchi
- Departament of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Avenida Colombo, 5790, Jardim Universitário, CEP 87020-900, Maringá, Paraná, Brazil.
| | - Sandra Mara Alessi Aristides
- Departament of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Avenida Colombo, 5790, Jardim Universitário, CEP 87020-900, Maringá, Paraná, Brazil.
| | - Jorge Juarez Vieira Teixeira
- Departament of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Avenida Colombo, 5790, Jardim Universitário, CEP 87020-900, Maringá, Paraná, Brazil.
| | - Thaís Gomes Verzignassi Silveira
- Departament of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Avenida Colombo, 5790, Jardim Universitário, CEP 87020-900, Maringá, Paraná, Brazil.
| | - Maria Valdrinez Campana Lonardoni
- Departament of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Avenida Colombo, 5790, Jardim Universitário, CEP 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|
65
|
Fan W, Yung B, Huang P, Chen X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev 2017; 117:13566-13638. [DOI: 10.1021/acs.chemrev.7b00258] [Citation(s) in RCA: 1059] [Impact Index Per Article: 151.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenpei Fan
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peng Huang
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
66
|
Thong PSP, Lee K, Toh HJ, Dong J, Tee CS, Low KP, Chang PH, Bhuvaneswari R, Tan NC, Soo KC. Early assessment of tumor response to photodynamic therapy using combined diffuse optical and diffuse correlation spectroscopy to predict treatment outcome. Oncotarget 2017; 8:19902-19913. [PMID: 28423634 PMCID: PMC5386732 DOI: 10.18632/oncotarget.15720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/16/2017] [Indexed: 12/30/2022] Open
Abstract
Photodynamic therapy (PDT) of cancer involves the use of a photosensitizer that can be light-activated to eradicate tumors via direct cytotoxicity, damage to tumor vasculature and stimulating the body's immune system. Treatment outcome may vary between individuals even under the same regime; therefore a non-invasive tumor response monitoring system will be useful for personalization of the treatment protocol. We present the combined use of diffuse optical spectroscopy (DOS) and diffuse correlation spectroscopy (DCS) to provide early assessment of tumor response. The relative tissue oxygen saturation (rStO2) and relative blood flow (rBF) in tumors were measured using DOS and DCS respectively before and after PDT with reference to baseline values in a mouse model. In complete responders, PDT-induced decreases in both rStO2 and rBF levels were observed at 3 h post-PDT and the rBF remained low until 48 h post-PDT. Recovery of these parameters to baseline values was observed around 2 weeks after PDT. In partial responders, the rStO2 and rBF levels also decreased at 3 h post PDT, however the rBF values returned toward baseline values earlier at 24 h post-PDT. In contrast, the rStO2 and rBF readings in control tumors showed fluctuations above the baseline values within the first 48 h. Therefore tumor response can be predicted at 3 to 48 h post-PDT. Recovery or sustained decreases in the rBF at 48 h post-PDT corresponded to long-term tumor control. Diffuse optical measurements can thus facilitate early assessment of tumor response. This approach can enable physicians to personalize PDT treatment regimens for best outcomes.
Collapse
Affiliation(s)
| | - Kijoon Lee
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.,Nanyang Technological University, Singapore.,Current address: Daegu Gyeongbuk Institute of Science and Technology, Korea
| | - Hui-Jin Toh
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Jing Dong
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.,Nanyang Technological University, Singapore.,Current address: Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, USA
| | - Chuan-Sia Tee
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Kar-Perng Low
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Pui-Haan Chang
- Division of Medical Sciences, National Cancer Centre, Singapore
| | | | - Ngian-Chye Tan
- Division of Surgical Oncology, National Cancer Centre, Singapore
| | - Khee-Chee Soo
- Division of Medical Sciences, National Cancer Centre, Singapore
| |
Collapse
|
67
|
Smithen DA, Yin H, Beh MHR, Hetu M, Cameron TS, McFarland SA, Thompson A. Synthesis and Photobiological Activity of Ru(II) Dyads Derived from Pyrrole-2-carboxylate Thionoesters. Inorg Chem 2017; 56:4121-4132. [PMID: 28301148 DOI: 10.1021/acs.inorgchem.7b00072] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and characterization of a series of heteroleptic ruthenium(II) dyads derived from pyrrole-2-carboxylate thionoesters are reported. Ligands bearing a conjugated thiocarbonyl group were found to be more reactive toward Ru(II) complexation compared to analogous all-oxygen pyrrole-2-carboxylate esters, and salient features of the resulting complexes were determined using X-ray crystallography, electronic absorption, and NMR spectroscopy. Selected complexes were evaluated for their potential in photobiological applications, whereupon all compounds demonstrated in vitro photodynamic therapy effects in HL-60 and SK-MEL-28 cells, with low nanomolar activities observed, and exhibited some of the largest photocytotoxicity indices to date (>2000). Importantly, the Ru(II) dyads could be activated by relatively soft doses of visible (100 J cm-2, 29 mW cm-2) or red light (100 J cm-2, 34 mW cm-2), which is compatible with therapeutic applications. Some compounds even demonstrated up to five-fold selectivity for malignant cells over noncancerous cells. These complexes were also shown to photocleave, and in some cases unwind, DNA in cell-free experiments. Thus, this new class of Ru(II) dyads has the capacity to interact with and damage biological macromolecules in the cell, making them attractive agents for photodynamic therapy.
Collapse
Affiliation(s)
- Deborah A Smithen
- Department of Chemistry, Dalhousie University , P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Huimin Yin
- Department of Chemistry, Acadia University , 6 University Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Michael H R Beh
- Department of Chemistry, Dalhousie University , P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Marc Hetu
- Department of Chemistry, Acadia University , 6 University Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
| | - T Stanley Cameron
- Department of Chemistry, Dalhousie University , P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sherri A McFarland
- Department of Chemistry, Acadia University , 6 University Avenue, Wolfville, Nova Scotia B4P 2R6, Canada.,Department of Chemistry and Biochemistry, University of North Carolina at Greensboro , 301 McIver Street, Greensboro, North Carolina 27402, United States
| | - Alison Thompson
- Department of Chemistry, Dalhousie University , P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
68
|
van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers (Basel) 2017; 9:cancers9020019. [PMID: 28218708 PMCID: PMC5332942 DOI: 10.3390/cancers9020019] [Citation(s) in RCA: 571] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved cancer therapy, based on a photochemical reaction between a light activatable molecule or photosensitizer, light, and molecular oxygen. When these three harmless components are present together, reactive oxygen species are formed. These can directly damage cells and/or vasculature, and induce inflammatory and immune responses. PDT is a two-stage procedure, which starts with photosensitizer administration followed by a locally directed light exposure, with the aim of confined tumor destruction. Since its regulatory approval, over 30 years ago, PDT has been the subject of numerous studies and has proven to be an effective form of cancer therapy. This review provides an overview of the clinical trials conducted over the last 10 years, illustrating how PDT is applied in the clinic today. Furthermore, examples from ongoing clinical trials and the most recent preclinical studies are presented, to show the directions, in which PDT is headed, in the near and distant future. Despite the clinical success reported, PDT is still currently underutilized in the clinic. We also discuss the factors that hamper the exploration of this effective therapy and what should be changed to render it a more effective and more widely available option for patients.
Collapse
Affiliation(s)
- Demian van Straten
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Vida Mashayekhi
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
| | - Henriette S de Bruijn
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| | - Sabrina Oliveira
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands.
- Pharmaceutics, Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht 3584 CG, The Netherlands.
| | - Dominic J Robinson
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology-Head and Neck Surgery, Erasmus Medical Center, Postbox 204, Rotterdam 3000 CA, The Netherlands.
| |
Collapse
|
69
|
Luo D, Carter KA, Miranda D, Lovell JF. Chemophototherapy: An Emerging Treatment Option for Solid Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600106. [PMID: 28105389 PMCID: PMC5238751 DOI: 10.1002/advs.201600106] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/21/2016] [Indexed: 05/17/2023]
Abstract
Near infrared (NIR) light penetrates human tissues with limited depth, thereby providing a method to safely deliver non-ionizing radiation to well-defined target tissue volumes. Light-based therapies including photodynamic therapy (PDT) and laser-induced thermal therapy have been validated clinically for curative and palliative treatment of solid tumors. However, these monotherapies can suffer from incomplete tumor killing and have not displaced existing ablative modalities. The combination of phototherapy and chemotherapy (chemophototherapy, CPT), when carefully planned, has been shown to be an effective tumor treatment option preclinically and clinically. Chemotherapy can enhance the efficacy of PDT by targeting surviving cancer cells or by inhibiting regrowth of damaged tumor blood vessels. Alternatively, PDT-mediated vascular permeabilization has been shown to enhance the deposition of nanoparticulate drugs into tumors for enhanced accumulation and efficacy. Integrated nanoparticles have been reported that combine photosensitizers and drugs into a single agent. More recently, light-activated nanoparticles have been developed that release their payload in response to light irradiation to achieve improved drug bioavailability with superior efficacy. CPT can potently eradicate tumors with precise spatial control, and further clinical testing is warranted.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Kevin A. Carter
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Dyego Miranda
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| |
Collapse
|
70
|
Dąbrowski JM. Reactive Oxygen Species in Photodynamic Therapy: Mechanisms of Their Generation and Potentiation. ADVANCES IN INORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.adioch.2017.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
71
|
Duan X, Chan C, Guo N, Han W, Weichselbaum RR, Lin W. Photodynamic Therapy Mediated by Nontoxic Core-Shell Nanoparticles Synergizes with Immune Checkpoint Blockade To Elicit Antitumor Immunity and Antimetastatic Effect on Breast Cancer. J Am Chem Soc 2016; 138:16686-16695. [PMID: 27976881 PMCID: PMC5667903 DOI: 10.1021/jacs.6b09538] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An effective, nontoxic, tumor-specific immunotherapy is the ultimate goal in the battle against cancer, especially the metastatic disease. Checkpoint blockade-based immunotherapies have been shown to be extraordinarily effective but benefit only the minority of patients whose tumors have been pre-infiltrated by T cells. Here, we show that Zn-pyrophosphate (ZnP) nanoparticles loaded with the photosensitizer pyrolipid (ZnP@pyro) can kill tumor cells upon irradiation with light directly by inducing apoptosis and/or necrosis and indirectly by disrupting tumor vasculature and increasing tumor immunogenicity. Furthermore, immunogenic ZnP@pyro photodynamic therapy (PDT) treatment sensitizes tumors to checkpoint inhibition mediated by a PD-L1 antibody, not only eradicating the primary 4T1 breast tumor but also significantly preventing metastasis to the lung. The abscopal effects on both 4T1 and TUBO bilateral syngeneic mouse models further demonstrate that ZnP@pyro PDT treatment combined with anti-PD-L1 results in the eradication of light-irradiated primary tumors and the complete inhibition of untreated distant tumors by generating a systemic tumor-specific cytotoxic T cell response. These findings indicate that nanoparticle-mediated PDT can potentiate the systemic efficacy of checkpoint blockade immunotherapies by activating the innate and adaptive immune systems in tumor microenvironment.
Collapse
Affiliation(s)
- Xiaopin Duan
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Christina Chan
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Nining Guo
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Wenbo Han
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, 5758 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
72
|
THE STUDY OF MECHANISMS OF PHOTOINDUCED APOPTOSIS IN THE SKIN MALIGNANT MELANOMA CELL MODEL. BIOMEDICAL PHOTONICS 2016. [DOI: 10.24931/2413-9432-2016-5-3-4-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The results of the experimental study of immune response of human skin malignant melanoma cells Mel 226 on photodynamic exposure are represented in the article. Photoinduced apoptosis of skin malignant melanoma was studied in vitro. The study showed that irradiation with the agent fotoditazin at dose of 0.5–2.5 µg/ml (6 and 10 min exposure 30 min before irradiation; irradiation parameters: wavelength of 662 nm, total light dose from 40 to 60 J/cm2) induced early apoptosis. The increase of the time of laser irradiation significantly accelerates the conversion of photosensitized tumor cells from early to late apoptosis.
Collapse
|
73
|
Boosting Tumor-Specific Immunity Using PDT. Cancers (Basel) 2016; 8:cancers8100091. [PMID: 27782066 PMCID: PMC5082381 DOI: 10.3390/cancers8100091] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/04/2016] [Indexed: 01/06/2023] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment with a long-standing history. It employs the application of nontoxic components, namely a light-sensitive photosensitizer and visible light, to generate reactive oxygen species (ROS). These ROS lead to tumor cell destruction, which is accompanied by the induction of an acute inflammatory response. This inflammatory process sends a danger signal to the innate immune system, which results in activation of specific cell types and release of additional inflammatory mediators. Activation of the innate immune response is necessary for subsequent induction of the adaptive arm of the immune system. This includes the priming of tumor-specific cytotoxic T lymphocytes (CTL) that have the capability to directly recognize and kill cells which display an altered self. The past decades have brought increasing appreciation for the importance of the generation of an adaptive immune response for long-term tumor control and induction of immune memory to combat recurrent disease. This has led to considerable effort to elucidate the immune effects PDT treatment elicits. In this review we deal with the progress which has been made during the past 20 years in uncovering the role of PDT in the induction of the tumor-specific immune response, with special emphasis on adaptive immunity.
Collapse
|
74
|
Yang J, Shen H, Jin H, Lou Q, Zhang X. Treatment of unresectable extrahepatic cholangiocarcinoma using hematoporphyrin photodynamic therapy: A prospective study. Photodiagnosis Photodyn Ther 2016; 16:110-118. [PMID: 27720942 DOI: 10.1016/j.pdpdt.2016.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/25/2016] [Accepted: 10/04/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND The available evidence of Photodynamic therapy (PDT) combined with stent placement treatment for unresectable extrahepatic cholangiocarcinoma (EHCC) is still insufficient. It also remains unclear whether PDT influences systemic inflammatory response. AIM To explore the clinical efficacy and safety of the combination treatment and the systemic inflammatory response in patients with EHCC. METHODS Patients with unresectable EHCC underwent either the combined treatment using Hematoporphyrin PDT and stent placement (PDT+stent group, n=12) or stent-only (stent group, n=27). The primary end-point was overall survival. Tumor necrosis factor (TNF)-α and interleukin (IL)-6 levels were measured. Quality of life was assessed using the Karnofsky performance scale (KPS) every 3 months. RESULTS Average survival time (13.8 vs. 9.6 months), and 6-month (91.7% vs. 74.1%), and 1-year (58.3% vs. 3.7%) survival rates of PDT+stent group were significantly increased compared with the stent group. KPS scores in the PDT+stent group were significantly improved. TNF-α and IL-6 levels were significantly increased in the PDT+stent group. CONCLUSION Hematoporphyrin-PDT combined with stent placement is an effective and safe treatment for EHCC. The treatment might promote systemic inflammatory response.
Collapse
Affiliation(s)
- Jianfeng Yang
- Department of Gastroenterology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang Province, China
| | - Hongzhang Shen
- Department of Gastroenterology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang Province, China
| | - Hangbin Jin
- Department of Gastroenterology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang Province, China
| | - Qifeng Lou
- Department of Gastroenterology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
75
|
Dąbrowski JM, Pucelik B, Regiel-Futyra A, Brindell M, Mazuryk O, Kyzioł A, Stochel G, Macyk W, Arnaut LG. Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
76
|
Madsen S. Photochemical internalisation for solid malignancies. Lancet Oncol 2016; 17:1173-4. [DOI: 10.1016/s1470-2045(16)30274-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022]
|
77
|
Improvement of DC vaccine with ALA-PDT induced immunogenic apoptotic cells for skin squamous cell carcinoma. Oncotarget 2016; 6:17135-46. [PMID: 25915530 PMCID: PMC4627297 DOI: 10.18632/oncotarget.3529] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/08/2015] [Indexed: 02/07/2023] Open
Abstract
Dendritic cell (DC) based vaccines have emerged as a promising immunotherapy for cancers. However, most DC vaccines so far have achieved only limited success in cancer treatment. Photodynamic therapy (PDT), an established cancer treatment strategy, can cause immunogenic apoptosis to induce an effective antitumor immune response. In this study, we developed a DC-based cancer vaccine using immunogenic apoptotic tumor cells induced by 5-aminolevulinic acid (ALA) mediated PDT. The maturation of DCs induced by PDT-treated apoptotic cells was evaluated using electron microscopy, FACS, and ELISA. The anti-tumor immunity of ALA-PDT-DC vaccine was tested with a mouse model. We observed the maturations of DCs potentiated by ALA-PDT treated tumor cells, including morphology maturation (enlargement of dendrites and increase of lysosomes), phenotypic maturation (upregulation of surface expression of MHC-II, DC80, and CD86), and functional maturation (enhanced capability to secrete IFN-γ and IL-12, and to induce T cell proliferation). Most interestingly, PDT-induced apoptotic tumor cells are more capable of potentiating maturation of DCs than PDT-treated or freeze/thaw treated necrotic tumor cells. ALA-PDT-DC vaccine mediated by apoptotic cells provided protection against tumors in mice, far stronger than that of DC vaccine obtained from freeze/thaw treated tumor cells. Our results indicate that immunogenic apoptotic tumor cells can be more effective in enhancing a DC-based cancer vaccine, which could improve the clinical application of PDT-DC vaccines.
Collapse
|
78
|
Hylander BL, Repasky EA. Thermoneutrality, Mice, and Cancer: A Heated Opinion. Trends Cancer 2016; 2:166-175. [PMID: 28741570 DOI: 10.1016/j.trecan.2016.03.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/31/2022]
Abstract
The 'mild' cold stress caused by standard sub-thermoneutral housing temperatures used for laboratory mice in research institutes is sufficient to significantly bias conclusions drawn from murine models of several human diseases. We review the data leading to this conclusion, discuss the implications for research and suggest ways to reduce problems in reproducibility and experimental transparency caused by this housing variable. We have found that these cool temperatures suppress endogenous immune responses, skewing tumor growth data and the severity of graft versus host disease, and also increase the therapeutic resistance of tumors. Owing to the potential for ambient temperature to affect energy homeostasis as well as adrenergic stress, both of which could contribute to biased outcomes in murine cancer models, housing temperature should be reported in all publications and considered as a potential source of variability in results between laboratories. Researchers and regulatory agencies should work together to determine whether changes in housing parameters would enhance the use of mouse models in cancer research, as well as for other diseases. Finally, for many years agencies such as the National Cancer Institute (NCI) have encouraged the development of newer and more sophisticated mouse models for cancer research, but we believe that, without an appreciation of how basic murine physiology is affected by ambient temperature, even data from these models is likely to be compromised.
Collapse
Affiliation(s)
- Bonnie L Hylander
- Roswell Park Cancer Institute, Department of Immunology, Elm and Carlton Streets, Buffalo, NY 14263-0001, USA
| | - Elizabeth A Repasky
- Roswell Park Cancer Institute, Department of Immunology, Elm and Carlton Streets, Buffalo, NY 14263-0001, USA.
| |
Collapse
|
79
|
Immunological aspects of antitumor photodynamic therapy outcome. Cent Eur J Immunol 2016; 40:481-5. [PMID: 26862314 PMCID: PMC4737746 DOI: 10.5114/ceji.2015.56974] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/16/2015] [Indexed: 12/03/2022] Open
Abstract
Photodynamic therapy (PDT) of cancer is an efficient and promising therapeutic modality approved for the treatment of several types of tumors and non-malignant diseases. It involves administration of a non-toxic photosensitizer followed by illumination of the tumor site with a harmless visible light. A light activated photosensitizer can transfer its energy directly to molecular oxygen, leading to production of highly toxic reactive oxygen species (ROS). Antitumor effects of PDT result from the combination of three independent mechanisms involving direct cytotoxicity to tumor cells, destruction of tumor vasculature and induction of the acute local inflammatory response. PDT-mediated inflammatory reaction is accompanied by tumor infiltration of the leukocytes, enhanced production of pro-inflammatory factors and cytokines. Photodynamic therapy is able to effectively stimulate both the innate and the adaptive arm of the immune system. In consequence, this regimen can lead to development of systemic and specific antitumor immune response. However, there are limited studies suggesting that under some specific circumstances, PDT on its own may exert some immunosuppressive effects leading to activation of immunosuppressive cells or cytokines production. In this report we briefly review all immunological aspects of PDT treatment.
Collapse
|
80
|
Abstract
Introduction: Nonmuscle invasive urothelial cell carcinoma is the most frequent malignancy of the urinary bladder. The high recurrence rate (up to 80%) and risk of progression (up to 30%) reflect the need for long-term follow-up and sometimes multiple interventions. To reduce the rate of recurrences and tumor progression, intravesical immunotherapy, especially the use of Bacille Calmette-Guerin (BCG), represents the gold standard adjuvant treatment of high-risk nonmuscle invasive bladder cancer (NMIBC). This article reviews the role of BCG therapy and several promising new immunotherapeutic approaches such as mycobacterium phlei cell wall-nucleic acid complex, interleukin-10 (IL-10) antibody, vaccine-based therapy, alpha-emitter therapy, and photodynamic therapy checkpoint inhibitors. Methods: A systematic literature review was performed using the terms (immunotherapy, NMIBC, BCG, and intravesical) using PubMed and Cochrane databases. Results: BCG represents the most common intravesical immunotherapeutic agent for the adjuvant treatment of high-risk NMIBC. Its use is associated with a significant reduction of recurrence and progression. Patients with NMIBC of intermediate and high-risk benefit the most from BCG therapy. To achieve maximal efficacy, an induction therapy followed by a maintenance schedule should be used. Full-dose BCG is recommended to obtain ideal antitumoral activity and there is no evidence of a reduction of side effects in patients treated with a reduced dose. There are multiple new approaches and agents in immunotherapy with potential and promising antineoplastic effects. Conclusions: The beneficial effect of BCG is well documented and established. To reduce the tumor specific mortality, it is essential to follow guideline-based treatment. In patients with BCG-failure, there are new promising alternatives other than BCG but BCG remains the gold standard at this stage.
Collapse
|
81
|
Kleinovink JW, van Driel PB, Snoeks TJ, Prokopi N, Fransen MF, Cruz LJ, Mezzanotte L, Chan A, Löwik CW, Ossendorp F. Combination of Photodynamic Therapy and Specific Immunotherapy Efficiently Eradicates Established Tumors. Clin Cancer Res 2015; 22:1459-68. [DOI: 10.1158/1078-0432.ccr-15-0515] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/16/2015] [Indexed: 11/16/2022]
|
82
|
Evaluation of the effects of systemic photodynamic therapy in a rat model of acute myeloid leukemia. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:13-9. [PMID: 26386623 DOI: 10.1016/j.jphotobiol.2015.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 11/21/2022]
Abstract
Systemic PDT (SPDT) approach is developed to treat a variety of hematological diseases, including cancers and blood-borne infections. We evaluated the efficacy of an SPDT method for treating leukemia using a Brown Norway myeloid leukemia (BNML) rat model with the LT12 cells engineered to express GFP. The survival times of animals receiving SPDT at 5 (early-SPDT) and 10 (mid-SPDT) days post-LT12 injection were prolonged by 2 days, the rats in the late-SPDT group (15 days) exhibited a 6-day increase in life span (p<0.05). The percentages of GFP-LT12 cells in the bone marrow of the late-SPDT rats decreased from 61.6% to 56.5% on day 17. Likewise, there was a decrease in the serum expression levels of IL-1β, IL-10, TNF-α, and IFN-γ in the late-SPDT rats (p<0.05). Our findings indicate that SPDT could be an effective method for the treatment of leukemia, and that antitumor immunity may play a key role in this process.
Collapse
|
83
|
Anzengruber F, Avci P, de Freitas LF, Hamblin MR. T-cell mediated anti-tumor immunity after photodynamic therapy: why does it not always work and how can we improve it? Photochem Photobiol Sci 2015; 14:1492-1509. [PMID: 26062987 PMCID: PMC4547550 DOI: 10.1039/c4pp00455h] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) uses the combination of non-toxic photosensitizers and harmless light to generate reactive oxygen species that destroy tumors by a combination of direct tumor cell killing, vascular shutdown, and activation of the immune system. It has been shown in some animal models that mice that have been cured of cancer by PDT, may exhibit resistance to rechallenge. The cured mice can also possess tumor specific T-cells that recognize defined tumor antigens, destroy tumor cells in vitro, and can be adoptively transferred to protect naïve mice from cancer. However, these beneficial outcomes are the exception rather than the rule. The reasons for this lack of consistency lie in the ability of many tumors to suppress the host immune system and to actively evade immune attack. The presence of an appropriate tumor rejection antigen in the particular tumor cell line is a requisite for T-cell mediated immunity. Regulatory T-cells (CD25+, Foxp3+) are potent inhibitors of anti-tumor immunity, and their removal by low dose cyclophosphamide can potentiate the PDT-induced immune response. Treatments that stimulate dendritic cells (DC) such as CpG oligonucleotide can overcome tumor-induced DC dysfunction and improve PDT outcome. Epigenetic reversal agents can increase tumor expression of MHC class I and also simultaneously increase expression of tumor antigens. A few clinical reports have shown that anti-tumor immunity can be generated by PDT in patients, and it is hoped that these combination approaches may increase tumor cures in patients.
Collapse
Affiliation(s)
- Florian Anzengruber
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Pinar Avci
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Dermatooncology and Venerology, Semmelweis University School of Medicine, Budapest, 1085, Hungary
| | - Lucas Freitas de Freitas
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Programa de Pos Graduacao Interunidades Bioengenharia – USP – Sao Carlos, Brazil
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Correspondence to: Michael R Hamblin, PhD, Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02114, USA.
| |
Collapse
|
84
|
Srivatsan A, Missert JR, Upadhyay SK, Pandey RK. Porphyrin-based photosensitizers and the corresponding multifunctional nanoplatforms for cancer-imaging and phototherapy. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424615300037] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This review article briefly describes: (a) the advantages in developing multifunctional nanoparticles for cancer-imaging and therapy, (b) the advantages and limitations of most of the porphyrin-based compounds in fluorescence imaging and photodynamic therapy (PDT), (c) problems associated with current Food and Drug Administration (FDA) approved photosensitizers, (d) challenges in developing in vivo target-specific PDT agents, (e) development of porphyrin-based nuclear-imaging agents (PET, SPECT) with an option of PDT, (f) the importance of light dosimetry in PDT, (g) the role of whole body or local hyperthermia in enhancing tumor-uptake, tumor-imaging and phototherapy and finally, (h) the advantages of photosensitizer-gold nanocages (Ps- Au NC) in photoacoustic and PDT.
Collapse
Affiliation(s)
- Avinash Srivatsan
- Department of Molecular Pharmacology and Cancer Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Joseph R. Missert
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | - Ravindra K. Pandey
- Department of Molecular Pharmacology and Cancer Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
85
|
Hillemanns P, Garcia F, Petry KU, Dvorak V, Sadovsky O, Iversen OE, Einstein MH. A randomized study of hexaminolevulinate photodynamic therapy in patients with cervical intraepithelial neoplasia 1/2. Am J Obstet Gynecol 2015; 212:465.e1-7. [PMID: 25467012 DOI: 10.1016/j.ajog.2014.10.1107] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/09/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The objective of the study was to investigate the efficacy and safety of hexaminolevulinate (HAL) photodynamic therapy (PDT), a novel therapy for women with cervical intraepithelial neoplasia (CIN)1/2, to define the appropriate population and endpoints for a phase 3 program. STUDY DESIGN This was a double-blind, randomized, placebo-controlled, dose-finding study that included a total of 262 women with biopsy-confirmed CIN 1/2 based on local pathology. Patients received 1 or 2 topical treatments of HAL hydrochloride 0.2%, 1%, 5%, and placebo ointment and were evaluated for response after 3-6 months based on biopsy, Papanicolaou test, and oncogenic human papillomavirus (HPV) test. All efficacy analyses were performed on blinded central histology review to avoid interreader variability. Adverse events, blood biochemistry, and vital signs were assessed after 3 months. RESULTS There were no statistically significant differences between placebo and either the CIN 1 or combined CIN 1/2 populations. A clear dose effect with a statistically significant response in the HAL 5% group of 95% (18/19 patients) compared to 57% (12/21 patients) in the placebo group (P < .001) was observed at 3 months in women with CIN 2, including an encouraging 83% (5/6 patients) clearance of HPV 16/18 compared to 33% (2/6 patients) in the placebo group at 6 months. The treatment was easy to use and well accepted by patients and gynecologists. Only local self-limiting adverse reactions including discharge, discomfort, and spotting were reported. CONCLUSION HAL PDT is a novel therapy that shows promise in the treatment of CIN 2 including clearance of oncogenic HPV, but not of CIN 1. The positive risk/benefit balance makes HAL PDT a tissue-preserving alternative in women of childbearing age who wish to preserve the cervix. Confirmatory studies are planned.
Collapse
|
86
|
Ryu JW, Kim YS. A case of advanced malignant pleural mesothelioma treatment with chemotherapy and photodynamic therapy. Tuberc Respir Dis (Seoul) 2015; 78:36-40. [PMID: 25653696 PMCID: PMC4311034 DOI: 10.4046/trd.2015.78.1.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive, treatment-resistant, and generally fatal disease. A 68-year-old male who was diagnosed with MPM at another hospital came to our hospital with dyspnea. We advised him to take combination chemotherapy but he refused to take the treatment. That was because he had already received chemotherapy with supportive care at another hospital but his condition worsened. Thus, we recommended photodynamic therapy (PDT) to deal with the dyspnea and MPM. After PDT, the dyspnea improved and the patient then decided to take the combination chemotherapy. Our patient received chemotherapy using pemetrexed/cisplatin. Afterwards, he received a single PDT treatment and then later took chemotherapy using gemcitabine/cisplatin. The patient showed a survival time of 27 months, which is longer than median survival time in advanced MPM patients. Further research and clinical trials are needed to demonstrate any synergistic effect between the combination chemotherapy and PDT.
Collapse
Affiliation(s)
- Jae-Wook Ryu
- Department of Thoracic and Cardiovascular Surgery, Dankook University College of Medicine, Cheonan, Korea
| | - Youn Seup Kim
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
87
|
Dąbrowski JM, Arnaut LG. Photodynamic therapy (PDT) of cancer: from local to systemic treatment. Photochem Photobiol Sci 2015. [DOI: 10.1039/c5pp00132c] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) requires a medical device, a photosensitizing drug and adequate use of both to trigger biological mechanisms that can rapidly destroy the primary tumour and provide long-lasting protection against metastasis.
Collapse
Affiliation(s)
| | - Luis G. Arnaut
- Chemistry Department
- University of Coimbra
- 3004-535 Coimbra
- Portugal
- Luzitin SA
| |
Collapse
|
88
|
Bae BC, Yang SG, Jeong S, Lee DH, Na K, Kim JM, Costamagna G, Kozarek RA, Isayama H, Deviere J, Seo DW, Nageshwar Reddy D. Polymeric photosensitizer-embedded self-expanding metal stent for repeatable endoscopic photodynamic therapy of cholangiocarcinoma. Biomaterials 2014; 35:8487-95. [PMID: 25043500 DOI: 10.1016/j.biomaterials.2014.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/01/2014] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) is a new therapeutic approach for the palliative treatment of malignant bile duct obstruction. In this study, we designed photosensitizer-embedded self-expanding nonvascular metal stent (PDT-stent) which allows repeatable photodynamic treatment of cholangiocarcinoma without systemic injection of photosensitizer. Polymeric photosensitizer (pullulan acetate-conjugated pheophorbide A; PPA) was incorporated in self-expanding nonvascular metal stent. Residence of PPA in the stent was estimated in buffer solution and subcutaneous implantation on mouse. Photodynamic activity of PDT-stent was evaluated through laserexposure on stent-layered tumor cell lines, HCT-116 tumor-xenograft mouse models and endoscopic intervention of PDT-stent on bile duct of mini pigs. Photo-fluorescence imaging of the PDT-stent demonstrated homogeneous embedding of polymeric Pheo-A (PPA) on stent membrane. PDT-stent sustained its photodynamic activities at least for 2 month. And which implies repeatable endoscopic PDT is possible after stent emplacement. The PDT-stent after light exposure successfully generated cytotoxic singlet oxygen in the surrounding tissues, inducing apoptotic degradation of tumor cells and regression of xenograft tumors on mouse models. Endoscopic biliary in-stent photodynamic treatments on minipigs also suggested the potential efficacy of PDT-stent on cholangiocarcinoma. In vivo and in vitro studies revealed our PDT-stent, allows repeatable endoscopic biliary PDT, has the potential for the combination therapy (stent plus PDT) of cholangiocarcinoma.
Collapse
Affiliation(s)
- Byoung-chan Bae
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Su-Geun Yang
- Department of New Drug Development and NCEED, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Seok Jeong
- Division of Gastroenterology, Department of Internal Medicine, Inha University Hospital, Incheon, Republic of Korea
| | - Don Haeng Lee
- Utah-Inha DDS and Advanced Therapeutics, B-404, Meet-You-All Tower, Songdo-dong, Yeonsu-gu, Incheon, Republic of Korea; Division of Gastroenterology, Department of Internal Medicine, Inha University Hospital, Incheon, Republic of Korea; Department of New Drug Development and NCEED, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea.
| | - Joon Mee Kim
- Department of Pathology, Inha University Hospital, Incheon, Republic of Korea
| | - Guido Costamagna
- Digestive Endoscopy Unit, Department of Surgery, Catholic University, Rome, Italy; Department of Radiology, Catholic University, Rome, Italy
| | - Richard A Kozarek
- Digestive Disease Institute, Virginia Mason Medical Center, Seattle, USA
| | - Hiroyuki Isayama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jacques Deviere
- Department of Gastroenterology, Erasme University Hospital, Brussels, Belgium
| | - Dong Wan Seo
- Division of Gastroenterology, Asan Medical Center, Seoul, Republic of Korea
| | - D Nageshwar Reddy
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| |
Collapse
|
89
|
Soumya MS, Shafeekh KM, Das S, Abraham A. Symmetrical diiodinated squaraine as an efficient photosensitizer for PDT applications: Evidence from photodynamic and toxicological aspects. Chem Biol Interact 2014; 222:44-9. [PMID: 25168848 DOI: 10.1016/j.cbi.2014.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 05/22/2014] [Accepted: 08/18/2014] [Indexed: 11/26/2022]
Abstract
Photodynamic therapy (PDT) is emerging as a promising non-invasive treatment for cancers. It involves three key components; a photosensitizer, light and tissue oxygen. Even though several photosensitizers have been investigated for their use in PDT, they have several disadvantages and hence the search for more effective sensitizers has become important in recent years. The dye selected in our study - symmetrical diiodinated benzothiazolium squaraine (SQDI) - is one of the newly developed photosensitizers. The study aimed to evaluate the in vitro cytotoxicity of the dye on Ehrlich's Ascites Carcinoma (EAC) cells and to assess the in vivo toxicity on Swiss Albino mice. The EAC cells were maintained in the peritoneum of mice and used to study the dark toxicity and phototoxicity by Trypan blue dye exclusion method, estimation of Reactive Oxygen Species (ROS), caspase activity and levels of thiobarbituric acid reactive substances (TBARS). The in vitro studies revealed that the dye induces toxicity in the presence of light and mediates cell death. The in vivo part of the study, which dealt with the toxicity evaluation in the body of Swiss Albino mice, was done by analyzing the parameters like serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), lactate dehydrogenase (LDH), creatine kinase (CK) and alkaline phosphatase (ALP). No significant change was observed in the above mentioned parameters in the dye administered group when compared to control. Altogether, this experiment indicates that the SQDI selected for our study may be used as an efficient photosensitizer for PDT applications and does not elicit acute toxicity to normal tissues in the absence of light.
Collapse
Affiliation(s)
- M S Soumya
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Trivandrum 695581, Kerala, India
| | - K M Shafeekh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST CSIR), Industrial Estate P.O., Trivandrum 695019, India
| | - Suresh Das
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST CSIR), Industrial Estate P.O., Trivandrum 695019, India.
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Trivandrum 695581, Kerala, India.
| |
Collapse
|
90
|
Cunderlíková B, Vasovič V, Randeberg LL, Christensen E, Warloe T, Nesland JM, Peng Q. Modification of extracorporeal photopheresis technology with porphyrin precursors. Comparison between 8-methoxypsoralen and hexaminolevulinate in killing human T-cell lymphoma cell lines in vitro. Biochim Biophys Acta Gen Subj 2014; 1840:2702-8. [PMID: 24915603 DOI: 10.1016/j.bbagen.2014.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Extracorporeal photopheresis that exposes isolated white blood cells to 8-methoxypsoralen (8-MOP) and ultraviolet-A (UV-A) light is used for the management of cutaneous T-cell lymphoma and graft-versus-host disease. 8-MOP binds to DNA of both tumor and normal cells, thus increasing the risk of carcinogenesis of normal cells; and also kills both tumor and normal cells with no selectivity after UV-A irradiation. Hexaminolevulinate (HAL)-induced protoporphyrin-IX is a potent photosensitizer that localizes at membranous structures outside of the nucleus of a cell. HAL-mediated photodynamic therapy selectively destroys activated/transformed lymphocytes and induces systemic anti-tumor immunity. The aim of the present study was to explore the possibility of using HAL instead of 8-MOP to kill cells after UV-A exposure. METHODS Human T-cell lymphoma Jurkat and Karpas 299 cell lines were used to evaluate cell photoinactivation after 8-MOP and/or HAL plus UV-A light with cell proliferation and long term survival assays. The mode of cell death was also analyzed by fluorescence microscopy. RESULTS Cell proliferation was decreased by HAL/UV-A, 8-MOP/UV-A or HAL/8-MOP/UV-A. At sufficient doses, the cells were killed by all the regimens; however, the mode of cell death was dependent on the treatment conditions. 8-MOP/UV-A produced apoptotic death exclusively; whereas both apoptosis and necrosis were induced by HAL/UV-A. CONCLUSION 8-MOP can be replaced by HAL to inactivate the Jurkat and Karpas 299 T-cell lymphoma cells after UV-A irradiation via apoptosis and necrosis. This finding may have an impact on improved efficacy of photopheresis.
Collapse
Affiliation(s)
- B Cunderlíková
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; International Laser Centre, Bratislava, Slovakia
| | - V Vasovič
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - L L Randeberg
- Department of Electronics and Telecommunications, Norwegian University of Science and Technology, Trondheim, Norway
| | - E Christensen
- Department of Dermatology, St Olav's University Hospital HF, Trondheim, Norway; Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - T Warloe
- Department of Gastric Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - J M Nesland
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Faculty Division, Medical Faculty, University of Oslo, Oslo, Norway
| | - Q Peng
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Key Laboratory of Micro/Nano Photonics Structure (Ministry of Education), Fudan University, Shanghai, China.
| |
Collapse
|
91
|
Song J, Wei Y, Chen Q, Xing D. Cyclooxygenase 2-mediated apoptotic and inflammatory responses in photodynamic therapy treated breast adenocarcinoma cells and xenografts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 134:27-36. [DOI: 10.1016/j.jphotobiol.2014.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/17/2014] [Accepted: 03/23/2014] [Indexed: 12/22/2022]
|
92
|
Walther J, Schastak S, Dukic-Stefanovic S, Wiedemann P, Neuhaus J, Claudepierre T. Efficient photodynamic therapy on human retinoblastoma cell lines. PLoS One 2014; 9:e87453. [PMID: 24498108 PMCID: PMC3909110 DOI: 10.1371/journal.pone.0087453] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/29/2013] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) has shown to be a promising technique to treat various forms of malignant neoplasia. The photodynamic eradication of the tumor cells is achieved by applying a photosensitizer either locally or systemically and following local activation through irradiation of the tumor mass with light of a specific wavelength after a certain time of incubation. Due to preferential accumulation of the photosensitizer in tumor cells, this procedure allows a selective inactivation of the malignant tumor while sparing the surrounding tissue to the greatest extent. These features and requirements make the PDT an attractive therapeutic option for the treatment of retinoblastoma, especially when surgical enucleation is a curative option. This extreme solution is still in use in case of tumours that are resistant to conventional chemotherapy or handled too late due to poor access to medical care in less advanced country. In this study we initially conducted in-vitro investigations of the new cationic water-soluble photo sensitizer tetrahydroporphyrin-tetratosylat (THPTS) regarding its photodynamic effect on human Rb-1 and Y79 retinoblastoma cells. We were able to show, that neither the incubation with THPTS without following illumination, nor the sole illumination showed a considerable effect on the proliferation of the retinoblastoma cells, whereas the incubation with THPTS combined with following illumination led to a maximal cytotoxic effect on the tumor cells. Moreover the phototoxicity was lower in normal primary cells from retinal pigmented epithelium demonstrating a higher phototoxic effect of THPTS in cancer cells than in this normal retinal cell type. The results at hand form an encouraging foundation for further in-vivo studies on the therapeutic potential of this promising photosensitizer for the eyeball and vision preserving as well as potentially curative therapy of retinoblastoma.
Collapse
Affiliation(s)
- Jan Walther
- Department of Ophthalmology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Stanislas Schastak
- Department of Ophthalmology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | | | - Peter Wiedemann
- Department of Ophthalmology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Jochen Neuhaus
- Department of Urology, University of Leipzig, Leipzig, Germany
| | - Thomas Claudepierre
- Department of Ophthalmology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
93
|
Mitra S, Modi KD, Foster TH. Enzyme-activatable imaging probe reveals enhanced neutrophil elastase activity in tumors following photodynamic therapy. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:101314. [PMID: 23897439 PMCID: PMC3726228 DOI: 10.1117/1.jbo.18.10.101314] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/31/2013] [Accepted: 06/27/2013] [Indexed: 06/02/2023]
Abstract
We demonstrate the use of an enzyme-activatable fluorogenic probe, Neutrophil Elastase 680 FAST (NE680), for in vivo imaging of neutrophil elastase (NE) activity in tumors subjected to photodynamic therapy (PDT). NE protease activity was assayed in SCC VII and EMT6 tumors established in C3H and BALB/c mice, respectively. Four nanomoles of NE680 was injected intravenously immediately following PDT irradiation. 5 h following administration of NE680, whole-mouse fluorescence imaging was performed. At this time point, levels of NE680 fluorescence were at least threefold greater in irradiated versus unirradiated SCC VII and EMT6 tumors sensitized with Photofrin. To compare possible photosensitizer-specific differences in therapy-induced elastase activity, EMT6 tumors were also subjected to 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH)-PDT. NE levels measured in HPPH-PDT-treated tumors were twofold higher than in unirradiated controls. Ex vivo labeling of host cells using fluorophore-conjugated antibodies and confocal imaging were used to visualize Gr1+ cells in Photofrin-PDT-treated EMT6 tumors. These data were compared with recently reported analysis of Gr1+ cell accumulation in EMT6 tumors subjected to HPPH-PDT. The population density of infiltrating Gr1+ cells in treated versus unirradiated drug-only control tumors suggests that the differential in NE680 fold enhancement observed in Photofrin versus HPPH treatment may be attributed to the significantly increased inflammatory response induced by Photofrin-PDT. The in vivo imaging of NE680, which is a fluorescent reporter of NE extracellular release caused by neutrophil activation, demonstrates that PDT results in increased NE levels in treated tumors, and the accumulation of the cleaved probe tracks qualitatively with the intratumor Gr1+ cell population.
Collapse
Affiliation(s)
- Soumya Mitra
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
94
|
Marrache S, Choi JH, Tundup S, Zaver D, Harn DA, Dhar S. Immune stimulating photoactive hybrid nanoparticles for metastatic breast cancer. Integr Biol (Camb) 2013; 5:215-23. [PMID: 22832596 DOI: 10.1039/c2ib20125a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A therapeutic technology that combines the phototoxic and immune-stimulating ability of photodynamic therapy (PDT) with the widespread effectiveness of the immune system can be very promising to treat metastatic breast cancer. We speculated that the knowledge of molecular mechanisms of existing multi-component therapies could provide clues to aid the discovery of new combinations of an immunostimulant with a photosensitizer (PS) using a nanoparticle (NP) delivery platform. Therapeutic challenges when administering therapeutic combinations include the choice of dosages to reduce side effects, the definitive delivery of the correct drug ratio, and exposure to the targets of interest. These factors are very difficult to achieve when drugs are individually administered. By combining controlled release polymer-based NP drug delivery approaches, we were able to differentially deliver zinc phthalocyanine (ZnPc) based PS to metastatic breast cancer cells along with CpG-ODN, a single-stranded DNA that is a known immunostimulant to manage the distant tumors in a temporally regulated manner. We encapsulated ZnPc which is a long-wavelength absorbing PS within a polymeric NP core made up of poly(d,l-lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG). After coating the outside of the polymeric core with gold NPs (AuNPs), we further modified the AuNP surface with CpG-ODN. In vitro cytotoxicity using 4T1 metastatic mouse breast carcinoma cells shows significant photocytotoxicity of the hybrid NPs containing both ZnPc and CpG-ODN after irradiation with a 660 nm LASER light and this activity was remarkably better than either treatment alone. Treatment of mouse bone marrow derived dendritic cells with the PDT-killed 4T1 cell lysate shows that the combination of PDT with a synergistic immunostimulant in a single NP system results in significant immune response, which can be used for the treatment of metastatic cancer.
Collapse
Affiliation(s)
- Sean Marrache
- Nano Therapeutics Research Lab, Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
95
|
Allison RR, Moghissi K. Oncologic photodynamic therapy: clinical strategies that modulate mechanisms of action. Photodiagnosis Photodyn Ther 2013; 10:331-41. [PMID: 24284082 DOI: 10.1016/j.pdpdt.2013.03.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/17/2013] [Accepted: 03/28/2013] [Indexed: 01/08/2023]
Abstract
Photodynamic therapy (PDT) is an elegant minimally invasive oncologic therapy. The clinical simplicity of photosensitizer (PS) drug application followed by appropriate illumination of target leading to the oxygen dependent tumor ablative Photodynamic Reaction (PDR) has gained this treatment worldwide acceptance. Yet the true potential of clinical PDT has not yet been achieved. This paper will review current mechanisms of action and treatment paradigms with critical commentary on means to potentially improve outcome using readily available clinical tools.
Collapse
Affiliation(s)
- Ron R Allison
- Medical Director 21st Century Oncology, 801 WH Smith Boulevard, Greenville, NC 27834, USA.
| | | |
Collapse
|
96
|
Friedberg JS. Intraoperative photodynamic therapy for malignant pleural mesothelioma: future or fad? Lung Cancer Manag 2013. [DOI: 10.2217/lmt.13.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Malignant pleural mesothelioma is one of the most lethal cancers known to man, typically resulting in a life expectancy of approximately 1 year from the time of diagnosis. Surgery remains investigational in the treatment of this cancer, yet the treatments that appear to have the greatest potential to impact the course of the disease are those that are surgery-based. The goal of surgery, as part of a multimodal treatment plan, is to achieve a macroscopic complete resection of the cancer. There are two surgical approaches, extrapleural pneumonectomy and lung-sparing surgery. Extrapleural pneumonectomy is the most standardized approach and almost certainly achieves the most complete resection, leaving behind the least amount of microscopic disease. Essentially, no aspects of lung-sparing operations are standardized and all techniques are likely to leave behind more microscopic cancer than an extrapleural pneumonectomy, yet this approach has the principal advantage of avoiding pneumonectomy for what is rightfully considered a palliative procedure. There are some recent reports revealing more favorable survivals for patients undergoing lung-sparing rather than lung-sacrificing surgery, but there is no conclusive evidence favoring either approach due to general limitations in the surgical literature for malignant pleural mesothelioma. One multimodal approach that has produced notably long survival rates incorporated radical pleurectomy and adjuvant chemotherapy with intraoperative photodynamic therapy, a light-based cancer treatment. There is speculation that a photodynamic therapy-initiated immune response may have played a role in these results, but this has not been established. The contribution, if any, of photodynamic therapy to these results is an area of active investigation.
Collapse
Affiliation(s)
- Joseph S Friedberg
- University of Pennsylvania, W266 Wright-Saunders, 51 North 39th Street, Philadelphia, PA 19104, USA
| |
Collapse
|
97
|
Chakrabarti M, Banik NL, Ray SK. Photofrin based photodynamic therapy and miR-99a transfection inhibited FGFR3 and PI3K/Akt signaling mechanisms to control growth of human glioblastoma In vitro and in vivo. PLoS One 2013; 8:e55652. [PMID: 23409016 PMCID: PMC3567141 DOI: 10.1371/journal.pone.0055652] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/03/2013] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma is the most common malignant brain tumor in humans. We explored the molecular mechanisms how the efficacy of photofrin based photodynamic therapy (PDT) was enhanced by miR-99a transfection in human glioblastoma cells. Our results showed almost similar uptake of photofrin after 24 h in different glioblastoma cells, but p53 wild-type cells were more sensitive to radiation and photofrin doses than p53 mutant cells. Photofrin based PDT induced apoptosis, inhibited cell invasion, prevented angiogenic network formation, and promoted DNA fragmentation and laddering in U87MG and U118MG cells harvoring p53 wild-type. Western blotting showed that photofrin based PDT was efficient to block the angiogenesis and cell survival pathways. Further, photofrin based PDT followed by miR-99a transfection dramatically increased miR-99a expression and also increased apoptosis in glioblastoma cell cultures and drastically reduced tumor growth in athymic nude mice, due to down regulation of fibroblast growth factor receptor 3 (FGFR3) and PI3K/Akt signaling mechanisms leading to inhibition of cell proliferation and induction of molecular mechanisms of apoptosis. Therefore, our results indicated that the anti-tumor effects of photofrin based PDT was strongly augmented by miR-99a overexpression and this novel combination therapeutic strategy could be used for controlling growth of human p53 wild-type glioblastomas both in vitro and in vivo.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Naren L. Banik
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
98
|
Panzarini E, Inguscio V, Dini L. Immunogenic cell death: can it be exploited in PhotoDynamic Therapy for cancer? BIOMED RESEARCH INTERNATIONAL 2012; 2013:482160. [PMID: 23509727 PMCID: PMC3591131 DOI: 10.1155/2013/482160] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/18/2012] [Accepted: 10/01/2012] [Indexed: 12/22/2022]
Abstract
Immunogenic Cell Death (ICD) could represent the keystone in cancer management since tumor cell death induction is crucial as well as the control of cancer cells revival after neoplastic treatment. In this context, the immune system plays a fundamental role. The concept of Damage-Associated Molecular Patterns (DAMPs) has been proposed to explain the immunogenic potential of stressed or dying/dead cells. ICD relies on DAMPs released by or exposed on dying cells. Once released, DAMPs are sensed by immune cells, in particular Dendritic Cells (DCs), acting as activators of Antigen-Presenting Cells (APCs), that in turn stimulate both innate and adaptive immunity. On the other hand, by exposing DAMPs, dying cancer cells change their surface composition, recently indicated as vital for the stimulation of the host immune system and the control of residual ill cells. It is well established that PhotoDynamic Therapy (PDT) for cancer treatment ignites the immune system to elicit a specific antitumor immunity, probably linked to its ability in inducing exposure/release of certain DAMPs, as recently suggested. In the present paper, we discuss the DAMPs associated with PDT and their role in the crossroad between cancer cell death and immunogenicity in PDT.
Collapse
Affiliation(s)
| | | | - Luciana Dini
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, Via per Monteroni, 73100 Lecce, Italy
| |
Collapse
|
99
|
Huang YY, Tanaka M, Vecchio D, Garcia-Diaz M, Chang J, Morimoto Y, Hamblin MR. Photodynamic therapy induces an immune response against a bacterial pathogen. Expert Rev Clin Immunol 2012; 8:479-94. [PMID: 22882222 DOI: 10.1586/eci.12.37] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) employs the triple combination of photosensitizers, visible light and ambient oxygen. When PDT is used for cancer, it has been observed that both arms of the host immune system (innate and adaptive) are activated. When PDT is used for infectious disease, however, it has been assumed that the direct antimicrobial PDT effect dominates. Murine arthritis caused by methicillin-resistant Staphylococcus aureus in the knee failed to respond to PDT with intravenously injected Photofrin(®). PDT with intra-articular Photofrin produced a biphasic dose response that killed bacteria without destroying host neutrophils. Methylene blue was the optimum photosensitizer to kill bacteria while preserving neutrophils. We used bioluminescence imaging to noninvasively monitor murine bacterial arthritis and found that PDT with intra-articular methylene blue was not only effective, but when used before infection, could protect the mice against a subsequent bacterial challenge. The data emphasize the importance of considering the host immune response in PDT for infectious disease.
Collapse
Affiliation(s)
- Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Pizova K, Tomankova K, Daskova A, Binder S, Bajgar R, Kolarova H. Photodynamic therapy for enhancing antitumour immunity. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 156:93-102. [PMID: 22837129 DOI: 10.5507/bp.2012.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a new modality in cancer treatment. It is based on the tumour-selective accumulation of a photosensitizer followed by irradiation with light of a specific wavelength. PDT is becoming widely accepted owing to its relative specificity and selectivity along with absence of the harmful side-effects of chemo and radiotherapy. There are three known distinct mechanisms of tumour destruction following PDT, generation of reactive oxygen species which can directly kill tumour cells, tumour vascular shutdown which can independently lead to tumour destruction via lack of oxygen and nutrients and thirdly enhanced antitumour immunity. METHODS A review based on the literature acquired from the PubMed database from 1983 with a focus on the enhanced antitumour immunity effects of PTD. RESULTS AND CONCLUSION Tumour cell death is accompanied by the release of a large number of inflammatory mediators. These induce a non-specific inflammatory response followed by gradual adaptive antitumour immunity. Further, a combination of PDT with the immunological approach has the potential to improve PDT efficiency and increase the cure rate. This short review covers specific methods for achieving these goals.
Collapse
Affiliation(s)
- Klara Pizova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry and Institute of Molecular and Translational Medicine, Palacky University Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|