51
|
Song D, Hou J, Wu J, Wang J. Role of N 6-Methyladenosine RNA Modification in Cardiovascular Disease. Front Cardiovasc Med 2021; 8:659628. [PMID: 34026872 PMCID: PMC8138049 DOI: 10.3389/fcvm.2021.659628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Despite treatments being improved and many risk factors being identified, cardiovascular disease (CVD) is still a leading cause of mortality and disability worldwide. N6-methyladenosine (m6A) is the most common, abundant, and conserved internal modification in RNAs and plays an important role in the development of CVD. Many studies have shown that aabnormal m6A modifications of coding RNAs are involved in the development of CVD. In addition, non-coding RNAs (ncRNAs) exert post-transcriptional regulation in many diseases including CVD. Although ncRNAs have also been found to be modified by m6A, the studies on m6A modifications of ncRNAs in CVD are currently lacking. In this review, we summarized the recent progress in understanding m6A modifications in the context of coding RNAs and ncRNAs, as well as their regulatory roles in CVD.
Collapse
Affiliation(s)
- Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China.,State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Jianhua Hou
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Junduo Wu
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
52
|
Shen Z, Hinson A, Miller RA, Garcia GG. Cap-independent translation: A shared mechanism for lifespan extension by rapamycin, acarbose, and 17α-estradiol. Aging Cell 2021; 20:e13345. [PMID: 33742521 PMCID: PMC8135077 DOI: 10.1111/acel.13345] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 01/24/2023] Open
Abstract
We hypothesized that rapamycin (Rapa), acarbose (ACA), which both increase mouse lifespan, and 17α-estradiol, which increases lifespan in males (17aE2) all share common intracellular signaling pathways with long-lived Snell dwarf, PAPPA-KO, and Ghr-/- mice. The long-lived mutant mice exhibit reduction in mTORC1 activity, declines in cap-dependent mRNA translation, and increases in cap-independent translation (CIT). Here, we report that Rapa and ACA prevent age-related declines in CIT target proteins in both sexes, while 17aE2 has the same effect only in males, suggesting increases in CIT. mTORC1 activity showed the reciprocal pattern, with age-related increases blocked by Rapa, ACA, and 17aE2 (in males only). METTL3, required for addition of 6-methyl-adenosine to mRNA and thus a trigger for CIT, also showed an age-dependent increase blunted by Rapa, ACA, and 17aE2 (in males). Diminution of mTORC1 activity and increases in CIT-dependent proteins may represent a shared pathway for both long-lived-mutant mice and drug-induced lifespan extension in mice.
Collapse
Affiliation(s)
- Ziqian Shen
- Department of Molecular, Cellular, and Developmental BiologyUniversity of Michigan College of Literature, Science, and the ArtsAnn ArborMichiganUSA
| | - Abby Hinson
- Department of Molecular, Cellular, and Developmental BiologyUniversity of Michigan College of Literature, Science, and the ArtsAnn ArborMichiganUSA
| | - Richard A. Miller
- Department of PathologyUniversity of Michigan School of MedicineAnn ArborMichiganUSA,University of Michigan Geriatrics CenterAnn ArborMichiganUSA
| | - Gonzalo G. Garcia
- Department of PathologyUniversity of Michigan School of MedicineAnn ArborMichiganUSA
| |
Collapse
|
53
|
Sivasudhan E, Blake N, Lu ZL, Meng J, Rong R. Dynamics of m6A RNA Methylome on the Hallmarks of Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:642443. [PMID: 33869193 PMCID: PMC8047153 DOI: 10.3389/fcell.2021.642443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Epidemiological data consistently rank hepatocellular carcinoma (HCC) as one of the leading causes of cancer-related deaths worldwide, often posing severe economic burden on health care. While the molecular etiopathogenesis associated with genetic and epigenetic modifications has been extensively explored, the biological influence of the emerging field of epitranscriptomics and its associated aberrant RNA modifications on tumorigenesis is a largely unexplored territory with immense potential for discovering new therapeutic approaches. In particular, the underlying cellular mechanisms of different hallmarks of hepatocarcinogenesis that are governed by the complex dynamics of m6A RNA methylation demand further investigation. In this review, we reveal the up-to-date knowledge on the mechanistic and functional link between m6A RNA methylation and pathogenesis of HCC.
Collapse
Affiliation(s)
- Enakshi Sivasudhan
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Neil Blake
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Zhi-Liang Lu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Rong Rong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
54
|
Ma X, Long C, Wang F, Lou B, Yuan M, Duan F, Yang Y, Li J, Qian X, Zeng J, Lin S, Shen H, Lin X. METTL3 attenuates proliferative vitreoretinopathy and epithelial-mesenchymal transition of retinal pigment epithelial cells via wnt/β-catenin pathway. J Cell Mol Med 2021; 25:4220-4234. [PMID: 33759344 PMCID: PMC8093987 DOI: 10.1111/jcmm.16476] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a refractory vitreoretinal fibrosis disease, and epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is the key pathological mechanism of PVR. However, few studies focused on the role of METTL3, the dominating methyltransferase for m6A RNA modification in PVR pathogenesis. Immunofluorescence staining and qRT-PCR were used to determine the expression of METTL3 in human tissues. Lentiviral transfection was used to stably overexpress and knockdown METTL3 in ARPE-19 cells. MTT assay was employed to study the effects of METTL3 on cell proliferation. The impact of METTL3 on the EMT of ARPE-19 cells was assessed by migratory assay, morphological observation and expression of EMT markers. Intravitreal injection of cells overexpressing METTL3 was used to assess the impact of METTL3 on the establishment of the PVR model. We found that METTL3 expression was less in human PVR membranes than in the normal RPE layers. In ARPE-19 cells, total m6A abundance and the METTL3 expression were down-regulated after EMT. Additionally, METTL3 overexpression inhibited cell proliferation through inducing cell cycle arrest at G0/G1 phase. Furthermore, METTL3 overexpression weakened the capacity of TGFβ1 to trigger EMT by regulating wnt/β -catenin pathway. Oppositely, knockdown of METTL3 facilitated proliferation and EMT of ARPE-19 cells. In vivo, intravitreal injection of METTL3-overexpressing cells delayed the development of PVR compared with injection of control cells. In summary, this study suggested that METTL3 is involved in the PVR process, and METTL3 overexpression inhibits the EMT of ARPE-19 cells in vitro and suppresses the PVR process in vivo.
Collapse
Affiliation(s)
- Xinqi Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chongde Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fangyu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Miner Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fang Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jiaqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Qian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jieting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
55
|
Kumar S, Mohapatra T. Deciphering Epitranscriptome: Modification of mRNA Bases Provides a New Perspective for Post-transcriptional Regulation of Gene Expression. Front Cell Dev Biol 2021; 9:628415. [PMID: 33816473 PMCID: PMC8010680 DOI: 10.3389/fcell.2021.628415] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Gene regulation depends on dynamic and reversibly modifiable biological and chemical information in the epigenome/epitranscriptome. Accumulating evidence suggests that messenger RNAs (mRNAs) are generated in flashing bursts in the cells in a precisely regulated manner. However, the different aspects of the underlying mechanisms are not fully understood. Cellular RNAs are post-transcriptionally modified at the base level, which alters the metabolism of mRNA. The current understanding of epitranscriptome in the animal system is far ahead of that in plants. The accumulating evidence indicates that the epitranscriptomic changes play vital roles in developmental processes and stress responses. Besides being non-genetically encoded, they can be of reversible nature and involved in fine-tuning the expression of gene. However, different aspects of base modifications in mRNAs are far from adequate to assign the molecular basis/functions to the epitranscriptomic changes. Advances in the chemogenetic RNA-labeling and high-throughput next-generation sequencing techniques are enabling functional analysis of the epitranscriptomic modifications to reveal their roles in mRNA biology. Mapping of the common mRNA modifications, including N 6-methyladenosine (m6A), and 5-methylcytidine (m5C), have enabled the identification of other types of modifications, such as N 1-methyladenosine. Methylation of bases in a transcript dynamically regulates the processing, cellular export, translation, and stability of the mRNA; thereby influence the important biological and physiological processes. Here, we summarize the findings in the field of mRNA base modifications with special emphasis on m6A, m5C, and their roles in growth, development, and stress tolerance, which provide a new perspective for the regulation of gene expression through post-transcriptional modification. This review also addresses some of the scientific and technical issues in epitranscriptomic study, put forward the viewpoints to resolve the issues, and discusses the future perspectives of the research in this area.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
56
|
Wu R, Wang X. Epigenetic regulation of adipose tissue expansion and adipogenesis by N 6 -methyladenosine. Obes Rev 2021; 22:e13124. [PMID: 32935469 DOI: 10.1111/obr.13124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/28/2022]
Abstract
Obesity, defined as excessive fat accumulation, is strongly associated with metabolic diseases and cancer, and its prevalence is rising worldwide. Thus, understanding the molecular mechanism of adipogenesis is of fundamental significance. Epigenetic modifications play important roles in regulating adipogenesis. N6 -methyladenosine (m6 A), the most prevalent and abundant mRNA modification in eukaryotic cells, modulates multiple aspects of RNA metabolism, including mRNA stability, translation, splicing and export. Recent studies indicate that m6 A methylation plays important roles in modulating gene expression and signal pathways in various physiologic processes and diseases. Notably, the significant function and regulatory mechanisms of m6 A in adipogenesis are now emerging. In this review, we summarize recent studies that elucidate the vital roles of m6 A modifications in regulating adipogenesis and adipose tissue expansion. Furthermore, we highlight the nutritional regulation of m6 A methylation and adipogenesis, which may prove a novel therapeutic strategy to fight against obesity.
Collapse
Affiliation(s)
- Ruifan Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
57
|
Shi Y, Zhuang Y, Zhang J, Chen M, Wu S. METTL14 Inhibits Hepatocellular Carcinoma Metastasis Through Regulating EGFR/PI3K/AKT Signaling Pathway in an m6A-Dependent Manner. Cancer Manag Res 2020; 12:13173-13184. [PMID: 33380825 PMCID: PMC7767748 DOI: 10.2147/cmar.s286275] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) ranks as the fourth leading cause of cancer-related deaths worldwide. N6-methyladenosine (m6A) RNA methylation is the most common modification of messenger RNAs (mRNAs). The prognosis of HCC patients with metastasis remains poor. Our study aimed to elucidate the regulatory role of m6A on HCC metastasis. Patients and Methods All HCC patients were enrolled from The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University. The expression levels of gene were tested by quantitative polymerase chain reaction (qPCR), Western blot, or immunohistochemistry (IHC) analysis. Wound healing assay, Transwell invasion assay, and lung metastasis model were implemented to investigate the migration and invasion ability of HCC cells. Candidate targets were selected by a comprehensive analysis of RNA-sequencing and m6A-sequencing of HepG2 cells. Results In this study, we demonstrated that METTL14 was significantly downregulated in HCC and significantly associated with the prognosis of HCC patients. METTL14 knockdown promoted the migration, invasion, and epithelial–mesenchymal transition (EMT) of HCC cells in vitro and in vivo. In addition, overlapping RNA-sequencing and m6A-sequencing data, we identified EGFR as a direct target of METTL14 in HCC. Mechanistically, METTL14 was found to inhibit HCC cell migration, invasion, and EMT through modulating EGFR/PI3K/AKT signaling pathway in an m6A-dependent manner. Conclusion Targeting METTL14/EGFR/PI3K/AKT signaling pathway may facilitate the development of a new treatment strategy against the metastasis of HCC.
Collapse
Affiliation(s)
- Yuntao Shi
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Yingying Zhuang
- Department of Medical Imaging, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Jialing Zhang
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Mengxue Chen
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Shangnong Wu
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| |
Collapse
|
58
|
Wang Y, Zhang Y, Du Y, Zhou M, Hu Y, Zhang S. Emerging roles of N6-methyladenosine (m 6A) modification in breast cancer. Cell Biosci 2020; 10:136. [PMID: 33292526 PMCID: PMC7690038 DOI: 10.1186/s13578-020-00502-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant, dynamic, and reversible epigenetic RNA modification that is found in coding and non-coding RNAs. Emerging studies have shown that m6A and its regulators affect multiple steps in RNA metabolism and play broad roles in various cancers. Worldwide, breast cancer is the most prevalent cancer in female. It is a very heterogeneous disease characterized by genetic and epigenetic variations in tumor cells. Increasing evidence has shown that the dysregulation of m6A-related effectors, as methyltransferases, demethylases, and m6A binding proteins, is pivotal in breast cancer pathogenesis. In this review, we have summarized the most up-to-date research on the biological functions of m6A modification in breast cancer and have discussed the potential clinical applications and future directions of m6A modification as a biomarker as well as a therapeutic target of breast cancer.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Yujie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yushen Du
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Meiqi Zhou
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yue Hu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Suzhan Zhang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| |
Collapse
|
59
|
Sun D, Zhao T, Zhang Q, Wu M, Zhang Z. Fat mass and obesity-associated protein regulates lipogenesis via m 6 A modification in fatty acid synthase mRNA. Cell Biol Int 2020; 45:334-344. [PMID: 33079435 DOI: 10.1002/cbin.11490] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/01/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022]
Abstract
As the first identified N6 -methyladenosine (m6 A) demethylase, fat mass and obesity-associated (FTO) protein is associated with fatty acid synthase (FASN) and lipid accumulation. However, little is known about the regulatory role of FTO in the expression of FASN and de novo lipogenesis through m6 A modification. In this study, we used FTO small interfering RNA to explore the effects of FTO knockdown on hepatic lipogenesis and its underlying epigenetic mechanism in HepG2 cells. We found that knockdown of FTO increased m6 A levels in total RNA and enhanced the expression of YTH domain family member 2 which serves as the m6 A-binding protein. The de novo lipogenic enzymes and intracellular lipid content were significantly decreased under FTO knockdown. Mechanistically, knockdown of FTO dramatically enhanced m6 A levels in FASN messenger RNA (mRNA), leading to the reduced expression of FASN mRNA through m6 A-mediated mRNA decay. The protein expressions of FASN along with acetyl CoA carboxylase and ATP-citrate lyase were further decreased, which inhibited de novo lipogenesis, thereby resulting in the deficiency of lipid accumulation in HepG2 cells and the induction of cellular apoptosis. The results reveal that FTO regulates hepatic lipogenesis via FTO-dependent m6 A demethylation in FASN mRNA and indicate the critical role of FTO-mediated lipid metabolism in the survival of HepG2 cells. This study provides novel insights into a unique RNA epigenetic mechanism by which FTO mediates hepatic lipid accumulation through m6 A modification and indicates that FTO could be a potential target for obesity-related diseases and cancer.
Collapse
Affiliation(s)
- Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Zhang
- Department of Environmental and Occupational Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mei Wu
- Department of Environmental and Occupational Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
60
|
Liu X, Qin J, Gao T, Li C, Chen X, Zeng K, Xu M, He B, Pan B, Xu X, Pan Y, Sun H, Xu T, Wang S. Analysis of METTL3 and METTL14 in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:21638-21659. [PMID: 33159022 PMCID: PMC7695415 DOI: 10.18632/aging.103959] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/01/2020] [Indexed: 12/25/2022]
Abstract
N6-methyladenosine (m6A) RNA methylation is the most prevalent modification of messenger RNAs (mRNAs) and catalyzed by a multicomponent methyltransferase complex (MTC), among which methyltransferase-like 3 (METTL3) and METTL14 are two core molecules. However, METTL3 and METTL14 play opposite regulatory roles in hepatocellular carcinoma (HCC). Based on The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database, we conducted a multi-omics analysis of METTL3 and METTL14 in HCC, including RNA-sequencing, m6ARIP-sequencing, and ribosome-sequencing profiles. We found that the expression and prognostic value of METTL3 and METTL14 are opposite in HCC. Besides, after METTL3 and METTL14 knockdown, most of the dysregulated mRNAs, signaling pathways and biological processes are distinct in HCC, which partly explains the contrary regulatory role of METTL3 and METTL14. Intriguingly, these mRNAs whose stability or translation efficiency are influenced by METTL3 or METTL14 in an m6A dependent manner, jointly regulate multiple signaling pathways and biological processes, which supports the cooperative role of METTL3 and METTL14 in catalyzing m6A modification. In conclusion, our study further clarified the contradictory role of METTL3 and METTL14 in HCC.
Collapse
Affiliation(s)
- Xiangxiang Liu
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Jian Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Tianyi Gao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Chenmeng Li
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Xiaoxiang Chen
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Kaixuan Zeng
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Mu Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xueni Xu
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China.,Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211100, Jiangsu, China
| |
Collapse
|
61
|
Wang Q, Guo X, Li L, Gao Z, Su X, Ji M, Liu J. N 6-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis 2020; 11:911. [PMID: 33099572 PMCID: PMC7585578 DOI: 10.1038/s41419-020-03071-y] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
N6-methyladenosine (m6A) serves as the most common and conserved internal transcriptional modification. However, the roles of m6A on cervical cancer (CC) tumorigenesis are still unclear. Here, results indicated that METTL3 was significantly upregulated in CC tissue and cells, which was closely correlated with the lymph node metastasis and poor prognosis of CC patients. MeRIP-Seq analysis revealed the m6A profiles in CC cells. Functionally, METTL3 promoted the proliferation and Warburg effect (aerobic glycolysis) of CC cells. Mechanistically, METTL3 targeted the 3'-Untranslated Region (3'-UTR) of hexokinase 2 (HK2) mRNA. Moreover, METTL3 recruited YTHDF1, a m6A reader, to enhance HK2 stability. These findings demonstrated that METTL3 enhanced the HK2 stability through YTHDF1-mediated m6A modification, thereby promoting the Warburg effect of CC, which might promote a novel insight for the CC treatment.
Collapse
Affiliation(s)
- Qianqing Wang
- Department of Gynecology, Xinxiang Central Hospital, 453000, Xinxiang, Henan, China
| | - Xiangcui Guo
- Department of Gynecology, Xinxiang Central Hospital, 453000, Xinxiang, Henan, China
| | - Li Li
- Department of Gynecology, Xinxiang Central Hospital, 453000, Xinxiang, Henan, China
| | - Zhihui Gao
- Department of Gynecology, Xinxiang Central Hospital, 453000, Xinxiang, Henan, China
| | - Xiaoke Su
- Department of Gynecology, Xinxiang Central Hospital, 453000, Xinxiang, Henan, China
| | - Mei Ji
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, 450003, Zhengzhou, China.
| | - Juan Liu
- Department of Gynecology, Third Affiliated Hospital Guangzhou Medical University, 510080, Guangdong, China.
| |
Collapse
|
62
|
Ma Z, Gao X, Shuai Y, Xing X, Ji J. The m6A epitranscriptome opens a new charter in immune system logic. Epigenetics 2020; 16:819-837. [PMID: 33070685 DOI: 10.1080/15592294.2020.1827722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
N6-methyladenosine (m6A), the most prevalent RNA internal modification, is present in most eukaryotic species and prokaryotes. Studies have highlighted an intricate network architecture by which m6A epitranscriptome impacts on immune response and function. However, it was only until recently that the mechanisms underlying the involvement of m6A modification in immune system were uncovered. Here, we systematically review the m6A involvement in the regulation of innate and adaptive immune cells. Further, the interplay between m6A modification and anti-inflammatory, anti-viral and anti-tumour immunity is also comprehensively summarized. Finally, we focus on the future prospects of m6A modification in immune modulation. A better understanding of the crosstalk between m6A modification and immune system is of great significance to reveal new pathogenic pathways and to develop promising therapeutic targets of diseases.
Collapse
Affiliation(s)
- Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
63
|
Song K, Xu H, Wang C. The Role of N6-Methyladenosine Methylation in the Progression of Endometrial Cancer. Cancer Biother Radiopharm 2020; 37:737-749. [PMID: 33052742 DOI: 10.1089/cbr.2020.3912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purpose: N6-methyladenosine (m6A) methylation was the most abundant internal modification on messenger RNAs in eukaryotes. This study intended to explore the role of m6A methylation in endometrial cancer (EC). Materials and Methods: The m6A-sequencing data "GSE93911" of human EC were downloaded from Gene Expression Omnibus database. Hisat2 software and MACS2 were used to perform the alignment of reads and m6A methylation peak calling, and the peaks were annotated using Chipseeker. Then, differential m6A methylation peaks between normal and tumor samples were analyzed, followed by the functional enrichment analysis of the differentially methylated genes in promoter and 3' untranslated region (UTR) using Clusterprofiler. Based on the 450K methylated chip data, gene expression and clinical data in The Cancer Genome Atlas, the differentially methylated genes were verified, followed by Cox univariate/multivariate regression analysis and survival analysis. Finally, a risk prognosis model was constructed. Results: The m6A peak number was decreased in EC. The distribution of m6A peaks was highly enriched near transcriptional start site, in promoter, UTR, intron and exon, followed by distal intergenic. A total of 581 differentially methylated genes (361 hyper- and 220 hypomethylated genes) were identified in promoter and UTR regions that were enriched in insulin resistance (IR) and extracellular matrix (ECM). A total of 181 genes with significant differential expressions and differential methylation site in EC were selected. Of which, 31 genes were correlated with survival, and an 11-gene risk prognosis model was identified, including GDF7, BNC2, SLC8A1, B4GALNT3, DHCR24, ESRP1, HOXB9, IGSF9, KIAA1324, MSnX1, and PHGDH. Conclusion: The m6A methylation regulated EC progression by targeting the genes related to IR and ECM. A 11-gene risk prognosis model was identified to predict survival of patients with EC.
Collapse
Affiliation(s)
- Kewei Song
- Department of Nursing, Jining No. 1 People's Hospital, Jining City, China
| | - Hongxia Xu
- Jining No. 1 People's Hospital, Jining City, China
| | - Changhe Wang
- Department of Gynecology, Jining No. 1 People's Hospital, Jining City, China
| |
Collapse
|
64
|
Liu X, Qin J, Gao T, Li C, He B, Pan B, Xu X, Chen X, Zeng K, Xu M, Zhu C, Pan Y, Sun H, Sun L, Xu T, Wang S. YTHDF1 Facilitates the Progression of Hepatocellular Carcinoma by Promoting FZD5 mRNA Translation in an m6A-Dependent Manner. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:750-765. [PMID: 33230473 PMCID: PMC7595883 DOI: 10.1016/j.omtn.2020.09.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/30/2020] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC), one of the most aggressive malignancies, ranks as the fourth leading cause of cancer-related deaths worldwide. Emerging evidence indicates that RNA N6-methyladenosine (m6A) plays a critical role in tumor progression. However, the biological function of YTHDF1 in HCC remains unclear. Here, we found that YTHDF1 expression was strikingly elevated in HCC tissues and cell lines and significantly associated with prognosis of HCC patients. Moreover, YTHDF1 expression was transcriptionally regulated by USF1 and c-MYC in HCC. Functional studies showed that YTHDF1 can promote HCC cell proliferation and metastasis both in vitro and in vivo. Multi-omics analysis revealed that YTHDF1 can accelerate the translational output of FZD5 mRNA in an m6A-dependent manner and function as an oncogene through the WNT/β-catenin pathway. Taken together, our study revealed an essential role of YTHDF1 in the progression of HCC cells, which indicated that targeting YTHDF1 may be a potential therapeutic strategy in HCC.
Collapse
Affiliation(s)
- Xiangxiang Liu
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Jian Qin
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Tianyi Gao
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Chenmeng Li
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Bangshun He
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Bei Pan
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Xueni Xu
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xiaoxiang Chen
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Kaixuan Zeng
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Mu Xu
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Chengbin Zhu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Yuqin Pan
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Huiling Sun
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Li Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Tao Xu
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211100, Jiangsu, China
- Corresponding author: Shukui Wang, School of Medicine, Southeast University, Nanjing 210096, Jiangsu, China.
| |
Collapse
|
65
|
Huang X, Lv D, Yang X, Li M, Zhang H. m6A RNA methylation regulators could contribute to the occurrence of chronic obstructive pulmonary disease. J Cell Mol Med 2020; 24:12706-12715. [PMID: 32961012 PMCID: PMC7686997 DOI: 10.1111/jcmm.15848] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
N6‐methyladenosine (m6A) RNA methylation, the most prevalent internal chemical modification of mRNA, has been reported to participate in the progression of various tumours via the dynamic regulation of m6A RNA methylation regulators. However, the role of m6A RNA methylation regulators in chronic obstructive pulmonary disease (COPD) has never been reported. This study aimed to determine the expression and potential functions of m6A RNA methylation regulators in COPD. Four gene expression data sets were acquired from Gene Expression Omnibus. Gene ontology function, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, weighted correlation network analysis and protein‐protein interaction network analysis were performed. The correlation analyses of m6A RNA methylation regulators and key COPD genes were also performed. We found that the mRNA expressions of IGF2BP3, FTO, METTL3 and YTHDC2, which have the significant associations with some key genes enriched in the signalling pathway and biological processes that promote the development progression of COPD, are highly correlated with the occurrence of COPD. In conclusion, six central m6A RNA methylation regulators could contribute to the occurrence of COPD. This study provides important evidence for further examination of the role of m6A RNA methylation in COPD.
Collapse
Affiliation(s)
- Xinwei Huang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Dongjin Lv
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Xiao Yang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Min Li
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Hong Zhang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
66
|
Tsuruta N, Tsuchihashi K, Ohmura H, Yamaguchi K, Ito M, Ariyama H, Kusaba H, Akashi K, Baba E. RNA N6-methyladenosine demethylase FTO regulates PD-L1 expression in colon cancer cells. Biochem Biophys Res Commun 2020; 530:235-239. [PMID: 32828292 DOI: 10.1016/j.bbrc.2020.06.153] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 01/26/2023]
Abstract
Fat mass and obesity-associated protein (FTO) is an enzyme that demethylates N6-methyladenosine (m6A), the most abundant RNA modifications in a cell. The upregulated expression of FTO promotes the progression of various types of cancer by modulating cell-intrinsic genes which relate to malignant potential. However, the impact of FTO on the expression of immune-checkpoint molecules in the tumor cells, which are important for immune escape, has not been well understood. We examined the relevance of FTO to programmed cell death-ligand 1 (PD-L1) expression in colon cancer cells. HCT-116 cells showed high expression of both FTO and PD-L1 proteins. The knockdown of FTO by small interfering RNA decreased mRNA and protein levels of PD-L1 in HCT-116 cells. To elucidate the underlying mechanism by which FTO regulates the expression of PD-L1, we depleted FTO in HCT-116 in the presence of IFN-γ, which is a major stimulus to upregulate PD-L1 expression. Depletion of FTO reduced PD-L1 expression in an IFN-γ signaling-independent manner. RNA immunoprecipitation assay revealed the m6A modification of the PD-L1 mRNA and the binding of FTO to the PD-L1 mRNA in HCT-116. Taken together, our results indicated that FTO could regulate PD-L1 expression in colon cancer cells and provides new insights into the regulation of PD-L1 expression by RNA modification.
Collapse
Affiliation(s)
- Nobuhiro Tsuruta
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kenji Tsuchihashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hirofumi Ohmura
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kyoko Yamaguchi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mamoru Ito
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroshi Ariyama
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hitoshi Kusaba
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Eishi Baba
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
67
|
Liu K, Cao L, Du P, Chen W. im6A-TS-CNN: Identifying the N 6-Methyladenine Site in Multiple Tissues by Using the Convolutional Neural Network. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:1044-1049. [PMID: 32858457 PMCID: PMC7473875 DOI: 10.1016/j.omtn.2020.07.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/12/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
N6-methyladenosine (m6A) is the most abundant post-transcriptional modification and involves a series of important biological processes. Therefore, accurate detection of the m6A site is very important for revealing its biological functions and impacts on diseases. Although both experimental and computational methods have been proposed for identifying m6A sites, few of them are able to detect m6A sites in different tissues. With the consideration of the spatial specificity of m6A modification, it is necessary to develop methods able to detect the m6A site in different tissues. In this work, by using the convolutional neural network (CNN), we proposed a new method, called im6A-TS-CNN, that can identify m6A sites in brain, liver, kidney, heart, and testis of Homo sapiens, Mus musculus, and Rattus norvegicus. In im6A-TS-CNN, the samples were encoded by using the one-hot encoding scheme. The results from both a 5-fold cross-validation test and independent dataset test demonstrate that im6A-TS-CNN is better than the existing method for the same purpose. The command-line version of im6A-TS-CNN is available at https://github.com/liukeweiaway/DeepM6A_cnn.
Collapse
Affiliation(s)
- Kewei Liu
- School of Life Sciences, Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063210, China
| | - Lei Cao
- School of Life Sciences, Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063210, China
| | - Pufeng Du
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Wei Chen
- School of Life Sciences, Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063210, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
68
|
Diverse molecular functions of m 6A mRNA modification in cancer. Exp Mol Med 2020; 52:738-749. [PMID: 32404927 PMCID: PMC7272606 DOI: 10.1038/s12276-020-0432-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/10/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A), the most prevalent chemical modification found on eukaryotic mRNA, is associated with almost all stages of mRNA metabolism and influences various human diseases. Recent research has implicated the aberrant regulation of m6A mRNA modification in many human cancers. An increasing number of studies have revealed that dysregulation of m6A-containing gene expression via the abnormal expression of m6A methyltransferases, demethylases, or reader proteins is closely associated with tumorigenicity. Notably, the molecular functions and cellular consequences of m6A mRNA modification often show opposite results depending on the degree of m6A modification in specific mRNA. In this review, we highlight the current progress on the underlying mechanisms of m6A modification in mRNA metabolism, particularly the functions of m6A writers, erasers, and readers in the context of tumorigenesis. A thorough investigation into the role and function of RNA modifications in cancers could yield novel therapies. The chemical modification of messenger RNA (mRNA), the molecule that carries code from DNA to synthesize proteins, is thought to play a role in influencing genetically inherited traits and diseases. A common modification found in mRNA is N6-methyladenosine (m6A). Disruption to the regulation of m6A modification has been linked with human cancers. Junho Choe and Seung Hun Han at Hanyang University in Seoul, South Korea, reviewed current understanding of the molecular mechanisms behind m6A modification, with particular reference to tumor formation. The researchers point out that abnormal expression of proteins associated with m6A may lead to heightened expression of cancer-related genes. More extensive m6A modification levels are also linked to tumor formation.
Collapse
|
69
|
Selberg S, Blokhina D, Aatonen M, Koivisto P, Siltanen A, Mervaala E, Kankuri E, Karelson M. Discovery of Small Molecules that Activate RNA Methylation through Cooperative Binding to the METTL3-14-WTAP Complex Active Site. Cell Rep 2020; 26:3762-3771.e5. [PMID: 30917327 DOI: 10.1016/j.celrep.2019.02.100] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/19/2018] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Abstract
Chemical modifications of RNA provide an additional, epitranscriptomic, level of control over cellular functions. N-6-methylated adenosines (m6As) are found in several types of RNA, and their amounts are regulated by methyltransferases and demethylases. One of the most important enzymes catalyzing generation of m6A on mRNA is the trimer N-6-methyltransferase METTL3-14-WTAP complex. Its activity has been linked to such critical biological processes as cell differentiation, proliferation, and death. We used in silico-based discovery to identify small-molecule ligands that bind to METTL3-14-WTAP and determined experimentally their binding affinity and kinetics, as well as their effect on enzymatic function. We show that these ligands serve as activators of the METTL3-14-WTAP complex.
Collapse
Affiliation(s)
- Simona Selberg
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Daria Blokhina
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Maria Aatonen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pertti Koivisto
- Organic Residues Section, Laboratory and Research Division, Chemistry Unit, Finnish Food Authority, Helsinki, Finland
| | - Antti Siltanen
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Eero Mervaala
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, Tartu, Estonia.
| |
Collapse
|
70
|
Wang Y, Gao M, Zhu F, Li X, Yang Y, Yan Q, Jia L, Xie L, Chen Z. METTL3 is essential for postnatal development of brown adipose tissue and energy expenditure in mice. Nat Commun 2020; 11:1648. [PMID: 32245957 PMCID: PMC7125133 DOI: 10.1038/s41467-020-15488-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
Brown adipose tissue (BAT) undergoes rapid postnatal development and then protects against cold and obesity into adulthood. However, the molecular mechanism that determines postnatal development and maturation of BAT is largely unknown. Here we show that METTL3 (a key RNA methyltransferase) expression increases significantly in interscapular brown adipose tissue (iBAT) after birth and plays an essential role in the postnatal development and maturation of iBAT. BAT-specific deletion of Mettl3 severely impairs maturation of BAT in vivo by decreasing m6A modification and expression of Prdm16, Pparg, and Ucp1 transcripts, which leads to a marked reduction in BAT-mediated adaptive thermogenesis and promotes high-fat diet (HFD)-induced obesity and systemic insulin resistance. These data demonstrate that METTL3 is an essential regulator that controls iBAT postnatal development and energy homeostasis.
Collapse
Affiliation(s)
- Yuqin Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ming Gao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Fuxing Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ying Yang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Qiuxin Yan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Linna Jia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
71
|
Sai L, Li Y, Zhang Y, Zhang J, Qu B, Guo Q, Han M, Jia Q, Yu G, Li K, Bo C, Zhang Y, Shao H, Peng C. Distinct m 6A methylome profiles in poly(A) RNA from Xenopus laevis testis and that treated with atrazine. CHEMOSPHERE 2020; 245:125631. [PMID: 31877456 DOI: 10.1016/j.chemosphere.2019.125631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Recent discovery of reversible N6-methyladenosine (m6A) methylation on messenger RNA (mRNA) and mapping of m6A methylomes in mammals, plant and yeast revealed potential regulatory functions of this RNA modification. However, the role of the m6A methylomes in amphibious is still poorly understood. Here, we examined the m6A transcriptome-wide profile in testis tissues of Xenopus laevis (X. laevis) with and without treatment with 100 μg/L atrazine (AZ) through m6A sequencing analysis using the latest Illumina HiSeq sequencer. The results revealed that m6A is a highly conserved modification of mRNA in X. laevis. Distinct from that in mammals, m6A in X. laevisis enriched around the stop codon and start codon, as is reported in plant. We then investigated the differential expression m6A in testes of AZ-exposed X. laevis and compared that with the X. laevis in the control group by m6A sequencing. The results indicated that AZ leads to altered expression profile in 1380 m6A modification sites (696 upregulated and 684 downregulated). KEGG pathway analysis indicates that the "NOD-like receptors", "tight junction", "Peroxisome proliferator-activated receptors", "adherens junctions", "Glycerophospholipid metabolism" and "Fatty acid biosynthesis" signaling pathways may be associated with abnormal testis development of X. laevis due to exposure to AZ. Analysis results showed a positive correlation between m6A modification and mRNA abundance, suggesting a regulatory role of m6A in amphibious gene expression. Our first report of m6A transcriptome-wide map of an amphibian species X. laevis presented here provides a starting roadmap for uncovering m6A functions that may affect/control amphibian testis development.
Collapse
Affiliation(s)
- Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China.
| | - Yan Li
- Shandong Provincial Chest Hospital, Ji'nan, Shandong, China
| | - Yecui Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Juan Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Binpeng Qu
- Shandong Medical College, Ji'nan, Shandong, China
| | - Qiming Guo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Mingming Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Kaili Li
- The NO.4 Hospital 1946 Jinan Shandong, Ji'nan, Shandong, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China.
| | - Cheng Peng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Ji'nan, Shandong, China
| |
Collapse
|
72
|
Hu Y, Wang S, Liu J, Huang Y, Gong C, Liu J, Xiao Y, Yang S. New sights in cancer: Component and function of N6-methyladenosine modification. Biomed Pharmacother 2019; 122:109694. [PMID: 31918269 DOI: 10.1016/j.biopha.2019.109694] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/30/2022] Open
Abstract
M6A is the most prevalent modification among epigenetics. M6A occurs on different sites of RNA and exerts important functions in specific circumstances, such as mRNA splicing, stability, nuclear export, translation or damage response. Different aspects of the concrete machinery of m6A modification have been studied, including its writing, erasing and reading capabilities. The molecular and biological functions of the m6A modification and enzymes, as well as their functions in different cancers have been substantially published. The present review summarizes these findings and provides clear description of the problems involved. The probable roles of m6A modification may acts on other cancers, suggesting that it may be a treatment target for these cancers.
Collapse
Affiliation(s)
- Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jiao Liu
- Department of Endoscope, The General Hospital of Shenyang Military Region, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
73
|
Wang X, Wu R, Liu Y, Zhao Y, Bi Z, Yao Y, Liu Q, Shi H, Wang F, Wang Y. m 6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7. Autophagy 2019; 16:1221-1235. [PMID: 31451060 DOI: 10.1080/15548627.2019.1659617] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
N 6-methyladenosine (m6A), the most abundant internal modification on mRNAs in eukaryotes, play roles in adipogenesis. However, the underlying mechanism remains largely unclear. Here, we show that m6A plays a critical role in regulating macroautophagy/autophagy and adipogenesis through targeting Atg5 and Atg7. Mechanistically, knockdown of FTO, a well-known m6A demethylase, decreased the expression of ATG5 and ATG7, leading to attenuation of autophagosome formation, thereby inhibiting autophagy and adipogenesis. We proved that FTO directly targeted Atg5 and Atg7 transcripts and mediated their expression in an m6A-dependent manner. Further study identified that Atg5 and Atg7 were the targets of YTHDF2 (YTH N6-methyladenosine RNA binding protein 2). Upon FTO silencing, Atg5 and Atg7 transcripts with higher m6A levels were captured by YTHDF2, which resulted in mRNA degradation and reduction of protein expression, thus alleviating autophagy and adipogenesis. Furthermore, we generated an adipose-selective fto knockout mouse and find that FTO deficiency decreased white fat mass and impairs ATG5- and ATG7-dependent autophagy in vivo. Together, these findings unveil the functional importance of the m6A methylation machinery in autophagy and adipogenesis regulation, which expands our understanding of such interplay that is essential for development of therapeutic strategies in the prevention and treatment of obesity. ABBREVIATIONS 3-MA: 3-methyladenine; ACTB: actin, beta; ATG: autophagy-related; Baf A1: bafilomycin A1; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; CEBPB: CCAAT/enhancer binding protein (C/EBP), beta; FABP4: fatty acid binding protein 4, adipocyte; FTO: fat mass and obesity associated; HFD: high-fat diet; LC-MS/MS: liquid chromatography-tandem mass spectrometry; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; m6A: N6-methyladenosine; MEFs: mouse embryo fibroblasts; MeRIP-qPCR: methylated RNA immunoprecipitation-qPCR; PPARG: peroxisome proliferator activated receptor gamma; RIP: RNA-immunoprecipitation; SAT: subcutaneous adipose tissue; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; ULK1: unc-51 like kinase 1; VAT: visceral adipose tissue; WAT: white adipose tissue; YTHDF: YTH N6-methyladenosine RNA binding protein.
Collapse
Affiliation(s)
- Xinxia Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province , Hangzhou, Zhejiang, China
| | - Ruifan Wu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province , Hangzhou, Zhejiang, China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province , Hangzhou, Zhejiang, China
| | - Yuanling Zhao
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province , Hangzhou, Zhejiang, China
| | - Zhen Bi
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province , Hangzhou, Zhejiang, China
| | - Yongxi Yao
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province , Hangzhou, Zhejiang, China
| | - Qing Liu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province , Hangzhou, Zhejiang, China
| | - Hailing Shi
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago , Chicago, IL, USA
| | - Fengqin Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province , Hangzhou, Zhejiang, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province , Hangzhou, Zhejiang, China
| |
Collapse
|
74
|
Salem ESB, Vonberg AD, Borra VJ, Gill RK, Nakamura T. RNAs and RNA-Binding Proteins in Immuno-Metabolic Homeostasis and Diseases. Front Cardiovasc Med 2019; 6:106. [PMID: 31482095 PMCID: PMC6710452 DOI: 10.3389/fcvm.2019.00106] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
The increasing prevalence of worldwide obesity has emerged as a major risk factor for type 2 diabetes (T2D), hepatosteatosis, and cardiovascular disease. Accumulating evidence indicates that obesity has strong inflammatory underpinnings tightly linked to the development of metabolic diseases. However, the molecular mechanisms by which obesity induces aberrant inflammation associated with metabolic diseases are not yet clearly defined. Recently, RNAs have emerged as important regulators of stress responses and metabolism. RNAs are subject to changes in modification status, higher-order structure, and cellular localization; all of which could affect the affinity for RNA-binding proteins (RBPs) and thereby modify the RNA-RBP networks. Proper regulation and management of RNA characteristics are fundamental to cellular and organismal homeostasis, as well as paramount to health. Identification of multiple single nucleotide polymorphisms (SNPs) within loci of fat mass- and obesity-associated protein (FTO) gene, an RNA demethylase, through genome-wide association studies (GWAS) of T2D, and functional assessments of FTO in mice, support the concept that disruption in RNA modifications leads to the development of human diseases including obesity and metabolic disorder. In obesity, dynamic alterations in modification and localization of RNAs appear to modulate the RNA-RBP networks and activate proinflammatory RBPs, such as double-stranded RNA (dsRNA)-dependent protein kinase (PKR), Toll-like receptor (TLR) 3 and TLR7, and RNA silencing machinery. These changes induce aberrant inflammation and the development of metabolic diseases. This review will describe the current understanding of the underlying causes of these common and altered characteristics of RNA-RBP networks which will pave the way for developing novel approaches to tackle the pandemic issue of obesity.
Collapse
Affiliation(s)
- Esam S B Salem
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew D Vonberg
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Vishnupriya J Borra
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rupinder K Gill
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Takahisa Nakamura
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
75
|
Sun C, Chang L, Liu C, Chen X, Zhu X. The study of METTL3 and METTL14 expressions in childhood ETV6/RUNX1-positive acute lymphoblastic leukemia. Mol Genet Genomic Med 2019; 7:e00933. [PMID: 31429529 PMCID: PMC6785433 DOI: 10.1002/mgg3.933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND This study was aimed to explore the METTL3 and METTL14 expressions in children with ETV6/RUNX1(E/R)-positive acute lymphoblastic leukemia (ALL) and investigate the relation between the METTL3 and METTL14 expressions with clinical features. METHODS Thirty-seven newly diagnosed E/R-positive ALL children and six controls were included in this study. Real-time quantitative polymerase chain reaction (RT-PCR) was used to detect the mRNA expression level of METTL3 and METTL14. RESULTS Among the 37 cases, 51.35% (n = 19) were boys and 48.65% (n = 18) were girls and the median age was 4.72 (1.72-11.99) years. Among the six controls, 50% (n = 3) were boys and 50% (n = 3) were girls and the median age was 5.24 (1.53-13.17) years. The expression level of METTL3 and METTL14 in E/R-positive ALL patients were lower than in controls (p < .05). Although failed to achieve statistical significance, the expression level of METTL3 and METTL14 in relapse patients were lower than nonrelapse patients (p = .171, p = .150, respectively). CONCLUSION The reduced levels of METTL3 and METTL14 suggest a possible role in the pathogenesis and course of E/R-positive ALL. METTL3 and METTL14 may become new prognostic factors, and rationalize specific treatment intensification in possible E/R-positive relapse patients.
Collapse
Affiliation(s)
- Congcong Sun
- Center for Pediatric Blood Disease, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| | - Lixian Chang
- Center for Pediatric Blood Disease, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| | - Chao Liu
- Center for Pediatric Blood Disease, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| | - Xiaoyan Chen
- Center for Pediatric Blood Disease, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| | - Xiaofan Zhu
- Center for Pediatric Blood Disease, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| |
Collapse
|
76
|
Understanding m 6A Function Through Uncovering the Diversity Roles of YTH Domain-Containing Proteins. Mol Biotechnol 2019; 61:355-364. [PMID: 30637606 DOI: 10.1007/s12033-018-00149-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant-internal modification of eukaryotic mRNA. m6A can be installed and removed by specific enzymes. The "writer," "eraser," and "reader" of m6A modification have been reported. These discoveries facilitate our understanding of the functional significance of m6A. m6A plays an essential role in diverse biological processes by recruiting the corresponding YTH domain-containing proteins, as well as recruiting additional translation initiation factors. Here, we provide an update on the various aspects of YTH domain-containing proteins, including an introduction to the YTH domain, the categories, distribution in cells, and biological roles of YTH proteins. Then we focus on the mechanisms that YTH proteins recognize m6A and mediate the fate of methylated-RNAs in eukaryotic cells.
Collapse
|
77
|
m 6A methylation modulates adipogenesis through JAK2-STAT3-C/EBPβ signaling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:796-806. [PMID: 31295563 DOI: 10.1016/j.bbagrm.2019.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 11/22/2022]
Abstract
N6-methyladenosine (m6A), the most abundant internal mRNA modification in eukaryotes, plays a vital role in regulating adipogenesis. However, its underlying mechanism remains largely unknown. Here, we reveal that deletion of m6A demethylase FTO in porcine and mouse preadipocytes inhibits adipogenesis through JAK2-STAT3-C/EBPβ signaling. Mechanistically, FTO deficiency suppresses JAK2 expression and STAT3 phosphorylation, leading to attenuated transcription of C/EBPβ, which is essential for the early stage of adipocyte differentiation. Using dual-luciferase assay, we validate that knockdown of FTO reduces expression of JAK2 in an m6A-dependent manner. Furthermore, we find that m6A "reader" protein YTHDF2 directly targets m6A-modified transcripts of JAK2 and accelerates mRNA decay, which results in decreased JAK2 expression and inactivated JAK2-STAT3-C/EBPβ signaling, thereby inhibiting adipogenesis. Collectively, our results provide a novel insight into the molecular mechanism of m6A methylation in post-transcriptional regulation of JAK2-STAT3-C/EBPβ signaling axis and highlight the crucial role of m6A modification and its modulators in adipogenesis.
Collapse
|
78
|
Liu T, Yang S, Sui J, Xu SY, Cheng YP, Shen B, Zhang Y, Zhang XM, Yin LH, Pu YP, Liang GY. Dysregulated N6-methyladenosine methylation writer METTL3 contributes to the proliferation and migration of gastric cancer. J Cell Physiol 2019; 235:548-562. [PMID: 31232471 DOI: 10.1002/jcp.28994] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/31/2019] [Indexed: 12/24/2022]
Abstract
Accumulating evidence implies that N6-methyladenosine (m6A) methylation participated in the tumorigenesis of gastric cancer (GC). Here we synthetically analyzing the prognostic value and expression profile of seven m6A methylation-relevant genes through silico analysis of sequencing data downloaded from The Cancer Genome Atlas, Kaplan-Meier plotter, and Gene Expression Omnibus database. We explored the methyltransferase-like 3 (METTL3) expression in GC cell line and tumor tissues by reverse transcription quantitative polymerase chain reaction and western blot analysis. The m6A methylation status of total RNA was measured by m6A RNA methylation quantification kit. Small interfering RNA was used to establish METTL3 knockdown cell lines. We also measure the proliferation and migration capability GC cell. Furthermore, we detect the epithelial cell mesenchymal transition marker and m6A methylation level after METTL3 knock down. Our result revealed that METTL3 was significantly increased in GC tissues compared with control in big crowd data sets. Survival analysis showed that METTL3 serve as a poor prognostic factor for GC patients. The expression level of METTL3 gradually increased with the progress of tumor stage and grade. GFI1 is an important transcription factor associated with METTL3. We verified the up-trend of METTL3 in messenger RNA and protein expression and observed a significant increase in the m6A methylation status of total RNA in the GC cells and tissues. METTL3 knockdown inhibited total RNA m6A methylation level, as well as cell proliferation and migration capacity. Moreover, METTL3 knockdown decreased α-smooth muscle actin. Taken together, our finding revealed that m6A methylation writer METTL3 serve as an oncogene in tumorigenesis of GC.
Collapse
Affiliation(s)
- Tong Liu
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, China
| | - Sheng Yang
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, China
| | - Jing Sui
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, China
| | - Si-Yi Xu
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, China
| | - Yan-Ping Cheng
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Yan Zhang
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Xiao-Mei Zhang
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Li-Hong Yin
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, China
| | - Yue-Pu Pu
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, China
| | - Ge-Yu Liang
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
79
|
METTL3 mediated m 6A modification plays an oncogenic role in cutaneous squamous cell carcinoma by regulating ΔNp63. Biochem Biophys Res Commun 2019; 515:310-317. [PMID: 31153635 DOI: 10.1016/j.bbrc.2019.05.155] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Abstract
The cutaneous squamous cell carcinoma (cSCC) originates from epithelial stem cells through the dysregulation of self-renewal and differentiation. Recent studies have identified methyltransferase-like 3 (METTL3)-mediated N6-methyladenosine (m6A) modification as key regulator of fate of stem cells. However, little is known about the functional importance of METTL3 in cSCC. Here, Western blot and immunohistochemistry were used to investigate the METTL3 levels in cSCC tissues. Functional experiments including surface marker detection, Brdu incorporation assay, colony forming assay, m6A dot blot and tumor xenograft assay were performed to investigate the properties in cSCC cell lines after METTL3 knock down. The expression of METTL3 was up-regulated in cSCC samples. METTL3 knock down impaired cSCC cell stem-like properties, including colony forming ability in vitro and tumorigenicity in vivo. Furthermore, METTL3 knock down and methylation inhibitor cycloleucine could decrease the m6A levels and the expression of ΔNp63 in cSCC. Exogenous expression of ΔNp63 partially restored the cell proliferation of METTL3-knockdown cSCC cells. Therefore, our data indicated the m6A methyltransferases METTL3 as a critical gene in regulating tumorigeneis of cSCC.
Collapse
|
80
|
Heng J, Tian M, Zhang W, Chen F, Guan W, Zhang S. Maternal heat stress regulates the early fat deposition partly through modification of m 6A RNA methylation in neonatal piglets. Cell Stress Chaperones 2019; 24:635-645. [PMID: 31069641 PMCID: PMC6527640 DOI: 10.1007/s12192-019-01002-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 01/10/2023] Open
Abstract
It is known that heat stress induces various physiological challenges in livestock production including changes in lipid metabolism. However, the molecular mechanism of how heat stress regulates lipid metabolism at the mRNA level is still largely unknown. N6-methyl-adenosine (m6A) is the most common and abundant modification on RNA molecules present in eukaryotes, which affects almost all aspects of RNA metabolism and thus gives us the hint that it may participate in changes of gene expression of lipid metabolism during heat stress. Therefore, the purpose of the present study was to investigate the effect of heat stress on fat metabolism in 21-day Large White × Landrace piglets from sows challenged by heat stress from day 85 of gestation until day 21 of lactation. We measured the expression of heat shock proteins (HSPs), genes associated with lipid metabolism, m6A-related enzymes, and m6A levels in abdominal fat and liver of offspring piglets. Our results showed that high ambient temperature significantly increased the expression of HSP70 (P < 0.01) in both liver and abdominal fat and upregulated HSP27 in the liver (P < 0.05). Additionally, genes involved in fat metabolism such as ACACA, FASN, DGAT1, PPAR-γ, SREBP-1c, and FABP4 were upregulated in abdominal fat in the experimental group challenged by high ambient temperature. In the liver, heat stress increased the mRNA expression of DGAT1, SREBP-1c, and CD36 and decreased ATGL and CPT1A expression (P < 0.05). The m6A level was higher in the heat stress group compared with the control group in the liver and abdominal fat of offspring piglets (P < 0.01). Notably, heat stress also increased gene expression of METTL14, WTAP, FTO, and YTHDF2 (P < 0.05) in both abdominal fat and liver. The protein abundances of METTL3, METTL14, and FTO were upregulated after heat stress in abdominal fat (P < 0.05) but not in the liver. Although there was no difference in the protein abundance of YTHDF2 in abdominal fat, its level was increased in the liver (P < 0.05). In conclusion, our findings showed that heat stress increased expression of genes involved in lipogenesis, which provided scientific evidence to the observation of increased fatness in pigs under heat stress. We also demonstrated a possible mechanism that m6A RNA modification may be associated with these changes in lipid metabolism upon heat stress.
Collapse
Affiliation(s)
- Jinghui Heng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642, China
| | - Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642, China
| | - Wenfei Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642, China.
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Wushan Avenue, Tianhe District, Guangzhou, 510642, China.
| |
Collapse
|
81
|
Wang Y, Yin H, Li X, Waterhouse GI, Ai S. Photoelectrochemical immunosensor for N6-methyladenine detection based on Ru@UiO-66, Bi2O3 and Black TiO2. Biosens Bioelectron 2019; 131:163-170. [DOI: 10.1016/j.bios.2019.01.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 01/02/2023]
|
82
|
Yao Y, Bi Z, Wu R, Zhao Y, Liu Y, Liu Q, Wang Y, Wang X. METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPβ pathway via an m 6A-YTHDF2-dependent manner. FASEB J 2019; 33:7529-7544. [PMID: 30865855 DOI: 10.1096/fj.201802644r] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bone marrow stem cells (BMSCs) are multipotent stem cells that can regenerate mesenchymal tissues, such as adipose tissue, bone, and muscle. Recent studies have shown that N6-methyladenosine (m6A) methylation, one of the most prevalent epigenetic modifications, is involved in the development process. However, whether it plays roles in BMSC differentiation is still elusive. Here, we found that the deletion of m6A "writer" protein methyltransferase-like (METTL)3 in porcine BMSCs (pBMSCs) could promote adipogenesis and janus kinase (JAK)1 protein expression via an m6A-dependent way. Knockdown of METTL3 decreased mRNA m6A levels of JAK1, leading to enhanced YTH m6A RNA binding protein 2 (YTHDF2)-dependent JAK1 mRNA stability. We further demonstrated that JAK1 activated signal transducer and activator of transcription (STAT) 5 through regulation of its phosphorylation to bind to the promoter of CCAAT/enhancer binding protein (C/EBP) β, which could ultimately lead to a modulated adipogenic process. Collectively, our results reveal an orchestrated network linking the m6A methylation and JAK1/STAT5/C/EBPβ pathway in pBMSCs adipogenic differentiation. Our findings provide novel insights into the underlying molecular mechanisms of m6A modification in the regulation of BMSCs differentiating into adipocytes, which may pave a way to develop more effective therapeutic strategies in stem cell regenerative medicine and the treatment of obesity.-Yao, Y., Bi, Z., Wu, R., Zhao, Y., Liu, Y., Liu, Q., Wang, Y., Wang, X. METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPβ pathway via an m6A-YTHDF2-dependent manner.
Collapse
Affiliation(s)
- Yongxi Yao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhen Bi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ruifan Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuanling Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Sciences in Eastern China, Ministry of Agriculture, Hangzhou, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Sciences in Eastern China, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
83
|
m 6A methylation controls pluripotency of porcine induced pluripotent stem cells by targeting SOCS3/JAK2/STAT3 pathway in a YTHDF1/YTHDF2-orchestrated manner. Cell Death Dis 2019; 10:171. [PMID: 30787270 PMCID: PMC6382841 DOI: 10.1038/s41419-019-1417-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine, disease treatment, and organ transplantation. As the ethical issue of human ESCs and similarity of pig in human genome and physiological characteristics, the porcine iPSCs (piPSCs) have become an ideal alternative study model. N6-methyladenosine (m6A) methylation is the most prevalent modification in eukaryotic mRNAs, regulating the self-renewal and differentiation of pluripotency stem cells. However, the explicit m6A-regulating machinery remains controversial. Here, we demonstrate that m6A modification and its modulators play a crucial role in mediating piPSCs pluripotency. In brief, loss of METTL3 significantly impairs self-renewal and triggers differentiation of piPSCs by interfering JAK2 and SOCS3 expression, further inactivating JAK2-STAT3 pathway, which then blocks the transcription of KLF4 and SOX2. We identify that both of JAK2 and SOSC3 have m6A modification at 3'UTR by m6A-seq analysis. Dual-luciferase assay shows that METTL3 regulates JAK2 and SOCS3 expression in an m6A-dependent way. RIP-qPCR validates JAK2 and SOCS3 are the targets of YTHDF1 and YTHDF2, respectively. SiMETTL3 induced lower m6A levels of JAK2 and SOCS3 lead to the inhibition of YTHDF1-mediated JAK2 translation and the block of YTHDF2-dependent SOCS3 mRNA decay. Subsequently, the altered protein expressions of JAK2 and SOCS3 inhibit JAK2-STAT3 pathway and then the pluripotency of piPSCs. Collectively, our work uncovers the critical role of m6A modification and its modulators in regulating piPSCs pluripotency and provides insight into an orchestrated network linking the m6A methylation and SOCS3/JAK2/STAT3 pathway in pluripotency regulation.
Collapse
|
84
|
Esse R, Barroso M, Tavares de Almeida I, Castro R. The Contribution of Homocysteine Metabolism Disruption to Endothelial Dysfunction: State-of-the-Art. Int J Mol Sci 2019; 20:E867. [PMID: 30781581 PMCID: PMC6412520 DOI: 10.3390/ijms20040867] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
Homocysteine (Hcy) is a sulfur-containing non-proteinogenic amino acid formed during the metabolism of the essential amino acid methionine. Hcy is considered a risk factor for atherosclerosis and cardiovascular disease (CVD), but the molecular basis of these associations remains elusive. The impairment of endothelial function, a key initial event in the setting of atherosclerosis and CVD, is recurrently observed in hyperhomocysteinemia (HHcy). Various observations may explain the vascular toxicity associated with HHcy. For instance, Hcy interferes with the production of nitric oxide (NO), a gaseous master regulator of endothelial homeostasis. Moreover, Hcy deregulates the signaling pathways associated with another essential endothelial gasotransmitter: hydrogen sulfide. Hcy also mediates the loss of critical endothelial antioxidant systems and increases the intracellular concentration of reactive oxygen species (ROS) yielding oxidative stress. ROS disturb lipoprotein metabolism, contributing to the growth of atherosclerotic vascular lesions. Moreover, excess Hcy maybe be indirectly incorporated into proteins, a process referred to as protein N-homocysteinylation, inducing vascular damage. Lastly, cellular hypomethylation caused by build-up of S-adenosylhomocysteine (AdoHcy) also contributes to the molecular basis of Hcy-induced vascular toxicity, a mechanism that has merited our attention in particular. AdoHcy is the metabolic precursor of Hcy, which accumulates in the setting of HHcy and is a negative regulator of most cell methyltransferases. In this review, we examine the biosynthesis and catabolism of Hcy and critically revise recent findings linking disruption of this metabolism and endothelial dysfunction, emphasizing the impact of HHcy on endothelial cell methylation status.
Collapse
Affiliation(s)
- Ruben Esse
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Madalena Barroso
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Isabel Tavares de Almeida
- Laboratory of Metabolism and Genetics, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal.
| | - Rita Castro
- Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal.
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
85
|
Chen H, Zhao T, Sun D, Wu M, Zhang Z. Changes of RNA N 6-methyladenosine in the hormesis effect induced by arsenite on human keratinocyte cells. Toxicol In Vitro 2019; 56:84-92. [PMID: 30654086 DOI: 10.1016/j.tiv.2019.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/01/2018] [Accepted: 01/13/2019] [Indexed: 12/15/2022]
Abstract
Arsenite exposure can induce a biphasic response called "hormesis", and oxidative stress has been proposed to play critical roles in the hormesis effect. However, the precise mechanisms underlying the hormesis effect induced by arsenite is largely unknown. Recently, N6-methyladenosine (m6A) modification has been implicated to play an important role in the biological processes of cells. Nevertheless, whether and how m6A is involved in the hormesis of cell growth and death caused by arsenite via oxidative stress have remained a mystery. Here, oxidative stress and m6A as well as its methyltransferases/demethylase of human keratinocyte cells after low/high doses of arsenite exposure were simultaneously evaluated. Our results demonstrated that the treatment of human HaCaT cells with low levels of arsenite up-regulated m6A modification as well as its methyltransferases (METTL3/METTL14/WTAP) and inactivated the demethylase (FTO), exerting "protective response" against oxidative stress and promoting HaCaT cells survival. On the contrary, high doses of arsenite induced down-regulation of m6A level and enhanced oxidative stress, showing "inhibitive effects" on cell viability in HaCaT cells. Our results suggest that the reversible m6A modification is associated with the arsenite-driven hormesis on cytotoxicity.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Mei Wu
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
86
|
Purslow JA, Nguyen TT, Egner TK, Dotas RR, Khatiwada B, Venditti V. Active Site Breathing of Human Alkbh5 Revealed by Solution NMR and Accelerated Molecular Dynamics. Biophys J 2018; 115:1895-1905. [PMID: 30352661 DOI: 10.1016/j.bpj.2018.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
AlkB homolog 5 (Alkbh5) is one of nine members of the AlkB family, which are nonheme Fe2+/α-ketoglutarate-dependent dioxygenases that catalyze the oxidative demethylation of modified nucleotides and amino acids. Alkbh5 is highly selective for the N6-methyladenosine modification, an epigenetic mark that has spawned significant biological and pharmacological interest because of its involvement in important physiological processes, such as carcinogenesis and stem cell differentiation. Herein, we investigate the structure and dynamics of human Alkbh5 in solution. By using 15N and 13Cmethyl relaxation dispersion and 15N-R1 and R1ρ NMR experiments, we show that the active site of apo Alkbh5 experiences conformational dynamics on multiple timescales. Consistent with this observation, backbone amide residual dipolar couplings measured for Alkbh5 in phage pf1 are inconsistent with the static crystal structure of the enzyme. We developed a simple approach that combines residual dipolar coupling data and accelerated molecular dynamics simulations to calculate a conformational ensemble of Alkbh5 that is fully consistent with the experimental NMR data. Our structural model reveals that Alkbh5 is more disordered in solution than what is observed in the crystal state and undergoes breathing motions that expand the active site and allow access to α-ketoglutarate. Disordered-to-ordered conformational changes induced by sequential substrate/cofactor binding events have been often invoked to interpret biochemical data on the activity and specificity of AlkB proteins. The structural ensemble reported in this work provides the first atomic-resolution model of an AlkB protein in its disordered conformational state to our knowledge.
Collapse
Affiliation(s)
- Jeffrey A Purslow
- Department of Chemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Trang T Nguyen
- Department of Chemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Timothy K Egner
- Department of Chemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Rochelle R Dotas
- Department of Chemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Balabhadra Khatiwada
- Department of Chemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Vincenzo Venditti
- Department of Chemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa.
| |
Collapse
|
87
|
Purslow JA, Venditti V. 1H, 15N, 13C backbone resonance assignment of human Alkbh5. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:297-301. [PMID: 29858729 DOI: 10.1007/s12104-018-9826-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant and reversible post-transcriptional modification in eukaryotic mRNA and long non-coding RNA (lncRNA). The central role of m6A in various physiological processes has generated considerable biological and pharmacological interest. Alkbh5 (AlkB homologue 5) belongs to the AlkB family and is a non-heme Fe(II)/α-ketoglutarate-dependent dioxygenase that selectively catalyzes the oxidative demethylation of m6A. Herein, we report the backbone 1H, 15N, 13C chemical shift assignment of a fully active, 26 kDa construct of human Alkbh5. Experiments were acquired at 25 °C by heteronuclear multidimensional NMR spectroscopy. Collectively, 92% of all backbone resonances were assigned, with 195 out of a possible 212 residues assigned in the 1H-15N TROSY spectrum. Using the program TALOS+, a secondary structure prediction was generated from the assigned backbone resonance that is consistent with the previously reported X-ray structure of the enzyme. The reported assignment will permit investigations of the protein structural dynamics anticipated to provide crucial insight regarding fundamental aspects in the recognition and enzyme regulation processes.
Collapse
Affiliation(s)
- Jeffrey A Purslow
- Department of Chemistry, Iowa State University, Hach Hall, 2438 Pammel Drive, Ames, IA, 50011, USA
| | - Vincenzo Venditti
- Department of Chemistry, Iowa State University, Hach Hall, 2438 Pammel Drive, Ames, IA, 50011, USA.
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
88
|
Wu R, Liu Y, Yao Y, Zhao Y, Bi Z, Jiang Q, Liu Q, Cai M, Wang F, Wang Y, Wang X. FTO regulates adipogenesis by controlling cell cycle progression via m 6A-YTHDF2 dependent mechanism. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1323-1330. [PMID: 30305247 DOI: 10.1016/j.bbalip.2018.08.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/06/2018] [Accepted: 08/10/2018] [Indexed: 01/10/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal mRNA modification in eukaryotes. Loss of m6A demethylase FTO increases m6A levels and inhibits adipogenesis of preadipocytes. However, its underlying mechanism remains elusive. Here, we demonstrated that silencing FTO inhibited adipogenesis of preadipocytes through impairing cell cycle progression at the early stage of adipogenesis. FTO knockdown markedly decreased the expression of CCNA2 and CDK2, crucial cell cycle regulators, leading to delayed entry of MDI-induced cells into G2 phase. Furthermore, the m6A levels of CCNA2 and CDK2 mRNA were significantly upregulated following FTO knockdown. m6A-binding protein YTHDF2 recognized and decayed methylated mRNAs of CCNA2 and CDK2, leading to decreased protein expression, thereby prolonging cell cycle progression and suppressing adipogenesis. Our work unravels that FTO regulates adipogenesis by controlling cell cycle progression in an m6A-YTHDF2 dependent manner, which provides insights into critical roles of m6A methylation in adipogenesis.
Collapse
Affiliation(s)
- Ruifan Wu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yongxi Yao
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yuanling Zhao
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zhen Bi
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Qin Jiang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Qing Liu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Min Cai
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Fengqin Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Nutrition & Feed Sciences, Ministry of Agriculture, Zhejiang Provincial Laboratory of Feed and Animal Nutrition, No. 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
89
|
Zhao Z, Peng H, Lan C, Zheng Y, Fang L, Li J. Imbalance learning for the prediction of N 6-Methylation sites in mRNAs. BMC Genomics 2018; 19:574. [PMID: 30068294 PMCID: PMC6090857 DOI: 10.1186/s12864-018-4928-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/04/2018] [Indexed: 01/09/2023] Open
Abstract
Background N6-methyladenosine (m6A) is an important epigenetic modification which plays various roles in mRNA metabolism and embryogenesis directly related to human diseases. To identify m6A in a large scale, machine learning methods have been developed to make predictions on m6A sites. However, there are two main drawbacks of these methods. The first is the inadequate learning of the imbalanced m6A samples which are much less than the non-m6A samples, by their balanced learning approaches. Second, the features used by these methods are not outstanding to represent m6A sequence characteristics. Results We propose to use cost-sensitive learning ideas to resolve the imbalance data issues in the human mRNA m6A prediction problem. This cost-sensitive approach applies to the entire imbalanced dataset, without random equal-size selection of negative samples, for an adequate learning. Along with site location and entropy features, top-ranked positions with the highest single nucleotide polymorphism specificity in the window sequences are taken as new features in our imbalance learning. On an independent dataset, our overall prediction performance is much superior to the existing predictors. Our method shows stronger robustness against the imbalance changes in the tests on 9 datasets whose imbalance ratios range from 1:1 to 9:1. Our method also outperforms the existing predictors on 1226 individual transcripts. It is found that the new types of features are indeed of high significance in the m6A prediction. The case studies on gene c-Jun and CBFB demonstrate the detailed prediction capacity to improve the prediction performance. Conclusion The proposed cost-sensitive model and the new features are useful in human mRNA m6A prediction. Our method achieves better correctness and robustness than the existing predictors in independent test and case studies. The results suggest that imbalance learning is promising to improve the performance of m6A prediction. Electronic supplementary material The online version of this article (10.1186/s12864-018-4928-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhixun Zhao
- Advanced Analytics Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Hui Peng
- Advanced Analytics Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Chaowang Lan
- Advanced Analytics Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Yi Zheng
- Advanced Analytics Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Liang Fang
- School of Computer, National University of Defense Technology, Changsha, 410073, China
| | - Jinyan Li
- Advanced Analytics Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007, Australia.
| |
Collapse
|
90
|
Shima H, Matsumoto M, Ishigami Y, Ebina M, Muto A, Sato Y, Kumagai S, Ochiai K, Suzuki T, Igarashi K. S-Adenosylmethionine Synthesis Is Regulated by Selective N 6-Adenosine Methylation and mRNA Degradation Involving METTL16 and YTHDC1. Cell Rep 2018; 21:3354-3363. [PMID: 29262316 DOI: 10.1016/j.celrep.2017.11.092] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/18/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022] Open
Abstract
S-adenosylmethionine (SAM) is an important metabolite as a methyl-group donor in DNA and histone methylation, tuning regulation of gene expression. Appropriate intracellular SAM levels must be maintained, because methyltransferase reaction rates can be limited by SAM availability. In response to SAM depletion, MAT2A, which encodes a ubiquitous mammalian methionine adenosyltransferase isozyme, was upregulated through mRNA stabilization. SAM-depletion reduced N6-methyladenosine (m6A) in the 3' UTR of MAT2A. In vitro reactions using recombinant METTL16 revealed multiple, conserved methylation targets in the 3' UTR. Knockdown of METTL16 and the m6A reader YTHDC1 abolished SAM-responsive regulation of MAT2A. Mutations of the target adenine sites of METTL16 within the 3' UTR revealed that these m6As were redundantly required for regulation. MAT2A mRNA methylation by METTL16 is read by YTHDC1, and we suggest that this allows cells to monitor and maintain intracellular SAM levels.
Collapse
Affiliation(s)
- Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yuma Ishigami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Masayuki Ebina
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yuho Sato
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sayaka Kumagai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kyoko Ochiai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| |
Collapse
|
91
|
Epigallocatechin gallate targets FTO and inhibits adipogenesis in an mRNA m 6A-YTHDF2-dependent manner. Int J Obes (Lond) 2018; 42:1378-1388. [PMID: 29795461 DOI: 10.1038/s41366-018-0082-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/28/2018] [Accepted: 02/08/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND/OBJECTIVE N6-methyladenosine (m6A) modification of mRNA plays a role in regulating adipogenesis. However, its underlying mechanism remains largely unknown. Epigallocatechin gallate (EGCG), the most abundant catechin in green tea, plays a critical role in anti-obesity and anti-adipogenesis. METHODS High-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (HPLC-QqQ-MS/MS) was performed to determine the m6A levels in 3T3-L1 preadipocytes. The effects of EGCG on the m6A levels in specific genes were determined by methylated RNA immunoprecipitation coupled with quantitative real-time PCR (meRIP-qPCR). Several adipogenesis makers and cell cycle genes were analyzed by quantitative real-time PCR (qPCR) and western blotting. Lipid accumulation was evaluated by oil red O staining. All measurements were performed at least for three times. RESULTS Here we showed that EGCG inhibited adipogenesis by blocking the mitotic clonal expansion (MCE) at the early stage of adipocyte differentiation. Exposing 3T3-L1 cells to EGCG reduced the expression of fat mass and obesity-associated (FTO) protein, an m6A demethylase, which led to increased overall levels of RNA m6A methylation. Cyclin A2 (CCNA2) and cyclin dependent kinase 2 (CDK2) play vital roles in MCE. The m6A levels of CCNA2 and CDK2 mRNA were dramatically enhanced by EGCG. Interestingly, EGCG increased the expression of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), which recognized and decayed methylated mRNAs, resulting in decreased protein levels of CCNA2 and CDK2. As a result, MCE was blocked and adipogenesis was inhibited. FTO overexpression and YTHDF2 knockdown in 3T3-L1 cells significantly increased CCNA2 and CDK2 protein levels and ameliorated the EGCG-induced adipogenesis inhibition. Thus, m6A-dependent CCNA2 and CDK2 expressions mediated by FTO and YTHDF2 contributed to EGCG-induced adipogenesis inhibition. CONCLUSION Our findings provide mechanistic insights into how m6A is involved in the EGCG regulation of adipogenesis and shed light on its anti-obesity effect.
Collapse
|
92
|
Hesser CR, Karijolich J, Dominissini D, He C, Glaunsinger BA. N6-methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi's sarcoma-associated herpesvirus infection. PLoS Pathog 2018; 14:e1006995. [PMID: 29659627 PMCID: PMC5919695 DOI: 10.1371/journal.ppat.1006995] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/26/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Methylation at the N6 position of adenosine (m6A) is a highly prevalent and reversible modification within eukaryotic mRNAs that has been linked to many stages of RNA processing and fate. Recent studies suggest that m6A deposition and proteins involved in the m6A pathway play a diverse set of roles in either restricting or modulating the lifecycles of select viruses. Here, we report that m6A levels are significantly increased in cells infected with the oncogenic human DNA virus Kaposi's sarcoma-associated herpesvirus (KSHV). Transcriptome-wide m6A-sequencing of the KSHV-positive renal carcinoma cell line iSLK.219 during lytic reactivation revealed the presence of m6A across multiple kinetic classes of viral transcripts, and a concomitant decrease in m6A levels across much of the host transcriptome. However, we found that depletion of the m6A machinery had differential pro- and anti-viral impacts on viral gene expression depending on the cell-type analyzed. In iSLK.219 and iSLK.BAC16 cells the pathway functioned in a pro-viral manner, as depletion of the m6A writer METTL3 and the reader YTHDF2 significantly impaired virion production. In iSLK.219 cells the defect was linked to their roles in the post-transcriptional accumulation of the major viral lytic transactivator ORF50, which is m6A modified. In contrast, although the ORF50 mRNA was also m6A modified in KSHV infected B cells, ORF50 protein expression was instead increased upon depletion of METTL3, or, to a lesser extent, YTHDF2. These results highlight that the m6A pathway is centrally involved in regulating KSHV gene expression, and underscore how the outcome of this dynamically regulated modification can vary significantly between cell types.
Collapse
Affiliation(s)
- Charles R. Hesser
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States of America
| | - John Karijolich
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, CA, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Dan Dominissini
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, United States of America
- Chaim Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, United States of America
- Howard Hughes Medical Institute, Durham, NC, United States of America
| | - Britt A. Glaunsinger
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States of America
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, CA, United States of America
- Howard Hughes Medical Institute, Durham, NC, United States of America
| |
Collapse
|
93
|
mRNA m 6A plays opposite role in regulating UCP2 and PNPLA2 protein expression in adipocytes. Int J Obes (Lond) 2018; 42:1912-1924. [PMID: 29487348 DOI: 10.1038/s41366-018-0027-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/19/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND/OBJECTIVE N6-methyladenosine (m6A) modification of mRNA plays an important role in regulating adipogenesis. However, its underlying mechanism remains largely unknown. SUBJECTS/METHODS Using Jinhua and Landrace pigs as fat and lean models, we presented a comprehensive transcriptome-wide m6A profiling in adipose tissues from these two pig breeds. Two differentially methylated genes were selected to explore the mechanisms of m6A-mediated regulation of gene function. RESULTS The ratio of m6A/A in the layer of backfat (LB) was significantly higher in Landrace than that in Jinhua. Transcriptome-wide m6A profiling revealed that m6A modification on mRNA occurs in the conserved sequence motif of RRACH and that the pig transcriptome contains 0.53-0.91 peak per actively expressed transcript. The relative density of m6A peaks in the 3'UTR were higher than in 5'UTR. Genes with common m6A peaks from both Landrace (L-LB) and Jinhua (J-LB) were enriched in RNA splicing and cellular lipid metabolic process. The unique m6A peak genes (UMGs) from L-LB were mainly enriched in the extracellular matrix (ECM) and collagen catabolic process, whereas the UMGs from J-LB are mainly involved in RNA splicing, etc. Lipid metabolism processes were not significantly enriched in the UMGs from L-LB or J-LB. Uncoupling protein-2 (UCP2) and patatin-like phospholipase domain containing 2 (PNPLA2) were two of the UMGs in L-LB. Synonymous mutations (MUT) were conducted to reduce m6A level of UCP2 and PNPLA2 mRNAs. Adipogenesis test showed that UCP2-MUT further inhibited adipogenesis, while PNPLA2-MUT promoted lipid accumulation compared with UCP2-WT and PNPLA2-WT, respectively. Further study showed m6A negatively mediates UCP2 protein expression and positively mediates PNPLA2 protein expression. m6A modification affects the translation of PNPLA2 most likely through YTHDF1, whereas UCP2 is likely neither the target of YTHDF2 nor the target of YTHDF1. CONCLUSION Our data demonstrated a conserved and yet dynamically regulated m6A methylome in pig transcriptomes and provided an important resource for studying the function of m6A epitranscriptomic modification in obesity development.
Collapse
|
94
|
Callow MG, Watanabe C, Wickliffe KE, Bainer R, Kummerfield S, Weng J, Cuellar T, Janakiraman V, Chen H, Chih B, Liang Y, Haley B, Newton K, Costa MR. CRISPR whole-genome screening identifies new necroptosis regulators and RIPK1 alternative splicing. Cell Death Dis 2018; 9:261. [PMID: 29449584 PMCID: PMC5833675 DOI: 10.1038/s41419-018-0301-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/04/2018] [Indexed: 12/04/2022]
Abstract
The necroptotic cell death pathway is a key component of human pathogen defense that can become aberrantly derepressed during tissue homeostasis to contribute to multiple types of tissue damage and disease. While formation of the necrosome kinase signaling complex containing RIPK1, RIPK3, and MLKL has been extensively characterized, additional mechanisms of its regulation and effector functions likely remain to be discovered. We screened 19,883 mouse protein-coding genes by CRISPR/Cas9-mediated gene knockout for resistance to cytokine-induced necroptosis and identified 112 regulators and mediators of necroptosis, including 59 new candidate pathway components with minimal or no effect on cell growth in the absence of necroptosis induction. Among these, we further characterized the function of PTBP1, an RNA binding protein whose activity is required to maintain RIPK1 protein abundance by regulating alternative splice-site selection.
Collapse
Affiliation(s)
- Marinella G Callow
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Colin Watanabe
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Katherine E Wickliffe
- Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Russell Bainer
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sarah Kummerfield
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Julie Weng
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Trinna Cuellar
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.,Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | | | - Honglin Chen
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ben Chih
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yuxin Liang
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Michael R Costa
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
95
|
Harvey R, Dezi V, Pizzinga M, Willis AE. Post-transcriptional control of gene expression following stress: the role of RNA-binding proteins. Biochem Soc Trans 2017; 45:1007-14. [PMID: 28710288 PMCID: PMC5655797 DOI: 10.1042/bst20160364] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 12/19/2022]
Abstract
The ability of mammalian cells to modulate global protein synthesis in response to cellular stress is essential for cell survival. While control of protein synthesis is mediated by the regulation of eukaryotic initiation and elongation factors, RNA-binding proteins (RBPs) provide a crucial additional layer to post-transcriptional regulation. RBPs bind specific RNA through conserved RNA-binding domains and ensure that the information contained within the genome and transcribed in the form of RNA is exported to the cytoplasm, chemically modified, and translated prior to folding into a functional protein. Thus, this group of proteins, through mediating translational reprogramming, spatial reorganisation, and chemical modification of RNA molecules, have a major influence on the robust cellular response to external stress and toxic injury.
Collapse
Affiliation(s)
- Robert Harvey
- Medical Research Council Toxicology Unit, Lancaster Rd, Leicester LE1 9HN, U.K
| | - Veronica Dezi
- Medical Research Council Toxicology Unit, Lancaster Rd, Leicester LE1 9HN, U.K
| | | | - Anne E Willis
- Medical Research Council Toxicology Unit, Lancaster Rd, Leicester LE1 9HN, U.K.
| |
Collapse
|
96
|
Tudek B, Zdżalik-Bielecka D, Tudek A, Kosicki K, Fabisiewicz A, Speina E. Lipid peroxidation in face of DNA damage, DNA repair and other cellular processes. Free Radic Biol Med 2017; 107:77-89. [PMID: 27908783 DOI: 10.1016/j.freeradbiomed.2016.11.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/20/2016] [Accepted: 11/27/2016] [Indexed: 01/09/2023]
Abstract
Exocyclic adducts to DNA bases are formed as a consequence of exposure to certain environmental carcinogens as well as inflammation and lipid peroxidation (LPO). Complex family of LPO products gives rise to a variety of DNA adducts, which can be grouped in two classes: (i) small etheno-type adducts of strong mutagenic potential, and (ii) bulky, propano-type adducts, which block replication and transcription, and are lethal lesions. Etheno-DNA adducts are removed from the DNA by base excision repair (BER), AlkB and nucleotide incision repair enzymes (NIR), while substituted propano-type lesions by nucleotide excision repair (NER) and homologous recombination (HR). Changes of the level and activity of several enzymes removing exocyclic adducts from the DNA was reported during carcinogenesis. Also several beyond repair functions of these enzymes, which participate in regulation of cell proliferation and growth, as well as RNA processing was recently described. In addition, adducts of LPO products to proteins was reported during aging and age-related diseases. The paper summarizes pathways for exocyclic adducts removal and describes how proteins involved in repair of these adducts can modify pathological states of the organism.
Collapse
Affiliation(s)
- Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Daria Zdżalik-Bielecka
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Agnieszka Tudek
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Mollers Alle 3, 8000 Aarhus, Denmark
| | - Konrad Kosicki
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Fabisiewicz
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, Warsaw 02-781, Poland
| | - Elżbieta Speina
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
97
|
Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017; 5:diseases5010012. [PMID: 28933365 PMCID: PMC5456335 DOI: 10.3390/diseases5010012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
It is the intention of this review to characterize milk's role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic "doping system" of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow's milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow's milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, Faculty of Human Sciences, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
98
|
Epitranscriptomic regulation of viral replication. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:460-471. [PMID: 28219769 DOI: 10.1016/j.bbagrm.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/11/2022]
Abstract
RNA plays central roles in biology and novel functions and regulation mechanisms are constantly emerging. To accomplish some of their functions within the cell, RNA molecules undergo hundreds of chemical modifications from which N6-methyladenosine (m6A), inosine (I), pseudouridine (ψ) and 5-methylcytosine (5mC) have been described in eukaryotic mRNA. Interestingly, the m6A modification was shown to be reversible, adding novel layers of regulation of gene expression through what is now recognized as epitranscriptomics. The development of molecular mapping strategies coupled to next generation sequencing allowed the identification of thousand of modified transcripts in different tissues and under different physiological conditions such as viral infections. As intracellular parasites, viruses are confronted to cellular RNA modifying enzymes and, as a consequence, viral RNA can be chemically modified at some stages of the replication cycle. This review focuses on the chemical modifications of viral RNA and the impact that these modifications have on viral gene expression and the output of infection. A special emphasis is given to m6A, which was recently shown to play important yet controversial roles in different steps of the HIV-1, HCV and ZIKV replication cycles.
Collapse
|
99
|
Kejík Z, Kaplánek R, Havlík M, Bříza T, Jakubek M, Králová J, Mikula I, Martásek P, Král V. Optical probes and sensors as perspective tools in epigenetics. Bioorg Med Chem 2017; 25:2295-2306. [PMID: 28285925 DOI: 10.1016/j.bmc.2017.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/13/2016] [Accepted: 01/11/2017] [Indexed: 12/23/2022]
Abstract
Modifications of DNA cytosine bases and histone posttranslational modifications play key roles in the control of gene expression and specification of cell states. Such modifications affect many important biological processes and changes to these important regulation mechanisms can initiate or significantly contribute to the development of many serious pathological states. Therefore, recognition and determination of chromatin modifications is an important goal in basic and clinical research. Two of the most promising tools for this purpose are optical probes and sensors, especially colourimetric and fluorescence devices. The use of optical probes and sensors is simple, without highly expensive instrumentation, and with excellent sensitivity and specificity for target structural motifs. Accordingly, the application of various probes and sensors in the recognition and determination of cytosine modifications and structure of histones and histone posttranslational modifications, are discussed in detail in this review.
Collapse
Affiliation(s)
- Zdeněk Kejík
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Robert Kaplánek
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Martin Havlík
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Tomáš Bříza
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Milan Jakubek
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Jarmila Králová
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Ivan Mikula
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Pavel Martásek
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Vladimír Král
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic.
| |
Collapse
|
100
|
Schwartz S, Motorin Y. Next-generation sequencing technologies for detection of modified nucleotides in RNAs. RNA Biol 2016; 14:1124-1137. [PMID: 27791472 PMCID: PMC5699547 DOI: 10.1080/15476286.2016.1251543] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Our ability to map and quantify RNA modifications at a genome-wide scale have revolutionized our understanding of the pervasiveness and dynamic regulation of diverse RNA modifications. Recent efforts in the field have demonstrated the presence of modified residues in almost any type of cellular RNA. Next-generation sequencing (NGS) technologies are the primary choice for transcriptome-wide RNA modification mapping. Here we provide an overview of approaches for RNA modification detection based on their RT-signature, specific chemicals, antibody-dependent (Ab) enrichment, or combinations thereof. We further discuss sources of artifacts in genome-wide modification maps, and experimental and computational considerations to overcome them. The future in this field is tightly linked to the development of new specific chemical reagents, highly specific Ab against RNA modifications and use of single-molecule RNA sequencing techniques.
Collapse
Affiliation(s)
- Schraga Schwartz
- a Department of Molecular Genetics , Weizmann Institute of Science , Rehovot , Israel
| | - Yuri Motorin
- b Laboratoire IMoPA, UMR7365 CNRS-UL, Biopole Lorraine University , Vandoeuvre-les-Nancy , France
| |
Collapse
|