51
|
Pruunsild P, Bading H. Shaping the human brain: evolutionary cis-regulatory plasticity drives changes in synaptic activity-controlled adaptive gene expression. Curr Opin Neurobiol 2019; 59:34-40. [PMID: 31102862 DOI: 10.1016/j.conb.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/10/2019] [Indexed: 01/09/2023]
Abstract
Neuronal activity-induced gene expression programs involved in synaptic structure- and plasticity-related functions are similar in mice and humans, yet bear distinct features. These include gains or losses of activity-responsiveness of certain genes and differences in gene induction profiles. Here, we discuss a possible origin of dissimilarities in activity-regulated transcription between species. We highlight that while synapse-to-nucleus signalling pathways are evolutionarily conserved, cis-regulatory plasticity has been driving species-specific remodelling of the activity-controlled enhancer landscape, thereby affecting gene regulation. In particular, evolutionary rearrangements of transcription factor binding site placements together with potential species-dependent developmental stage- and/or cell type-specific epigenetic and other trans-acting mechanisms are most likely at least in part accountable for between-species diversity in activity-regulated transcription. It is conceivable that cis-regulatory plasticity may have equipped the synaptic activity-driven adaptive gene program in human neurons with unique, species-specific qualities.
Collapse
Affiliation(s)
- Priit Pruunsild
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
52
|
Benatti C, Radighieri G, Alboni S, Blom JMC, Brunello N, Tascedda F. Modulation of neuroplasticity-related targets following stress-induced acute escape deficit. Behav Brain Res 2019; 364:140-148. [PMID: 30771367 DOI: 10.1016/j.bbr.2019.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/07/2019] [Indexed: 12/12/2022]
Abstract
Understanding resilience is a major challenge to improve current pharmacological therapies aimed at complementing psychological-based approaches of stress-related disorders. In particular, resilience is a multi-factorial construct where the complex network of molecular events that drive the process still needs to be resolved. Here, we exploit the acute escape deficit model, an animal model based on exposure to acute unavoidable stress followed by an escape test, to define vulnerable and resilient phenotypes in rats. Hippocampus and prefrontal cortex (PFC), two of the brain areas most involved in the stress response, were analysed for gene expression at two different time points (3 and 24 h) after the escape test. Total Brain-Derived Neurotrophic Factor (BDNF) was highly responsive in the PFC at 24-h after the escape test, while expression of BDNF transcript IV increased in the hippocampus of resistant animals 3 h post-test. Expression of memory enhancers like Neuronal PAS Domain Protein 4 (Npas4) and Activity-regulated cytoskeleton-associated protein (Arc) decreased in a time- and region-dependent fashion in both behavioural phenotypes. Also, the memory inhibitor Protein Phosphatase 1 (Ppp1ca) was increased in the hippocampus of resilient rats at 3 h post-test. Given the importance of neurotrophic factors and synaptic plasticity-related genes for the development of appropriate coping strategies, our data contribute to an additional step forward in the comprehension of the psychobiology of stress and resiliency.
Collapse
Affiliation(s)
- C Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - G Radighieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - S Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - J M C Blom
- Department of Education and Human Sciences, University of Modena and Reggio Emilia, viale Antonio Allegri 9, 42121, Reggio Emilia, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - N Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - F Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
53
|
Scandaglia M, Barco A. Contribution of spurious transcription to intellectual disability disorders. J Med Genet 2019; 56:491-498. [PMID: 30745423 DOI: 10.1136/jmedgenet-2018-105668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/17/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
During the development of multicellular organisms, chromatin-modifying enzymes orchestrate the establishment of gene expression programmes that characterise each differentiated cell type. These enzymes also contribute to the maintenance of cell type-specific transcription profiles throughout life. But what happens when epigenomic regulation goes awry? Genomic screens in experimental models of intellectual disability disorders (IDDs) caused by mutations in epigenetic machinery-encoding genes have shown that transcriptional dysregulation constitutes a hallmark of these conditions. Here, we underscore the connections between a subset of chromatin-linked IDDs and spurious transcription in brain cells. We also propose that aberrant gene expression in neurons, including both the ectopic transcription of non-neuronal genes and the activation of cryptic promoters, may importantly contribute to the pathoaetiology of these disorders.
Collapse
Affiliation(s)
- Marilyn Scandaglia
- Molecular Neurobiology and Neuropathology Unit, Instituto de Neurociencias (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| | - Angel Barco
- Molecular Neurobiology and Neuropathology Unit, Instituto de Neurociencias (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| |
Collapse
|
54
|
Savell KE, Bach SV, Zipperly ME, Revanna JS, Goska NA, Tuscher JJ, Duke CG, Sultan FA, Burke JN, Williams D, Ianov L, Day JJ. A Neuron-Optimized CRISPR/dCas9 Activation System for Robust and Specific Gene Regulation. eNeuro 2019; 6:ENEURO.0495-18.2019. [PMID: 30863790 PMCID: PMC6412672 DOI: 10.1523/eneuro.0495-18.2019] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 12/19/2022] Open
Abstract
CRISPR-based technology has provided new avenues to interrogate gene function, but difficulties in transgene expression in post-mitotic neurons has delayed incorporation of these tools in the central nervous system (CNS). Here, we demonstrate a highly efficient, neuron-optimized dual lentiviral CRISPR-based transcriptional activation (CRISPRa) system capable of robust, modular, and tunable gene induction and multiplexed gene regulation across several primary rodent neuron culture systems. CRISPRa targeting unique promoters in the complex multi-transcript gene brain-derived neurotrophic factor (Bdnf) revealed both transcript- and genome-level selectivity of this approach, in addition to highlighting downstream transcriptional and physiological consequences of Bdnf regulation. Finally, we illustrate that CRISPRa is highly efficient in vivo, resulting in increased protein levels of a target gene in diverse brain structures. Taken together, these results demonstrate that CRISPRa is an efficient and selective method to study gene expression programs in brain health and disease.
Collapse
Affiliation(s)
- Katherine E. Savell
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Svitlana V. Bach
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Morgan E. Zipperly
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Jasmin S. Revanna
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Nicholas A. Goska
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Jennifer J. Tuscher
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Corey G. Duke
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Faraz A. Sultan
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Julia N. Burke
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Derek Williams
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Lara Ianov
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Jeremy J. Day
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, 35294
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, 35294
| |
Collapse
|
55
|
Single-molecule imaging of the transcription factor SRF reveals prolonged chromatin-binding kinetics upon cell stimulation. Proc Natl Acad Sci U S A 2018; 116:880-889. [PMID: 30598445 PMCID: PMC6338867 DOI: 10.1073/pnas.1812734116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
How transcription factors (TFs) activate transcription is a long-standing but still unsolved question. We analyzed serum response factor (SRF), a stimulus-responsive TF mediating immediate early gene (IEG) and cytoskeletal gene expression at single-molecule resolution. Cell stimulation enhanced SRF activity by increasing the number of long chromatin-associated SRF molecules in an oscillating pattern. Further, stimulation enhanced the SRF chromatin residence time, and SRF binding events segregated into three distinct residence time regimes (short, intermediate, and long bound). In summary, our single-molecule imaging study reveals highly dynamic and diverse SRF interactions with DNA. Thus, cell stimulation regulates TF activity by several interconnected mechanisms including nucleus−cytoplasm shuttling, TF phosphorylation, cofactor recruitment, and extension of chromatin residence time and enhancing chromatin-bound TF numbers. Serum response factor (SRF) mediates immediate early gene (IEG) and cytoskeletal gene expression programs in almost any cell type. So far, SRF transcriptional dynamics have not been investigated at single-molecule resolution. We provide a study of single Halo-tagged SRF molecules in fibroblasts and primary neurons. In both cell types, individual binding events of SRF molecules segregated into three chromatin residence time regimes, short, intermediate, and long binding, indicating a cell type-independent SRF property. The chromatin residence time of the long bound fraction was up to 1 min in quiescent cells and significantly increased upon stimulation. Stimulation also enhanced the long bound SRF fraction at specific timepoints (20 and 60 min) in both cell types. These peaks correlated with activation of the SRF cofactors MRTF-A and MRTF-B (myocardin-related transcription factors). Interference with signaling pathways and cofactors demonstrated modulation of SRF chromatin occupancy by actin signaling, MAP kinases, and MRTFs.
Collapse
|
56
|
Gray JM, Spiegel I. Cell-type-specific programs for activity-regulated gene expression. Curr Opin Neurobiol 2018; 56:33-39. [PMID: 30529822 DOI: 10.1016/j.conb.2018.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022]
Abstract
Experience leaves a lasting mark on neural circuit function in part through activity-regulated gene (ARG) expression. New genome wide approaches have revealed that ARG programs are highly cell-type-specific, raising the possibility that they mediate different forms of experience-dependent plasticity in different cell types. The cell-type specificity of these gene programs is achieved by a combination of cell-intrinsic mechanisms that determine the transcriptional response of each neuronal subtype to a given stimulus and by cell-extrinsic mechanisms that influence the nature of the stimulus a cell receives. A better understanding of these mechanisms could usher in an era of molecular systems neuroscience in which genetic perturbations of cell-type-specific plasticities are assessed using electrophysiology and in vivo imaging to reveal the neural basis of adaptive behaviors.
Collapse
Affiliation(s)
- Jesse M Gray
- Department of Genetics, Harvard Medical School, Boston, United States.
| | - Ivo Spiegel
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
57
|
Kyrke-Smith M, Williams JM. Bridging Synaptic and Epigenetic Maintenance Mechanisms of the Engram. Front Mol Neurosci 2018; 11:369. [PMID: 30344478 PMCID: PMC6182070 DOI: 10.3389/fnmol.2018.00369] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022] Open
Abstract
How memories are maintained, and how memories are lost during aging or disease, are intensely investigated issues. Arguably, the reigning theory is that synaptic modifications allow for the formation of engrams during learning, and sustaining engrams sustains memory. Activity-regulated gene expression profiles have been shown to be critical to these processes, and their control by the epigenome has begun to be investigated in earnest. Here, we propose a novel theory as to how engrams are sustained. We propose that many of the genes that are currently believed to underlie long-term memory are actually part of a “plasticity transcriptome” that underpins structural and functional modifications to neuronal connectivity during the hours to days following learning. Further, we hypothesize that a “maintenance transcriptome” is subsequently induced that includes epigenetic negative regulators of gene expression, particularly histone deacetylases. The maintenance transcriptome negatively regulates the plasticity transcriptome, and thus the plastic capability of a neuron, after learning. In this way, the maintenance transcriptome would act as a metaplasticity mechanism that raises the threshold for change in neurons within an engram, helping to ensure the connectivity is stabilized and memory is maintained.
Collapse
Affiliation(s)
- Madeleine Kyrke-Smith
- Department of Anatomy, The Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand.,Department of Psychology, The Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
| | - Joanna M Williams
- Department of Anatomy, The Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
58
|
Kasper C, Hebert FO, Aubin-Horth N, Taborsky B. Divergent brain gene expression profiles between alternative behavioural helper types in a cooperative breeder. Mol Ecol 2018; 27:4136-4151. [DOI: 10.1111/mec.14837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 07/21/2018] [Accepted: 08/07/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Claudia Kasper
- Behavioural Ecology; University of Bern; Hinterkappelen Switzerland
| | - Francois Olivier Hebert
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes; Université Laval; Québec Québec Canada
| | - Nadia Aubin-Horth
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes; Université Laval; Québec Québec Canada
| | - Barbara Taborsky
- Behavioural Ecology; University of Bern; Hinterkappelen Switzerland
| |
Collapse
|
59
|
Immediate-Early Promoter-Driven Transgenic Reporter System for Neuroethological Research in a Hemimetabolous Insect. eNeuro 2018; 5:eN-MNT-0061-18. [PMID: 30225346 PMCID: PMC6140108 DOI: 10.1523/eneuro.0061-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/11/2018] [Accepted: 07/20/2018] [Indexed: 01/04/2023] Open
Abstract
Genes expressed in response to increased neuronal activity are widely used as activity markers in recent behavioral neuroscience. In the present study, we established transgenic reporter system for whole-brain activity mapping in the two-spotted cricket Gryllus bimaculatus, a hemimetabolous insect used in neuroethology and behavioral ecology. In the cricket brain, a homolog of early growth response-1 (Gryllus egr-B) was rapidly induced as an immediate-early gene (IEG) in response to neuronal hyperexcitability. The upstream genomic fragment of Gryllus egr-B contains potential binding sites for transcription factors regulated by various intracellular signaling pathways, as well as core promoter elements conserved across insect/crustacean egr-B homologs. Using the upstream genomic fragment of Gryllus egr-B, we established an IEG promoter-driven transgenic reporter system in the cricket. In the brain of transgenic crickets, the reporter gene (a nuclear-targeted destabilized EYFP) was induced in response to neuronal hyperexcitability. Inducible expression of reporter protein was detected in almost all neurons after neuronal hyperexcitability. Using our novel reporter system, we successfully detected neuronal activation evoked by feeding in the cricket brain. Our IEG promoter-driven activity reporting system allows us to visualize behaviorally relevant neural circuits at cellular resolution in the cricket brain.
Collapse
|
60
|
A novel environment-evoked transcriptional signature predicts reactivity in single dentate granule neurons. Nat Commun 2018; 9:3084. [PMID: 30082781 PMCID: PMC6079101 DOI: 10.1038/s41467-018-05418-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/06/2018] [Indexed: 12/21/2022] Open
Abstract
Activity-induced remodeling of neuronal circuits is critical for memory formation. This process relies in part on transcription, but neither the rate of activity nor baseline transcription is equal across neuronal cell types. In this study, we isolated mouse hippocampal populations with different activity levels and used single nucleus RNA-seq to compare their transcriptional responses to activation. One hour after novel environment exposure, sparsely active dentate granule (DG) neurons had a much stronger transcriptional response compared to more highly active CA1 pyramidal cells and vasoactive intestinal polypeptide (VIP) interneurons. Activity continued to impact transcription in DG neurons up to 5 h, with increased heterogeneity. By re-exposing the mice to the same environment, we identified a unique transcriptional signature that selects DG neurons for reactivation upon re-exposure to the same environment. These results link transcriptional heterogeneity to functional heterogeneity and identify a transcriptional correlate of memory encoding in individual DG neurons. Single nuclei RNA-seq has been used to characterize transcriptional signature of environment-related activity in cells of the dentate gyrus. Here the authors use this approach to show that whether a neuron will be reactivated in response to re-exposure to a previous environment can be predicted by its transcriptional signature.
Collapse
|
61
|
Renouard L, Bridi MCD, Coleman T, Arckens L, Frank MG. Anatomical correlates of rapid eye movement sleep-dependent plasticity in the developing cortex. Sleep 2018; 41:5042994. [PMID: 31796959 DOI: 10.1093/sleep/zsy124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/10/2018] [Indexed: 11/13/2022] Open
Abstract
Rapid eye movement (REM) sleep is expressed at its highest levels during early life when the brain is rapidly developing. This suggests that REM sleep may play important roles in brain maturation and developmental plasticity. We investigated this possibility by examining the role of REM sleep in the regulation of plasticity-related proteins known to govern synaptic plasticity in vitro and in vivo. We combined immunohistochemistry with a classic model of experience-dependent plasticity in the developing brain known to be consolidated during sleep. We found that after the developing visual cortex is triggered to remodel, it is reactivated during REM sleep (as measured by FOS+ and ARC+ cells). This is accompanied by expression of several proteins implicated in synaptic long-term potentiation (PSD95 and phosphorylated (p), mTOR, cofilin, and CREB) across the different cortical layers. These changes did not occur in animals deprived of REM sleep, but were preserved in control animals that were instead awakened in non- (N) REM sleep. Collectively, these findings support a role for REM sleep in developmental brain plasticity.
Collapse
Affiliation(s)
- Leslie Renouard
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| | - Michelle C D Bridi
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD
| | - Tammi Coleman
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| |
Collapse
|
62
|
AD-Related N-Terminal Truncated Tau Is Sufficient to Recapitulate In Vivo the Early Perturbations of Human Neuropathology: Implications for Immunotherapy. Mol Neurobiol 2018; 55:8124-8153. [PMID: 29508283 DOI: 10.1007/s12035-018-0974-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/19/2018] [Indexed: 01/08/2023]
Abstract
The NH2tau 26-44 aa (i.e., NH2htau) is the minimal biologically active moiety of longer 20-22-kDa NH2-truncated form of human tau-a neurotoxic fragment mapping between 26 and 230 amino acids of full-length protein (htau40)-which is detectable in presynaptic terminals and peripheral CSF from patients suffering from AD and other non-AD neurodegenerative diseases. Nevertheless, whether its exogenous administration in healthy nontransgenic mice is able to elicit a neuropathological phenotype resembling human tauopathies has not been yet investigated. We explored the in vivo effects evoked by subchronic intracerebroventricular (i.c.v.) infusion of NH2htau or its reverse counterpart into two lines of young (2-month-old) wild-type mice (C57BL/6 and B6SJL). Six days after its accumulation into hippocampal parenchyma, significant impairment in memory/learning performance was detected in NH2htau-treated group in association with reduced synaptic connectivity and neuroinflammatory response. Compromised short-term plasticity in paired-pulse facilitation paradigm (PPF) was detected in the CA3/CA1 synapses from NH2htau-impaired animals along with downregulation in calcineurin (CaN)-stimulated pCREB/c-Fos pathway(s). Importantly, these behavioral, synaptotoxic, and neuropathological effects were independent from the genetic background, occurred prior to frank neuronal loss, and were specific because no alterations were detected in the control group infused with its reverse counterpart. Finally, a 2.0-kDa peptide which biochemically and immunologically resembles the injected NH2htau was endogenously detected in vivo, being present in hippocampal synaptosomal preparations from AD subjects. Given that the identification of the neurotoxic tau species is mandatory to develop a more effective tau-based immunological approach, our evidence can have important translational implications for cure of human tauopathies.
Collapse
|
63
|
Liu HH, McClatchy DB, Schiapparelli L, Shen W, Yates JR, Cline HT. Role of the visual experience-dependent nascent proteome in neuronal plasticity. eLife 2018; 7:e33420. [PMID: 29412139 PMCID: PMC5815848 DOI: 10.7554/elife.33420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/05/2018] [Indexed: 01/02/2023] Open
Abstract
Experience-dependent synaptic plasticity refines brain circuits during development. To identify novel protein synthesis-dependent mechanisms contributing to experience-dependent plasticity, we conducted a quantitative proteomic screen of the nascent proteome in response to visual experience in Xenopus optic tectum using bio-orthogonal metabolic labeling (BONCAT). We identified 83 differentially synthesized candidate plasticity proteins (CPPs). The CPPs form strongly interconnected networks and are annotated to a variety of biological functions, including RNA splicing, protein translation, and chromatin remodeling. Functional analysis of select CPPs revealed the requirement for eukaryotic initiation factor three subunit A (eIF3A), fused in sarcoma (FUS), and ribosomal protein s17 (RPS17) in experience-dependent structural plasticity in tectal neurons and behavioral plasticity in tadpoles. These results demonstrate that the nascent proteome is dynamic in response to visual experience and that de novo synthesis of machinery that regulates RNA splicing and protein translation is required for experience-dependent plasticity.
Collapse
Affiliation(s)
- Han-Hsuan Liu
- The Dorris Neuroscience CenterThe Scripps Research InstituteLa JollaUnited States
- Department of NeuroscienceThe Scripps Research InstituteLa JollaUnited States
- Kellogg School of Science and TechnologyThe Scripps Research InstituteLa JollaUnited States
| | - Daniel B McClatchy
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaUnited States
| | - Lucio Schiapparelli
- The Dorris Neuroscience CenterThe Scripps Research InstituteLa JollaUnited States
- Department of NeuroscienceThe Scripps Research InstituteLa JollaUnited States
| | - Wanhua Shen
- The Dorris Neuroscience CenterThe Scripps Research InstituteLa JollaUnited States
- Department of NeuroscienceThe Scripps Research InstituteLa JollaUnited States
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - John R Yates
- Department of NeuroscienceThe Scripps Research InstituteLa JollaUnited States
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaUnited States
| | - Hollis T Cline
- The Dorris Neuroscience CenterThe Scripps Research InstituteLa JollaUnited States
- Department of NeuroscienceThe Scripps Research InstituteLa JollaUnited States
- Kellogg School of Science and TechnologyThe Scripps Research InstituteLa JollaUnited States
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
64
|
Nagy C, Vaillancourt K, Turecki G. A role for activity-dependent epigenetics in the development and treatment of major depressive disorder. GENES BRAIN AND BEHAVIOR 2018; 17:e12446. [DOI: 10.1111/gbb.12446] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/17/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Affiliation(s)
- C. Nagy
- McGill Group for Suicide Studies, Department of Psychiatry; McGill University; Montreal Canada
| | - K. Vaillancourt
- McGill Group for Suicide Studies, Department of Psychiatry; McGill University; Montreal Canada
| | - G. Turecki
- McGill Group for Suicide Studies, Department of Psychiatry; McGill University; Montreal Canada
| |
Collapse
|
65
|
de Bartolomeis A, Buonaguro EF, Latte G, Rossi R, Marmo F, Iasevoli F, Tomasetti C. Immediate-Early Genes Modulation by Antipsychotics: Translational Implications for a Putative Gateway to Drug-Induced Long-Term Brain Changes. Front Behav Neurosci 2017; 11:240. [PMID: 29321734 PMCID: PMC5732183 DOI: 10.3389/fnbeh.2017.00240] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022] Open
Abstract
An increasing amount of research aims at recognizing the molecular mechanisms involved in long-lasting brain architectural changes induced by antipsychotic treatments. Although both structural and functional modifications have been identified following acute antipsychotic administration in humans, currently there is scarce knowledge on the enduring consequences of these acute changes. New insights in immediate-early genes (IEGs) modulation following acute or chronic antipsychotic administration may help to fill the gap between primary molecular response and putative long-term changes. Moreover, a critical appraisal of the spatial and temporal patterns of IEGs expression may shed light on the functional "signature" of antipsychotics, such as the propensity to induce motor side effects, the potential neurobiological mechanisms underlying the differences between antipsychotics beyond D2 dopamine receptor affinity, as well as the relevant effects of brain region-specificity in their mechanisms of action. The interest for brain IEGs modulation after antipsychotic treatments has been revitalized by breakthrough findings such as the role of early genes in schizophrenia pathophysiology, the involvement of IEGs in epigenetic mechanisms relevant for cognition, and in neuronal mapping by means of IEGs expression profiling. Here we critically review the evidence on the differential modulation of IEGs by antipsychotics, highlighting the association between IEGs expression and neuroplasticity changes in brain regions impacted by antipsychotics, trying to elucidate the molecular mechanisms underpinning the effects of this class of drugs on psychotic, cognitive and behavioral symptoms.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Gianmarco Latte
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Rodolfo Rossi
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Federica Marmo
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
66
|
Uchida S, Teubner BJW, Hevi C, Hara K, Kobayashi A, Dave RM, Shintaku T, Jaikhan P, Yamagata H, Suzuki T, Watanabe Y, Zakharenko SS, Shumyatsky GP. CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene. Cell Rep 2017; 18:352-366. [PMID: 28076781 DOI: 10.1016/j.celrep.2016.12.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/14/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022] Open
Abstract
Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets.
Collapse
Affiliation(s)
- Shusaku Uchida
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA.
| | - Brett J W Teubner
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Charles Hevi
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Kumiko Hara
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Ayumi Kobayashi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Rutu M Dave
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Tatsushi Shintaku
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Pattaporn Jaikhan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takayoshi Suzuki
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Gleb P Shumyatsky
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
67
|
Lösing P, Niturad CE, Harrer M, Reckendorf CMZ, Schatz T, Sinske D, Lerche H, Maljevic S, Knöll B. SRF modulates seizure occurrence, activity induced gene transcription and hippocampal circuit reorganization in the mouse pilocarpine epilepsy model. Mol Brain 2017; 10:30. [PMID: 28716058 PMCID: PMC5513048 DOI: 10.1186/s13041-017-0310-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/28/2017] [Indexed: 11/10/2022] Open
Abstract
A hallmark of temporal lobe epilepsy (TLE) is hippocampal neuronal demise and aberrant mossy fiber sprouting. In addition, unrestrained neuronal activity in TLE patients induces gene expression including immediate early genes (IEGs) such as Fos and Egr1. We employed the mouse pilocarpine model to analyze the transcription factor (TF) serum response factor (SRF) in epileptogenesis, seizure induced histopathology and IEG induction. SRF is a neuronal activity regulated TF stimulating IEG expression as well as nerve fiber growth and guidance. Adult conditional SRF deficient mice (SrfCaMKCreERT2) were more refractory to initial status epilepticus (SE) acquisition. Further, SRF deficient mice developed more spontaneous recurrent seizures (SRS). Genome-wide transcriptomic analysis uncovered a requirement of SRF for SE and SRS induced IEG induction (e.g. Fos, Egr1, Arc, Npas4, Btg2, Atf3). SRF was required for epilepsy associated neurodegeneration, mossy fiber sprouting and inflammation. We uncovered MAP kinase signaling as SRF target during epilepsy. Upon SRF ablation, seizure evoked induction of dual specific phosphatases (Dusp5 and Dusp6) was reduced. Lower expression of these negative ERK kinase regulators correlated with altered P-ERK levels in epileptic Srf mutant animals. Overall, this study uncovered an SRF contribution to several processes of epileptogenesis in the pilocarpine model.
Collapse
Affiliation(s)
- Pascal Lösing
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Cristina Elena Niturad
- Department of Neurology and Epileptology, Hertie-Institute of Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Merle Harrer
- Department of Neurology and Epileptology, Hertie-Institute of Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | | | - Theresa Schatz
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Daniela Sinske
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie-Institute of Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Snezana Maljevic
- Department of Neurology and Epileptology, Hertie-Institute of Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.,Present address: The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville VIC, Melbourne, 3052, Australia
| | - Bernd Knöll
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
68
|
Gandolfi D, Cerri S, Mapelli J, Polimeni M, Tritto S, Fuzzati-Armentero MT, Bigiani A, Blandini F, Mapelli L, D'Angelo E. Activation of the CREB/ c-Fos Pathway during Long-Term Synaptic Plasticity in the Cerebellum Granular Layer. Front Cell Neurosci 2017; 11:184. [PMID: 28701927 PMCID: PMC5487453 DOI: 10.3389/fncel.2017.00184] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/16/2017] [Indexed: 12/22/2022] Open
Abstract
The induction of long-term potentiation and depression (LTP and LTD) is thought to trigger gene expression and protein synthesis, leading to consolidation of synaptic and neuronal changes. However, while LTP and LTD have been proposed to play important roles for sensori-motor learning in the cerebellum granular layer, their association with these mechanisms remained unclear. Here, we have investigated phosphorylation of the cAMP-responsive element binding protein (CREB) and activation of the immediate early gene c-Fos pathway following the induction of synaptic plasticity by theta-burst stimulation (TBS) in acute cerebellar slices. LTP and LTD were localized using voltage-sensitive dye imaging (VSDi). At two time points following TBS (15 min and 120 min), corresponding to the early and late phases of plasticity, slices were fixed and processed to evaluate CREB phosphorylation (P-CREB) and c-FOS protein levels, as well as Creb and c-Fos mRNA expression. High levels of P-CREB and Creb/c-Fos were detected before those of c-FOS, as expected if CREB phosphorylation triggered gene expression followed by protein synthesis. No differences between control slices and slices stimulated with TBS were observed in the presence of an N-methyl-D-aspartate receptor (NMDAR) antagonist. Interestingly, activation of the CREB/c-Fos system showed a relevant degree of colocalization with long-term synaptic plasticity. These results show that NMDAR-dependent plasticity at the cerebellum input stage bears about transcriptional and post-transcriptional processes potentially contributing to cerebellar learning and memory consolidation.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Brain Connectivity Center, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| | - Silvia Cerri
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| | - Jonathan Mapelli
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio EmiliaModena, Italy
| | - Mariarosa Polimeni
- Department of Public Health, Experimental and Forensic Medicine, Human Anatomy Unit, University of PaviaPavia Italy
| | - Simona Tritto
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy
| | - Marie-Therese Fuzzati-Armentero
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio EmiliaModena, Italy
| | - Fabio Blandini
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| | - Lisa Mapelli
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Museo Storico Della Fisica e Centro Studi e Ricerche Enrico FermiRome, Italy
| | - Egidio D'Angelo
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy.,Brain Connectivity Center, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)Pavia, Italy
| |
Collapse
|
69
|
Neuronal activity-regulated alternative mRNA splicing. Int J Biochem Cell Biol 2017; 91:184-193. [PMID: 28591617 DOI: 10.1016/j.biocel.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/24/2017] [Accepted: 06/01/2017] [Indexed: 11/20/2022]
Abstract
Activity-regulated gene transcription underlies plasticity-dependent changes in the molecular composition and structure of neurons. Numerous genes whose expression is induced by different neuronal plasticity inducing pathways have been identified, but the alteration of gene expression levels represents only part of the complexity of the activity-regulated transcriptional program. Alternative splicing of precursor mRNA is an additional mechanism that modulates the activity-dependent transcriptional signature. Recently developed splicing sensitive transcriptome wide analyses improve our understanding of the underlying mechanisms and demonstrate to what extend the activity regulated transcriptome is alternatively spliced. So far, only for a small group of differentially spliced mRNAs of synaptic proteins, the functional implications have been studied in detail. These include examples in which differential exon usage can result in the expression of alternative proteins which interfere with or alter the function of preexisting proteins and cause a dominant negative functional block of constitutively expressed variants. Such altered proteins contribute to the structural and functional reorganization of pre- and postsynaptic terminals and to the maintenance and formation of synapses. In addition, activity-induced alternative splicing can affect the untranslated regions (UTRs) and generates mRNAs harboring different cis-regulatory elements. Such differential UTRs can influence mRNA stability, translation, and can change the targeting of mRNAs to subcellular compartments. Here, we summarize different categories of alternative splicing which are thought to contribute to synaptic remodeling, give an overview of activity-regulated alternatively spliced mRNAs of synaptic proteins that impact synaptic functions, and discuss splicing factors and epigenetic modifications as regulatory determinants.
Collapse
|
70
|
Chen F, Hall BJ. Synaptic activity suppresses expression of neurogenic differentiation factor 2 in an NMDA receptor-dependent manner. Synapse 2017; 71. [PMID: 28524267 DOI: 10.1002/syn.21986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/03/2017] [Accepted: 05/14/2017] [Indexed: 01/16/2023]
Abstract
Neurogenic differentiation factor 2 (NeuroD2) is a highly expressed transcription factor in the developing central nervous system. In newborn neurons, NeuroD2-mediated gene expression promotes differentiation, maturation, and survival. In addition to these early, cell-intrinsic developmental processes, NeuroD2 in postmitotic neurons also regulates synapse growth and ion channel expression to control excitability. While NeuroD2 transactivation can be induced in an activity-dependent manner, little is known about how expression of NeuroD2 itself is regulated. Using genome-wide, mRNA-based microarray analysis, we found that NeuroD2 is actually one of hundreds of genes whose mRNA levels are suppressed by synaptic activity, in a manner dependent upon N-methyl d-aspartate receptor (NMDAR) activation. We confirmed this observation both in vitro and in vivo and provide evidence that this happens at the level of transcription and not mRNA stability. Our experiments further indicate that suppression of NeuroD2 message by NMDARs likely involves both CaMKII and MAPK but not voltage-gated calcium channels, in contrast to its mechanism of transactivation. We predict from these data that NMDARs may transduce information about the level of synaptic activity a developing neuron receives, to down-regulate NeuroD2 and allow proper maturation of cortical circuits by suppressing expression of neurite and synaptic growth promoting gene products.
Collapse
Affiliation(s)
- Fading Chen
- The Department of Cell and Molecular Biology, Tulane University, School of Science and Engineering, New Orleans, Louisiana 70118
| | - Benjamin J Hall
- The Department of Cell and Molecular Biology, Tulane University, School of Science and Engineering, New Orleans, Louisiana 70118.,The Neuroscience Program, Tulane University, School of Science and Engineering, New Orleans, Louisiana 70118.,Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
71
|
Porter RS, Murata-Nakamura Y, Nagasu H, Kim HG, Iwase S. Transcriptome Analysis Revealed Impaired cAMP Responsiveness in PHF21A-Deficient Human Cells. Neuroscience 2017; 370:170-180. [PMID: 28571721 DOI: 10.1016/j.neuroscience.2017.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/08/2017] [Accepted: 05/19/2017] [Indexed: 12/16/2022]
Abstract
Potocki-Shaffer Syndrome is a rare neurodevelopmental syndrome associated with microdeletion of a region of Chromosome 11p11.2. Genetic evidence has implicated haploinsufficiency of PHF21A, a gene that encodes a histone-binding protein, as the likely cause of intellectual disability and craniofacial abnormalities in Potocki-Shaffer Syndrome. However, the molecular consequences of reduced PHF21A expression remain elusive. In this study, we analyzed by RNA-Sequencing (RNA-Seq) two patient-derived cell lines with heterozygous loss of PHF21A compared to unaffected individuals and identified 1,885 genes that were commonly misregulated. The patient cells displayed down-regulation of key pathways relevant to learning and memory, including Cyclic Adenosine Monophosphate (cAMP)-signaling pathway genes. We found that PHF21A is required for full induction of a luciferase reporter carrying cAMP-responsive elements (CRE) following stimulation by the cAMP analog, forskolin. Finally, PHF21A-deficient patient-derived cells exhibited a delayed induction of immediate early genes following forskolin stimulation. These results suggest that an impaired response to cAMP signaling might be involved in the pathology of PHF21A deficiency. This article is part of a Special Issue entitled: [SI: Molecules & Cognition].
Collapse
Affiliation(s)
- Robert S Porter
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Hajime Nagasu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Hyung-Goo Kim
- Section of Reproductive Endocrinology, Infertility & Genetics, Department of Obstetrics & Gynecology, Augusta University, Augusta, GA 30912, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
72
|
Wolf C, An Y, Tanaka T, Bilgel M, Gonzalez C, Kitner Triolo M, Resnick S. Cross-Sectional and Longitudinal Effects of CREB1 Genotypes on Individual Differences in Memory and Executive Function: Findings from the BLSA. Front Aging Neurosci 2017; 9:142. [PMID: 28559842 PMCID: PMC5432543 DOI: 10.3389/fnagi.2017.00142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/28/2017] [Indexed: 12/17/2022] Open
Abstract
Purpose: Previously, we have shown that the SNP rs10932201 genotype of the cyclic AMP responsive element binding protein 1 gene (CREB1) contributes to individual differences in executive and memory function at the neural system and behavioral levels in healthy, young adults. However, longitudinal effects of CREB1 genotypes on cognition have not yet been addressed. Furthermore we were interested in replicating associations between CREB1 genotypes and human cognition in previous cross-sectional studies and explore whether APOE𝜀4 status might modify these relations. Materials and Methods: We investigated whether common, independent tag SNPs within CREB1 (rs2253206, rs10932201, rs6785) influence individual differences in age-related longitudinal change and level of executive function and memory performance independent of baseline age, sex, APOE𝜀4 status, and education. Our analysis included data from cognitively unimpaired older adults participating in the Baltimore Longitudinal Study of Aging. Eleven measures from six cognitive tests (sample sizes range 617-786) were analyzed using linear mixed effects and generalized estimating equations models. Mean baseline age ranged from 50 to 69 years and mean time of follow-up (interval) ranged from 8 to 22 years. Results: We found significant effects of all three CREB1 SNPs on performance level and/or longitudinal change in performance based on eight measures assessing semantic memory, episodic memory, or both executive function and semantic memory. SNP rs10932201 showed the most significant and largest effect (Cohen's d = -0.70, p < 0.01) on age-related longitudinal decline of semantic memory. Additionally, we show interactions between all three CREB1 SNPs and APOE𝜀4 status on age-related longitudinal declines and levels of memory and executive function. Conclusion: Our results suggest that CREB1 genotypes independently and by interactions with APOE𝜀4 status contribute to individual differences in cognitive aging.
Collapse
Affiliation(s)
- Claudia Wolf
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, BaltimoreMD, United States.,Psychological Research Methods, Department of Psychology, Humboldt University BerlinBerlin, Germany
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, BaltimoreMD, United States
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, BaltimoreMD, United States.,Clinical Research Branch, Medstar Health Research Institute, BaltimoreMD, United States
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, BaltimoreMD, United States
| | - Christopher Gonzalez
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, BaltimoreMD, United States.,Multimodal Imaging Laboratory, Department of Neurosciences, University of California San Diego, La JollaCA, United States
| | - Melissa Kitner Triolo
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, BaltimoreMD, United States
| | - Susan Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, BaltimoreMD, United States
| |
Collapse
|
73
|
Inda C, Bonfiglio JJ, Dos Santos Claro PA, Senin SA, Armando NG, Deussing JM, Silberstein S. cAMP-dependent cell differentiation triggered by activated CRHR1 in hippocampal neuronal cells. Sci Rep 2017; 7:1944. [PMID: 28512295 PMCID: PMC5434020 DOI: 10.1038/s41598-017-02021-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/04/2017] [Indexed: 12/18/2022] Open
Abstract
Corticotropin-releasing hormone receptor 1 (CRHR1) activates the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). Both cAMP sources were shown to be required for the phosphorylation of ERK1/2 triggered by activated G protein coupled receptor (GPCR) CRHR1 in neuronal and neuroendocrine contexts. Here, we show that activated CRHR1 promotes growth arrest and neurite elongation in neuronal hippocampal cells (HT22-CRHR1 cells). By characterising CRHR1 signalling mechanisms involved in the neuritogenic effect, we demonstrate that neurite outgrowth in HT22-CRHR1 cells takes place by a sAC-dependent, ERK1/2-independent signalling cascade. Both tmACs and sAC are involved in corticotropin-releasing hormone (CRH)-mediated CREB phosphorylation and c-fos induction, but only sAC-generated cAMP pools are critical for the neuritogenic effect of CRH, further highlighting the engagement of two sources of cAMP downstream of the activation of a GPCR, and reinforcing the notion that restricted cAMP microdomains may regulate independent cellular processes.
Collapse
Affiliation(s)
- Carolina Inda
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,DFBMC, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan José Bonfiglio
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Paula A Dos Santos Claro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,DFBMC, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sergio A Senin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Natalia G Armando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Jan M Deussing
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Molecular Neurogenetics, Munich, Germany
| | - Susana Silberstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina. .,DFBMC, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
74
|
Skill Learning Modulates RNA Pol II Poising at Immediate Early Genes in the Adult Striatum. eNeuro 2017; 4:eN-NWR-0074-17. [PMID: 28451632 PMCID: PMC5392706 DOI: 10.1523/eneuro.0074-17.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/14/2022] Open
Abstract
A multilayered complexity of epigenetic and transcriptional regulatory mechanisms underlies neuronal activity-dependent gene transcription. The regulation of RNA Pol II progression along the transcription cycle, from promoter-proximal poising (with RNA Pol II paused at promoter-proximal regions, characterized by a Ser5P+-rich and Ser2P+-poor RPB1 CTD) to active elongation, has emerged as a major step in transcriptional regulation across several organisms, tissues, and developmental stages, including the nervous system. However, it is not known whether this mechanism is modulated by experience. We investigated the impact of learning a motor skill on RNA Pol II phosphorylation dynamics in the adult mouse striatum. We uncovered that learning modulates the in vivo striatal phosphorylation dynamics of the CTD of the RNA Pol II RPB1 subunit, leading to an increased poising index in trained mice. We found that this modulation occurs at immediate early genes (IEGs), with increased poising of RNA Pol II at both Arc and Fos genes but not at constitutively expressed genes. Furthermore, we confirmed that this was learning dependent, and not just regulated by context or motor activity. These experiments demonstrate a novel phenomenon of learning induced transcriptional modulation in adult brain, which may have implications for our understanding of learning, memory allocation, and consolidation.
Collapse
|
75
|
Knoedler JR, Subramani A, Denver RJ. The Krüppel-like factor 9 cistrome in mouse hippocampal neurons reveals predominant transcriptional repression via proximal promoter binding. BMC Genomics 2017; 18:299. [PMID: 28407733 PMCID: PMC5390390 DOI: 10.1186/s12864-017-3640-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Background Krüppel-like factor 9 (Klf9) is a zinc finger transcription factor that functions in neural cell differentiation, but little is known about its genomic targets or mechanism of action in neurons. Results We used the mouse hippocampus-derived neuronal cell line HT22 to identify genes regulated by Klf9, and we validated our findings in mouse hippocampus. We engineered HT22 cells to express a Klf9 transgene under control of the tetracycline repressor, and used RNA sequencing to identify genes modulated by Klf9. We found 217 genes repressed and 21 induced by Klf9. We also engineered HT22 cells to co-express biotin ligase and a Klf9 fusion protein containing an N-terminal biotin ligase recognition peptide. Using chromatin-streptavidin precipitation (ChSP) sequencing we identified 3,514 genomic regions where Klf9 associated. Seventy-five percent of these were within 1 kb of transcription start sites, and Klf9 associated in chromatin with 60% of the repressed genes. We analyzed the promoters of several repressed genes containing Klf9 ChSP peaks using transient transfection reporter assays and found that Klf9 repressed promoter activity, which was abolished after mutation of Sp/Klf-like motifs. Knockdown or knockout of Klf9 in HT22 cells caused dysregulation of Klf9 target genes. Chromatin immunoprecipitation assays showed that Klf9 associated in chromatin from mouse hippocampus with genes identified by ChSP sequencing on HT22 cells, and expression of Klf9 target genes was dysregulated in the hippocampus of neonatal Klf9-null mice. Gene ontology analysis revealed that Klf9 genomic targets include genes involved in cystokeletal remodeling, Wnt signaling and inflammation. Conclusions We have identified genomic targets of Klf9 in hippocampal neurons and created a foundation for future studies on how it functions in chromatin, and regulates neuronal morphology and survival across the lifespan. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3640-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, 48109, USA.,Current address: Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, 3065C Kraus Natural Science Building, Ann Arbor, MI, 48109, USA
| | - Robert J Denver
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Molecular, Cellular and Developmental Biology, The University of Michigan, 3065C Kraus Natural Science Building, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
76
|
Blüthgen N, van Bentum M, Merz B, Kuhl D, Hermey G. Profiling the MAPK/ERK dependent and independent activity regulated transcriptional programs in the murine hippocampus in vivo. Sci Rep 2017; 7:45101. [PMID: 28349920 PMCID: PMC5368636 DOI: 10.1038/srep45101] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/17/2017] [Indexed: 11/09/2022] Open
Abstract
Activity-dependent alteration of the transcriptional program is central for shaping neuronal connectivity. Constitutively expressed transcription factors orchestrate the initial response to neuronal stimulation and serve as substrates for second messenger-regulated kinase signalling cascades. The mitogen-activated protein kinase ERK conveys signalling from the synapse to the nucleus but its genetic signature following neuronal activity has not been revealed. The goal of the present study was to identify ERK dependent and independent activity regulated transcriptional programs in the murine hippocampus. We used generalized seizures combined with the pharmacological intervention of MEK activation as an in vivo model to determine the complete transcriptional program initiated by ERK after neuronal activity. Our survey demonstrates that the induction of a large number of activity-regulated genes, including Arc/Arg3.1, Arl5b, Gadd45b, Homer1, Inhba and Zwint, is indeed dependent on ERK phosphorylation. In contrast, expression of a small group of genes, including Npas4, Arl4d, Errfi1, and Rgs2, is only partially dependent or completely independent (Ppp1r15a) of this signalling pathway. Among the identified transcripts are long non-coding (lnc) RNAs and induction of LincPint and splice variants of NEAT1 are ERK dependent. Our survey provides a comprehensive analysis of the transcriptomic response conveyed by ERK signalling in the hippocampus.
Collapse
Affiliation(s)
- Nils Blüthgen
- Institute for Theoretical Biology and Institute of Pathology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Mirjam van Bentum
- Institute for Theoretical Biology and Institute of Pathology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Barbara Merz
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Dietmar Kuhl
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| |
Collapse
|
77
|
Gene networks activated by specific patterns of action potentials in dorsal root ganglia neurons. Sci Rep 2017; 7:43765. [PMID: 28256583 PMCID: PMC5335607 DOI: 10.1038/srep43765] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/23/2017] [Indexed: 12/17/2022] Open
Abstract
Gene regulatory networks underlie the long-term changes in cell specification, growth of synaptic connections, and adaptation that occur throughout neonatal and postnatal life. Here we show that the transcriptional response in neurons is exquisitely sensitive to the temporal nature of action potential firing patterns. Neurons were electrically stimulated with the same number of action potentials, but with different inter-burst intervals. We found that these subtle alterations in the timing of action potential firing differentially regulates hundreds of genes, across many functional categories, through the activation or repression of distinct transcriptional networks. Our results demonstrate that the transcriptional response in neurons to environmental stimuli, coded in the pattern of action potential firing, can be very sensitive to the temporal nature of action potential delivery rather than the intensity of stimulation or the total number of action potentials delivered. These data identify temporal kinetics of action potential firing as critical components regulating intracellular signalling pathways and gene expression in neurons to extracellular cues during early development and throughout life.
Collapse
|
78
|
Chen PB, Kawaguchi R, Blum C, Achiro JM, Coppola G, O'Dell TJ, Martin KC. Mapping Gene Expression in Excitatory Neurons during Hippocampal Late-Phase Long-Term Potentiation. Front Mol Neurosci 2017; 10:39. [PMID: 28275336 PMCID: PMC5319997 DOI: 10.3389/fnmol.2017.00039] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/01/2017] [Indexed: 12/22/2022] Open
Abstract
The persistence of long-lasting changes in synaptic connectivity that underlie long-term memory require new RNA and protein synthesis. To elucidate the temporal pattern of gene expression that gives rise to long-lasting neuronal plasticity, we analyzed differentially-expressed (DE) RNAs in mouse hippocampal slices following induction of late phase long-term potentiation (L-LTP) specifically within pyramidal excitatory neurons using Translating Ribosome Affinity Purification RNA sequencing (TRAP-seq). We detected time-dependent changes in up- and down-regulated ribosome-associated mRNAs over 2 h following L-LTP induction, with minimal overlap of DE transcripts between time points. TRAP-seq revealed greater numbers of DE transcripts and magnitudes of LTP-induced changes than RNA-seq of all cell types in the hippocampus. Neuron-enriched transcripts had greater changes at the ribosome-loading level than the total RNA level, while RNA-seq identified many non-neuronal DE mRNAs. Our results highlight the importance of considering both time course and cell-type specificity in activity-dependent gene expression during memory formation.
Collapse
Affiliation(s)
- Patrick B Chen
- Interdepartmental Program in Neurosciences, University of California, Los Angeles Los Angeles, CA, USA
| | - Riki Kawaguchi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles Los Angeles, CA, USA
| | - Charles Blum
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles Los Angeles, CA, USA
| | - Jennifer M Achiro
- Department of Biological Chemistry, University of California, Los Angeles Los Angeles, CA, USA
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles Los Angeles, CA, USA
| | - Thomas J O'Dell
- Department of Physiology, University of California, Los Angeles Los Angeles, CA, USA
| | - Kelsey C Martin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los AngelesLos Angeles, CA, USA; Department of Biological Chemistry, University of California, Los AngelesLos Angeles, CA, USA
| |
Collapse
|
79
|
Bach SV, Hegde AN. The proteasome and epigenetics: zooming in on histone modifications. Biomol Concepts 2017; 7:215-27. [PMID: 27522625 DOI: 10.1515/bmc-2016-0016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
The proteasome is a structural complex of many proteins that degrades substrates marked by covalent linkage to ubiquitin. Many years of research has shown a role for ubiquitin-proteasome-mediated proteolysis in synaptic plasticity and memory mainly in degrading synaptic, cytoplasmic and nuclear proteins. Recent work indicates that the proteasome has wider proteolytic and non-proteolytic roles in processes such as histone modifications that affect synaptic plasticity and memory. In this review, we assess the evidence gathered from neuronal as well as non-neuronal cell types regarding the function of the proteasome in positive or negative regulation of posttranslational modifications of histones, such as acetylation, methylation and ubiquitination. We discuss the critical roles of the proteasome in clearing excess histone proteins in various cellular contexts and the possible non-proteolytic functions in regulating transcription of target genes. In addition, we summarize the current literature on diverse chromatin-remodeling machineries, such as histone acetyltransferases, deacetylates, methyltransferases and demethylases, as targets for proteasomal degradation across experimental models. Lastly, we provide a perspective on how proteasomal regulation of histone modifications may modulate synaptic plasticity in the nervous system.
Collapse
|
80
|
Moreno-Juan V, Filipchuk A, Antón-Bolaños N, Mezzera C, Gezelius H, Andrés B, Rodríguez-Malmierca L, Susín R, Schaad O, Iwasato T, Schüle R, Rutlin M, Nelson S, Ducret S, Valdeolmillos M, Rijli FM, López-Bendito G. Prenatal thalamic waves regulate cortical area size prior to sensory processing. Nat Commun 2017; 8:14172. [PMID: 28155854 PMCID: PMC5296753 DOI: 10.1038/ncomms14172] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/06/2016] [Indexed: 11/27/2022] Open
Abstract
The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing. How sensory maps are formed in the brain is only partially understood. Here the authors describe spontaneous calcium waves that propagate across different sensory nuclei in the embryonic thalamus; disrupting the wave pattern triggers thalamic gene expression changes and eventually alters the size of cortical areas.
Collapse
Affiliation(s)
- Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Anton Filipchuk
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Noelia Antón-Bolaños
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Cecilia Mezzera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain.,Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Henrik Gezelius
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Belen Andrés
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Luis Rodríguez-Malmierca
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Rafael Susín
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Olivier Schaad
- NCCR frontiers in Genetics, University of Geneva, CH-1211 Geneva 4, Switzerland.,Department of Biochemistry, Sciences II, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics (NIG), Mishima 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Roland Schüle
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert Ludwigs University, 79106 Freiburg, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Standort Freiburg, 79108 Freiburg, Germany
| | - Michael Rutlin
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA.,Department of Biochemistry and Molecular Biophysics, HHMI, Columbia University Medical Center, New York, New York 10032, USA
| | - Sacha Nelson
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| |
Collapse
|
81
|
Garay PM, Wallner MA, Iwase S. Yin-yang actions of histone methylation regulatory complexes in the brain. Epigenomics 2016; 8:1689-1708. [PMID: 27855486 PMCID: PMC5289040 DOI: 10.2217/epi-2016-0090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of histone methylation has emerged as a major driver of neurodevelopmental disorders including intellectual disabilities and autism spectrum disorders. Histone methyl writer and eraser enzymes generally act within multisubunit complexes rather than in isolation. However, it remains largely elusive how such complexes cooperate to achieve the precise spatiotemporal gene expression in the developing brain. Histone H3K4 methylation (H3K4me) is a chromatin signature associated with active gene-regulatory elements. We review a body of literature that supports a model in which the RAI1-containing H3K4me writer complex counterbalances the LSD1-containing H3K4me eraser complex to ensure normal brain development. This model predicts H3K4me as the nexus of previously unrelated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Patricia Marie Garay
- Neuroscience Graduate Program, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Shigeki Iwase
- Neuroscience Graduate Program, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
82
|
Drgonova J, Walther D, Hartstein GL, Bukhari MO, Baumann MH, Katz J, Hall FS, Arnold ER, Flax S, Riley A, Rivero-Martin O, Lesch KP, Troncoso J, Ranscht B, Uhl GR. Cadherin 13: human cis-regulation and selectively-altered addiction phenotypes and cerebral cortical dopamine in knockout mice. Mol Med 2016; 22:537-547. [PMID: 27579475 PMCID: PMC5082297 DOI: 10.2119/molmed.2015.00170] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/29/2016] [Indexed: 12/22/2022] Open
Abstract
The cadherin 13 (CDH13) gene encodes a cell adhesion molecule likely to influence development and connections of brain circuits that modulate addiction, locomotion and cognition, including those that involve midbrain dopamine neurons. Human CDH13 mRNA expression differs by more than 80% in postmortem cerebral cortical samples from individuals with different CDH13 genotypes, supporting examination of mice with altered Cdh13 expression as models for common human variation at this locus. Constitutive cdh13 knockout mice display evidence for changed cocaine reward: shifted dose response relationship in tests of cocaine-conditioned place preference using doses that do not alter cocaine conditioned taste aversion. Reduced adult Cdh13 expression in conditional knockouts also alters cocaine reward in ways that correlate with individual differences in cortical Cdh13 mRNA levels. In control and comparison behavioral assessments, knockout mice display modestly-quicker acquisition of rotarod and water maze tasks, with a trend toward faster acquisition of 5 choice serial reaction time tasks that otherwise displayed no genotype-related differences. They display significant differences in locomotion in some settings, with larger effects in males. In assessments of brain changes that might contribute to these behavioral differences, there are selective alterations of dopamine levels, dopamine/metabolite ratios, dopaminergic fiber densities and mRNA encoding the activity dependent transcription factor npas4 in cerebral cortex of knockout mice. These novel data and previously reported human associations of CDH13 variants with addiction, individual differences in responses to stimulant administration and attention deficit hyperactivity disorder (ADHD) phenotypes suggest that levels of CDH13 expression, through mechanisms likely to include effects on mesocortical dopamine, influence stimulant reward and may contribute modestly to cognitive and locomotor phenotypes relevant to ADHD.
Collapse
Affiliation(s)
- Jana Drgonova
- Molecular Neurobiology, NIH-IRP, NIDA, Baltimore, Maryland 21224
| | - Donna Walther
- Molecular Neurobiology, NIH-IRP, NIDA, Baltimore, Maryland 21224
| | - G Luke Hartstein
- Molecular Neurobiology, NIH-IRP, NIDA, Baltimore, Maryland 21224
| | | | | | - Jonathan Katz
- Medicinal Chemistry, NIH-IRP, NIDA, Baltimore, Maryland 21224
| | - Frank Scott Hall
- Molecular Neurobiology, NIH-IRP, NIDA, Baltimore, Maryland 21224
| | | | - Shaun Flax
- Dept of Psychology, American Univ, Washington, DC
| | | | - Olga Rivero-Martin
- Translational Neurobiology, Dept Psychiatry, Univ Würzburg, Würzburg Germany
| | - Klaus-Peter Lesch
- Translational Neurobiology, Dept Psychiatry, Univ Würzburg, Würzburg Germany
| | - Juan Troncoso
- Div Neuropathology, Johns Hopkins Sch Med, Baltimore MD 21202
| | | | - George R Uhl
- Molecular Neurobiology, NIH-IRP, NIDA, Baltimore, Maryland 21224
| |
Collapse
|
83
|
Oliveira AMM. DNA methylation: a permissive mark in memory formation and maintenance. ACTA ACUST UNITED AC 2016; 23:587-93. [PMID: 27634149 PMCID: PMC5026210 DOI: 10.1101/lm.042739.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/14/2016] [Indexed: 01/06/2023]
Abstract
DNA methylation was traditionally viewed as a static mechanism required during cell fate determination. This view has been challenged and it is now accepted that DNA methylation is involved in the regulation of genomic responses in mature neurons, particularly in cognitive functions. The evidence for a role of DNA methylation in memory formation and maintenance comes from the increasing number of studies that have assessed the effects of manipulation of DNA methylation modifiers in the ability to form and maintain memories. Moreover, insights from genome-wide analyses of the hippocampal DNA methylation status after neuronal activity show that DNA methylation is dynamically regulated. Despite all the experimental evidence, we are still far from having a clear picture of how DNA methylation regulates long-term adaptations. This review aims on one hand to describe the findings that led to the confirmation of DNA methylation as an important player in memory formation. On the other hand, it tries to integrate these discoveries into the current views of how memories are formed and maintained.
Collapse
Affiliation(s)
- Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
84
|
Identification of Synaptotagmin 10 as Effector of NPAS4-Mediated Protection from Excitotoxic Neurodegeneration. J Neurosci 2016; 36:2561-70. [PMID: 26936998 DOI: 10.1523/jneurosci.2027-15.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Neuronal degeneration represents a pathogenetic hallmark after different brain insults, such as ischemia and status epilepticus (SE). Excessive release of glutamate triggered by pathophysiologic synaptic activity has been put forward as key mechanism in this context. In response to pathophysiologic synaptic activity, multiple signaling cascades are activated that ultimately initiate expression of specific sets of genes, which may decide between neuronal survival versus death. Recently, a core set of genes ["activity-regulated inhibitor of death" (AID) genes] including the transcription factor (TF) NPAS4 (neuronal PAS domain protein 4) has been found to provide activity-induced protection against neuronal death caused by excitotoxic stimulation. However, the downstream targets of AID action mediating neuroprotection remained so far unknown. Here, we have identified synaptotagmin 10 (Syt10), a vesicular Ca(2+) sensor, as the first neuroprotective effector protein downstream of the TF NPAS4. The expression of Syt10 is strongly upregulated by pathophysiologic synaptic activity after kainic acid (KA) exposure and its absence renders mouse hippocampal neurons highly susceptible to excitotoxic insults. We found NPAS4 as critical for the increase in Syt10 levels and in turn the ability of NPAS4 to confer neuroprotection against KA-induced excitotoxicity to be severely diminished in Syt10 knock-out neurons. In summary, our results point to an important role for signaling of the NPAS4-Syt10 pathway in the neuronal response to strong synaptic activity as a consequence of excitotoxic insults. SIGNIFICANCE STATEMENT Aberrant synaptic activity is observed in many neurological disorders and has been suggested as an important factor contributing to the pathophysiology. Intriguingly, pathophysiologic activity can also trigger signaling cascades mediating potentially compensatory neuroprotection against excitotoxic insult. Here, we identify a new neuroprotective signaling cascade involving the activity-induced transcriptional regulator NPAS4 and the vesicular Ca(2+)-sensor protein synaptotagmin 10 (Syt10). Syt10 is required for NPAS4 to protect hippocampal neurons against excitotoxic cell death. NPAS4 in turn controls the activity of the Syt10 gene, which is strongly induced by pathophysiologic activity. Our results uncover an entirely unexpected, novel function of Syt10 underlying the response of neurons to pathophysiologic activity and provide new therapeutic perspectives for neurological disorders.
Collapse
|
85
|
Where Environment Meets Cognition: A Focus on Two Developmental Intellectual Disability Disorders. Neural Plast 2016; 2016:4235898. [PMID: 27547454 PMCID: PMC4980517 DOI: 10.1155/2016/4235898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/03/2016] [Indexed: 11/22/2022] Open
Abstract
One of the most challenging questions in neuroscience is to dissect how learning and memory, the foundational pillars of cognition, are grounded in stable, yet plastic, gene expression states. All known epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodelling, and noncoding RNAs regulate brain gene expression, both during neurodevelopment and in the adult brain in processes related to cognition. On the other hand, alterations in the various components of the epigenetic machinery have been linked to well-known causes of intellectual disability disorders (IDDs). Two examples are Down Syndrome (DS) and Fragile X Syndrome (FXS), where global and local epigenetic alterations lead to impairments in synaptic plasticity, memory, and learning. Since epigenetic modifications are reversible, it is theoretically possible to use epigenetic drugs as cognitive enhancers for the treatment of IDDs. Epigenetic treatments act in a context specific manner, targeting different regions based on cell and state specific chromatin accessibility, facilitating the establishment of the lost balance. Here, we discuss epigenetic studies of IDDs, focusing on DS and FXS, and the use of epidrugs in combinatorial therapies for IDDs.
Collapse
|
86
|
Inhibition of DNA Methylation Impairs Synaptic Plasticity during an Early Time Window in Rats. Neural Plast 2016; 2016:4783836. [PMID: 27493805 PMCID: PMC4963592 DOI: 10.1155/2016/4783836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 01/23/2023] Open
Abstract
Although the importance of DNA methylation-dependent gene expression to neuronal plasticity is well established, the dynamics of methylation and demethylation during the induction and expression of synaptic plasticity have not been explored. Here, we combined electrophysiological, pharmacological, molecular, and immunohistochemical approaches to examine the contribution of DNA methylation and the phosphorylation of Methyl-CpG-binding protein 2 (MeCP2) to synaptic plasticity. We found that, at twenty minutes after theta burst stimulation (TBS), the DNA methylation inhibitor 5-aza-2-deoxycytidine (5AZA) impaired hippocampal long-term potentiation (LTP). Surprisingly, after two hours of TBS, when LTP had become a transcription-dependent process, 5AZA treatment had no effect. By comparing these results to those in naive slices, we found that, at two hours after TBS, an intergenic region of the RLN gene was hypomethylated and that the phosphorylation of residue S80 of MeCP2 was decreased, while the phosphorylation of residue S421 was increased. As expected, 5AZA affected only the methylation of the RLN gene and exerted no effect on MeCP2 phosphorylation patterns. In summary, our data suggest that tetanic stimulation induces critical changes in synaptic plasticity that affects both DNA methylation and the phosphorylation of MeCP2. These data also suggest that early alterations in DNA methylation are sufficient to impair the full expression of LTP.
Collapse
|
87
|
Kuzniewska B, Nader K, Dabrowski M, Kaczmarek L, Kalita K. Adult Deletion of SRF Increases Epileptogenesis and Decreases Activity-Induced Gene Expression. Mol Neurobiol 2016; 53:1478-1493. [PMID: 25636686 PMCID: PMC4789231 DOI: 10.1007/s12035-014-9089-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/29/2014] [Indexed: 11/27/2022]
Abstract
Although the transcription factor serum response factor (SRF) has been suggested to play a role in activity-dependent gene expression and mediate plasticity-associated structural changes in the hippocampus, no unequivocal evidence has been provided for its role in brain pathology, such as epilepsy. A genome-wide program of activity-induced genes that are regulated by SRF also remains unknown. In the present study, we show that the inducible and conditional deletion of SRF in the adult mouse hippocampus increases the epileptic phenotype in the kainic acid model of epilepsy, reflected by more severe and frequent seizures. Moreover, we observe a robust decrease in activity-induced gene transcription in SRF knockout mice. We characterize the genetic program controlled by SRF in neurons and using functional annotation, we find that SRF target genes are associated with synaptic plasticity and epilepsy. Several of these SRF targets function as regulators of inhibitory or excitatory balance and the structural plasticity of neurons. Interestingly, mutations in those SRF targets have found to be associated with such human neuropsychiatric disorders, as autism and intellectual disability. We also identify novel direct SRF targets in hippocampus: Npas4, Gadd45g, and Zfp36. Altogether, our data indicate that proteins that are highly upregulated by neuronal stimulation, identified in the present study as SRF targets, may function as endogenous protectors against overactivation. Thus, the lack of these effector proteins in SRF knockout animals may lead to uncontrolled excitation and eventually epilepsy.
Collapse
Affiliation(s)
- Bozena Kuzniewska
- Laboratory of Neurobiology, Nencki Institute, 3 Pasteur Street, Warsaw, Poland
| | - Karolina Nader
- Laboratory of Neurobiology, Nencki Institute, 3 Pasteur Street, Warsaw, Poland
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Neurobiology Center, Nencki Institute, 3 Pasteur Street, Warsaw, Poland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute, 3 Pasteur Street, Warsaw, Poland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, Nencki Institute, 3 Pasteur Street, Warsaw, Poland.
| |
Collapse
|
88
|
Kálmán S, Garbett KA, Janka Z, Mirnics K. Human dermal fibroblasts in psychiatry research. Neuroscience 2016; 320:105-21. [PMID: 26855193 DOI: 10.1016/j.neuroscience.2016.01.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/16/2022]
Abstract
In order to decipher the disease etiology, progression and treatment of multifactorial human brain diseases we utilize a host of different experimental models. Recently, patient-derived human dermal fibroblast (HDF) cultures have re-emerged as promising in vitro functional system for examining various cellular, molecular, metabolic and (patho)physiological states and traits of psychiatric disorders. HDF studies serve as a powerful complement to postmortem and animal studies, and often appear to be informative about the altered homeostasis in neural tissue. Studies of HDFs from patients with schizophrenia (SZ), depression, bipolar disorder (BD), autism, attention deficit and hyperactivity disorder and other psychiatric disorders have significantly advanced our understanding of these devastating diseases. These reports unequivocally prove that signal transduction, redox homeostasis, circadian rhythms and gene*environment (G*E) interactions are all amenable for assessment by the HDF model. Furthermore, the reported findings suggest that this underutilized patient biomaterial, combined with modern molecular biology techniques, may have both diagnostic and prognostic value, including prediction of response to therapeutic agents.
Collapse
Affiliation(s)
- S Kálmán
- Department of Psychiatry, University of Szeged, 57 Kálvária Sgt, Szeged 6725, Hungary.
| | - K A Garbett
- Department of Psychiatry, Vanderbilt University, 8128 MRB III, 465 21st Avenue, Nashville, TN 37232, USA.
| | - Z Janka
- Department of Psychiatry, University of Szeged, 57 Kálvária Sgt, Szeged 6725, Hungary.
| | - K Mirnics
- Department of Psychiatry, University of Szeged, 57 Kálvária Sgt, Szeged 6725, Hungary; Department of Psychiatry, Vanderbilt University, 8128 MRB III, 465 21st Avenue, Nashville, TN 37232, USA.
| |
Collapse
|
89
|
Meyer zu Reckendorf C, Anastasiadou S, Bachhuber F, Franz-Wachtel M, Macek B, Knöll B. Proteomic analysis of SRF associated transcription complexes identified TFII-I as modulator of SRF function in neurons. Eur J Cell Biol 2016; 95:42-56. [DOI: 10.1016/j.ejcb.2015.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 11/25/2022] Open
|
90
|
Gao L, Tian M, Zhao HY, Xu QQ, Huang YM, Si QC, Tian Q, Wu QM, Hu XM, Sun LB, McClintock SM, Zeng Y. TrkB activation by 7, 8-dihydroxyflavone increases synapse AMPA subunits and ameliorates spatial memory deficits in a mouse model of Alzheimer's disease. J Neurochem 2015; 136:620-36. [DOI: 10.1111/jnc.13432] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/20/2015] [Accepted: 11/06/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Lei Gao
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Mi Tian
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Hong-Yun Zhao
- The Fifth Ward of Neurology Rehabilitation Center; Hangzhou Armed Police Hospital; Hangzhou China
| | - Qian-Qian Xu
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Yu-Ming Huang
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Qun-Cao Si
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Qing Tian
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Qing-Ming Wu
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Xia-Min Hu
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Li-Bo Sun
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Shawn M. McClintock
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
- Division of Brain Stimulation and Neurophysiology; Department of Psychiatry and Behavioral Sciences; Duke University School of Medicine; Durham North Carolina USA
- Department of Psychiatry; UT Southwestern Medical Center; Dallas Texas USA
| | - Yan Zeng
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| |
Collapse
|
91
|
Scandaglia M, Benito E, Morenilla-Palao C, Fiorenza A, Del Blanco B, Coca Y, Herrera E, Barco A. Fine-tuned SRF activity controls asymmetrical neuronal outgrowth: implications for cortical migration, neural tissue lamination and circuit assembly. Sci Rep 2015; 5:17470. [PMID: 26638868 PMCID: PMC4671020 DOI: 10.1038/srep17470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/29/2015] [Indexed: 01/09/2023] Open
Abstract
The stimulus-regulated transcription factor Serum Response Factor (SRF) plays an important role in diverse neurodevelopmental processes related to structural plasticity and motile functions, although its precise mechanism of action has not yet been established. To further define the role of SRF in neural development and distinguish between cell-autonomous and non cell-autonomous effects, we bidirectionally manipulated SRF activity through gene transduction assays that allow the visualization of individual neurons and their comparison with neighboring control cells. In vitro assays showed that SRF promotes survival and filopodia formation and is required for normal asymmetric neurite outgrowth, indicating that its activation favors dendrite enlargement versus branching. In turn, in vivo experiments demonstrated that SRF-dependent regulation of neuronal morphology has important consequences in the developing cortex and retina, affecting neuronal migration, dendritic and axonal arborization and cell positioning in these laminated tissues. Overall, our results show that the controlled and timely activation of SRF is essential for the coordinated growth of neuronal processes, suggesting that this event regulates the switch between neuronal growth and branching during developmental processes.
Collapse
Affiliation(s)
- Marilyn Scandaglia
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550. Alicante, Spain
| | - Eva Benito
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550. Alicante, Spain
| | - Cruz Morenilla-Palao
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550. Alicante, Spain
| | - Anna Fiorenza
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550. Alicante, Spain
| | - Beatriz Del Blanco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550. Alicante, Spain
| | - Yaiza Coca
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550. Alicante, Spain
| | - Eloísa Herrera
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550. Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550. Alicante, Spain
| |
Collapse
|
92
|
Pećina-Šlaus N, Pećina M. Only one health, and so many omics. Cancer Cell Int 2015; 15:64. [PMID: 26101467 PMCID: PMC4476076 DOI: 10.1186/s12935-015-0212-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022] Open
Abstract
The development of new approaches based on wide profiling methods in studying biological and medical systems is bringing large amounts of data on a daily basis. The causes of complex diseases have been directed to the genome examination bringing formidable knowledge. We can study genome, but also proteome, exome, transcriptome, epigenome, metabolome, and newcomers too such as microbiome, connectome and exposome. The title of this editorial is paraphrasing the famous saying of Victor Schlichter from Buenos Aires children hospital in Argentina who said "How unfair! Only one health, and so many diseases". Today there is indeed a whole lot of omics. We think that we are lucky to have all the omics possible, but we also wanted to stress the importance of future holistic approach in integrating the knowledge omics has rewarded us.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neuro-oncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Salata 12, HR-10000 Zagreb, Croatia ; Department of Biology, School of Medicine, University of Zagreb, Salata 3, Zagreb, Croatia
| | - Marko Pećina
- Department of Medical Sciences Croatian Academy of Sciences and Arts, Zrinski trg 11, Zagreb, Croatia
| |
Collapse
|
93
|
Fiorenza A, Lopez-Atalaya JP, Rovira V, Scandaglia M, Geijo-Barrientos E, Barco A. Blocking miRNA Biogenesis in Adult Forebrain Neurons Enhances Seizure Susceptibility, Fear Memory, and Food Intake by Increasing Neuronal Responsiveness. Cereb Cortex 2015; 26:1619-1633. [PMID: 25595182 DOI: 10.1093/cercor/bhu332] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The RNase Dicer is essential for the maturation of most microRNAs, a molecular system that plays an essential role in fine-tuning gene expression. To gain molecular insight into the role of Dicer and the microRNA system in brain function, we conducted 2 complementary RNA-seq screens in the hippocampus of inducible forebrain-restricted Dicer1 mutants aimed at identifying the microRNAs primarily affected by Dicer loss and their targets, respectively. Functional genomics analyses predicted the main biological processes and phenotypes associated with impaired microRNA maturation, including categories related to microRNA biology, signal transduction, seizures, and synaptic transmission and plasticity. Consistent with these predictions, we found that, soon after recombination, Dicer-deficient mice exhibited an exaggerated seizure response, enhanced induction of immediate early genes in response to different stimuli, stronger and more stable fear memory, hyperphagia, and increased excitability of CA1 pyramidal neurons. In the long term, we also observed slow and progressive excitotoxic neurodegeneration. Overall, our results indicate that interfering with microRNA biogenesis causes an increase in neuronal responsiveness and disrupts homeostatic mechanisms that protect the neuron against overactivation, which may explain both the initial and late phenotypes associated with the loss of Dicer in excitatory neurons.
Collapse
Affiliation(s)
- Anna Fiorenza
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n., 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Jose P Lopez-Atalaya
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n., 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Victor Rovira
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n., 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Marilyn Scandaglia
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n., 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Emilio Geijo-Barrientos
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n., 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n., 03550 Sant Joan d'Alacant, Alicante, Spain
| |
Collapse
|