51
|
Liu Z, Wen S, Wu G, Wu H. Heterologous expression and characterization of Anaeromyces robustus xylanase and its use in bread making. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
52
|
Calabon MS, Hyde KD, Jones EBG, Luo ZL, Dong W, Hurdeal VG, Gentekaki E, Rossi W, Leonardi M, Thiyagaraja V, Lestari AS, Shen HW, Bao DF, Boonyuen N, Zeng M. Freshwater fungal numbers. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00503-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
53
|
Zhao H, Nie Y, Zong TK, Wang YJ, Wang M, Dai YC, Liu XY. Species Diversity and Ecological Habitat of Absidia (Cunninghamellaceae, Mucorales) with Emphasis on Five New Species from Forest and Grassland Soil in China. J Fungi (Basel) 2022; 8:471. [PMID: 35628728 PMCID: PMC9146633 DOI: 10.3390/jof8050471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
Although species of Absidia are known to be ubiquitous in soil, animal dung, and insect and plant debris, the species diversity of the genus and their ecological habitats have not been sufficiently investigated. In this study, we describe five new species of Absidia from forest and grassland soils in southwestern China, with support provided by phylogenetic, morphological, and physiological evidence. The species diversity and ecological habitat of Absidia are summarized. Currently, 22 species are recorded in China, which mainly occur in soil, especially in tropical and subtropical forests and mountains. An updated key to the species of Absidia in China is also provided herein. This is the first overview of the Absidia ecological habitat.
Collapse
Affiliation(s)
- Heng Zhao
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China;
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yong Nie
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China;
| | - Tong-Kai Zong
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China;
| | - Yu-Jie Wang
- College of Plant Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (Y.-J.W.); (M.W.)
| | - Mu Wang
- College of Plant Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; (Y.-J.W.); (M.W.)
| | - Yu-Cheng Dai
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China;
| | - Xiao-Yong Liu
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
54
|
|
55
|
Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates. J Fungi (Basel) 2022; 8:jof8030226. [PMID: 35330228 PMCID: PMC8955040 DOI: 10.3390/jof8030226] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/04/2022] Open
Abstract
Fungi are an important and diverse component in various ecosystems. The methods to identify different fungi are an important step in any mycological study. Classical methods of fungal identification, which rely mainly on morphological characteristics and modern use of DNA based molecular techniques, have proven to be very helpful to explore their taxonomic identity. In the present compilation, we provide detailed information on estimates of fungi provided by different mycologistsover time. Along with this, a comprehensive analysis of the importance of classical and molecular methods is also presented. In orderto understand the utility of genus and species specific markers in fungal identification, a polyphasic approach to investigate various fungi is also presented in this paper. An account of the study of various fungi based on culture-based and cultureindependent methods is also provided here to understand the development and significance of both approaches. The available information on classical and modern methods compiled in this study revealed that the DNA based molecular studies are still scant, and more studies are required to achieve the accurate estimation of fungi present on earth.
Collapse
|
56
|
Sun YR, Liu NG, Hyde KD, Jayawardena RS, Wang Y. Pleocatenata chiangraiensis gen. et. sp. nov. (Pleosporales, Dothideomycetes) from medicinal plants in northern Thailand. MycoKeys 2022; 87:77-98. [PMID: 35210923 PMCID: PMC8857139 DOI: 10.3897/mycokeys.87.79433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Pleocatenata, a new genus, is introduced with its type species, Pleocatenatachiangraiensis, which was isolated from withered twigs of two medicinal plants, Clerodendrumquadriloculare (Blanco) Merr (Verbenaceae) and Tarennastellulata (Hook.f.) Ridl (Rubiaceae) in northern Thailand. The genus is characterized by mononematous, septate, brown or dark brown conidiophores, monotretic conidiogenous cells and catenate, obclavate, olivaceous to blackish brown conidia. Phylogenetic analysis of combined LSU, SSU, tef1-α, rpb2 and ITS sequence data showed Pleocatenata forms a distinct phylogenetic lineage in Pleosporales, Dothideomycetes. Therefore, we treat Pleocatenata as Pleosporales genera incertae sedis based on morphology and phylogenetic analyses. Descriptions and illustrations of the new taxa are provided, and it is compared with morphologically similar genera.
Collapse
|
57
|
Taxonomy and Phylogeny of Novel and Extant Taxa in Pleosporales Associated with Mangifera indica from Yunnan, China (Series I). J Fungi (Basel) 2022; 8:jof8020152. [PMID: 35205906 PMCID: PMC8876165 DOI: 10.3390/jof8020152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Pleosporales is the largest fungal order with a worldwide distribution in terrestrial and aquatic environments. During investigations of saprobic fungi associated with mango (Mangifera indica) in Baoshan and Honghe, Yunnan, China, fungal taxa belonging to pleosporales were collected. Morphological examinations and phylogenetic analyses of ITS, LSU, SSU, rpb2 and tef1-α loci were used to identify the fungal taxa. A new genus, Mangifericomes; four new species, namely Mangifericomes hongheensis, Neomassaria hongheensis, Paramonodictys hongheensis, and Paramonodictys yunnanensis; and six new host and country records, namely Byssosphaeria siamensis, Crassiparies quadrisporus, Paradictyoarthrinium aquatica, Phaeoseptum mali, Torula fici, and Vaginatispora amygdali, are introduced. Photoplates, full descriptions, and phylogenetic trees to show the placement of new and known taxa are provided.
Collapse
|
58
|
Abstract
Based on a survey of macro-fungi in northern and northeastern Thailand, nine samples collected in 2020 are identified as Amanita and introduced here as two new species, Amanita kalasinensis and A. ravicrocina. Typical macro- and microscopical characteristics indicate that both of these two species belong to Amanita section Amanita, but differ from other currently known species. Amanita kalasinensis is characterized by having a greyish yellow pileus covering with a conical to granuliform, yellowish white volval remnant; the presence of clamps; and a broadly ellipsoid to ellipsoid basidiospore. Amanita ravicrocina is characterized by having a brown to greyish orange pileus covering with a patchy, white volval remnant; a collar-like volval remnant on the stipe; and a subglobose to broadly ellipsoid basidiospore. Multi-gene phylogenetic analysis of partial nuclear rDNA internal transcribed spacer region (ITS), partial nuclear rDNA large subunit region (nrLSU), RNA polymerase II second largest subunit (RPB2), partial translation elongation factor 1-alpha (TEF1-α), and beta-tubulin gene (TUB) also revealed that positions of A. kalasinensis and A. ravicrocina are well-supported within A. section Amanita, but form distinct lineages and do not show any close relationship with any species. The detailed morphological features, line-drawing illustration, and comparison with morphological similar taxa are provided.
Collapse
|
59
|
Xie N, Phookamsak R, Jiang H, Zeng YJ, Zhang H, Xu F, Lumyong S, Xu J, Hongsanan S. Morpho-Molecular Characterization of Five Novel Taxa in Parabambusicolaceae (Massarineae, Pleosporales) from Yunnan, China. J Fungi (Basel) 2022; 8:jof8020108. [PMID: 35205862 PMCID: PMC8874946 DOI: 10.3390/jof8020108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 12/28/2022] Open
Abstract
Parabambusicolaceae is a well-studied family in Massarineae, Pleosporales, comprising nine genera and approximately 16 species. The family was introduced to accommodate saprobic bambusicola-like species in both freshwater and terrestrial environments that mostly occur on bamboos and grasses but are also found on different host substrates. In the present study, we surveyed and collected ascomycetes from bamboo and submerged grass across Yunnan Province, China. A biphasic approach based on morphological characteristics and multigene phylogeny demonstrated five new taxa in Parabambusicolaceae. A novel genus Scolecohyalosporium is introduced as a monotypic genus to accommodate S. submersum sp. nov., collected from dead culms of grass submerged in a freshwater stream. The genus is unique in forming filiform ascospores, which differ from other known genera in Parabambusicolaceae. Multigene phylogeny showed that the genus has a close relationship with Multiseptospora. Moreover, the novel monotypic genus Neomultiseptospora, isolated from bamboo, was introduced to accommodate N. yunnanensis sp. nov. Neomultiseptospora yunnanensis formed a separated branch basal to Scolecohyalosporium submersum and Multiseptospora thailandica with high support (100% ML, 1.00 PP). Furthermore, the newly introduced species, Parabambusicola hongheensis sp. nov. was also isolated from bamboo in terrestrial habitats. Parabambusicola hongheensis clustered with the other three described Parabambusicola species and has a close relationship with P. bambusina with significant support (88% ML, 1.00 PP). Parabambusicola hongheensis was reported as the fourth species in this genus. Detailed description, illustration, and updated phylogeny of Parabambusicolaceae were provided.
Collapse
Affiliation(s)
- Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Rungtiwa Phookamsak
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China; (R.P.); (H.J.); (J.X.)
- East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming 650201, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming 650201, China
| | - Hongbo Jiang
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China; (R.P.); (H.J.); (J.X.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Yu-Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.-J.Z.); (H.Z.); (F.X.)
| | - Haoxing Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.-J.Z.); (H.Z.); (F.X.)
| | - Fangfang Xu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.-J.Z.); (H.Z.); (F.X.)
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jianchu Xu
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China; (R.P.); (H.J.); (J.X.)
- East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming 650201, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming 650201, China
| | - Sinang Hongsanan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
- Correspondence: ; Tel.: +66-(0)-837669644
| |
Collapse
|
60
|
|
61
|
Eight new Halophytophthora species from marine and brackish-water ecosystems in Portugal and an updated phylogeny for the genus. Persoonia - Molecular Phylogeny and Evolution of Fungi 2022. [DOI: 10.3767/persoonia.2022.48.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During an oomycete survey in December 2015, 10 previously unknown Halophytophthora taxa were isolated from marine and brackish water of tidal ponds and channels in saltmarshes, lagoon ecosystems and river estuaries at seven sites along the Algarve coast in the South of Portugal. Phylogenetic analyses of LSU and ITS datasets, comprising all described Halophytophthora species, the 10 new Halophytophthora taxa and all relevant and distinctive sequences available from GenBank, provided an updated phylogeny of the genus Halophytophthora s.str. showing for the first time a structure of 10 clades designated as Clades 1–10. Nine of the 10 new Halophytophthora taxa resided in Clade 6 together with H. polymorphica and H. vesicula. Based on differences in morphology and temperature-growth relations and a multigene (LSU, ITS, Btub, hsp90, rpl10, tigA, cox1, nadh1, rps10) phylogeny, eight new Halophytophthora taxa from Portugal are described here as H. brevisporangia, H. celeris, H. frigida, H. lateralis, H. lusitanica, H. macrosporangia, H. sinuata and H. thermoambigua. Three species, H. frigida, H. macrosporangia and H. sinuata, have a homothallic breeding system while the remaining five species are sterile. Pathogenicity and litter decomposition tests are underway to clarify their pathological and ecological role in the marine and brackish-water ecosystems. More oomycete surveys in yet undersurveyed regions of the world and population genetic or phylogenomic analyses of global populations are needed to clarify the origin of the new Halophytophthora species.
Collapse
|
62
|
Li L, Yang Q, Li H. Morphology, Phylogeny, and Pathogenicity of Pestalotioid Species on Camellia oleifera in China. J Fungi (Basel) 2021; 7:jof7121080. [PMID: 34947061 PMCID: PMC8705482 DOI: 10.3390/jof7121080] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Tea-oil tree (Camellia oleifera) is an important edible oil woody plant with a planting area of over 3,800,000 hectares in southern China. Pestalotioid fungi are associated with a wide variety of plants worldwide along with endophytes, pathogens, and saprobes. In this study, symptomatic leaves of C. oleifera were collected from Guangdong, Guangxi, Hainan, Hunan, and Jiangsu Provinces and pestalotioid fungi are characterized based on combined sequence data analyses of internal transcribed spacer (ITS), beta tubulin (tub2), and translation elongation factor 1-alpha (tef-1α) coupled with morphological characteristics. As a result, seven species were confirmed, of which five species are described as new viz. N. camelliae-oleiferae, P. camelliae-oleiferae, P. hunanensis, P. nanjingensis, P.nanningensis, while the other two are reported as known species, viz., N. cubana and N. iberica. Pathogenicity assays showed that all species except for P. nanjingensis developed brown lesions on healthy leaves and P. camelliae-oleiferae showed stronger virulence.
Collapse
Affiliation(s)
- Lingling Li
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China;
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qin Yang
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China;
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Key Laboratory for Forestry Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (Q.Y.); (H.L.)
| | - He Li
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China;
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Key Laboratory for Forestry Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (Q.Y.); (H.L.)
| |
Collapse
|
63
|
Boonmee S, Wanasinghe DN, Calabon MS, Huanraluek N, Chandrasiri SKU, Jones GEB, Rossi W, Leonardi M, Singh SK, Rana S, Singh PN, Maurya DK, Lagashetti AC, Choudhary D, Dai YC, Zhao CL, Mu YH, Yuan HS, He SH, Phookamsak R, Jiang HB, Martín MP, Dueñas M, Telleria MT, Kałucka IL, Jagodziński AM, Liimatainen K, Pereira DS, Phillips AJL, Suwannarach N, Kumla J, Khuna S, Lumyong S, Potter TB, Shivas RG, Sparks AH, Vaghefi N, Abdel-Wahab MA, Abdel-Aziz FA, Li GJ, Lin WF, Singh U, Bhatt RP, Lee HB, Nguyen TTT, Kirk PM, Dutta AK, Acharya K, Sarma VV, Niranjan M, Rajeshkumar KC, Ashtekar N, Lad S, Wijayawardene NN, Bhat DJ, Xu RJ, Wijesinghe SN, Shen HW, Luo ZL, Zhang JY, Sysouphanthong P, Thongklang N, Bao DF, Aluthmuhandiram JVS, Abdollahzadeh J, Javadi A, Dovana F, Usman M, Khalid AN, Dissanayake AJ, Telagathoti A, Probst M, Peintner U, Garrido-Benavent I, Bóna L, Merényi Z, Boros L, Zoltán B, Stielow JB, Jiang N, Tian CM, Shams E, Dehghanizadeh F, Pordel A, Javan-Nikkhah M, Denchev TT, Denchev CM, Kemler M, Begerow D, Deng CY, Harrower E, Bozorov T, Kholmuradova T, Gafforov Y, Abdurazakov A, Xu JC, Mortimer PE, Ren GC, Jeewon R, Maharachchikumbura SSN, Phukhamsakda C, Mapook A, Hyde KD. Fungal diversity notes 1387-1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2021; 111:1-335. [PMID: 34899100 PMCID: PMC8648402 DOI: 10.1007/s13225-021-00489-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023]
Abstract
This article is the 13th contribution in the Fungal Diversity Notes series, wherein 125 taxa from four phyla, ten classes, 31 orders, 69 families, 92 genera and three genera incertae sedis are treated, demonstrating worldwide and geographic distribution. Fungal taxa described and illustrated in the present study include three new genera, 69 new species, one new combination, one reference specimen and 51 new records on new hosts and new geographical distributions. Three new genera, Cylindrotorula (Torulaceae), Scolecoleotia (Leotiales genus incertae sedis) and Xenovaginatispora (Lindomycetaceae) are introduced based on distinct phylogenetic lineages and unique morphologies. Newly described species are Aspergillus lannaensis, Cercophora dulciaquae, Cladophialophora aquatica, Coprinellus punjabensis, Cortinarius alutarius, C. mammillatus, C. quercoflocculosus, Coryneum fagi, Cruentomycena uttarakhandina, Cryptocoryneum rosae, Cyathus uniperidiolus, Cylindrotorula indica, Diaporthe chamaeropicola, Didymella azollae, Diplodia alanphillipsii, Dothiora coronicola, Efibula rodriguezarmasiae, Erysiphe salicicola, Fusarium queenslandicum, Geastrum gorgonicum, G. hansagiense, Helicosporium sexualis, Helminthosporium chiangraiensis, Hongkongmyces kokensis, Hydrophilomyces hydraenae, Hygrocybe boertmannii, Hyphoderma australosetigerum, Hyphodontia yunnanensis, Khaleijomyces umikazeana, Laboulbenia divisa, Laboulbenia triarthronis, Laccaria populina, Lactarius pallidozonarius, Lepidosphaeria strobelii, Longipedicellata megafusiformis, Lophiotrema lincangensis, Marasmius benghalensis, M. jinfoshanensis, M. subtropicus, Mariannaea camelliae, Melanographium smilaxii, Microbotryum polycnemoides, Mimeomyces digitatus, Minutisphaera thailandensis, Mortierella solitaria, Mucor harpali, Nigrograna jinghongensis, Odontia huanrenensis, O. parvispina, Paraconiothyrium ajrekarii, Parafuscosporella niloticus, Phaeocytostroma yomensis, Phaeoisaria synnematicus, Phanerochaete hainanensis, Pleopunctum thailandicum, Pleurotheciella dimorphospora, Pseudochaetosphaeronema chiangraiense, Pseudodactylaria albicolonia, Rhexoacrodictys nigrospora, Russula paravioleipes, Scolecoleotia eriocamporesi, Seriascoma honghense, Synandromyces makranczyi, Thyridaria aureobrunnea, Torula lancangjiangensis, Tubeufia longihelicospora, Wicklowia fusiformispora, Xenovaginatispora phichaiensis and Xylaria apiospora. One new combination, Pseudobactrodesmium stilboideus is proposed. A reference specimen of Comoclathris permunda is designated. New host or distribution records are provided for Acrocalymma fici, Aliquandostipite khaoyaiensis, Camarosporidiella laburni, Canalisporium caribense, Chaetoscutula juniperi, Chlorophyllum demangei, C. globosum, C. hortense, Cladophialophora abundans, Dendryphion hydei, Diaporthe foeniculina, D. pseudophoenicicola, D. pyracanthae, Dictyosporium pandanicola, Dyfrolomyces distoseptatus, Ernakulamia tanakae, Eutypa flavovirens, E. lata, Favolus septatus, Fusarium atrovinosum, F. clavum, Helicosporium luteosporum, Hermatomyces nabanheensis, Hermatomyces sphaericoides, Longipedicellata aquatica, Lophiostoma caudata, L. clematidis-vitalbae, Lophiotrema hydei, L. neoarundinaria, Marasmiellus palmivorus, Megacapitula villosa, Micropsalliota globocystis, M. gracilis, Montagnula thailandica, Neohelicosporium irregulare, N. parisporum, Paradictyoarthrinium diffractum, Phaeoisaria aquatica, Poaceascoma taiwanense, Saproamanita manicata, Spegazzinia camelliae, Submersispora variabilis, Thyronectria caudata, T. mackenziei, Tubeufia chiangmaiensis, T. roseohelicospora, Vaginatispora nypae, Wicklowia submersa, Xanthagaricus necopinatus and Xylaria haemorrhoidalis. The data presented herein are based on morphological examination of fresh specimens, coupled with analysis of phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.
Collapse
Affiliation(s)
- Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dhanushka N. Wanasinghe
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
| | - Mark S. Calabon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Naruemon Huanraluek
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Sajini K. U. Chandrasiri
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Gareth E. B. Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Walter Rossi
- Section Environmental Sciences, Department MeSVA, University of L’Aquila, 67100 Coppito, AQ Italy
| | - Marco Leonardi
- Section Environmental Sciences, Department MeSVA, University of L’Aquila, 67100 Coppito, AQ Italy
| | - Sanjay K. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Shiwali Rana
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Paras N. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Deepak K. Maurya
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Ajay C. Lagashetti
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Deepika Choudhary
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Yu-Cheng Dai
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Chang-Lin Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming, 650224 People’s Republic of China
| | - Yan-Hong Mu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 People’s Republic of China
| | - Shuang-Hui He
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Rungtiwa Phookamsak
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, 650201 Yunnan People’s Republic of China
| | - Hong-Bo Jiang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
| | - María P. Martín
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Margarita Dueñas
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - M. Teresa Telleria
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Izabela L. Kałucka
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland
| | | | - Kare Liimatainen
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS Surrey UK
| | - Diana S. Pereira
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, 10300 Bangkok, Thailand
| | - Tarynn B. Potter
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Roger G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Department of Agriculture and Fisheries, Dutton Park, QLD 4102 Australia
| | - Adam H. Sparks
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Department of Primary Industries and Regional Development, Bentley Delivery Centre, Locked Bag 4, Bentley, WA 6983 Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Mohamed A. Abdel-Wahab
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Faten A. Abdel-Aziz
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Guo-Jie Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, No 2596 South Lekai Rd, Lianchi District, Baoding, 071001 Hebei China
| | - Wen-Fei Lin
- Institute of Edible and Medicinal Fungi, College of Life Science, Zhejiang University, 866 Yuhangtang Rd, Xihu District, Hangzhou, 310058 Zhejiang China
| | - Upendra Singh
- Department of Botany & Microbiology, HNB Garhwal University, Uttarakhand 246174 Srinagar, Garhwal, India
| | - Rajendra P. Bhatt
- Department of Botany & Microbiology, HNB Garhwal University, Uttarakhand 246174 Srinagar, Garhwal, India
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, 61186 Korea
| | - Thuong T. T. Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, 61186 Korea
| | - Paul M. Kirk
- Biodiversity Informatics and Spatial Analysis, Royal Botanic Gardens Kew, Richmond, TW9 3DS Surrey UK
| | - Arun Kumar Dutta
- Department of Botany, West Bengal State University, North-24-Parganas, Barasat, West Bengal PIN- 700126 India
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - V. Venkateswara Sarma
- Fungal Biotechnology Laboratory, Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, 605014 India
| | - M. Niranjan
- Fungal Biotechnology Laboratory, Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, 605014 India
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Itanagar, Arunachal Pradesh 791112 India
| | - Kunhiraman C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Nikhil Ashtekar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Sneha Lad
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan People’s Republic of China
| | - Darbe J. Bhat
- Azad Housing Society, No. 128/1-J, Goa Velha, Curca, Goa India
| | - Rong-Ju Xu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
| | - Subodini N. Wijesinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Hong-Wei Shen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
| | - Zong-Long Luo
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
| | - Jing-Yi Zhang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 People’s Republic of China
| | - Phongeun Sysouphanthong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Biotechnology and Ecology Institute, Ministry of Agriculture and Forestry, P.O. Box: 811, Vientiane Capital, Lao People’s Democratic Republic
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dan-Feng Bao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Janith V. S. Aluthmuhandiram
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management On Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
| | - Jafar Abdollahzadeh
- Department of Plant Protection, Agriculture Faculty, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Alireza Javadi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 1454, 19395 Tehran, Iran
| | | | - Muhammad Usman
- Fungal Biology and Systematics Research Laboratory, Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Abdul Nasir Khalid
- Fungal Biology and Systematics Research Laboratory, Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Asha J. Dissanayake
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Anusha Telagathoti
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Maraike Probst
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Isaac Garrido-Benavent
- Department of Botany and Geology (Fac. CC. Biológicas) & Institut Cavanilles de Biodiversitat I Biologia Evolutiva (ICBIBE), Universitat de València, C/ Dr. Moliner 50, Burjassot, 46100 València, Spain
| | - Lilla Bóna
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - Zsolt Merényi
- Institute of Biochemistry, Synthetic and Systems Biology Unit, Biological Research Centre, Szeged, 6726 Hungary
| | | | - Bratek Zoltán
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - J. Benjamin Stielow
- Centre of Expertise in Mycology of Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Thermo Fisher Diagnostics, Specialty Diagnostics Group, Landsmeer, The Netherlands
| | - Ning Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Cheng-Ming Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Esmaeil Shams
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Farzaneh Dehghanizadeh
- Department of Agricultural Biotechnology, College of Agriculture Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Adel Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Teodor T. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - Cvetomir M. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - Martin Kemler
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, ND 03, Universitätsstraße 150, 44801 Bochum, Germany
| | - Dominik Begerow
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, ND 03, Universitätsstraße 150, 44801 Bochum, Germany
| | - Chun-Ying Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan district, 550001 Guiyang, People’s Republic of China
| | | | - Tohir Bozorov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Republic of Uzbekistan, Yukori-Yuz, Kubray Ds, Tashkent, Uzbekistan 111226
| | - Tutigul Kholmuradova
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
| | - Aziz Abdurazakov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
- Department of Ecology and Botany, Faculty of Natural Sciences, Andijan State University, 12 University Street, Andijan, Uzbekistan 170100
| | - Jian-Chu Xu
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, 650201 Yunnan People’s Republic of China
| | - Peter E. Mortimer
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
| | - Guang-Cong Ren
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Republic of Mauritius
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Chayanard Phukhamsakda
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 China
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 People’s Republic of China
| |
Collapse
|
64
|
Luangharn T, Karunarathna SC, Dutta AK, Paloi S, Promputtha I, Hyde KD, Xu J, Mortimer PE. Ganoderma (Ganodermataceae, Basidiomycota) Species from the Greater Mekong Subregion. J Fungi (Basel) 2021; 7:819. [PMID: 34682240 PMCID: PMC8541142 DOI: 10.3390/jof7100819] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/28/2023] Open
Abstract
The cosmopolitan fungal genus Ganoderma is an important pathogen on arboreal plant hosts, particularly in tropical and temperate regions. It has long been used as a traditional medicine because of its medicinal properties and chemical constituents. In this study, Ganoderma collections were made in the Greater Mekong Subregion (GMS), encompassing tropical parts of Laos, Myanmar, Thailand, Vietnam, and temperate areas in Yunnan Province, China. The specimens used in this study are described based on micro-macro-characteristics and phylogenetic analysis of combined ITS, LSU, TEF1α, and RPB2 sequence data. In this comprehensive study, we report 22 Ganoderma species from the GMS, namely, G. adspersum, G. applanatum, G. australe, G. calidophilum, G. ellipsoideum, G. flexipes, G. gibbosum, G. heohnelianum, G. hochiminhense, G. leucocontextum, G. lucidum, G. multiplicatum, G. multipileum, G. myanmarense, G. orbiforme, G. philippii, G. resinaceum, G. sichuanense, G. sinense, G. subresinosum, G. williamsianum, and G. tsugae. Some of these species were reported in more than one country within the GMS. Of these 22 species, 12 were collected from Yunnan Province, China; three were collected from Laos; three species, two new records, and one new species were collected from Myanmar; 15 species and four new records were collected from Thailand, and one new species was collected from Vietnam. Comprehensive descriptions, color photographs of macro- and micro-characteristics, the distribution of Ganoderma within the GMS, as well as a phylogenetic tree showing the placement of all reported Ganoderma from the GMS are provided.
Collapse
Affiliation(s)
- Thatsanee Luangharn
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming 650201, China; (T.L.); (S.C.K.); (K.D.H.); (J.X.)
- CIFOR-ICRAF, World Agroforestry Centre (ICRAF), Kunming 650201, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Samantha C. Karunarathna
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming 650201, China; (T.L.); (S.C.K.); (K.D.H.); (J.X.)
- CIFOR-ICRAF, World Agroforestry Centre (ICRAF), Kunming 650201, China
| | - Arun Kumar Dutta
- Department of Botany, West Bengal State University, Barasat 700126, India;
| | - Soumitra Paloi
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonuyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kevin D. Hyde
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming 650201, China; (T.L.); (S.C.K.); (K.D.H.); (J.X.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China
| | - Jianchu Xu
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming 650201, China; (T.L.); (S.C.K.); (K.D.H.); (J.X.)
- CIFOR-ICRAF, World Agroforestry Centre (ICRAF), Kunming 650201, China
| | - Peter E. Mortimer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming 650201, China; (T.L.); (S.C.K.); (K.D.H.); (J.X.)
| |
Collapse
|
65
|
Colletotrichum species and complexes: geographic distribution, host range and conservation status. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00491-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
66
|
S. Urquhart A, Idnurm A. Absidia healeyae: a new species of Absidia ( Mucorales) isolated from Victoria, Australia. MYCOSCIENCE 2021; 62:331-335. [PMID: 37089463 PMCID: PMC9721507 DOI: 10.47371/mycosci.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 01/27/2023]
Abstract
Absidia healeyae is a new species described in the Mucorales genus Absidia after screening 16 strains of Absidia isolated from seven locations in the state of Victoria in Australia. After initial analysis of the large ribosomal subunit sequence, the genomes of representative strains from two clades were sequenced using short paired-reads. Additional taxonomic markers extracted from the genome sequencing data support the novelty of A. healeyae. The identification of a new species in the genus Absidia, from a relatively small collection of isolates, hints at an unexplored diversity in the early diverging lineages of fungi in Australia.
Collapse
|
67
|
Long S, Liu L, Pi Y, Wu Y, Lin Y, Zhang X, Long Q, Kang Y, Kang J, Wijayawardene NN, Wang F, Shen X, Li Q. New contributions to Diatrypaceae from karst areas in China. MycoKeys 2021; 83:1-37. [PMID: 34522156 PMCID: PMC8397698 DOI: 10.3897/mycokeys.83.68926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/20/2021] [Indexed: 11/12/2022] Open
Abstract
In this study, fungal specimens of the family Diatrypaceae were collected from karst areas in Guizhou, Hainan and Yunnan Provinces, China. Morpho-molecular analyses confirmed that these new collections comprise a new genus Pseudodiatrype, three new species (Diatrypelancangensis, Diatrypellapseudooregonensis and Eutypacerasi), a new combination (Diatrypellaoregonensis), two new records (Allodiatrypethailandica and Diatrypellavulgaris) from China and two other known species (Neoeutypellabaoshanensis and Paraeutypellacitricola). The new taxa are introduced, based on multi-gene phylogenetic analyses (ITS, β-tubulin), as well as morphological analyses. The new genus Pseudodiatrype is characterised by its wart-like stromata with 5-20 ascomata immersed in one stroma and the endostroma composed of thin black outer and inner layers of large white cells with thin, powdery, yellowish cells. These characteristics separate this genus from two similar genera Allodiatrype and Diatrype. Based on morphological as well as phylogenetic analyses, Diatrypelancangensis is introduced as a new species of Diatrype. The stromata of Diatrypelancangensis are similar to those of D.subundulata and D.undulate, but the ascospores are larger. Based on phylogenetic analyses, Diatrypeoregonensis is transferred to the genus Diatrypella as Diatrypellaoregonensis while Diatrypellapseudooregonensis is introduced as a new species of Diatrypella with 8 spores in an ascus. In addition, multi-gene phylogenetic analyses show that Eutypacerasi is closely related to E.lata, but the ascomata and asci of Eutypacerasi are smaller. The polyphyletic nature of some genera of Diatrypaceae has led to confusion in the classification of the family, thus we discuss whether the number of ascospores per asci can still be used as a basis for classification.
Collapse
Affiliation(s)
- Sihan Long
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
| | - Lili Liu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/ Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550004, China
| | - Yinhui Pi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
| | - Youpeng Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
| | - Yan Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
| | - Xu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
| | - Qingde Long
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou and Guizhou Talent Base for Microbiology and Human Health, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Jichuan Kang
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou 550025, China
| | - Nalin N Wijayawardene
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China.,Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Feng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, Guizhou, 550000, China
| | - Xiangchun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
| | - Qirui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
| |
Collapse
|
68
|
Biochemical characterization of a GH10 xylanase from the anaerobic rumen fungus Anaeromyces robustus and application in bread making. 3 Biotech 2021; 11:406. [PMID: 34471589 DOI: 10.1007/s13205-021-02956-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/04/2021] [Indexed: 01/03/2023] Open
Abstract
Anaeromyces robustus is an anaerobic rumen microorganism which can produce plant cell wall degrading enzymes. In this study, a new GH10 xylanase gene xylAr10 from A. robustus was identified, cloned and expressed in Pichia pastoris GS115. The recombinant protein ArXyn10 was characterized after being purified by Ni-NTA. The optimal pH and temperature of ArXyn10 was determined at 5.5 and 40 °C, respectively. ArXyn10 was stable at the pH range of 4.0-8.0, and could maintain high stability from 35 to 45 °C. The hydrolysis products released from beechwood xylan by ArXyn10 showed chromatographic mobility similar to xylobiose and xylotriose according to thin-layer chromatography analysis. It was shown that the addition of 7.5 mg of ArXyn10 in 100 g high-gluten wheat flour during bread making could increase the reducing sugar content by 10.80%, indicating that xylo-oligosaccharides were produced. With the addition of ArXyn10, the hardness and chewiness of the bread decreased and the quality was improved. The new discovered xylanase ArXyn10 have potential application prospect in bread making.
Collapse
|
69
|
Ghobad-Nejhad M, Langer E, Nakasone K, Diederich P, Nilsson RH, Rajchenberg M, Ginns J. Digging Up the Roots: Taxonomic and Phylogenetic Disentanglements in Corticiaceae s.s. (Corticiales, Basidiomycota) and Evolution of Nutritional Modes. Front Microbiol 2021; 12:704802. [PMID: 34512580 PMCID: PMC8425454 DOI: 10.3389/fmicb.2021.704802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022] Open
Abstract
Corticiaceae is one of the traditional families of the Agaricomycetes and served for a long time as a convenient placement for basidiomycetes with a resupinate, corticioid form of fruiting body. Molecular studies have helped to assign many corticioid fungi to diverse families and orders; however, Corticiaceae still lacks a phylogenetic characterization and modern circumscription. Here, we provide the first comprehensive phylogenetic and taxonomic revision of the family Corticiaceae based on extensive type studies and sequences of nLSU, ITS, IGS, nSSU, and mtSSU regions. Our analyses support the recognition of ten monophyletic genera in the Corticiaceae, and show that nutritional mode is not a robust basis for generic delimitations in the family. The genus Mycobernardia and the species Corticium thailandicum, Erythricium vernum, and Marchandiomyces allantosporus are described as new to science, and five new combinations are proposed. Moreover, ancestral character state reconstruction revealed that saprotrophy is the plesiomorphic nutritional mode in the Corticiaceae, while several transitions have occurred to diverse nutritional modes in this family. Identification keys are provided to the genera in Corticiaceae s.s. as well as to the species in Corticium, Erythricium, Laetisaria, and Marchandiomyces.
Collapse
Affiliation(s)
- Masoomeh Ghobad-Nejhad
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Ewald Langer
- Department of Ecology, FB 10 (Mathematics and Natural Sciences), University Kassel, Kassel, Germany
| | - Karen Nakasone
- Center for Forest Mycology Research, Northern Research Station, U.S. Forest Service, Madison, WI, United States
| | - Paul Diederich
- Musée national d'histoire naturelle, Luxembourg, Luxembourg
| | - R. Henrik Nilsson
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Mario Rajchenberg
- Centro de Investigación y Extensión Forestal Andino Patagónico, National Research Council of Argentina (CONICET), Esquel, Argentina
| | | |
Collapse
|
70
|
Calabon MS, Jones EBG, Promputtha I, Hyde KD. Fungal Biodiversity in Salt Marsh Ecosystems. J Fungi (Basel) 2021; 7:jof7080648. [PMID: 34436187 PMCID: PMC8399140 DOI: 10.3390/jof7080648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
This review brings together the research efforts on salt marsh fungi, including their geographical distribution and host association. A total of 486 taxa associated with different hosts in salt marsh ecosystems are listed in this review. The taxa belong to three phyla wherein Ascomycota dominates the taxa from salt marsh ecosystems accounting for 95.27% (463 taxa). The Basidiomycota and Mucoromycota constitute 19 taxa and four taxa, respectively. Dothideomycetes has the highest number of taxa, which comprises 47.12% (229 taxa), followed by Sordariomycetes with 167 taxa (34.36%). Pleosporales is the largest order with 178 taxa recorded. Twenty-seven genera under 11 families of halophytes were reviewed for its fungal associates. Juncus roemerianus has been extensively studied for its associates with 162 documented taxa followed by Phragmites australis (137 taxa) and Spartina alterniflora (79 taxa). The highest number of salt marsh fungi have been recorded from Atlantic Ocean countries wherein the USA had the highest number of species recorded (232 taxa) followed by the UK (101 taxa), the Netherlands (74 taxa), and Argentina (51 taxa). China had the highest number of salt marsh fungi in the Pacific Ocean with 165 taxa reported, while in the Indian Ocean, India reported the highest taxa (16 taxa). Many salt marsh areas remain unexplored, especially those habitats in the Indian and Pacific Oceans areas that are hotspots of biodiversity and novel fungal taxa based on the exploration of various habitats.
Collapse
Affiliation(s)
- Mark S. Calabon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence:
| |
Collapse
|
71
|
Zong TK, Zhao H, Liu XL, Ren LY, Zhao CL, Liu XY. Taxonomy and Phylogeny of Four New Species in Absidia (Cunninghamellaceae, Mucorales) From China. Front Microbiol 2021; 12:677836. [PMID: 34421840 PMCID: PMC8371387 DOI: 10.3389/fmicb.2021.677836] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Four new species within the genus Absidia, A. globospora, A. medulla, A. turgida, and A. zonata, are proposed based on a combination of morphological traits, physiological features, and molecular evidences. A. globospora is characterized by globose sporangiospores, a 1.0- to 3.5-μm-long papillary projection on columellae, and sympodial sporangiophores. A. medulla is characterized by cylindrical to oval sporangiospores, a 1.0- to 4.5-μm-long bacilliform projection on columellae, and spine-like rhizoids. A. turgida is characterized by variable sporangiospores, up to 9.5-μm-long clavate projections on columellae, and swollen top of the projection and inflated hyphae. A. zonata is characterized by cylindrical to oval sporangiospores, a 2.0- to 3.5-μm-long spinous projection on columellae, and as many as eight whorled sporangiophores. Phylogenetic analyses based on sequences of internal transcribed spacer rDNA and D1-D2 domains of LSU rDNA support the novelty of these four species within the Absidia. All new species are illustrated, and an identification key to all the known species of Absidia in China is included.
Collapse
Affiliation(s)
- Tong-Kai Zong
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Heng Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Li-Ying Ren
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Chang-Lin Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- College of Biodiversity Conservation, Southwest Forestry University, Kunming, China
| | - Xiao-Yong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
72
|
Stabel M, Schweitzer T, Haack K, Gorenflo P, Aliyu H, Ochsenreither K. Isolation and Biochemical Characterization of Six Anaerobic Fungal Strains from Zoo Animal Feces. Microorganisms 2021; 9:1655. [PMID: 34442734 PMCID: PMC8399178 DOI: 10.3390/microorganisms9081655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022] Open
Abstract
Anaerobic fungi are prime candidates for the conversion of agricultural waste products to biofuels. Despite the increasing interest in these organisms, their growth requirements and metabolism remain largely unknown. The isolation of five strains of anaerobic fungi and their identification as Neocallimastix cameroonii, Caecomyces spec., Orpinomyces joyonii, Pecoramyces ruminantium, and Khoyollomyces ramosus, is described. The phylogeny supports the reassignment of Neocallimastix californiae and Neocallimastix lanati to Neocallimastix cameroonii and points towards the redesignation of Cyllamyces as a species of Caecomyces. All isolated strains including strain A252, which was described previously as Aestipascuomyces dubliciliberans, were further grown on different carbon sources and the produced metabolites were analyzed; hydrogen, acetate, formate, lactate, and succinate were the main products. Orpinomyces joyonii was lacking succinate production and Khoyollomyces ramosus was not able to produce lactate under the studied conditions. The results further suggested a sequential production of metabolites with a preference for hydrogen, acetate, and formate. By comparing fungal growth on monosaccharides or on the straw, a higher hydrogen production was noticed on the latter. Possible reactions to elevated sugar concentrations by anaerobic fungi are discussed.
Collapse
Affiliation(s)
- Marcus Stabel
- Process Engineering in Life Sciences 2: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (T.S.); (K.H.); (P.G.); (H.A.); (K.O.)
| | | | | | | | | | | |
Collapse
|
73
|
Jaichaliaw C, Kumla J, Vadthanarat S, Suwannarach N, Lumyong S. Multigene Phylogeny and Morphology Reveal Three Novel Species and a Novel Record of Agaricus From Northern Thailand. Front Microbiol 2021; 12:650513. [PMID: 34234751 PMCID: PMC8256166 DOI: 10.3389/fmicb.2021.650513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Agaricus is a saprophytic mushroom genus widely distributed throughout the world. In this study, a survey of the Agaricus species carried out around Chiang Mai University in northern Thailand from 2018 to 2019 yielded 12 collections. Morphological characteristics and phylogenic analyses based on the internal transcribed spacers (ITS) and a fragment of the large subunit (LSU) of the nuclear ribosomal DNA (rDNA), and a fragment of the translation elongation factor 1-alpha (tef1) genes were investigated. The results revealed that these collections belong to six species including Agaricus erectosquamosus, Agaricus pallidobrunneus, Agaricus subrufescens, and three new species. Agaricus thailandensis sp. nov. was found to belong to Agaricus sect. Minores, which is placed in Agaricus subg. Minores. Aagricus pseudoerectosquamosus sp. nov. was placed in Agaricus sect. Brunneopicti within Agaricus subg. Pseudochitonia. Furthermore, Agaricus lannaensis remains an incertae sedis in Agaricus subg. Pseudochitonia. Additionally, this study was proposed that A. pallidobrunneus was discovered in Thailand for the first time. Full descriptions, color photographs, illustrations, and phylogenetic trees are provided.
Collapse
Affiliation(s)
- Chanyawat Jaichaliaw
- MS Degree Program in Applied Microbiology, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Santhiti Vadthanarat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
74
|
Wang Y, Dai YD, Yang ZL, Guo R, Wang YB, Yang ZL, Ding L, Yu H. Morphological and Molecular Phylogenetic Data of the Chinese Medicinal Fungus Cordyceps liangshanensis Reveal Its New Systematic Position in the Family Ophiocordycipitaceae. MYCOBIOLOGY 2021; 49:297-307. [PMID: 34512076 PMCID: PMC8409936 DOI: 10.1080/12298093.2021.1923388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
A cordycipitoid fungus infecting Hepialidae sp. in Nepal was supposed to be identical to Cordyceps liangshanensis, originally described from southwestern China, and thus, transferred to the genus Metacordyceps or Papiliomyces in previous studies. However, our multi-gene (nrSSU-nrLSU-tef-1α-rpb1-rpb2) phylogenetic and morphological studies based on the type specimen and additional collections of C. liangshanensis revealed that the fungus belongs to the genus Ophiocordyceps (Ophiocordycipitaceae). Therefore, a new combination O. liangshanensis was made, and a detailed description of this species was provided.
Collapse
Affiliation(s)
- Yao Wang
- Yunnan Herbal Laboratory, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Yong-Dong Dai
- Yunnan Herbal Laboratory, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Zhong-Lin Yang
- Yunnan Herbal Laboratory, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Rui Guo
- Yunnan Herbal Laboratory, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Yuan-Bing Wang
- Yunnan Herbal Laboratory, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Zhu L. Yang
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, China
| | - Lei Ding
- School of Life Sciences, Yunnan University, Kunming, China
| | - Hong Yu
- Yunnan Herbal Laboratory, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| |
Collapse
|
75
|
Khonsanit A, Noisripoom W, Mongkolsamrit S, Phosrithong N, Luangsa-ard JJ. Five new species of Moelleriella infecting scale insects (Coccidae) in Thailand. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01709-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
76
|
Zhu H, Pan M, Wijayawardene NN, Jiang N, Ma R, Dai D, Tian C, Fan X. The Hidden Diversity of Diatrypaceous Fungi in China. Front Microbiol 2021; 12:646262. [PMID: 34135872 PMCID: PMC8200573 DOI: 10.3389/fmicb.2021.646262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/09/2021] [Indexed: 12/03/2022] Open
Abstract
In this study, we investigated the diversity of diatrypaceous fungi from six regions in China based on morpho-molecular analyses of combined ITS and tub2 gene regions. We accept 23 genera in Diatrypaceae with 18 genera involved in the phylogram, and the other five genera are lacking living materials with sequences data. Eleven species included in four genera (viz. Allocryptovalsa, Diatrype, Diatrypella, and Eutypella) have been isolated from seven host species, of which nine novel species (viz. Allocryptovalsa castaneae, A. castaneicola, Diatrype betulae, D. castaneicola, D. quercicola, Diatrypella betulae, Da. betulicola, Da. hubeiensis, and Da. shennongensis), a known species of Diatrypella favacea, and a new record of Eutypella citricola from the host genus Morus are included. Current results show the high diversity of Diatrypaceae which are wood-inhabiting fungi in China.
Collapse
Affiliation(s)
- Haiyan Zhu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Meng Pan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Yunnan, China
| | - Ning Jiang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Rong Ma
- College of Forestry and Horticulture, Xinjiang Agricultural University, Ürümqi, China
| | - Dongqin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Yunnan, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Xinlei Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
77
|
Calabon MS, Jones EG, Hyde KD, Boonmee S, Tibell S, Tibell L, Pang KL, Phookamsak R. Phylogenetic assessment and taxonomic revision of Halobyssothecium and Lentithecium (Lentitheciaceae, Pleosporales). Mycol Prog 2021. [DOI: 10.1007/s11557-021-01692-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractOur studies on lignicolous aquatic fungi in Thailand, Sweden, and the UK resulted in the collection of three new Halobyssothecium species (H. bambusicola, H. phragmitis, H. versicolor) assigned to Lentitheciaceae (Pleosporales, Dothideomycetes). Multi-loci phylogenetic analyses of the combined large subunit, small subunit, internal transcribed spacers of ribosomal DNA, and the translation elongation factor 1-alpha sequence data enabled a revision of the taxa assigned to Lentithecium and the transfer of L. cangshanense, L. carbonneanum, L. kunmingense, L. unicellulare, and L. voraginesporum to Halobyssothecium. Collection of an asexual morph of L. lineare and phylogenetic analysis confirmed its taxonomic placement in Keissleriella. Detailed descriptions and illustrations of H. bambusicola, H. phragmitis, and H. versicolor are provided.
Collapse
|
78
|
Zha LS, Kryukov VY, Ding JH, Jeewon R, Chomnunti P. Novel taxa and species diversity of Cordyceps sensu lato (Hypocreales, Ascomycota) developing on wireworms (Elateroidea and Tenebrionoidea, Coleoptera). MycoKeys 2021; 78:79-117. [PMID: 33854402 PMCID: PMC8021543 DOI: 10.3897/mycokeys.78.61836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/12/2021] [Indexed: 12/04/2022] Open
Abstract
Species of Cordyceps sensu lato (Hypocreales, Sordariomycetes) have always attracted much scientific attention for their abundant species diversity, important medicinal values and biological control applications. The insect superfamilies Elateroidea and Tenebrionoidea are two large groups of Coleoptera and their larvae are generally called wireworms. Most wireworms inhabit humid soil or fallen wood and are often infected with Cordyceps s.l. However, the species diversity of Cordyceps s.l. on Elateroidea and Tenebrionoidea is poorly known. In the present work, we summarise taxonomic information of 63 Cordyceps s.l. species that have been reported as pathogens of wireworms. We review their hosts and geographic distributions and provide taxonomic notes for species. Of those, 60 fungal species are accepted as natural pathogens of wireworms and three species (Cordycepsmilitaris, Ophiocordycepsferruginosa and O.variabilis) are excluded. Two new species, O.borealis from Russia (Primorsky Krai) and O.spicatus from China (Guizhou), are described and compared with their closest allies. Polycephalomycesformosus is also described because it is reported as a pathogen of wireworms for the first time. Phylogeny was reconstructed from a combined dataset, comprising SSU, LSU and TEF1-α gene sequences. The results, presented in this study, support the establishment of the new species and confirm the identification of P.formosus.
Collapse
Affiliation(s)
- Ling-Sheng Zha
- School of Life Sciences, Huaibei Normal University, Huaibei 235000, P.R. China.,School of Sciences, Mae Fah Luang University, Chiang Rai 57100, Thailand.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Vadim Yu Kryukov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Frunze str., 11, Novosibirsk 630091, Russia
| | - Jian-Hua Ding
- School of Life Sciences, Huaibei Normal University, Huaibei 235000, P.R. China
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius
| | - Putarak Chomnunti
- School of Sciences, Mae Fah Luang University, Chiang Rai 57100, Thailand.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
79
|
Wanasinghe DN, Mortimer PE, Xu J. Insight into the Systematics of Microfungi Colonizing Dead Woody Twigs of Dodonaea viscosa in Honghe (China). J Fungi (Basel) 2021; 7:jof7030180. [PMID: 33802406 PMCID: PMC7999967 DOI: 10.3390/jof7030180] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/20/2022] Open
Abstract
Members of Dodonaea are broadly distributed across subtropical and tropical areas of southwest and southern China. This host provides multiple substrates that can be richly colonized by numerous undescribed fungal species. There is a severe lack of microfungal studies on Dodonaea in China, and consequently, the diversity, phylogeny and taxonomy of these microorganisms are all largely unknown. This paper presents two new genera and four new species in three orders of Dothideomycetes gathered from dead twigs of Dodonaea viscosa in Honghe, China. All new collections were made within a selected area in Honghe from a single Dodonaea sp. This suggests high fungal diversity in the region and the existence of numerous species awaiting discovery. Multiple gene sequences (non-translated loci and protein-coding regions) were analysed with maximum likelihood and Bayesian analyses. Results from the phylogenetic analyses supported placing Haniomyces dodonaeae gen. et sp. in the Teratosphaeriaceae family. Analysis of Rhytidhysteron sequences resulted in Rhytidhysteron hongheense sp. nov., while analysed Lophiostomataceae sequences revealed Lophiomurispora hongheensis gen. et sp. nov. Finally, phylogeny based on a combined dataset of pyrenochaeta-like sequences demonstrates strong statistical support for placing Quixadomyceshongheensis sp. nov. in Parapyrenochaetaceae. Morphological and updated phylogenetic circumscriptions of the new discoveries are also discussed.
Collapse
Affiliation(s)
- Dhanushka N. Wanasinghe
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China;
- World Agroforestry, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County 654400, Yunnan, China
| | - Peter E. Mortimer
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China;
- World Agroforestry, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan, China
- Correspondence: (P.E.M.); (J.X.); Tel.: +86-158-8784-3793 (P.E.M.); +86-138-0870-8795 (J.X.)
| | - Jianchu Xu
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China;
- World Agroforestry, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County 654400, Yunnan, China
- Correspondence: (P.E.M.); (J.X.); Tel.: +86-158-8784-3793 (P.E.M.); +86-138-0870-8795 (J.X.)
| |
Collapse
|
80
|
Devadatha B, Jones EBG, Pang KL, Abdel-Wahab MA, Hyde KD, Sakayaroj J, Bahkali AH, Calabon MS, Sarma VV, Sutreong S, Zhang SN. Occurrence and geographical distribution of mangrove fungi. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-020-00468-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
81
|
Pan M, Zhu H, Tian C, Huang M, Fan X. Assessment of Cytospora Isolates From Conifer Cankers in China, With the Descriptions of Four New Cytospora Species. FRONTIERS IN PLANT SCIENCE 2021; 12:636460. [PMID: 33679851 PMCID: PMC7930227 DOI: 10.3389/fpls.2021.636460] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Cytospora species are widely distributed and often occur as endophytes, saprobes or phytopathogens. They primarily cause canker and dieback diseases of woody host plants, leading to the growth weakness or death of host plants, thereby causing significant economic and ecological losses. In order to reveal the diversity of Cytospora species associated with canker and dieback diseases of coniferous trees in China, we assessed 11 Cytospora spp. represented by 28 fungal strains from symptomatic branches or twigs of coniferous trees, i.e., Juniperus procumbens, J. przewalskii, Picea crassifolia, Pinus armandii, P. bungeana, Platycladus orientalis in China. Through morphological observations and multilocus phylogeny of ITS, LSU, act, rpb2, tef1-α, and tub2 gene sequences, we focused on four novel Cytospora species (C. albodisca, C. discostoma, C. donglingensis, and C. verrucosa) associated with Platycladus orientalis. This study represented the first attempt to clarify the taxonomy of Cytospora species associated with canker and dieback symptoms of coniferous trees in China.
Collapse
Affiliation(s)
- Meng Pan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Haiyan Zhu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | | | - Xinlei Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
82
|
Resolution of the Hypoxylon fuscum Complex (Hypoxylaceae, Xylariales) and Discovery and Biological Characterization of Two of Its Prominent Secondary Metabolites. J Fungi (Basel) 2021; 7:jof7020131. [PMID: 33670169 PMCID: PMC7916920 DOI: 10.3390/jof7020131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 12/17/2022] Open
Abstract
Hypoxylon, a large, cosmopolitan genus of Ascomycota is in the focus of our current poly-thetic taxonomic studies, and served as an excellent source for bioactive secondary metabolites at the same time. The present work concerns a survey of the Hypoxylon fuscum species complex based on specimens from Iran and Europe by morphological studies and high performance liquid chromatography coupled to mass spectrometry and diode array detection (HPLC-MS-DAD). Apart from known chemotaxonomic markers like binaphthalene tetrol (BNT) and daldinin F, two unprece-dented molecules were detected and subsequently isolated to purity by semi preparative HPLC. Their structures were established by nuclear-magnetic resonance (NMR) spectroscopy as 3′-malonyl-daldinin F (6) and pseudofuscochalasin A (4). The new daldinin derivative 6 showed weak cytotoxicity towards mammalian cells but bactericidal activity. The new cytochalasin 4 was compared to cytochalasin C in an actin disruption assay using fluorescence microscopy of human osteo-sarcoma U2OS cells, revealing comparable activity towards F-actin but being irreversible compared to cytochalasin C. Concurrently, a multilocus molecular phylogeny based on ribosomal and proteinogenic nucleotide sequences of Hypoxylon species resulted in a well-supported clade for H. fuscum and its allies. From a comparison of morphological, chemotaxonomic and phylogenetic evidence, we introduce the new species H. eurasiaticum and H. pseudofuscum.
Collapse
|
83
|
Five Novel Freshwater Ascomycetes Indicate High Undiscovered Diversity in Lotic Habitats in Thailand. J Fungi (Basel) 2021; 7:jof7020117. [PMID: 33562556 PMCID: PMC7914987 DOI: 10.3390/jof7020117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/26/2022] Open
Abstract
An investigation of freshwater fungi in Thailand resulted in the collection of one new monotypic genus, Neoxylomyces, and a novel species each in Camposporium, Brunneofusispora, Rattania, Neoxylomyces, and Phaeoacremonium. Camposporium dulciaquae resembles C. septatum in conidial morphology and number of septa but differs in conidial sizes. Brunneofusispora hyalina is similar to B. sinensis in conidiogenesis and conidial shape but differs in the sizes of conidiomata and conidiogenous cells. Rattania aquatica is the second species in Rattania, while Phaeoacremonium thailandense is the third species recorded from freshwater habitats. A new genus, Neoxylomyces, typified by N. multiseptatus, is similar to Xylomyces giganteus, but differs in the number of septa, chlamydospore measurements, and absence of a mucilaginous coating around the chlamydospores. These novel taxa form an independent lineage distinct from other species based on multi-loci phylogenetic analyses. Descriptions, illustrations, and notes are provided for each taxon. These new freshwater ascomycetes add to the increasing number of fungi known from Thailand and it is now evident that there are numerous novel taxa awaiting to be described as new freshwater habitats are explored. An update of newly discovered taxa in the widely studied freshwater habitats of Thailand over the last five years is also provided.
Collapse
|
84
|
Maharachchikumbura SSN, Wanasinghe DN, Cheewangkoon R, Al-Sadi AM. Uncovering the hidden taxonomic diversity of fungi in Oman. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-020-00467-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
85
|
The Effect of a High-Grain Diet on the Rumen Microbiome of Goats with a Special Focus on Anaerobic Fungi. Microorganisms 2021; 9:microorganisms9010157. [PMID: 33445538 PMCID: PMC7827659 DOI: 10.3390/microorganisms9010157] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
This work investigated the changes of the rumen microbiome of goats switched from a forage to a concentrate diet with special attention to anaerobic fungi (AF). Female goats were fed an alfalfa hay (AH) diet (0% grain; n = 4) for 20 days and were then abruptly shifted to a high-grain (HG) diet (40% corn grain, 60% AH; n = 4) and treated for another 10 days. Rumen content samples were collected from the cannulated animals at the end of each diet period (day 20 and 30). The microbiome structure was studied using high-throughput sequencing for bacteria, archaea (16S rRNA gene) and fungi (ITS2), accompanied by qPCR for each group. To further elucidate unclassified AF, clone library analyses were performed on the ITS1 spacer region. Rumen pH was significantly lower in HG diet fed goats, but did not induce subacute ruminal acidosis. HG diet altered prokaryotic communities, with a significant increase of Bacteroidetes and a decrease of Firmicutes. On the genus level Prevotella 1 was significantly boosted. Methanobrevibacter and Methanosphaera were the most abundant archaea regardless of the diet and HG induced a significant augmentation of unclassified Thermoplasmatales. For anaerobic fungi, HG triggered a considerable rise in Feramyces observed with both ITS markers, while a decline of Tahromyces was detected by ITS2 and decrease of Joblinomyces by ITS1 only. The uncultured BlackRhino group revealed by ITS1 and further elucidated in one sample by LSU analysis, formed a considerable part of the AF community of goats fed both diets. Results strongly indicate that the rumen ecosystem still acts as a source for novel microorganisms and unexplored microbial interactions and that initial rumen microbiota of the host animal considerably influences the reaction pattern upon diet change.
Collapse
|
86
|
Abstract
AbstractFreshwater Dothideomycetes are a highly diverse group of fungi, which are mostly saprobic in freshwater habitats worldwide. They are important decomposers of submerged woody debris and leaves in water. In this paper, we outline the genera of freshwater Dothideomycetes with notes and keys to species. Based on multigene analyses and morphology, we introduce nine new genera, viz. Aquimassariosphaeria, Aquatospora, Aquihelicascus, Fusiformiseptata, Neohelicascus, Neojahnula, Pseudojahnula, Purpureofaciens, Submersispora; 33 new species, viz. Acrocalymma bipolare, Aquimassariosphaeria kunmingensis, Aquatospora cylindrica, Aquihelicascus songkhlaensis, A. yunnanensis, Ascagilis submersa, A. thailandensis, Bambusicola aquatica, Caryospora submersa, Dictyocheirospora thailandica, Fusiformiseptata crocea, Helicosporium thailandense, Hongkongmyces aquaticus, Lentistoma aquaticum, Lentithecium kunmingense, Lindgomyces aquaticus, Longipedicellata aquatica, Neohelicascus submersus, Neohelicomyces dehongensis, N. thailandicus, Neohelicosporium submersum, Nigrograna aquatica, Occultibambusa kunmingensis, Parabambusicola aquatica, Pseudoasteromassaria aquatica, Pseudoastrosphaeriella aquatica, Pseudoxylomyces aquaticus, Purpureofaciens aquatica, Roussoella aquatica, Shrungabeeja aquatica, Submersispora variabilis, Tetraploa puzheheiensis, T. yunnanensis; 16 new combinations, viz. Aquimassariosphaeria typhicola, Aquihelicascus thalassioideus, Ascagilis guttulaspora, A. queenslandica, A. seychellensis, A. sunyatsenii, Ernakulamia xishuangbannaensis, Neohelicascus aquaticus, N. chiangraiensis, N. egyptiacus, N. elaterascus, N. gallicus, N. unilocularis, N. uniseptatus, Neojahnula australiensis, Pseudojahnula potamophila; 17 new geographical and habitat records, viz. Aliquandostipite khaoyaiensis, Aquastroma magniostiolata, Caryospora aquatica, C. quercus, Dendryphiella vinosa, Ernakulamia cochinensis, Fissuroma neoaggregatum, Helicotruncatum palmigenum, Jahnula rostrata, Neoroussoella bambusae, N. leucaenae, Occultibambusa pustula, Paramonodictys solitarius, Pleopunctum pseudoellipsoideum, Pseudocapulatispora longiappendiculata, Seriascoma didymosporum, Shrungabeeja vadirajensis and ten new collections from China and Thailand, viz. Amniculicola guttulata, Aquaphila albicans, Berkleasmium latisporum, Clohesyomyces aquaticus, Dictyocheirospora rotunda, Flabellascoma fusiforme, Pseudoastrosphaeriella bambusae, Pseudoxylomyces elegans, Tubeufia aquatica and T. cylindrothecia. Dendryphiella phitsanulokensis and Tubeufia roseohelicospora are synonymized with D. vinosa and T. tectonae, respectively. Six orders, 43 families and 145 genera which belong to freshwater Dothideomycetes are reviewed. Of these, 46 genera occur exclusively in freshwater habitats. A world map illustrates the distribution of freshwater Dothideomycetes.
Collapse
|
87
|
Vizzini A, Consiglio G, Setti L. Testing spore amyloidity in Agaricales under light microscope: the case study of Tricholoma. IMA Fungus 2020; 11:24. [PMID: 33292837 PMCID: PMC7656700 DOI: 10.1186/s43008-020-00046-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/15/2020] [Indexed: 11/10/2022] Open
Abstract
Although species of the genus Tricholoma are currently considered to produce inamyloid spores, a novel standardized method to test sporal amyloidity (which involves heating the sample in Melzer's reagent) showed evidence that in the tested species of this genus, which belong in all 10 sections currently recognized from Europe, the spores are amyloid. In two species, T. josserandii and T. terreum, the spores are also partly dextrinoid. This result provides strong indication that a positive reaction of the spores in Melzer's reagent could be a character shared by all genera in Tricholomataceae s. str.
Collapse
Affiliation(s)
- Alfredo Vizzini
- Department of Life Sciences and Systems Biology, University of Torino and Institute for Sustainable Plant Protection (IPSP-SS Turin), C.N.R, Viale P.A. Mattioli, 25, I-10125, Torino, Italy.
| | | | | |
Collapse
|
88
|
Do mangrove habitats serve as a reservoir for Medicopsis romeroi, a clinically important fungus. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
89
|
Yuan HS, Lu X, Dai YC, Hyde KD, Kan YH, Kušan I, He SH, Liu NG, Sarma VV, Zhao CL, Cui BK, Yousaf N, Sun G, Liu SY, Wu F, Lin CG, Dayarathne MC, Gibertoni TB, Conceição LB, Garibay-Orijel R, Villegas-Ríos M, Salas-Lizana R, Wei TZ, Qiu JZ, Yu ZF, Phookamsak R, Zeng M, Paloi S, Bao DF, Abeywickrama PD, Wei DP, Yang J, Manawasinghe IS, Harishchandra D, Brahmanage RS, de Silva NI, Tennakoon DS, Karunarathna A, Gafforov Y, Pem D, Zhang SN, de Azevedo Santiago ALCM, Bezerra JDP, Dima B, Acharya K, Alvarez-Manjarrez J, Bahkali AH, Bhatt VK, Brandrud TE, Bulgakov TS, Camporesi E, Cao T, Chen YX, Chen YY, Devadatha B, Elgorban AM, Fan LF, Du X, Gao L, Gonçalves CM, Gusmão LFP, Huanraluek N, Jadan M, Jayawardena RS, Khalid AN, Langer E, Lima DX, de Lima-Júnior NC, de Lira CRS, Liu JK(J, Liu S, Lumyong S, Luo ZL, Matočec N, Niranjan M, Oliveira-Filho JRC, Papp V, Pérez-Pazos E, Phillips AJL, Qiu PL, Ren Y, Ruiz RFC, Semwal KC, Soop K, de Souza CAF, Souza-Motta CM, Sun LH, Xie ML, Yao YJ, Zhao Q, Zhou LW. Fungal diversity notes 1277–1386: taxonomic and phylogenetic contributions to fungal taxa. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00461-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
90
|
Mycoenterolobium aquadictyosporium sp. nov. (Pleosporomycetidae, Dothideomycetes) from a freshwater habitat in Thailand. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01609-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
91
|
Doilom M, Guo JW, Phookamsak R, Mortimer PE, Karunarathna SC, Dong W, Liao CF, Yan K, Pem D, Suwannarach N, Promputtha I, Lumyong S, Xu JC. Screening of Phosphate-Solubilizing Fungi From Air and Soil in Yunnan, China: Four Novel Species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Front Microbiol 2020; 11:585215. [PMID: 33123114 PMCID: PMC7574596 DOI: 10.3389/fmicb.2020.585215] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 11/25/2022] Open
Abstract
Phosphate-solubilizing fungi (PSF) play an important role in increasing the bioavailability of phosphorus in soils for plants. Thirteen fungal strains, one collected from air and 12 from soil, were screened and described here in detail. These fungal strains were tested for their ability to solubilize tricalcium phosphate (TCP) on both solid and liquid Pikovskaya (PVK) media in vitro. The airborne fungal strain KUMCC 18-0196 (Aspergillus hydei sp. nov.) showed the most significant phosphate solubilizing activity on a solid PVK medium with the solubilization index (SI) (2.58 ± 0.04 cm) and the highest solubilized phosphates (1523.33 ± 47.87 μg/mL) on a liquid PVK medium. To the best of our knowledge, A. hydei sp. nov. is the first phosphate-solubilizing fungus reported from air. We also provide the identification especially for Aspergillus, Penicillium and Talaromyces, generally reported as PSF. It is important to not only screen for PSF but also identify species properly so that researchers have a clearer taxonomic picture for identifying potential taxa for future plant growth-promoting applications. Herein, A. hydei (section Nigri), Gongronella hydei, Penicillium soli (section Lanata-Divaricata) and Talaromyces yunnanensis (section Talaromyces) are fully described and introduced as new to science. These four new species are identified based on both morphological characteristics and multigene phylogenetic analyses, including the genealogical concordance phylogenetic species recognition method where necessary. Penicillium austrosinense is considered to be a synonym of P. guaibinense.
Collapse
Affiliation(s)
- Mingkwan Doilom
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jian-Wei Guo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
| | - Rungtiwa Phookamsak
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Peter E. Mortimer
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Samantha C. Karunarathna
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
| | - Wei Dong
- Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Chun-Fang Liao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
| | - Kai Yan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Dhandevi Pem
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Jian-Chu Xu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Honghe Innovation Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- World Agroforestry Centre, East and Central Asia, Kunming, China
| |
Collapse
|
92
|
Jayawardena RS, Hyde KD, Chen YJ, Papp V, Palla B, Papp D, Bhunjun CS, Hurdeal VG, Senwanna C, Manawasinghe IS, Harischandra DL, Gautam AK, Avasthi S, Chuankid B, Goonasekara ID, Hongsanan S, Zeng X, Liyanage KK, Liu N, Karunarathna A, Hapuarachchi KK, Luangharn T, Raspé O, Brahmanage R, Doilom M, Lee HB, Mei L, Jeewon R, Huanraluek N, Chaiwan N, Stadler M, Wang Y. One stop shop IV: taxonomic update with molecular phylogeny for important phytopathogenic genera: 76–100 (2020). FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00460-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThis is a continuation of a series focused on providing a stable platform for the taxonomy of phytopathogenic fungi and fungus-like organisms. This paper focuses on one family: Erysiphaceae and 24 phytopathogenic genera: Armillaria, Barriopsis, Cercospora, Cladosporium, Clinoconidium, Colletotrichum, Cylindrocladiella, Dothidotthia,, Fomitopsis, Ganoderma, Golovinomyces, Heterobasidium, Meliola, Mucor, Neoerysiphe, Nothophoma, Phellinus, Phytophthora, Pseudoseptoria, Pythium, Rhizopus, Stemphylium, Thyrostroma and Wojnowiciella. Each genus is provided with a taxonomic background, distribution, hosts, disease symptoms, and updated backbone trees. Species confirmed with pathogenicity studies are denoted when data are available. Six of the genera are updated from previous entries as many new species have been described.
Collapse
|
93
|
Phylogenetic Assignment of the Fungicolous Hypoxylon invadens (Ascomycota, Xylariales) and Investigation of its Secondary Metabolites. Microorganisms 2020; 8:microorganisms8091397. [PMID: 32932875 PMCID: PMC7565716 DOI: 10.3390/microorganisms8091397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
The ascomycete Hypoxylon invadens was described in 2014 as a fungicolous species growing on a member of its own genus, H.fragiforme, which is considered a rare lifestyle in the Hypoxylaceae. This renders H.invadens an interesting target in our efforts to find new bioactive secondary metabolites from members of the Xylariales. So far, only volatile organic compounds have been reported from H.invadens, but no investigation of non-volatile compounds had been conducted. Furthermore, a phylogenetic assignment following recent trends in fungal taxonomy via a multiple sequence alignment seemed practical. A culture of H.invadens was thus subjected to submerged cultivation to investigate the produced secondary metabolites, followed by isolation via preparative chromatography and subsequent structure elucidation by means of nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). This approach led to the identification of the known flaviolin (1) and 3,3-biflaviolin (2) as the main components, which had never been reported from the order Xylariales before. Assessment of their antimicrobial and cytotoxic effects via a panel of commonly used microorganisms and cell lines in our laboratory did not yield any effects of relevance. Concurrently, genomic DNA from the fungus was used to construct a multigene phylogeny using ribosomal sequence information from the internal transcribed spacer region (ITS), the 28S large subunit of ribosomal DNA (LSU), and proteinogenic nucleotide sequences from the second largest subunit of the DNA-directed RNA polymerase II (RPB2) and β-tubulin (TUB2) genes. A placement in a newly formed clade with H.trugodes was strongly supported in a maximum-likelihood (ML) phylogeny using sequences derived from well characterized strains, but the exact position of said clade remains unclear. Both, the chemical and the phylogenetic results suggest further inquiries into the lifestyle of this unique fungus to get a better understanding of both, its ecological role and function of its produced secondary metabolites hitherto unique to the Xylariales.
Collapse
|
94
|
Vandepol N, Liber J, Desirò A, Na H, Kennedy M, Barry K, Grigoriev IV, Miller AN, O'Donnell K, Stajich JE, Bonito G. Resolving the Mortierellaceae phylogeny through synthesis of multi-gene phylogenetics and phylogenomics. FUNGAL DIVERS 2020; 104:267-289. [PMID: 33364917 PMCID: PMC7751987 DOI: 10.1007/s13225-020-00455-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022]
Abstract
Early efforts to classify Mortierellaceae were based on macro- and micromorphology, but sequencing and phylogenetic studies with ribosomal DNA (rDNA) markers have demonstrated conflicting taxonomic groupings and polyphyletic genera. Although some taxonomic confusion in the family has been clarified, rDNA data alone is unable to resolve higher level phylogenetic relationships within Mortierellaceae. In this study, we applied two parallel approaches to resolve the Mortierellaceae phylogeny: low coverage genome (LCG) sequencing and high-throughput, multiplexed targeted amplicon sequencing to generate sequence data for multi-gene phylogenetics. We then combined our datasets to provide a well-supported genome-based phylogeny having broad sampling depth from the amplicon dataset. Resolving the Mortierellaceae phylogeny into monophyletic groups led to the definition of 14 genera, 7 of which are newly proposed. Low-coverage genome sequencing proved to be a relatively cost-effective means of generating a well-resolved phylogeny. The multi-gene phylogenetics approach enabled much greater sampling depth and breadth than the LCG approach, but was unable to resolve higher-level organization of groups. We present this work to resolve some of the taxonomic confusion and provide a genus-level framework to empower future studies on Mortierellaceae diversity, biology, and evolution.
Collapse
Affiliation(s)
- Natalie Vandepol
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing MI 48824, USA
| | - Julian Liber
- Department of Plant Biology, Michigan State University, East Lansing MI 48824, USA
| | - Alessandro Desirò
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing MI 48824, USA
| | - Hyunsoo Na
- Joint Genome Institute, Berkeley, CA 94720, USA
| | | | | | | | - Andrew N Miller
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Kerry O'Donnell
- United States Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology & Institute for Integrative Genome Biology, University of California-Riverside, Riverside CA 92521, USA
| | - Gregory Bonito
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing MI 48824, USA
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing MI 48824, USA
| |
Collapse
|
95
|
Hyde KD, Jeewon R, Chen YJ, Bhunjun CS, Calabon MS, Jiang HB, Lin CG, Norphanphoun C, Sysouphanthong P, Pem D, Tibpromma S, Zhang Q, Doilom M, Jayawardena RS, Liu JK, Maharachchikumbura SSN, Phukhamsakda C, Phookamsak R, Al-Sadi AM, Thongklang N, Wang Y, Gafforov Y, Gareth Jones EB, Lumyong S. The numbers of fungi: is the descriptive curve flattening? FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00458-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
96
|
Roscini L, Conti A, Casagrande Pierantoni D, Robert V, Corte L, Cardinali G. Do Metabolomics and Taxonomic Barcode Markers Tell the Same Story about the Evolution of Saccharomyces sensu stricto Complex in Fermentative Environments? Microorganisms 2020; 8:microorganisms8081242. [PMID: 32824262 PMCID: PMC7463906 DOI: 10.3390/microorganisms8081242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 01/07/2023] Open
Abstract
Yeast taxonomy was introduced based on the idea that physiological properties would help discriminate species, thus assuming a strong link between physiology and taxonomy. However, the instability of physiological characteristics within species configured them as not ideal markers for species delimitation, shading the importance of physiology and paving the way to the DNA-based taxonomy. The hypothesis of reconnecting taxonomy with specific traits from phylogenies has been successfully explored for Bacteria and Archaea, suggesting that a similar route can be traveled for yeasts. In this framework, thirteen single copy loci were used to investigate the predictability of complex Fourier Transform InfaRed spectroscopy (FTIR) and High-performance Liquid Chromatography–Mass Spectrometry (LC-MS) profiles of the four historical species of the Saccharomyces sensu stricto group, both on resting cells and under short-term ethanol stress. Our data show a significant connection between the taxonomy and physiology of these strains. Eight markers out of the thirteen tested displayed high correlation values with LC-MS profiles of cells in resting condition, confirming the low efficacy of FTIR in the identification of strains of closely related species. Conversely, most genetic markers displayed increasing trends of correlation with FTIR profiles as the ethanol concentration increased, according to their role in the cellular response to different type of stress.
Collapse
Affiliation(s)
- Luca Roscini
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (L.R.); (A.C.); (D.C.P.); (G.C.)
| | - Angela Conti
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (L.R.); (A.C.); (D.C.P.); (G.C.)
| | - Debora Casagrande Pierantoni
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (L.R.); (A.C.); (D.C.P.); (G.C.)
| | - Vincent Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
| | - Laura Corte
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (L.R.); (A.C.); (D.C.P.); (G.C.)
- Correspondence: ; Tel.: +39-0755856478
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (L.R.); (A.C.); (D.C.P.); (G.C.)
| |
Collapse
|
97
|
Alves-Silva G, Reck MA, da Silveira RMB, Bittencourt F, Robledo GL, Góes-Neto A, Drechsler-Santos ER. The Neotropical Fomitiporia (Hymenochaetales, Basidiomycota): the redefinition of F. apiahyna s.s. allows revealing a high hidden species diversity. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01593-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
98
|
Parnmen S, Nooron N, Leudang S, Sikaphan S, Polputpisatkul D, Rangsiruji A. Phylogenetic evidence revealed Cantharocybe virosa (Agaricales, Hygrophoraceae) as a new clinical record for gastrointestinal mushroom poisoning in Thailand. Toxicol Res 2020; 36:239-248. [PMID: 32685428 DOI: 10.1007/s43188-019-00024-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 11/25/2022] Open
Abstract
Epidemiological data showed increasing incidence rates of gastrointestinal (GI) mushroom syndrome in Thailand. This study therefore, aimed to identify suspected GI toxin-containing mushrooms using DNA sequence analyses of the internal transcribed spacer (ITS) region and the large subunit (LSU) of nuclear ribosomal DNA. GI toxins were also identified using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). 39 patients presented with poisoning symptoms, including nausea, vomiting, fatigue, abdominal pain, circulatory disturbances and diarrhea after ingesting wild mushrooms. The latent periods varied from 30 min to 4 h, but mostly between 1 and 2 h. Results of the ITS sequence-based identification revealed high similarities for the obtained clinical mushroom samples with the genus Cantharocybe H.E. Bigelow & A.H. SM. Maximum likelihood and Bayesian summary trees of combined ITS and LSU data confirmed that these toxic mushroom samples ingested by the patients belonged to Cantharocybe virosa (Manim. & K.B. Vrinda) T.K.A. Kumar. Detection of GI toxins using LC-QTOF-MS method revealed the presence of coprine in C. virosa. This study described the first outbreak of C. virosa poisoning in Thailand which resulted in severe cases of gastrointestinal irritation. To prevent such poisoning cases it is essential to educate the public not to gather any unidentified or unfamiliar wild mushrooms.
Collapse
Affiliation(s)
- Sittiporn Parnmen
- Department of Medical Sciences, Toxicology Center, National Institute of Health, Ministry of Public Health, Nonthaburi, Thailand
| | - Nattakarn Nooron
- Department of Medical Sciences, Toxicology Center, National Institute of Health, Ministry of Public Health, Nonthaburi, Thailand
| | - Siriwan Leudang
- Department of Medical Sciences, Toxicology Center, National Institute of Health, Ministry of Public Health, Nonthaburi, Thailand
| | - Sujitra Sikaphan
- Department of Medical Sciences, Toxicology Center, National Institute of Health, Ministry of Public Health, Nonthaburi, Thailand
| | - Dutsadee Polputpisatkul
- Department of Medical Sciences, Toxicology Center, National Institute of Health, Ministry of Public Health, Nonthaburi, Thailand
| | - Achariya Rangsiruji
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
99
|
Wanasinghe DN, Wijayawardene NN, Xu J, Cheewangkoon R, Mortimer PE. Taxonomic novelties in Magnolia-associated pleosporalean fungi in the Kunming Botanical Gardens (Yunnan, China). PLoS One 2020; 15:e0235855. [PMID: 32658904 PMCID: PMC7357747 DOI: 10.1371/journal.pone.0235855] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/22/2020] [Indexed: 11/24/2022] Open
Abstract
This paper represents the first article in a series on Yunnanese microfungi. We herein provide insights into Magnolia species associated with microfungi. All presented data are reported from the Kunming Botanical Gardens. Final conclusions were derived from the morphological examination of specimens coupled with phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their relationships. Shearia formosa, the type species of Shearia, lacks type material, and its phylogenetic position accordingly remains unresolved. A fresh collection of Shearia formosa, obtained from Magnolia denudata and M. soulangeana in China, therefore, designated a neotype for stabilizing the application of the species and/or genus name. Phylogenetic analyses of a combined DNA data matrix containing SSU, LSU, RPB2 and TEF loci of representative Pleosporales revealed that the genera Crassiperidium, Longiostiolum and Shearia are a well-defined monophylum. It is recognized as the family Longiostiolaceae and strongly supported by Bayesian and Maximum Likelihood methods. Its members are characterized by immersed to semi-immersed, globose to subglobose ascomata with a central, periphysate ostiole, a peridium composed of rectangular to polygonal cells, cylindrical to clavate asci, broadly fusiform, hyaline to pale brown ascospores, a coelomycetous asexual morph with pycnidial conidiomata, enteroblastic, annellidic, ampulliform, doliiform or cylindrical conidiogenous cells and cylindrical to fusiform, transverse and sometimes laterally distoseptate conidia without a sheath or with a basal lateral sheath. Nigrograna magnoliae sp. nov. is introduced from Magnolia denudata with both asexual and sexual morphs. We observed the asexual morph of Brunneofusispora sinensis from the culture and therefore amended the generic and species descriptions of Brunneofusispora.
Collapse
Affiliation(s)
- Dhanushka N. Wanasinghe
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- World Agroforestry, East and Central Asia, Kunming, Yunnan, China
- Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Yunnan, China
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China
| | - Jianchu Xu
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, China
- World Agroforestry, East and Central Asia, Kunming, Yunnan, China
- Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Yunnan, China
| | - Ratchadawan Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- * E-mail: (RC); (PEM)
| | - Peter E. Mortimer
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, China
- * E-mail: (RC); (PEM)
| |
Collapse
|
100
|
Phukhamsakda C, McKenzie EHC, Phillips AJL, Gareth Jones EB, Jayarama Bhat D, Stadler M, Bhunjun CS, Wanasinghe DN, Thongbai B, Camporesi E, Ertz D, Jayawardena RS, Perera RH, Ekanayake AH, Tibpromma S, Doilom M, Xu J, Hyde KD. Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00448-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|