51
|
SAR study culminates in a series of HDAC6 selective inhibitors featuring Schisandrin C-analogous Cap as potential immunomodulatory agents for cancer therapy. Bioorg Chem 2022; 127:105992. [PMID: 35785553 DOI: 10.1016/j.bioorg.2022.105992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/13/2022] [Accepted: 06/25/2022] [Indexed: 11/20/2022]
Abstract
HDAC6 inhibitors (HDAC6is) represent an emerging therapeutic option for triggering anti-cancer immune response. In this work, a novel series of HDAC6is, derived from an in-house analog of the traditional Chinese medicine monomer Schisandrin C, were designed and synthesized for SAR study. Throughout the 29 target compounds, 24a, 24b and 24h exerted single-digit nanomolar enzymatic activity and remarkably elevated subtype selectivity compared to the clinically investigated HDAC6i Ricolinostat (Selectivity index = 3.3). In A549 tumor cells, 24h, as the representative in this series (IC50 = 7.7 nM; selectivity index = 31.4), was capable of reversing IL-6-mediated PD-L1 upregulation, highlighting its immunomodulatory capability. Importantly, unlike numerous other hydroxamate-based HDACis, 24h displayed an acceptable oral bioavailability in Sprague-Dawley rats, along with high plasma exposure, long elimination half-life and slow clearance. With the aforementioned attractive performance, 24h deserves further in vivo investigation as an immunomodulatory therapeutic agent for batting human malignance.
Collapse
|
52
|
Zhang S, Duan S, Xie Z, Bao W, Xu B, Yang W, Zhou L. Epigenetic Therapeutics Targeting NRF2/KEAP1 Signaling in Cancer Oxidative Stress. Front Pharmacol 2022; 13:924817. [PMID: 35754474 PMCID: PMC9218606 DOI: 10.3389/fphar.2022.924817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) and its negative regulator kelch-like ECH-associated protein 1 (KEAP1) regulate various genes involved in redox homeostasis, which protects cells from stress conditions such as reactive oxygen species and therefore exerts beneficial effects on suppression of carcinogenesis. In addition to their pivotal role in cellular physiology, accumulating innovative studies indicated that NRF2/KEAP1-governed pathways may conversely be oncogenic and cause therapy resistance, which was profoundly modulated by epigenetic mechanism. Therefore, targeting epigenetic regulation in NRF2/KEAP1 signaling is a potential strategy for cancer treatment. In this paper, the current knowledge on the role of NRF2/KEAP1 signaling in cancer oxidative stress is presented, with a focus on how epigenetic modifications might influence cancer initiation and progression. Furthermore, the prospect that epigenetic changes may be used as therapeutic targets for tumor treatment is also investigated.
Collapse
Affiliation(s)
- Shunhao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sining Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuojun Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanlin Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Xu
- Department of Stomatology, Panzhihua Central Hospital, Panzhihua, China
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, Department of Medical Affairs, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
53
|
Nakano M, Ohwada K, Shindo Y, Konno T, Kohno T, Kikuchi S, Tsujiwaki M, Ishii D, Nishida S, Kakuki T, Obata K, Miyata R, Kurose M, Kondoh A, Takano K, Kojima T. Inhibition of HDAC and Signal Transduction Pathways Induces Tight Junctions and Promotes Differentiation in p63-Positive Salivary Duct Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14112584. [PMID: 35681564 PMCID: PMC9179926 DOI: 10.3390/cancers14112584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The p53 family p63 gene is essential for the proliferation and differentiation of various epithelial cells, and it is overexpressed in some salivary gland neoplasia. Histone deacetylases (HDACs) are thought to play a crucial role in carcinogenesis, and HDAC inhibitors downregulate p63 expression in cancers. p63 is not only a diagnostic marker of salivary gland neoplasia, but it also promotes the malignancy. Inhibition of HDAC and signal transduction pathways inhibited cell proliferation and migration, induced tight junctions, and promoted differentiation in p63-positive salivary duct adenocarcinoma (SDC). It is, therefore, useful in therapy for p63-positive SDC cells. Abstract Background: The p53 family p63 is essential for the proliferation and differentiation of various epithelial basal cells. It is overexpressed in several cancers, including salivary gland neoplasia. Histone deacetylases (HDACs) are thought to play a crucial role in carcinogenesis, and HDAC inhibitors downregulate p63 expression in cancers. Methods: In the present study, to investigate the roles and regulation of p63 in salivary duct adenocarcinoma (SDC), human SDC cell line A253 was transfected with siRNA-p63 or treated with the HDAC inhibitors trichostatin A (TSA) and quisinostat (JNJ-26481585). Results: In a DNA array, the knockdown of p63 markedly induced mRNAs of the tight junction (TJ) proteins cingulin (CGN) and zonula occuludin-3 (ZO-3). The knockdown of p63 resulted in the recruitment of the TJ proteins, the angulin-1/lipolysis-stimulated lipoprotein receptor (LSR), occludin (OCLN), CGN, and ZO-3 at the membranes, preventing cell proliferation, and leading to increased cell metabolism. Treatment with HDAC inhibitors downregulated the expression of p63, induced TJ structures, recruited the TJ proteins, increased the epithelial barrier function, and prevented cell proliferation and migration. Conclusions: p63 is not only a diagnostic marker of salivary gland neoplasia, but it also promotes the malignancy. Inhibition of HDAC and signal transduction pathways is, therefore, useful in therapy for p63-positive SDC cells.
Collapse
Affiliation(s)
- Masaya Nakano
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Kizuku Ohwada
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Yuma Shindo
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| | - Mitsuhiro Tsujiwaki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| | - Daichi Ishii
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Soshi Nishida
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Takuya Kakuki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Kazufumi Obata
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Ryo Miyata
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Makoto Kurose
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Atsushi Kondoh
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Kenichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Correspondence:
| |
Collapse
|
54
|
Transcriptome Profiling Analysis Identifies LCP1 as a Contributor for Chidamide Resistance in Gastric Cancer. Pharm Res 2022; 39:867-876. [PMID: 35578065 DOI: 10.1007/s11095-022-03291-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Gastric cancer (GC) remains a significant health problem and carries with it substantial morbidity and mortality. Chidamide is a novel and orally administered histone deacetylase (HDAC) inhibitor and has been demonstrated its anti-tumor efficacy on different kinds of hematological and solid tumors. However, the underlying mechanism of chidamide resistance is still poorly characterized. METHODS We established chidamide resistant GC cell lines, AGS ChiR and MGC803 ChiR and investigated the toxicologic effects through cell survival, colony formation and flow cytometry assays in vitro, and a subcutaneous xenograft model in vivo. RNA-sequence was then performed to screen chidamide resistance-associated genes between AGS and AGS ChiR cells. The role of Lymphocyte cytosolic protein 1 (LCP1) in chidamide resistance was explored by gain- and loss-of-function analyses. RESULTS We found that chidamide significantly inhibited cell proliferation and induced the apoptosis in a concentration-dependent manner in wild-type GC cell lines as compared to chidamide resistant cell lines. The transcriptomic profiling, quantitative RT-PCR, and western blot data revealed that LCP1 was upregulated in AGS ChiR cells compared with parental cells. Overexpression of LCP1 conferred and knockdown of LCP1 attenuated the chidamide resistance of GC cells. Epigenetic derepression of LCP1 by chidamide may be a possible reason for the contribution of LCP1 to chidamide resistance. CONCLUSIONS These findings illustrated that LCP1 may play a chidamide resistance role in GC, suggesting that LCP1 could be a potential target for the therapy of GC combined with chidamide.
Collapse
|
55
|
Elfiky AMI, Ghiboub M, Li Yim AYF, Hageman IL, Verhoeff J, de Krijger M, van Hamersveld PHP, Welting O, Admiraal I, Rahman S, Garcia-Vallejo JJ, Wildenberg ME, Tomlinson L, Gregory R, Rioja I, Prinjha RK, Furze RC, Lewis HD, Mander PK, Heinsbroek SEM, Bell MJ, de Jonge WJ. Carboxylesterase-1 Assisted Targeting of HDAC Inhibitors to Mononuclear Myeloid Cells in Inflammatory Bowel Disease. J Crohns Colitis 2022; 16:668-681. [PMID: 34633041 PMCID: PMC9089418 DOI: 10.1093/ecco-jcc/jjab176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Histone deacetylase inhibitors [HDACi] exert potent anti-inflammatory effects. Because of the ubiquitous expression of HDACs, clinical utility of HDACi is limited by off-target effects. Esterase-sensitive motif [ESM] technology aims to deliver ESM-conjugated compounds to human mononuclear myeloid cells, based on their expression of carboxylesterase 1 [CES1]. This study aims to investigate utility of an ESM-tagged HDACi in inflammatory bowel disease [IBD]. METHODS CES1 expression was assessed in human blood, in vitro differentiated macrophage and dendritic cells, and Crohn's disease [CD] colon mucosa, by mass cytometry, quantitative polymerase chain reaction [PCR], and immunofluorescence staining, respectively. ESM-HDAC528 intracellular retention was evaluated by mass spectrometry. Clinical efficacy of ESM-HDAC528 was tested in dextran sulphate sodium [DSS]-induced colitis and T cell transfer colitis models using transgenic mice expressing human CES1 under the CD68 promoter. RESULTS CES1 mRNA was highly expressed in human blood CD14+ monocytes, in vitro differentiated and lipopolysaccharide [LPS]-stimulated macrophages, and dendritic cells. Specific hydrolysis and intracellular retention of ESM-HDAC528 in CES1+ cells was demonstrated. ESM-HDAC528 inhibited LPS-stimulated IL-6 and TNF-α production 1000 times more potently than its control, HDAC800, in CES1high monocytes. In healthy donor peripheral blood, CES1 expression was significantly higher in CD14++CD16- monocytes compared with CD14+CD16++ monocytes. In CD-inflamed colon, a higher number of mucosal CD68+ macrophages expressed CES1 compared with non-inflamed mucosa. In vivo, ESM-HDAC528 reduced monocyte differentiation in the colon and significantly improved colitis in a T cell transfer model, while having limited potential in ameliorating DSS-induced colitis. CONCLUSIONS We demonstrate that monocytes and inflammatory macrophages specifically express CES1, and can be preferentially targeted by ESM-HDAC528 to achieve therapeutic benefit in IBD.
Collapse
Affiliation(s)
- Ahmed M I Elfiky
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage, UK
| | - Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage, UK
| | - Andrew Y F Li Yim
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage, UK
- Department of Clinical Genetics, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ishtu L Hageman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Manon de Krijger
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Patricia H P van Hamersveld
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Olaf Welting
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Iris Admiraal
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Shafaque Rahman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Laura Tomlinson
- Discovery DMPK, IVIVT, GSK Medicines Research Centre, Stevenage, UK
| | - Richard Gregory
- Discovery DMPK, IVIVT, GSK Medicines Research Centre, Stevenage, UK
| | - Inmaculada Rioja
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage, UK
| | - Rab K Prinjha
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage, UK
| | - Rebecca C Furze
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage, UK
| | - Huw D Lewis
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage, UK
| | | | - Sigrid E M Heinsbroek
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Matthew J Bell
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage, UK
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Surgery, University of Bonn, Bonn, Germany
| |
Collapse
|
56
|
Ripamonti C, Spadotto V, Pozzi P, Stevenazzi A, Vergani B, Marchini M, Sandrone G, Bonetti E, Mazzarella L, Minucci S, Steinkühler C, Fossati G. HDAC Inhibition as Potential Therapeutic Strategy to Restore the Deregulated Immune Response in Severe COVID-19. Front Immunol 2022; 13:841716. [PMID: 35592335 PMCID: PMC9111747 DOI: 10.3389/fimmu.2022.841716] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/01/2022] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has had a devastating impact worldwide and has been a great challenge for the scientific community. Vaccines against SARS-CoV-2 are now efficiently lessening COVID-19 mortality, although finding a cure for this infection is still a priority. An unbalanced immune response and the uncontrolled release of proinflammatory cytokines are features of COVID-19 pathophysiology and contribute to disease progression and worsening. Histone deacetylases (HDACs) have gained interest in immunology, as they regulate the innate and adaptative immune response at different levels. Inhibitors of these enzymes have already proven therapeutic potential in cancer and are currently being investigated for the treatment of autoimmune diseases. We thus tested the effects of different HDAC inhibitors, with a focus on a selective HDAC6 inhibitor, on immune and epithelial cells in in vitro models that mimic cells activation after viral infection. Our data indicate that HDAC inhibitors reduce cytokines release by airway epithelial cells, monocytes and macrophages. This anti-inflammatory effect occurs together with the reduction of monocytes activation and T cell exhaustion and with an increase of T cell differentiation towards a T central memory phenotype. Moreover, HDAC inhibitors hinder IFN-I expression and downstream effects in both airway epithelial cells and immune cells, thus potentially counteracting the negative effects promoted in critical COVID-19 patients by the late or persistent IFN-I pathway activation. All these data suggest that an epigenetic therapeutic approach based on HDAC inhibitors represents a promising pharmacological treatment for severe COVID-19 patients.
Collapse
Affiliation(s)
- Chiara Ripamonti
- New Drug Incubator Department, Italfarmaco Group, Cinisello Balsamo, Italy
| | - Valeria Spadotto
- New Drug Incubator Department, Italfarmaco Group, Cinisello Balsamo, Italy
| | - Pietro Pozzi
- New Drug Incubator Department, Italfarmaco Group, Cinisello Balsamo, Italy
| | - Andrea Stevenazzi
- New Drug Incubator Department, Italfarmaco Group, Cinisello Balsamo, Italy
| | - Barbara Vergani
- New Drug Incubator Department, Italfarmaco Group, Cinisello Balsamo, Italy
| | - Mattia Marchini
- New Drug Incubator Department, Italfarmaco Group, Cinisello Balsamo, Italy
| | - Giovanni Sandrone
- New Drug Incubator Department, Italfarmaco Group, Cinisello Balsamo, Italy
| | - Emanuele Bonetti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Mazzarella
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | | - Gianluca Fossati
- New Drug Incubator Department, Italfarmaco Group, Cinisello Balsamo, Italy
| |
Collapse
|
57
|
Starzer AM, Preusser M, Berghoff AS. Immune escape mechanisms and therapeutic approaches in cancer: the cancer-immunity cycle. Ther Adv Med Oncol 2022; 14:17588359221096219. [PMID: 35510032 PMCID: PMC9058458 DOI: 10.1177/17588359221096219] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2022] [Indexed: 12/31/2022] Open
Abstract
The introduction of immune checkpoint inhibitors has changed the therapeutic possibilities for various cancer types. However, despite the success in some entities, a significant fraction of patients does not respond to immune checkpoint inhibitors. A functioning cancer-immunity cycle is needed as the precondition for a clinically meaningful response to immune checkpoint inhibitors. It is assumed that only if each step of the cycle is activated and functioning properly, immune checkpoint inhibitors induce a meaningful immune response. However, an activated cancer-immunity cycle might not be present equally in each patient and cancer type. Ideally, treatment concepts should consider each single step of the cancer-immunity cycle and provide personalized treatment approaches, allowing the adaption to functioning and malfunctioning steps of the individual patient’s specific cancer-immunity cycle. In the following review, we provide an overview of the single steps of the cancer-immunity cycle as well as the impact of malfunctioning steps on the generation of an effective tumor-specific immune response.
Collapse
Affiliation(s)
- Angelika M. Starzer
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna S. Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
58
|
Watanabe T, Soeda S, Endo Y, Okabe C, Sato T, Kamo N, Ueda M, Kojima M, Furukawa S, Nishigori H, Takahashi T, Fujimori K. Rare Hereditary Gynecological Cancer Syndromes. Int J Mol Sci 2022; 23:1563. [PMID: 35163487 PMCID: PMC8835983 DOI: 10.3390/ijms23031563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Hereditary cancer syndromes, which are characterized by onset at an early age and an increased risk of developing certain tumors, are caused by germline pathogenic variants in tumor suppressor genes and are mostly inherited in an autosomal dominant manner. Therefore, hereditary cancer syndromes have been used as powerful models to identify and characterize susceptibility genes associated with cancer. Furthermore, clarification of the association between genotypes and phenotypes in one disease has provided insights into the etiology of other seemingly different diseases. Molecular genetic discoveries from the study of hereditary cancer syndrome have not only changed the methods of diagnosis and management, but have also shed light on the molecular regulatory pathways that are important in the development and treatment of sporadic tumors. The main cancer susceptibility syndromes that involve gynecologic cancers include hereditary breast and ovarian cancer syndrome as well as Lynch syndrome. However, in addition to these two hereditary cancer syndromes, there are several other hereditary syndromes associated with gynecologic cancers. In the present review, we provide an overview of the clinical features, and discuss the molecular genetics, of four rare hereditary gynecological cancer syndromes; Cowden syndrome, Peutz-Jeghers syndrome, DICER1 syndrome and rhabdoid tumor predisposition syndrome 2.
Collapse
Affiliation(s)
- Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Shu Soeda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Yuta Endo
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Chikako Okabe
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Tetsu Sato
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Norihito Kamo
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Makiko Ueda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Manabu Kojima
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Shigenori Furukawa
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Hidekazu Nishigori
- Fukushima Medical Center for Children and Women, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (H.N.); (T.T.)
| | - Toshifumi Takahashi
- Fukushima Medical Center for Children and Women, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (H.N.); (T.T.)
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| |
Collapse
|
59
|
Ruzic D, Djoković N, Srdić-Rajić T, Echeverria C, Nikolic K, Santibanez JF. Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention. Pharmaceutics 2022; 14:pharmaceutics14010209. [PMID: 35057104 PMCID: PMC8778744 DOI: 10.3390/pharmaceutics14010209] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis. Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell death programs. Over the last three decades, an increasing number of synthetic and naturally derived compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have provided biological and molecular insights with regard to the role of HDAC in cancer. The first part of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant diseases. Accordingly, the small-molecules and natural products such as HDACi are described in terms of cancer therapy and chemoprevention. Furthermore, structural considerations are included to improve the HDACi selectivity and combinatory potential with other specific targeting agents in bifunctional inhibitors and proteolysis targeting chimeras. Additionally, clinical trials that combine HDACi with current therapies are discussed, which may open new avenues in terms of the feasibility of HDACi’s future clinical applications in precision cancer therapies.
Collapse
Affiliation(s)
- Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Nemanja Djoković
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Tatjana Srdić-Rajić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, Copiapo 1531772, Chile;
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.R.); (N.D.); (K.N.)
| | - Juan F. Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
- Correspondence: ; Tel.: +381-11-2685-788; Fax: +381-11-2643-691
| |
Collapse
|
60
|
Zhong M, Tan J, Pan G, Jiang Y, Zhou H, Lai Q, Chen Q, Fan L, Deng M, Xu B, Zha J. Preclinical Evaluation of the HDAC Inhibitor Chidamide in Transformed Follicular Lymphoma. Front Oncol 2021; 11:780118. [PMID: 34926293 PMCID: PMC8677934 DOI: 10.3389/fonc.2021.780118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
The key factors leading to transformed follicular lymphoma (t-FL) include the aberrations of epigenetic modifiers as early and driving events, especially mutations in the gene encoding for histone acetyltransferase. Therefore, reversal of this phenomenon by histone deacetylase (HDAC) inhibitors is essential for the development of new treatment strategies in t-FL. Several t-FL cell lines were treated with various doses of chidamide and subjected to cell proliferation, apoptosis and cell cycle analyses with CCK-8 assay, Annexin V/PI assay and flow cytometry, respectively. Chidamide dose-dependently inhibited cell proliferation, caused G0/G1 cycle arrest and triggered apoptosis in t-FL cells. In addition, the effects of chidamide on tumor growth were evaluated in vivo in xenograft models. RNA-seq analysis revealed gene expression alterations involving the PI3K-AKT signaling pathway might account for the mechanism underlying the antitumor activity of chidamide as a single agent in t-FL. These findings provide a basis for further clinical exploration of chidamide as a promising treatment for FL.
Collapse
Affiliation(s)
- Mengya Zhong
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Jinshui Tan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Guangchao Pan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Yuelong Jiang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Hui Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Qian Lai
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Qinwei Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Liyuan Fan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.,Department of Hematology, Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| |
Collapse
|
61
|
Chowdhury A, Marin A, Weber DJ, Andrianov AK. Nano-Assembly of Quisinostat and Biodegradable Macromolecular Carrier Results in Supramolecular Complexes with Slow-Release Capabilities. Pharmaceutics 2021; 13:pharmaceutics13111834. [PMID: 34834249 PMCID: PMC8619266 DOI: 10.3390/pharmaceutics13111834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
Self-assembly of ionically charged small molecule drugs with water-soluble biodegradable polyelectrolytes into nano-scale complexes can potentially offer a novel and attractive approach to improving drug solubility and prolonging its half-life. Nanoassemblies of quisinostat with water-soluble PEGylated anionic polyphosphazene were prepared by gradient-driven escape of solvent resulting in the reduction of solvent quality for a small molecule drug. A study of binding, analysis of composition, stability, and release profiles was conducted using asymmetric flow field flow fractionation (AF4) and dynamic light scattering (DLS) spectroscopy. Potency assays were performed with WM115 human melanoma and A549 human lung cancer cell lines. The resulting nano-complexes contained up to 100 drug molecules per macromolecular chain and displayed excellent water-solubility and improved hemocompatibility when compared to co-solvent-based drug formulations. Quisinostat release time (complex dissociation) at near physiological conditions in vitro varied from 5 to 14 days depending on initial drug loading. Multimeric complexes displayed dose-dependent potency in cell-based assays and the results were analyzed as a function of complex concentration, as well as total content of drug in the system. The proposed self-assembly process may present a simple alternative to more sophisticated delivery modalities, namely chemically conjugated prodrug systems and nanoencapsulation-based formulations.
Collapse
Affiliation(s)
- Ananda Chowdhury
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (A.C.); (A.M.); (D.J.W.)
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (A.C.); (A.M.); (D.J.W.)
| | - David J. Weber
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (A.C.); (A.M.); (D.J.W.)
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA
- Center for Biomolecular Therapeutics (CBT), Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (A.C.); (A.M.); (D.J.W.)
- Correspondence:
| |
Collapse
|
62
|
Kaczmarek JV, Bogan CM, Pierce JM, Tao YK, Chen SC, Liu Q, Liu X, Boyd KL, Calcutt MW, Bridges TM, Lindsley CW, Friedman DL, Richmond A, Daniels AB. Intravitreal HDAC Inhibitor Belinostat Effectively Eradicates Vitreous Seeds Without Retinal Toxicity In Vivo in a Rabbit Retinoblastoma Model. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 34757417 PMCID: PMC8590161 DOI: 10.1167/iovs.62.14.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose Current melphalan-based regimens for intravitreal chemotherapy for retinoblastoma vitreous seeds are effective but toxic to the retina. Thus, alternative agents are needed. Based on the known biology of histone deacetylases (HDACs) in the retinoblastoma pathway, we systematically studied whether the HDAC inhibitor belinostat is a viable, molecularly targeted alternative agent for intravitreal delivery that might provide comparable efficacy, without toxicity. Methods In vivo pharmacokinetic experiments in rabbits and in vitro cytotoxicity experiments were performed to determine the 90% inhibitory concentration (IC90). Functional toxicity by electroretinography and structural toxicity by optical coherence tomography (OCT), OCT angiography, and histopathology were evaluated in rabbits following three injections of belinostat 350 µg (2× IC90) or 700 µg (4× IC90), compared with melphalan 12.5 µg (rabbit equivalent of the human dose). The relative efficacy of intravitreal belinostat versus melphalan to treat WERI-Rb1 human cell xenografts in rabbit eyes was directly quantified. RNA sequencing was used to assess belinostat-induced changes in RB cell gene expression. Results The maximum nontoxic dose of belinostat was 350 µg, which caused no reductions in electroretinography parameters, retinal microvascular loss on OCT angiography, or retinal degeneration. Melphalan caused severe retinal structural and functional toxicity. Belinostat 350 µg (equivalent to 700 µg in the larger human eye) was equally effective at eradicating vitreous seeds in the rabbit xenograft model compared with melphalan (95.5% reduction for belinostat, P < 0.001; 89.4% reduction for melphalan, P < 0.001; belinostat vs. melphalan, P = 0.10). Even 700 µg belinostat (equivalent to 1400 µg in humans) caused only minimal toxicity. Widespread changes in gene expression resulted. Conclusions Molecularly targeted inhibition of HDACs with intravitreal belinostat was equally effective as standard-of-care melphalan but without retinal toxicity. Belinostat may therefore be an attractive agent to pursue clinically for intravitreal treatment of retinoblastoma.
Collapse
Affiliation(s)
- Jessica V Kaczmarek
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Carley M Bogan
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Janene M Pierce
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Yuankai K Tao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Sheau-Chiann Chen
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Xiao Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kelli L Boyd
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - M Wade Calcutt
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Thomas M Bridges
- Warren Center for Neuroscience Drug Discovery at Vanderbilt, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery at Vanderbilt, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| | - Debra L Friedman
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Ann Richmond
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, United States.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States.,Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Anthony B Daniels
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States.,Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
63
|
McClarty B, Rodriguez G, Dong H. Dose Effects of Histone Deacetylase Inhibitor Tacedinaline (CI-994) on Antipsychotic Haloperidol-Induced Motor and Memory Side Effects in Aged Mice. Front Neurosci 2021; 15:674745. [PMID: 34690667 PMCID: PMC8526546 DOI: 10.3389/fnins.2021.674745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/07/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Elderly patients treated with antipsychotic drugs often experience increased severity and frequency of side effects, yet the mechanisms are not well understood. Studies from our group indicate age-related histone modifications at drug targeted receptor gene promoters may contribute to the increased side effects, and histone deacetylase (HDAC) inhibitors entinostat (MS-275) and valproic acid (VPA) could reverse typical antipsychotic haloperidol (HAL) induced motor-side effects. However, whether such effects could be dose dependent and whether HDAC inhibitors could improve memory function in aged mice is unknown. Methods: We co-treated selective class 1 HDAC inhibitor tacedinaline (CI-994) at different doses (10, 20, and 30 mg/kg) with HAL (0.05 mg/kg) in young (3 months) and aged (21 months) mice for 14 consecutive days, then motor and memory behavioral tests were conducted, followed by biochemical measurements. Results: CI-994 at doses of 10 and 20 mg/kg could decrease HAL-induced cataleptic episodes but only 20 mg/kg was sufficient to improve motor coordination in aged mice. Additionally, CI-994 at 10 and 20 mg/kg mitigate HAL-induced memory impairment in aged mice. Biochemical analyses showed increased acetylation of histone marks H3K27ac and H3K18ac at the dopamine 2 receptor (D2R) gene (Drd2) promoter and increased expression of the Drd2 mRNA and D2R protein in the striatum of aged mice after administration of CI-994 at 20 mg/kg. Conclusions: Our results suggest CI-994 can reduce HAL-induced motor and memory side effects in aged mice. These effects may act through an increase of acetylation at the Drd2 promoter, thereby restoring D2R expression and improving antipsychotic drug action.
Collapse
Affiliation(s)
- Bryan McClarty
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
64
|
Zhang L, Cao W. Histone deacetylase 3 (HDAC3) as an important epigenetic regulator of kidney diseases. J Mol Med (Berl) 2021; 100:43-51. [PMID: 34698870 DOI: 10.1007/s00109-021-02141-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022]
Abstract
Development and progression of many kidney diseases are substantially influenced by aberrant protein acetylation modifications of gene expression crucial for kidney functions. Histone deacetylase (HDAC) expression alterations are detected from renal samples of patients and animal models of various kidney diseases, and the administrations of HDAC inhibitors display impressive renal protective effects in vitro and in vivo. However, when the expression alterations of multiple HDACs occur, not all the HDACs causally affect the disease onset or progression. Identification of a single HDAC as a disease-causing factor will allow subtype-targeted intervention with less side effect. HDAC3 is a unique HDAC with distinct structural and subcellular distribution features and co-repressor dependency. HDAC3 is required for kidney development and its aberrations actively participate in many pathological processes, such as cancer, cardiovascular diseases, diabetes, and neurodegenerative disorders, and contribute significantly to the pathogenesis of kidney diseases. This review will discuss the recent studies that investigate the critical roles of HDAC3 aberrations in kidney development, renal aging, renal cell carcinoma, renal fibrosis, chronic kidney disease, polycystic kidney disease, glomerular podocyte injury, and diabetic nephropathy. These studies reveal the distinct characters of HDAC3 aberrations that act on different molecules/signaling pathways under various renal pathological conditions, which might shed lights into the epigenetic mechanisms of renal diseases and the potentially therapeutic strategies.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Nephrology, Northern Jiangsu People's Hospital, Nanjing University School of Medicine, Yangzhou, 225001, China
- Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China
| | - Wangsen Cao
- Department of Nephrology, Northern Jiangsu People's Hospital, Nanjing University School of Medicine, Yangzhou, 225001, China.
- Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China.
| |
Collapse
|
65
|
Mages C, Gampp H, Syren P, Rahm AK, André F, Frey N, Lugenbiel P, Thomas D. Electrical Ventricular Remodeling in Dilated Cardiomyopathy. Cells 2021; 10:2767. [PMID: 34685747 PMCID: PMC8534398 DOI: 10.3390/cells10102767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Ventricular arrhythmias contribute significantly to morbidity and mortality in patients with heart failure (HF). Pathomechanisms underlying arrhythmogenicity in patients with structural heart disease and impaired cardiac function include myocardial fibrosis and the remodeling of ion channels, affecting electrophysiologic properties of ventricular cardiomyocytes. The dysregulation of ion channel expression has been associated with cardiomyopathy and with the development of arrhythmias. However, the underlying molecular signaling pathways are increasingly recognized. This review summarizes clinical and cellular electrophysiologic characteristics observed in dilated cardiomyopathy (DCM) with ionic and structural alterations at the ventricular level. Furthermore, potential translational strategies and therapeutic options are highlighted.
Collapse
Affiliation(s)
- Christine Mages
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Heike Gampp
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Pascal Syren
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Florian André
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
66
|
Liva S, Chen M, Mortazavi A, Walker A, Wang J, Dittmar K, Hofmeister C, Coss CC, Phelps MA. Population Pharmacokinetic Analysis from First-in-Human Data for HDAC Inhibitor, REC-2282 (AR-42), in Patients with Solid Tumors and Hematologic Malignancies: A Case Study for Evaluating Flat vs. Body Size Normalized Dosing. Eur J Drug Metab Pharmacokinet 2021; 46:807-816. [PMID: 34618345 PMCID: PMC8599380 DOI: 10.1007/s13318-021-00722-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2021] [Indexed: 12/26/2022]
Abstract
Background and Objectives REC-2282 is a novel histone deacetylase inhibitor that has shown antitumor activity in in vitro and in vivo models of malignancy. The aims of this study were to characterize the population pharmacokinetics of REC-2282 (AR-42) from the first-in-human (NCT01129193) and phase I acute myeloid leukemia trials (NCT01798901) and to evaluate potential sources of variability. Additionally, we sought to understand alternate body size descriptors as sources of inter-individual variability (IIV), which was significant for dose-normalized maximum observed concentration and area under the concentration-time curve (AUC). Methods Datasets from two clinical trials were combined, and population pharmacokinetic analysis was performed using NONMEM and R softwares; patient demographics were tested as covariates. Results A successful population pharmacokinetic model was constructed. The pharmacokinetics of REC-2282 were best described by a two-compartment model with one transit compartment for absorption, first-order elimination and a proportional error model. Fat-free mass (FFM) was retained as a single covariate on clearance (CL), though it explained < 3% of the observed variability on CL. Tumor type and formulation were retained as covariates on lag time, and a majority of variability, attributed to absorption, remained unexplained. Computed tomography (CT)-derived lean body weight estimates were lower than estimated lean body weight and fat-free mass measures in most patients. Analysis of dose-normalized AUC vs. body size descriptors suggests flat dosing is most appropriate for REC-2282. Conclusions FFM was identified as a significant covariate on CL; however, it explained only a very small portion of the IIV; major factors contributing significantly to REC-2282 pharmacokinetic variability remain unidentified. Supplementary Information The online version contains supplementary material available at 10.1007/s13318-021-00722-z.
Collapse
Affiliation(s)
- Sophia Liva
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Min Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alison Walker
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jiang Wang
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Kristin Dittmar
- Department of Radiology, Wexner Medical Center, Columbus, OH, USA
| | - Craig Hofmeister
- Division of Hematology, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Christopher C Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA. .,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA. .,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
67
|
Scheipl S, Barnard M, Lohberger B, Zettl R, Brcic I, Liegl-Atzwanger B, Rinner B, Meindl C, Fröhlich E. Drug combination screening as a translational approach toward an improved drug therapy for chordoma. Cell Oncol (Dordr) 2021; 44:1231-1242. [PMID: 34550531 PMCID: PMC8648636 DOI: 10.1007/s13402-021-00632-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
Purpose Drug screening programmes have revealed epidermal growth factor receptor inhibitors (EGFRis) as promising therapeutics for chordoma, an orphan malignant bone tumour, in the absence of a known genetic driver. Concurrently, the irreversible EGFRi afatinib (Giotrif®) is being evaluated in a multicentric Phase II trial. As tyrosine kinase inhibitor (TKI) monotherapies are invariably followed by resistance, we aimed to evaluate potential therapeutic combinations with EGFRis. Methods We screened 133 clinically approved anticancer drugs as single agents and in combination with two EGFRis (afatinib and erlotinib) in the clival chordoma cell line UM-Chor1. Synergistic combinations were analysed in a 7 × 7 matrix format. The most promising combination was further explored in clival (UM-Chor1, MUG-CC1) and sacral (MUG-Chor1, U-CH1) chordoma cell lines. Secretomes were analysed for receptor tyrosine kinase ligands (EGF, TGF-α, FGF-2 and VEGF-A) upon drug treatment. Results Drugs that were active as single agents (n = 45) included TKIs, HDAC and proteasome inhibitors, and cytostatic drugs. Six combinations were analysed in a matrix format: n = 4 resulted in a significantly increased cell killing (crizotinib, dabrafenib, panobinostat and doxorubicin), and n = 2 exhibited no or negligible effects (regorafenib, venetoclax). Clival chordoma cell lines were more responsive to combined EGFR-MET inhibition. EGFR-MET cross-talk (e.g. via TGF-α secretion) likely accounts for the synergistic effects of EGFR-MET inhibition. Conclusion Our screen revealed promising combinations with EGFRis, such as the ALK/MET-inhibitor crizotinib, the HDAC-inhibitor panobinostat or the topoisomerase-II-inhibitor doxorubicin, which are part of standard chemotherapy regimens for various bone and soft-tissue sarcomas. Supplementary Information The online version contains supplementary material available at 10.1007/s13402-021-00632-x.
Collapse
Affiliation(s)
- Susanne Scheipl
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Michelle Barnard
- Cancer Research UK - AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria.
| | - Richard Zettl
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Iva Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Beate Rinner
- Division of Biomedical Research, Medical University of Graz, Graz, Austria
| | - Claudia Meindl
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
68
|
Pojani E, Barlocco D. Selective Inhibitors of Histone Deacetylase 10 (HDAC-10). Curr Med Chem 2021; 29:2306-2321. [PMID: 34468295 DOI: 10.2174/0929867328666210901144658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
Histone acetylation balance is one epigenetic mechanism controlling gene expression associated with disease progression. It has been observed that histone deacetylase 10 (HDAC-10) isozyme contributes to the chemotherapy resistance; in addition, the poor clinical outcome observed in patients with aggressive solid tumors, such as neuroblastoma, has been associated with its overexpression. Moreover, HDAC-10 selective inhibition suppresses the autophagic response, thus providing an improved risk-benefit profile compared to cytotoxic cancer chemotherapy drugs. On these bases, HDAC-10 is becoming an emerging target for drug design. Due to the rapid progress in the development of next-generation HDAC inhibitors, this review article aims to provide an overview on novel selective or dual HDAC-8/10 inhibitors, as new leads for cancer chemotherapy, able to avoid the severe side-effects of several actual approved "pan" HDAC inhibitors. A literature search was conducted in MedLine, PubMed, Caplus, SciFinder Scholar databases from 2015 to the present. Since the disclosure that the HDAC-6 inhibitor Tubastatin A was able to bind HDAC-10 efficiently, several related analogues were synthesized and tested. Both tricyclic (25-30) and bicyclic (31-42) derivatives were considered. The best pharmacological profile was shown by 36 (HDAC-10 pIC50 = 8.4 and pIC50 towards Class I HDACs from 5.2-6.4). In parallel, based on the evidence that high levels of HDAC-8 are a marker of poor prognosis in neuroblastoma treatment, dual HDAC-8/10 inhibitors were designed. The hydroxamic acid TH34 (HDAC-8 and 10 IC50 = 1.9 µM and 7.7 µM, respectively) and the hybrid derivatives 46d, 46e and 46g were the most promising both in terms of potency and selectivity. Literature surveys indicate several structural requirements for inhibitory potency and selectivity towards HDAC-10, e.g., electrostatic and/or hydrogen bond interactions with E274 and complementarity to the P(E,A) CE motif helix.
Collapse
Affiliation(s)
- Eftiola Pojani
- Department of the Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University "Our Lady of Good Counsel", Tirana, Albania
| | - Daniela Barlocco
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Milan, L. Mangiagalli 25 - 20133 Milan, Italy
| |
Collapse
|
69
|
Bieszczad B, Garbicz D, Świtalska M, Dudek MK, Warszycki D, Wietrzyk J, Grzesiuk E, Mieczkowski A. Improved HDAC Inhibition, Stronger Cytotoxic Effect and Higher Selectivity against Leukemias and Lymphomas of Novel, Tricyclic Vorinostat Analogues. Pharmaceuticals (Basel) 2021; 14:851. [PMID: 34577551 PMCID: PMC8470702 DOI: 10.3390/ph14090851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors are a class of drugs used in the cancer treatment. Here, we developed a library of 19 analogues of Vorinostat, an HDAC inhibitor used in lymphomas treatment. In Vorinostat, we replaced the hydrophobic phenyl group with various tricyclic 'caps' possessing a central, eight-membered, heterocyclic ring, and investigated the HDAC activity and cytotoxic effect on the cancer and normal cell lines. We found that 3 out of the 19 compounds, based on dibenzo[b,f]azocin-6(5H)-one, 11,12-dihydrodibenzo[b,f]azocin-6(5H)-one, and benzo[b]naphtho[2,3-f][1,5]diazocine-6,14(5H,13H)-dione scaffolds, showed better HDACs inhibition than the referenced Vorinostat. In leukemic cell line MV4-11 and in the lymphoma cell line Daudi, three compounds showed lower IC50 values than Vorinostat. These compounds had higher activity and selectivity against MV4-11 and Daudi cell lines than reference Vorinostat. We also observed a strong correlation between HDACs inhibition and the cytotoxic effect. Cell lines derived from solid tumours: A549 (lung carcinoma) and MCF-7 (breast adenocarcinoma) as well as reference BALB/3T3 (normal murine fibroblasts) were less susceptible to compounds tested. Developed derivatives show improved properties than Vorinostat, thus they could be considered as possible agents for leukemia and lymphoma treatment.
Collapse
Affiliation(s)
- Bartosz Bieszczad
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (B.B.); (D.G.)
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (B.B.); (D.G.)
| | - Marta Świtalska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ś.); (J.W.)
| | - Marta K. Dudek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Dawid Warszycki
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Cracow, Poland;
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ś.); (J.W.)
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (B.B.); (D.G.)
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (B.B.); (D.G.)
| |
Collapse
|
70
|
Rasha F, Sharma M, Pruitt K. Mechanisms of endocrine therapy resistance in breast cancer. Mol Cell Endocrinol 2021; 532:111322. [PMID: 34000350 DOI: 10.1016/j.mce.2021.111322] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
The most commonly diagnosed breast cancer (BC) subtype is characterized by estrogen receptor (ER) expression. Treatment of this BC subtype typically involves modalities that either suppress the production of estrogen or impede the binding of estrgen to its receptors, constituting the basis for endocrine therapy. While many patients have benefitted from endocrine therapy with clear reduction in mortality and cancer recurrence, one of the clinical hurdles that remain involves overcoming intrinsic (de novo) or acquired resistance to endocrine therapy driven by diverse and complex changes occurring in the tumor microenvironment. Moreover, such resistance may persist even after progression through additional antiestrogen therapies thus demonstrating the importance of further investigation of mechanisms of ER modulation. Here, we discuss a number of advances that provide a better understanding of the complex mechanistic basis for resistance to endocrine therapy as well as future therapeutic maneuvers that may break this resistance.
Collapse
Affiliation(s)
- Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Monica Sharma
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
| |
Collapse
|
71
|
Vystorop IV, Shilov GV, Chernyak AV, Klimanova EN, Sashenkova TE, Klochkov SG, Neganova ME, Aleksandrova YR, Allayarova UY, Mishchenko DV. Regioselective Synthesis, Structure, and Chemosensitizing Antitumor Activity of Cyclic Hydroxamic Acid Based on DL-Valine. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
72
|
Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Schiöth HB. Recent developments of HDAC inhibitors: Emerging indications and novel molecules. Br J Clin Pharmacol 2021; 87:4577-4597. [PMID: 33971031 DOI: 10.1111/bcp.14889] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
The histone deacetylase (HDAC) enzymes, a class of epigenetic regulators, are historically well established as attractive therapeutic targets. During investigation of trends within clinical trials, we have identified a high number of clinical trials involving HDAC inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 32 agents with HDAC-inhibiting properties, of which 29 were found to interact with the HDAC enzymes as their primary therapeutic target. In this review, we provide an overview of the clinical drug development highlighting the recent advances and provide analysis of specific trials and, where applicable, chemical structures. We found haematologic neoplasms continue to represent the majority of clinical indications for this class of drugs; however, it is clear that there is an ongoing trend towards diversification. Therapies for non-oncology indications including HIV infection, muscular dystrophies, inflammatory diseases as well as neurodegenerative diseases such as Alzheimer's disease, frontotemporal dementia and Friedreich's ataxia are achieving promising clinical progress. Combinatory regimens are proving to be useful to improve responsiveness among FDA-approved agents; however, it often results in increased treatment-related toxicities. This analysis suggests that the indication field is broadening through a high number of clinical trials while several fields of preclinical development are also promising.
Collapse
Affiliation(s)
- Andrey D Bondarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Vladimir N Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
73
|
Tsimberidou AM, Beer PA, Cartwright CA, Haymaker C, Vo HH, Kiany S, Cecil ARL, Dow J, Haque K, Silva FA, Coe L, Berryman H, Bone EA, Nogueras-Gonzalez GM, Vining D, McElwaine-Johnn H, Wistuba II. Preclinical Development and First-in-Human Study of KA2507, a Selective and Potent Inhibitor of Histone Deacetylase 6, for Patients with Refractory Solid Tumors. Clin Cancer Res 2021; 27:3584-3594. [PMID: 33947698 DOI: 10.1158/1078-0432.ccr-21-0238] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/25/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Inhibition of histone deacetylase 6 (HDAC6) is predicted to deliver both direct antitumor activity and modulation of the antitumor immune response. This study describes the development of a novel HDAC6 inhibitor. PATIENTS AND METHODS KA2507 was characterized in HDAC biochemical and cellular target engagement assays and in preclinical efficacy models of melanoma and colorectal cancer. In a phase I study, KA2507 was administered orally using a 3+3 dose-escalation design (NCT03008018). RESULTS KA2507 is a potent and selective inhibitor of HDAC6 (biochemical IC50 = 2.5 nmol/L). Preclinical models demonstrated antitumor efficacy in syngeneic tumor-bearing mice, with translational studies highlighting modulation of the antitumor immune response. Twenty patients were treated in a phase I study. KA2507 was well tolerated; dose-limiting toxicity was not observed up to the maximum dose administered. Pharmacokinetic profiling supported twice-daily oral dosing. Pharmacodynamic analysis demonstrated selective HDAC6 target engagement in peripheral blood cells, free from off-target class I HDAC activity. Stable disease was the best clinical response (7 patients). Three of these patients (adenoid cystic carcinoma, n = 2; rectal adenocarcinoma, n = 1) had prolonged disease stabilization that lasted for 16.4, 12.6, and 9.0 months, respectively. CONCLUSIONS KA2507 is a potent and selective inhibitor of HDAC6 showing antitumor efficacy and immune modulatory effects in preclinical models. In a phase I study, KA2507 showed selective target engagement, no significant toxicities, and prolonged disease stabilization in a subset of patients. Further clinical studies of KA2507 are warranted, as a single agent or, preferably, combined with other immuno-oncology drugs.
Collapse
Affiliation(s)
| | - Philip A Beer
- Karus Therapeutics LTD, Oxfordshire, England, United Kingdom.
| | | | - Cara Haymaker
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Henry H Vo
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simin Kiany
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - James Dow
- Karus Therapeutics LTD, Oxfordshire, England, United Kingdom
| | - Kemal Haque
- Karus Therapeutics LTD, Oxfordshire, England, United Kingdom
| | - Franck A Silva
- Karus Therapeutics LTD, Oxfordshire, England, United Kingdom
| | - Lucy Coe
- Karus Therapeutics LTD, Oxfordshire, England, United Kingdom
| | - Helen Berryman
- Karus Therapeutics LTD, Oxfordshire, England, United Kingdom
| | | | | | - David Vining
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | |
Collapse
|
74
|
Ramaiah MJ, Tangutur AD, Manyam RR. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci 2021; 277:119504. [PMID: 33872660 DOI: 10.1016/j.lfs.2021.119504] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
The role of genetic and epigenetic factors in tumor initiation and progression is well documented. Histone deacetylases (HDACs), histone methyl transferases (HMTs), and DNA methyl transferases. (DNMTs) are the main proteins that are involved in regulating the chromatin conformation. Among these, histone deacetylases (HDAC) deacetylate the histone and induce gene repression thereby leading to cancer. In contrast, histone acetyl transferases (HATs) that include GCN5, p300/CBP, PCAF, Tip 60 acetylate the histones. HDAC inhibitors are potent drug molecules that can induce acetylation of histones at lysine residues and induce open chromatin conformation at tumor suppressor gene loci and thus resulting in tumor suppression. The key processes regulated by HDAC inhibitors include cell-cycle arrest, chemo-sensitization, apoptosis induction, upregulation of tumor suppressors. Even though FDA approved drugs are confined mainly to haematological malignancies, the research on HDAC inhibitors in glioblastoma multiforme and triple negative breast cancer (TNBC) are providing positive results. Thus, several combinations of HDAC inhibitors along with DNA methyl transferase inhibitors and histone methyl transferase inhibitors are in clinical trials. This review focuses on how HDAC inhibitors regulate the expression of coding and non-coding genes with specific emphasis on their anti-cancer potential.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Laboratory of Functional genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, Telangana, India
| | - Rajasekhar Reddy Manyam
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|
75
|
Yi JZ, McGee JS. Epigenetic-modifying therapies: An emerging avenue for the treatment of inflammatory skin diseases. Exp Dermatol 2021; 30:1167-1176. [PMID: 33752257 DOI: 10.1111/exd.14334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/15/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications include DNA methylation, histone modification and the action of microRNAs. These mechanisms coordinate in complex networks to control gene expression, thereby regulating key physiological processes in the skin and immune system. Recently, researchers have turned to the epigenome to understand the pathogenesis of inflammatory skin diseases. In psoriasis and atopic dermatitis, epigenetic modifications contribute to key pathogenic events such as immune activation, T-cell polarization and keratinocyte dysfunction. These discoveries have introduced new possibilities for the treatment of skin diseases; unlike genetics, epigenetic alterations are readily modifiable and potentially reversible. In this viewpoint essay, we summarize the current state of epigenetic research in inflammatory skin diseases and propose that targeting the histone machinery is a promising avenue for the development of new therapies for psoriasis and atopic dermatitis. Expanding on the progress that has already been made in the field of cancer epigenetics, we discuss existing epigenetic-modifying tools that can be applied to the treatment of inflammatory skin diseases and consider future directions for investigation in order to allow for the widespread clinical application of such therapies.
Collapse
Affiliation(s)
- Julie Z Yi
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jean S McGee
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
76
|
A novel histone deacetylase inhibitor MPT0L184 dysregulates cell-cycle checkpoints and initiates unscheduled mitotic signaling. Biomed Pharmacother 2021; 138:111485. [PMID: 33740521 DOI: 10.1016/j.biopha.2021.111485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/16/2023] Open
Abstract
Aberrant alteration of epigenetic information disturbs chromatin structure and gene function, thereby facilitating cancer development. Several drugs targeting histone deacetylases (HDACs), a group of epigenetic enzymes, have been approved for treating hematologic malignancies in the clinic. However, patients who suffer from solid tumors often respond poorly to these drugs. In this study, we report a selective entinostat derivative, MPT0L184, with potent cancer-killing activity in both cell-based and mouse xenograft models. A time-course analysis of cell-cycle progression revealed that MPT0L184 treatment elicited an early onset of mitosis but prevented the division of cells with duplicated chromosomes. We show that MPT0L184 possessed potent inhibitory activity toward HDAC1 and 2, and its HDAC-inhibitory activity was required for initiating premature mitotic signaling. HDAC inhibition by MPT0L184 reduced WEE1 expression at the transcription level. In addition, MPT0L184 treatment also downregulated ATR-mediated CHK1 phosphorylation independent of HDAC inhibition. Furthermore, gastric cancer cells resistant to HDAC inhibitors were vulnerable to MPT0L184. Taken together, our study discovers MPT0L184 as a novel HDAC inhibitor that can trigger premature mitosis and potentially counteract drug resistance of cancers.
Collapse
|
77
|
Peng Q, Weng K, Li S, Xu R, Wang Y, Wu Y. A Perspective of Epigenetic Regulation in Radiotherapy. Front Cell Dev Biol 2021; 9:624312. [PMID: 33681204 PMCID: PMC7930394 DOI: 10.3389/fcell.2021.624312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Radiation therapy (RT) has been employed as a tumoricidal modality for more than 100 years and on 470,000 patients each year in the United States. The ionizing radiation causes genetic changes and results in cell death. However, since the biological mechanism of radiation remains unclear, there is a pressing need to understand this mechanism to improve the killing effect on tumors and reduce the side effects on normal cells. DNA break and epigenetic remodeling can be induced by radiotherapy. Hence the modulation of histone modification enzymes may tune the radiosensitivity of cancer cells. For instance, histone deacetylase (HDAC) inhibitors sensitize irradiated cancer cells by amplifying the DNA damage signaling and inhibiting double-strand DNA break repair to influence the irradiated cells’ survival. However, the combination of epigenetic drugs and radiotherapy has only been evaluated in several ongoing clinical trials for limited cancer types, partly due to a lack of knowledge on the potential mechanisms on how radiation induces epigenetic regulation and chromatin remodeling. Here, we review recent advances of radiotherapy and radiotherapy-induced epigenetic remodeling and introduce related technologies for epigenetic monitoring. Particularly, we exploit the application of fluorescence resonance energy transfer (FRET) biosensors to visualize dynamic epigenetic regulations in single living cells and tissue upon radiotherapy and drug treatment. We aim to bridge FRET biosensor, epigenetics, and radiotherapy, providing a perspective of using FRET to assess epigenetics and provide guidance for radiotherapy to improve cancer treatment. In the end, we discuss the feasibility of a combination of epigenetic drugs and radiotherapy as new approaches for cancer therapeutics.
Collapse
Affiliation(s)
- Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kegui Weng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States.,Chongqing Cancer Hospital, Chongqing Cancer Institute, Chongqing University Cancer Hospital, Chongqing, China
| | - Shitian Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Richard Xu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Yongzhong Wu
- Chongqing Cancer Hospital, Chongqing Cancer Institute, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
78
|
Xia J, Cao W. Epigenetic modifications of Klotho expression in kidney diseases. J Mol Med (Berl) 2021; 99:581-592. [PMID: 33547909 DOI: 10.1007/s00109-021-02044-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Developments of many renal diseases are substantially influenced by epigenetic modifications of numerous genes, mainly mediated by DNA methylations, histone modifications, and microRNA interference; however, not all gene modifications causally affect the disease onset or progression. Klotho is a critical gene whose repressions in various pathological conditions reportedly involve epigenetic regulatory mechanisms. Klotho is almost unexceptionally repressed early after acute or chronic renal injuries and its levels inversely correlated with the disease progression and severity. Moreover, the strategies of Klotho derepression via epigenetic modulations beneficially change the pathological courses both in vitro and in vivo. Hence, Klotho is not only considered a biomarker of the renal disease but also a potential or even an ideal target of therapeutic epigenetic intervention. Here, we summarize and discuss studies that investigate the Klotho repression and intervention in renal diseases from an epigenetic point of view. These information might shed new sights into the effective therapeutic strategies to prevent and treat various renal disorders.
Collapse
Affiliation(s)
- Jinkun Xia
- Center for Organ Fibrosis and Remodeling Research, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Wangsen Cao
- Center for Organ Fibrosis and Remodeling Research, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
79
|
Xu X, Zhu X, Liu F, Lu W, Wang Y, Yu J. The effects of histone crotonylation and bromodomain protein 4 on prostate cancer cell lines. Transl Androl Urol 2021; 10:900-914. [PMID: 33718091 PMCID: PMC7947446 DOI: 10.21037/tau-21-53] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background The aims of this study were to detect the level of histone crotonylation in prostate cancer (PCa) tissues, analyze the correlations between its level and clinical stage and grade, and explore the effects of bromodomain-containing protein 4 (BRD4) inhibitors and sodium crotonate on the histone crotonylation in PCa cell lines and on the functions of PCa cells. Methods PCa tissues from 72 patients and adjacent tissues from 7 patients were collected, and immunohistochemistry was used to measure the level of histone crotonylation. Three human PCa cell lines, PC-3, LNCaP, and C42B, were selected and treated with IC50 value of I-BET762, I-BET726, and CPI-203, respectively. Next, short hairpin RNA (shRNA) transient knockdown was used to inhibit BRD4 expression. Histone crotonylation level and the expression of acetylase were determined by Western blotting. Finally, cell proliferation, migration, and invasion were measured with Cell Counting Kit-8 assay, scratch test, and Transwell test respectively. Results The level of histone crotonylation in PCa tissue was higher than that in adjacent tissues, and histone lysine crotonylation (Kcr) increased with the increasing malignancy of PCa. Treatments with I-BET762, I-BET726, and CPI-203 could inhibit the proliferation, migration, and invasion of PCa cell lines including PC-3, LNCaP, and C42B, and could also regulate the histone crotonylation and androgen receptor signaling pathways via the regulation of BRD4 expression. Conclusions PCa is closely related to histone crotonylation. Inhibition of BRD4 expression can inhibit the proliferation, migration, and invasion of PCa cells.
Collapse
Affiliation(s)
- Xiaolin Xu
- Department of Urology, The Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xin Zhu
- Department of Urology, The Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Feng Liu
- Department of Urology, The Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Wenlong Lu
- Department of Urology, The Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yihan Wang
- Department of Urology, The Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Jianjun Yu
- Department of Urology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
80
|
Gatti M, Raschi E, Poluzzi E, Martignani C, Salvagni S, Ardizzoni A, Diemberger I. The Complex Management of Atrial Fibrillation and Cancer in the COVID-19 Era: Drug Interactions, Thromboembolic Risk, and Proarrhythmia. Curr Heart Fail Rep 2020; 17:365-383. [PMID: 33025463 PMCID: PMC7537958 DOI: 10.1007/s11897-020-00485-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Cardiotoxicity by anticancer agents has emerged as a multifaceted issue and is expected to affect both mortality and morbidity. This review summarizes clinical challenges in the management of oncological patients requiring anticoagulants for atrial fibrillation (AF) also considering the current outbreak of the COVID-19 (coronavirus disease 2019) pandemic, since this infection can add challenges to the management of both conditions. Specifically, the aims are manyfold: (1) describe the evolving use of direct oral anticoagulants (DOACs) in AF patients with cancer; (2) critically appraise the risk of clinically important drug-drug interactions (DDIs) between DOACs and oral targeted anticancer agents; (3) address expected DDIs between DOACs and candidate anti-COVID drugs, with implications on management of the underlying thrombotic risk; and (4) characterize the proarrhythmic liability in cardio-oncology in the setting of COVID-19, focusing on QT prolongation. RECENT FINDINGS AF in cardio-oncology poses diagnostic and management challenges, also due to the number of anticancer drugs recently associated with AF onset/worsening. Oral targeted drugs can potentially interact with DOACs, with increased bleeding risk mainly due to pharmacokinetic DDIs. Moreover, the vast majority of oral anticancer agents cause QT prolongation with direct and indirect mechanisms, potentially resulting in the occurrence of torsade de pointes, especially in susceptible patients with COVID-19 receiving additional drugs with QT liability. Oncologists and cardiologists must be aware of the increased bleeding risk and arrhythmic susceptibility of patients with AF and cancer due to DDIs. High-risk individuals with COVID-19 should be prioritized to target preventive strategies, including optimal antithrombotic management, medication review, and stringent monitoring.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Emanuel Raschi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elisabetta Poluzzi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Cristian Martignani
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | - Andrea Ardizzoni
- Medical Oncology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Igor Diemberger
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| |
Collapse
|
81
|
Wang X, Wang Z, Wang Z, Chen X, Yin H, Jiang L, Cao J, Liu Y. Inhibition of human UDP-glucuronosyltransferase enzyme by belinostat: Implications for drug-drug interactions. Toxicol Lett 2020; 338:51-57. [PMID: 33290829 DOI: 10.1016/j.toxlet.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/08/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022]
Abstract
Belinostat is a pan-histone deacetylase (HDAC) inhibitor which recently approved for the treatment of relapsed/refractory Peripheral T-cell lymphomas (PTCL). To assess drug-drug interactions (DDIs) potential of belinostat via inhibition of UDP-glucuronosyltransferases (UGTs), the effects of belinostat on UGTs activities were investigated using the non-selective probe substrate 4-methylumbelliferone (4-MU) and trifluoperazine (TFP) by UPLC-MS/MS. Belinostat exhibited a wide range of inhibition against UGTs activities, particularly a potent non-competitive inhibition against UGT1A3, and weak inhibition against UGT1A1, 1A7, 1A8, 2B4 and 2B7. Further, in vitro-in vivo extrapolation (IVIVE) approaches were used to predict the risk of DDI arising from inhibition of UGTs. Our data indicate that the intravenous infusion of belinostat at clinical available dose can contribute a significant increase to the AUC of co-administrated drugs primarily cleared by UGT1A3 or UGT1A1, which will result in potential DDIs. In contrast, oral administrated belinostat is unlikely to cause significant DDIs through inhibition of glucuronidation.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Zhe Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Zhen Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Xiuyuan Chen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Hang Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Lili Jiang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, 116044, China.
| | - Yong Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
82
|
HDAC inhibition ameliorates cone survival in retinitis pigmentosa mice. Cell Death Differ 2020; 28:1317-1332. [PMID: 33159184 PMCID: PMC8026998 DOI: 10.1038/s41418-020-00653-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
Cone photoreceptor cell death in inherited retinal diseases, such as Retinitis Pigmentosa (RP), leads to the loss of high acuity and color vision and, ultimately to blindness. In RP, a vast number of mutations perturb the structure and function of rod photoreceptors, while cones remain initially unaffected. Extensive rod loss in advanced stages of the disease triggers cone death by a mechanism that is still largely unknown. Here, we show that secondary cone cell death in animal models for RP is associated with increased activity of histone deacetylates (HDACs). A single intravitreal injection of an HDAC inhibitor at late stages of the disease, when the majority of rods have already degenerated, was sufficient to delay cone death and support long-term cone survival in two mouse models for RP, affected by mutations in the phosphodiesterase 6b gene. Moreover, the surviving cones remained light-sensitive, leading to an improvement in visual function. RNA-seq analysis of protected cones demonstrated that HDAC inhibition initiated multi-level protection via regulation of different pro-survival pathways, including MAPK, PI3K-Akt, and autophagy. This study suggests a unique opportunity for targeted pharmacological protection of secondary dying cones by HDAC inhibition and creates hope to maintain vision in RP patients even in advanced disease stages.
Collapse
|
83
|
Claveria-Cabello A, Colyn L, Arechederra M, Urman JM, Berasain C, Avila MA, Fernandez-Barrena MG. Epigenetics in Liver Fibrosis: Could HDACs be a Therapeutic Target? Cells 2020; 9:cells9102321. [PMID: 33086678 PMCID: PMC7589994 DOI: 10.3390/cells9102321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic liver diseases (CLD) represent a worldwide health problem. While CLDs may have diverse etiologies, a common pathogenic denominator is the presence of liver fibrosis. Cirrhosis, the end-stage of CLD, is characterized by extensive fibrosis and is markedly associated with the development of hepatocellular carcinoma. The most important event in hepatic fibrogenesis is the activation of hepatic stellate cells (HSC) following liver injury. Activated HSCs acquire a myofibroblast-like phenotype becoming proliferative, fibrogenic, and contractile cells. While transient activation of HSCs is part of the physiological mechanisms of tissue repair, protracted activation of a wound healing reaction leads to organ fibrosis. The phenotypic changes of activated HSCs involve epigenetic mechanisms mediated by non-coding RNAs (ncRNA) as well as by changes in DNA methylation and histone modifications. During CLD these epigenetic mechanisms become deregulated, with alterations in the expression and activity of epigenetic modulators. Here we provide an overview of the epigenetic alterations involved in fibrogenic HSCs transdifferentiation with particular focus on histones acetylation changes. We also discuss recent studies supporting the promising therapeutic potential of histone deacetylase inhibitors in liver fibrosis.
Collapse
Affiliation(s)
- Alex Claveria-Cabello
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
| | - Leticia Colyn
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
| | - Maria Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
| | - Jesus M. Urman
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
| | - Matias A. Avila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Correspondence: (M.A.A.); (M.G.F.-B.); Tel.: +34-94-819-4700 (M.A.A.); +34-94-819-4700 (M.G.F.-B.)
| | - Maite G. Fernandez-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (A.C.-C.); (L.C.); (M.A.); (C.B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Correspondence: (M.A.A.); (M.G.F.-B.); Tel.: +34-94-819-4700 (M.A.A.); +34-94-819-4700 (M.G.F.-B.)
| |
Collapse
|
84
|
Chen F, Gao Q, Wei A, Chen X, Shi Y, Wang H, Cao W. Histone deacetylase 3 aberration inhibits Klotho transcription and promotes renal fibrosis. Cell Death Differ 2020; 28:1001-1012. [PMID: 33024274 DOI: 10.1038/s41418-020-00631-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023] Open
Abstract
Development of renal fibrosis is a hallmark of renal aging and chronic kidney disease of all etiologies and characterized by extensive renal cell injuries and subsequent myofibroblast transdifferentiations (MTDs), which are significantly influenced by aberrant histone deacetylase (HDAC) activities. However, the key HDAC isoforms and effectors that are causally involved in the processes remain poorly understood. Here, we report that aberrant HDAC3 induction and its inhibition of Klotho, a renal epithelium-enriched aging suppressor, contribute significantly to renal fibrogenesis. HDAC3 was preferentially elevated with concomitant Klotho suppression in fibrotic kidneys incurred by unilateral ureter obstruction (UUO) and aristolochic acid nephropathy (AAN), whereas Hdac3 knockout resisted the fibrotic pathologies. The HDAC3 elevation is substantially blocked by the inhibitors of TGFβ receptor and Smad3 phosphorylation, suggesting that TGFβ/Smad signal activates Hdac3 transcription. Consistently, an HDAC3-selective inhibitor RGFP966 derepressed Klotho and mitigated the renal fibrotic injuries in both UUO and AAN mice. Further, HDAC3 overexpression or inhibition in renal epithelia inversely affected Klotho abundances and HDAC3 was inducibly associated with transcription regulators NCoR and NF-kB and bound to Klotho promoter in fibrotic kidney, supporting that aberrant HDAC3 targets and transcriptionally inhibits Klotho under renal fibrotic conditions. More importantly, the antirenal fibrosis effects of RGFP966 were largely compromised in mice with siRNA-mediated Klotho knockdown. Hence, HDAC3 aberration and the subsequent Klotho suppression constitute an important regulatory loop that promotes MTD and renal fibrosis and uses of HDAC3-selective inhibitors are potentially effective in treating renal fibrotic disorders.
Collapse
Affiliation(s)
- Fang Chen
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Qi Gao
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Ai Wei
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Xingren Chen
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Yujun Shi
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Hongwei Wang
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China. .,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.
| | - Wangsen Cao
- Center of Organ Fibrosis and Remodeling, Jiangsu Key Lab of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
85
|
A novel selective histone deacetylase I inhibitor CC-4a activates latent HIV-1 through NF-κB pathway. Life Sci 2020; 267:118427. [PMID: 32941894 DOI: 10.1016/j.lfs.2020.118427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 11/23/2022]
Abstract
AIMS The fact that HIV-1 inside human bodies can perform reverse transcription and integrate resultant DNA into host chromosome remains a challenge in AIDS treatment. "Shock and kill" strategy was proposed to achieve the functional cure, which requested latency reactivating agents (LRAs) to reactivate latent HIV-1 and then extirpate viruses and infected cells with antiviral agents and the immune system. However, there are no feasible LRAs clinically applied. Herein, we examined a synthesized HDAC I inhibitor, CC-4a, in reactivating latent HIV-1 and investigated its mechanisms. MATERIALS AND METHODS Two HIV-1 infected cell models and human PBMCs were used in this study. Flow cytometry, ELISA, luciferase, and RT-PCR assay were used to analyze the expression of viral protein and mRNA. The mechanisms were explored by using cytoplasmic nuclear protein isolation and western blotting assays. KEY FINDINGS CC-4a could successfully reactivate latent HIV-1 at the protein and gene levels with low cytotoxicity. Intriguingly, CC-4a showed the ability to induce apoptosis in HIV-1 infected cell models. CC-4a exerted a synergistic activation effect with prostratin without triggering global T cell activation and inflammatory factor storm. It was further found that CC-4a down-regulated the expressions of CCR5 and CD4. Moreover, CC-4a together with antiviral drugs was proved to antagonize HIV-1 without mutual interference. Finally, the enhanced histone acetylation and activated NF-κB pathway were detected in CC-4a mechanisms. SIGNIFICANCE The results suggested that CC-4a activated latent HIV-1 and showed promising clinical applications, demonstrating that CC-4a played a role in HIV-1 eradication in "shock and kill" strategy.
Collapse
|
86
|
Abstract
It is now 30 years since the first report of a potent zinc-dependent histone deacetylase (HDAC) inhibitor appeared. Since then, five HDAC inhibitors have received regulatory approval for cancer chemotherapy while many others are in clinical development for oncology as well as other therapeutic indications. This Perspective reviews the biological and medicinal chemistry advances over the past 3 decades with an emphasis on the design of selective inhibitors that discriminate between the 11 human HDAC isoforms.
Collapse
Affiliation(s)
- Terence C S Ho
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Alex H Y Chan
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - A Ganesan
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
87
|
Zhang W, Niu J, Ma Y, Yang X, Cao H, Guo H, Bao F, Haw A, Chen Y, Sun K. The Synergistic Antitumor Activity of Chidamide in Combination with Bortezomib on Gastric Cancer. Onco Targets Ther 2020; 13:3823-3837. [PMID: 32440150 PMCID: PMC7213427 DOI: 10.2147/ott.s240721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/25/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose The aim of this study was to investigate the antitumor effect of chidamide in combination with bortezomib on gastric cancer cell lines. Materials and Methods First, the sensitivity and IC50 values of chidamide and bortezomib in several gastric cancer cell lines (MGC-803, BGC-823, SGC-7901, and MKN45) were measured using the CCK-8 assay. Then, the relatively insensitive gastric cancer cell lines (MGC-803 and BGC-823) were treated with low concentrations of chidamide alone, bortezomib alone, or chidamide and bortezomib combination to detect the effects on cell proliferation, apoptosis, migration, and invasion. Finally, the inhibitory effect of the combined chidamide and bortezomib treatment on MGC-803 cells was verified in vivo through tumor formation experiments in nude mice. Results Compared with low-dose chidamide or bortezomib alone, the low-dose drug combination significantly inhibited the proliferation, migration, and invasion of MGC-803 and BGC-823 cells and induced apoptosis of the cells. The effects of the low-dose chidamide and bortezomib combination reduced the growth on gastric cancer in vivo were investigated by using a subcutaneous tumor mouse model. Conclusion Our results suggest that the combination of chidamide and bortezomib can significantly reduce the proliferation, invasion, and migration of MGC-803 and BGC-823 cells, providing a framework for the clinical evaluation of combined therapies for gastric cancers.
Collapse
Affiliation(s)
- Wanjun Zhang
- Department of Hematology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| | - Junwei Niu
- Department of Hematology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| | - Yongcheng Ma
- Clinical Pharmacology Laboratory, Henan Provincial People's Hospital; Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, People's Republic of China
| | - Xiawan Yang
- Department of Hematology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| | - Huixia Cao
- Department of Nephrology, Henan Key Library for Kidney Disease and Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Honggang Guo
- Department of Hematology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| | - Fengchang Bao
- Department of Hematology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| | - Ahmed Haw
- Department of Hematology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| | - Yuqing Chen
- Department of Hematology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| | - Kai Sun
- Department of Hematology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| |
Collapse
|
88
|
Thakur A, Tawa GJ, Henderson MJ, Danchik C, Liu S, Shah P, Wang AQ, Dunn G, Kabir M, Padilha EC, Xu X, Simeonov A, Kharbanda S, Stone R, Grewal G. Design, Synthesis, and Biological Evaluation of Quinazolin-4-one-Based Hydroxamic Acids as Dual PI3K/HDAC Inhibitors. J Med Chem 2020; 63:4256-4292. [PMID: 32212730 DOI: 10.1021/acs.jmedchem.0c00193] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of quinazolin-4-one based hydroxamic acids was rationally designed and synthesized as novel dual PI3K/HDAC inhibitors by incorporating an HDAC pharmacophore into a PI3K inhibitor (Idelalisib) via an optimized linker. Several of these dual inhibitors were highly potent (IC50 < 10 nM) and selective against PI3Kγ, δ and HDAC6 enzymes and exhibited good antiproliferative activity against multiple cancer cell lines. The lead compound 48c, induced necrosis in several mutant and FLT3-resistant AML cell lines and primary blasts from AML patients, while showing no cytotoxicity against normal PBMCs, NIH3T3, and HEK293 cells. Target engagement of PI3Kδ and HDAC6 by 48c was demonstrated in MV411 cells using the cellular thermal shift assay (CETSA). Compound 48c showed good pharmacokinetics properties in mice via intraperitoneal (ip) administration and provides a means to examine the biological effects of inhibiting these two important enzymes with a single molecule, either in vitro or in vivo.
Collapse
Affiliation(s)
- Ashish Thakur
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Gregory J Tawa
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Carina Danchik
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Suiyang Liu
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Amy Q Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Garrett Dunn
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Md Kabir
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Elias C Padilha
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Surender Kharbanda
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Richard Stone
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Gurmit Grewal
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
89
|
Liu TZ, Zheng YJ, Zhang ZW, Li SS, Chen JT, Peng AH, Huang RW. Chidamide based combination regimen for treatment of monomorphic epitheliotropic intestinal T cell lymphoma following radical operation: Two case reports. World J Clin Cases 2020; 8:1278-1286. [PMID: 32337203 PMCID: PMC7176621 DOI: 10.12998/wjcc.v8.i7.1278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Monomorphic epitheliotropic intestinal T cell lymphoma (MEITL) is a rare extra-nodal T-cell lymphoma that has uniformly aggressive features with a poor prognosis. No standardized treatment protocols have been established. Previous experience has demonstrated favorable outcomes with combination chemotherapy followed by autologous hematopoietic stem cell transplant. However, many patients are unable to tolerate the toxicities. Chidamide is a new histone deacetylase inhibitor that has shown preferential efficacy in mature T-cell lymphoma.
CASE SUMMARY We herein present two cases of MEITL who were both intermediate risk according to enteropathy-associated T cell lymphoma prognostic index. Case one was a 61-year-old man. He complained of upper abdominal pain and intermittent black stool for 2 mo. Imaging examination revealed that the intestinal wall was thickened. He received a partial excision of the small intestine. A chidamide-based combination regimen was given postoperatively. Eleven months later, he presented with recurrence in the bilateral lungs. He passed away 15 mo after his diagnosis. Case two was a 35-year-old woman who complained of abdominal distention for 1 mo. Positron emission tomography/computed tomography demonstrated wall thickening of the small intestine and upper sigmoid colon. Colon perforation and septic shock occurred on the fourth day of her admission. She was treated by sigmoid colostomy. Chidamide-based combination therapy was then provided. She was recurrence-free for 6 mo until lesions were found in the bilateral brain and lived for 17 mo since her diagnosis. Compared to historical data, chidamide seems to improve the prognosis of MEITL slightly.
CONCLUSION MEITL is a type of aggressive lymphoma. Chidamide is a new promising approach for the treatment of MEITL.
Collapse
Affiliation(s)
- Ting-Zhi Liu
- Department of Hematology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, Guangdong Province, China
| | - Yi-Jia Zheng
- Department of Hematology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, Guangdong Province, China
| | - Zhan-Wen Zhang
- Department of Nuclear Medicine, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, Guangdong Province, China
| | - Shan-Shan Li
- Department of Oncology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, Guangdong Province, China
| | - Jiao-Ting Chen
- Department of Hematology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, Guangdong Province, China
| | - Ai-Hua Peng
- Department of Hematology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, Guangdong Province, China
| | - Ren-Wei Huang
- Department of Hematology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, Guangdong Province, China
| |
Collapse
|
90
|
Tischkowitz M, Huang S, Banerjee S, Hague J, Hendricks WPD, Huntsman DG, Lang JD, Orlando KA, Oza AM, Pautier P, Ray-Coquard I, Trent JM, Witcher M, Witkowski L, McCluggage WG, Levine DA, Foulkes WD, Weissman BE. Small-Cell Carcinoma of the Ovary, Hypercalcemic Type-Genetics, New Treatment Targets, and Current Management Guidelines. Clin Cancer Res 2020; 26:3908-3917. [PMID: 32156746 DOI: 10.1158/1078-0432.ccr-19-3797] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/04/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022]
Abstract
Small-cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and highly aggressive ovarian malignancy. In almost all cases, it is associated with somatic and often germline pathogenic variants in SMARCA4, which encodes for the SMARCA4 protein (BRG1), a subunit of the SWI/SNF chromatin remodeling complex. Approximately 20% of human cancers possess pathogenic variants in at least one SWI/SNF subunit. Because of their role in regulating many important cellular processes including transcriptional control, DNA repair, differentiation, cell division, and DNA replication, SWI/SNF complexes with mutant subunits are thought to contribute to cancer initiation and progression. Fewer than 500 cases of SCCOHT have been reported in the literature and approximately 60% are associated with hypercalcemia. SCCOHT primarily affects females under 40 years of age who usually present with symptoms related to a pelvic mass. SCCOHT is an aggressive cancer, with long-term survival rates of 30% in early-stage cases. Although various treatment approaches have been proposed, there is no consensus on surveillance and therapeutic strategy. An international group of multidisciplinary clinicians and researchers recently formed the International SCCOHT Consortium to evaluate current knowledge and propose consensus surveillance and therapeutic recommendations, with the aim of improving outcomes. Here, we present an overview of the genetics of this cancer, provide updates on new treatment targets, and propose management guidelines for this challenging cancer.
Collapse
Affiliation(s)
- Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom. .,East Anglian Medical Genetics Unit, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Susana Banerjee
- The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | - Jennifer Hague
- East Anglian Medical Genetics Unit, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - William P D Hendricks
- Translational Genomics Research Institute, Division of Integrated Cancer Genomics, Phoenix, Arizona
| | | | - Jessica D Lang
- Translational Genomics Research Institute, Division of Integrated Cancer Genomics, Phoenix, Arizona
| | - Krystal A Orlando
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Amit M Oza
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | | | - Isabelle Ray-Coquard
- Centre Anti cancereux Léon Bérard, & University Claude Bernard Lyon, GINECO Group, Lyon, France
| | - Jeffrey M Trent
- Translational Genomics Research Institute, Division of Integrated Cancer Genomics, Phoenix, Arizona
| | - Michael Witcher
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada
| | - Leora Witkowski
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Douglas A Levine
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - William D Foulkes
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Medical Genetics, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Department of Medical Genetics and Cancer Research Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
91
|
Xie Z, Ikegami T, Ago Y, Okada N, Tachibana M. Valproic acid attenuates CCR2-dependent tumor infiltration of monocytic myeloid-derived suppressor cells, limiting tumor progression. Oncoimmunology 2020; 9:1734268. [PMID: 32158627 PMCID: PMC7051186 DOI: 10.1080/2162402x.2020.1734268] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immunosuppressive cells that promote tumor progression by inhibiting anti-tumor immunity and may be the cause of patient resistance to immune checkpoint inhibitors (ICIs). Therefore, MDSCs are a promising target for cancer immunotherapy, especially in combination with ICIs. Previous studies have shown that the anticonvulsant drug valproic acid (VPA) has additional anti-cancer and immunoregulatory activities due to its inhibition of histone deacetylases. We have previously shown that VPA can attenuate the immunosuppressive function of differentiated MDSCs in vitro. In the present study, we utilized anti-PD-1-sensitive EL4 and anti-PD-1-resistant B16-F10 tumor-bearing mouse models and investigated the effects of VPA on MDSCs with the aim of enhancing the anti-cancer activity of an anti-PD-1 antibody. We showed that VPA could inhibit EL4 and B16-F10 tumor progression, which was dependent on the immune system. We further demonstrated that VPA down-regulated the expression of CCR2 on monocytic (M)-MDSCs, leading to the reduced infiltration of M-MDSCs into tumors. Importantly, we demonstrated that VPA could relieve the immunosuppressive action of MDSCs on CD8+ T-cell and NK cell proliferation and enhance their activation in tumors. We also observed that the combination of VPA plus an anti-PD-1 antibody was more effective than either agent alone in both the EL4 and B16-F10 tumor models. These results suggest that VPA can effectively relieve the immunosuppressive tumor microenvironment by reducing tumor infiltration of M-MDSCs, resulting in tumor regression. Our findings also show that VPA in combination with an immunotherapeutic agent could be a potential new anti-cancer therapy.
Collapse
Affiliation(s)
- Zhiqi Xie
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tamami Ikegami
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yukio Ago
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Naoki Okada
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masashi Tachibana
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| |
Collapse
|
92
|
Riesgo de infección asociada a nuevas terapias para el tratamiento de los síndromes linfoproliferativos. Med Clin (Barc) 2020; 154:101-107. [DOI: 10.1016/j.medcli.2019.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022]
|
93
|
Zang H, Qian G, Zong D, Fan S, Owonikoko TK, Ramalingam SS, Sun SY. Overcoming acquired resistance of epidermal growth factor receptor-mutant non-small cell lung cancer cells to osimertinib by combining osimertinib with the histone deacetylase inhibitor panobinostat (LBH589). Cancer 2020; 126:2024-2033. [PMID: 31999837 DOI: 10.1002/cncr.32744] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/09/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The major clinical obstacle that limits the long-term benefits of treatment with osimertinib (AZD9291) in patients with epidermal growth factor receptor-mutant non-small cell lung cancer is the development of acquired resistance. Therefore, effective strategies that can overcome acquired resistance to osimertinib are urgently needed. The authors' current efforts in this direction have identified LBH589 (panobinostat), a clinically used histone deacetylase inhibitor, as a potential agent in overcoming osimertinib resistance. METHODS Cell growth and apoptosis in vitro were evaluated by measuring cell numbers and colony formation and by detecting annexin V-positive cells and protein cleavage, respectively. Drug effects on tumor growth in vivo were assessed with xenografts in nude mice. Alterations of tested proteins in cells were monitored with Western blot analysis. Gene knockout was achieved using the CRISPR/Cas9 technique. RESULTS The combination of LBH589 and osimertinib synergistically decreased the survival of different osimertinib-resistant cell lines, including those harboring C797S mutations, with greater inhibition of cell colony formation and growth. The combination enhanced the induction of apoptosis in osimertinib-resistant cells. Importantly, the combination effectively inhibited the growth of osimertinib-resistant xenograft tumors in nude mice. Mechanistically, the combination of LBH589 and osimertinib enhanced the elevation of Bim in osimertinib-resistant cells. Knockout of Bim in osimertinib-resistant cells substantially attenuated or abolished apoptosis enhanced by the LBH589 and osimertinib combination. These results collectively support a critical role of Bim elevation in the induction of apoptosis of osimertinib-resistant cells for this combination. CONCLUSIONS The current findings provide strong preclinical evidence in support of the potential for LBH589 to overcome osimertinib resistance in the clinic.
Collapse
Affiliation(s)
- Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Guoqing Qian
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Dan Zong
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| |
Collapse
|
94
|
Novel HDAC inhibitor Chidamide synergizes with Rituximab to inhibit diffuse large B-cell lymphoma tumour growth by upregulating CD20. Cell Death Dis 2020; 11:20. [PMID: 31907371 PMCID: PMC6944697 DOI: 10.1038/s41419-019-2210-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022]
Abstract
Loss of CD20 is a major obstacle for the retreatment of relapsed/refractory diffuse large B cell lymphoma (DLBCL) with Rituximab-associated regimens. Histone deacetylation causes gene silencing and inhibits CD20 expression. Chidamide is a novel inhibitor for histone deacetylases (HDACs). We hypothesize that Chidamide could overcome Rituximab-mediated down-regulation of CD20 and facilitate Rituximab-induced killing. In this study, we determine the mechanism of synergy of Chidamide with Rituximab in DLBCL using in vitro and in vivo models. We found that the levels of CD20 protein surface expression on five DLBCL cell lines were significantly and positively correlated with the sensitivities of cells to Rituximab. Treatment with Rituximab significantly reduced CD20 surface expression at the protein levels. RNA sequencing showed that Chidamide significantly increased expression of more than 2000 transcriptomes in DLBCL cells, around 1000 transcriptomes belong to the cell membrane and cell periphery pathways, including MS4A1. Chidamide significantly increased CD20 surface expression in DLBCL cell lines. Combination with Chidamide significantly synergized Rituximab-induced cell death in vitro and significantly inhibited tumour growth in DLBCL-bearing xenograft mice. A patient with relapsed/refractory DLBCL achieved a complete response after three cycles combined treatment with Chidamide and Rituximab. In conclusion, our data demonstrate for the first time that inhibition of HDACs by Chidamide significantly enhanced Rituximab-induced tumour growth inhibition in vitro and in vivo. We propose that CD20 surface expression should be used clinically to evaluate treatment response in patients with DLBCL. Chidamide is a promising sensitizer for the retreatment of DLBCL with Rituximab.
Collapse
|
95
|
Targeting the Cancer Epigenome with Histone Deacetylase Inhibitors in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:55-75. [PMID: 32767234 DOI: 10.1007/978-3-030-43085-6_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epigenetic deregulation is an emerging hallmark of cancer that enables tumor cells to escape surveillance by tumor suppressors and ultimately progress. The structure of the epigenome consists of covalent modifications of chromatin components, including acetylation by histone acetyltransferases (HATs) and deacetylation by histone deacetylases (HDACs). Targeting these enzymes with inhibitors to restore epigenetic homeostasis has been explored for many cancers. Osteosarcoma, an aggressive bone malignancy that primarily affects children and young adults, is notable for widespread genetic and epigenetic instability. This may explain why therapy directed at unique molecular pathways has failed to substantially improve outcomes in osteosarcoma over the past four decades. In this review, we discuss the potential of targeting the cancer epigenome, with a focus on histone deacetylase inhibitors (HDACi) for osteosarcoma. We additionally highlight the safety and tolerance of HDACi, combination chemotherapy with HDACi, and the ongoing challenges in the development of these agents.
Collapse
|
96
|
Vergani B, Sandrone G, Marchini M, Ripamonti C, Cellupica E, Galbiati E, Caprini G, Pavich G, Porro G, Rocchio I, Lattanzio M, Pezzuto M, Skorupska M, Cordella P, Pagani P, Pozzi P, Pomarico R, Modena D, Leoni F, Perego R, Fossati G, Steinkühler C, Stevenazzi A. Novel Benzohydroxamate-Based Potent and Selective Histone Deacetylase 6 (HDAC6) Inhibitors Bearing a Pentaheterocyclic Scaffold: Design, Synthesis, and Biological Evaluation. J Med Chem 2019; 62:10711-10739. [DOI: 10.1021/acs.jmedchem.9b01194] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Barbara Vergani
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Giovanni Sandrone
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Mattia Marchini
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Chiara Ripamonti
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Edoardo Cellupica
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Elisabetta Galbiati
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Gianluca Caprini
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Gianfranco Pavich
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Giulia Porro
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Ilaria Rocchio
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Maria Lattanzio
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Marcello Pezzuto
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Malgorzata Skorupska
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Paola Cordella
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Paolo Pagani
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Pietro Pozzi
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Roberta Pomarico
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Daniela Modena
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Flavio Leoni
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Raffaella Perego
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Gianluca Fossati
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Christian Steinkühler
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| | - Andrea Stevenazzi
- Preclinical R&D, Italfarmaco Group, Via dei Lavoratori 54, I-20092 Cinisello Balsamo, Milan, Italy
| |
Collapse
|
97
|
Wawruszak A, Gumbarewicz E, Okon E, Jeleniewicz W, Czapinski J, Halasa M, Okla K, Smok-Kalwat J, Bocian A, Rivero-Muller A, Stepulak A. Histone deacetylase inhibitors reinforce the phenotypical markers of breast epithelial or mesenchymal cancer cells but inhibit their migratory properties. Cancer Manag Res 2019; 11:8345-8358. [PMID: 31571991 PMCID: PMC6750858 DOI: 10.2147/cmar.s210029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction Histone deacetylase inhibitors (HDIs) are a group of compounds that exhibit anticancer activity, but their significance and usefulness in breast cancer (BC) treatment are still controversial. The ability of cancer cells to invade and migrate is augmented by the acquisition of a mesenchymal phenotype – a process known as epithelial-to-mesenchymal transition (EMT). Changes in the expression level of different cadherins, so-called cadherin switches, have been used to monitor the EMT process in development and tumor progression, in particular migration and invasion potential. The aim of this study was to analyze the influence of two HDIs – valproic acid (VPA) and vorinostat (SAHA) – on the migration potential of different BC cell types, as well as on EMT, or its reverse process – mesenchymal-to-epithelial transition, progression by means of shift in epithelial and mesenchymal marker expression. Methods HDI treatment-induced expression of E- and N-cadherin at the mRNA and protein levels was evaluated by qPCR, Western blotting and immunostaining methods, respectively. BC cell proliferation and migration were assessed by BrdU, xCELLigence system and wound-healing assay. Results VPA and SAHA inhibited the proliferation and migration in a dose- and time-dependent manner, regardless of the BC cell type. Unawares, BC cells having a more mesenchymal phenotype (MDA-MB-468) were found to overexpress N-cadherin, whereas BC lines having an epithelial phenotype (T47D, MCF7) responded to HDI treatment by a significant increase of E-cadherin expression. Discussion We suggest that HDAC inhibition results in a more relaxed chromatin concomitant to an increase in the expression of already expressing genes. Conclusion By using multiple cancer cell lines, we conclude that HDI induction or reversal of EMT is not a universal mechanism, yet inhibition of cell migration is, and thus EMT should not be considered as the only measurement for tumor aggressiveness.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Ewelina Gumbarewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Witold Jeleniewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Jakub Czapinski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.,School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marta Halasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Karolina Okla
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland.,Tumor Immunology Laboratory, Medical University of Lublin, Lublin, Poland
| | | | - Artur Bocian
- Department of Oncological Surgery, Holy Cross Cancer Centre, Kielce, Poland
| | - Adolfo Rivero-Muller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.,Faculty of Science and Engineering, Cell Biology, Abo Akademi University, Turku, Finland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
98
|
Bandolik JJ, Hamacher A, Schrenk C, Weishaupt R, Kassack MU. Class I-Histone Deacetylase (HDAC) Inhibition is Superior to pan-HDAC Inhibition in Modulating Cisplatin Potency in High Grade Serous Ovarian Cancer Cell Lines. Int J Mol Sci 2019; 20:ijms20123052. [PMID: 31234549 PMCID: PMC6627993 DOI: 10.3390/ijms20123052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/23/2023] Open
Abstract
High grade serous ovarian cancer (HGSOC) is the most common and aggressive ovarian cancer subtype with the worst clinical outcome due to intrinsic or acquired drug resistance. Standard treatment involves platinum compounds. Cancer development and chemoresistance is often associated with an increase in histone deacetylase (HDAC) activity. The purpose of this study was to examine the potential of HDAC inhibitors (HDACi) to increase platinum potency in HGSOC. Four HGSOC cell lines with different cisplatin sensitivity were treated with combinations of cisplatin and entinostat (class I HDACi), panobinostat (pan-HDACi), or nexturastat A (class IIb HDACi), respectively. Inhibition of class I HDACs by entinostat turned out superior in increasing cisplatin potency than pan-HDAC inhibition in cell viability assays (MTT), apoptosis induction (subG1), and caspase 3/7 activation. Entinostat was synergistic with cisplatin in all cell lines in MTT and caspase activation assays. MTT assays gave combination indices (CI values) < 0.9 indicating synergism. The effect of HDAC inhibitors could be attributed to the upregulation of pro-apoptotic genes (CDNK1A, APAF1, PUMA, BAK1) and downregulation of survivin. In conclusion, the combination of entinostat and cisplatin is synergistic in HGSOC and could be an effective strategy for the treatment of aggressive ovarian cancer.
Collapse
Affiliation(s)
- Jan J Bandolik
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany.
| | - Alexandra Hamacher
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany.
| | - Christian Schrenk
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany.
| | - Robin Weishaupt
- Institute for Computer Science, Computational Complexity and Cryptology, University of Duesseldorf, 40225 Duesseldorf, Germany.
| | - Matthias U Kassack
- Institute for Pharmaceutical and Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany.
| |
Collapse
|
99
|
Zhang B, Liu B, Chen D, Setroikromo R, Haisma HJ, Quax WJ. Histone Deacetylase Inhibitors Sensitize TRAIL-Induced Apoptosis in Colon Cancer Cells. Cancers (Basel) 2019; 11:cancers11050645. [PMID: 31083396 PMCID: PMC6562715 DOI: 10.3390/cancers11050645] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 01/04/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered as a promising anti-cancer therapeutic. However, many cancers have been found to be or to become inherently resistant to TRAIL. A combination of epigenetic modifiers, such as histone deacetylase inhibitors (HDACi's), with TRAIL was effective to overcome TRAIL resistance in some cancers. Broad spectrum HDACi's, however, show considerable toxicity constraining clinical use. Since overexpression of class I histone deacetylase (HDAC) has been found in colon tumors relative to normal mucosa, we have focused on small spectrum HDACi's. We have now tested agonistic receptor-specific TRAIL variants rhTRAIL 4C7 and DHER in combination with several class I specific HDACi's on TRAIL-resistant colon cancer cells DLD-1 and WiDr. Our data show that TRAIL-mediated apoptosis is largely improved in WiDr cells by pre-incubation with Entinostat-a HDAC1, 2, and 3 inhibitor- and in DLD-1 cells by RGFP966-a HDAC3-specific inhibitor- or PCI34051-a HDAC8-specific inhibitor. We are the first to report that using RGFP966 or PCI34051 in combination with rhTRAIL 4C7 or DHER represents an effective cancer therapy. The intricate relation of HDACs and TRAIL-induced apoptosis was confirmed in cells by knockdown of HDAC1, 2, or 3 gene expression, which showed more early apoptotic cells upon adding rhTRAIL 4C7 or DHER. We observed that RGFP966 and PCI34051 increased DR4 expression after incubation on DLD-1 cells, while RGFP966 induced more DR5 expression on WiDr cells, indicating a different role for DR4 or DR5 in these combinations. At last, we show that combined treatment of RGFP966 with TRAIL variants (rhTRAIL 4C7/DHER) increases apoptosis on 3D tumor spheroid models.
Collapse
Affiliation(s)
- Baojie Zhang
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Deng Chen
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
100
|
Affiliation(s)
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| |
Collapse
|