51
|
Huang D, Qi H, Yang H, Chen M. Plasma exosomal microRNAs are non-invasive biomarkers of moyamoya disease: A pilot study. Clinics (Sao Paulo) 2023; 78:100247. [PMID: 37413774 DOI: 10.1016/j.clinsp.2023.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND As a progressive cerebrovascular disease, Moyamoya Disease (MMD) is a common cause of stroke in children and adults. However, the early biomarkers and pathogenesis of MMD remain poorly understood. METHODS AND MATERIAL This study was conducted using plasma exosome samples from MMD patients. Next-generation high-throughput sequencing, real-time quantitative PCR, gene ontology analysis, and Kyoto Encyclopaedia of Genes and Genomes pathway analysis of ideal exosomal miRNAs that could be used as potential biomarkers of MMD were performed. The area under the Receiver Operating Characteristic (ROC) curve was used to evaluate the sensitivity and specificity of biomarkers for predicting events. RESULTS Exosomes were successfully isolated and miRNA-sequence analysis yielded 1,002 differentially expressed miRNAs. Functional analysis revealed that they were mainly enriched in axon guidance, regulation of the actin cytoskeleton and the MAPK signaling pathway. Furthermore, 10 miRNAs (miR-1306-5p, miR-196b-5p, miR-19a-3p, miR-22-3p, miR-320b, miR-34a-5p, miR-485-3p, miR-489-3p, miR-501-3p, and miR-487-3p) were found to be associated with the most sensitive and specific pathways for MMD prediction. CONCLUSIONS Several plasma secretory miRNAs closely related to the development of MMD have been identified, which can be used as biomarkers of MMD and contribute to differentiating MMD from non-MMD patients before digital subtraction angiography.
Collapse
Affiliation(s)
- Da Huang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Hui Qi
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hongchun Yang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Meng Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
52
|
He M, Jin Q, Deng C, Fu W, Xu J, Xu L, Song Y, Wang R, Wang W, Wang L, Zhou W, Jing B, Chen Y, Gao T, Xie M, Zhang L. Amplification of Plasma MicroRNAs for Non-invasive Early Detection of Acute Rejection after Heart Transplantation With Ultrasound-Targeted Microbubble Destruction. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1647-1657. [PMID: 37120328 DOI: 10.1016/j.ultrasmedbio.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Acute rejection (AR) screening has always been the focus of patient management in the first several years after heart transplantation (HT). As potential biomarkers for the non-invasive diagnosis of AR, microRNAs (miRNAs) are limited by their low abundance and complex origin. Ultrasound-targeted microbubble destruction (UTMD) technique could temporarily alter vascular permeability through cavitation. We hypothesized that increasing the permeability of myocardial vessels might enhance the abundance of circulating AR-related miRNAs, thus enabling the non-invasive monitoring of AR. METHODS The Evans blue assay was applied to determine efficient UTMD parameters. Blood biochemistry and echocardiographic indicators were used to ensure the safety of the UTMD. AR of the HT model was constructed using Brown-Norway and Lewis rats. Grafted hearts were sonicated with UTMD on postoperative day (POD) 3. The polymerase chain reaction was used to identify upregulated miRNA biomarkers in graft tissues and their relative amounts in the blood. RESULTS Amounts of six kinds of plasma miRNA, including miR-142-3p, miR-181a-5p, miR-326-3p, miR-182, miR-155-5p and miR-223-3p, were 10.89 ± 1.36, 13.54 ± 2.15, 9.84 ± 0.70, 8.55 ± 2.00, 12.50 ± 3.96 and 11.02 ± 3.47 times higher in the UTMD group than those in the control group on POD 3. Plasma miRNA abundance in the allograft group without UTMD did not differ from that in the isograft group on POD 3. After FK506 treatment, no miRNAs increased in the plasma after UTMD. CONCLUSION UTMD can promote the transfer of AR-related miRNAs from grafted heart tissue to the blood, allowing non-invasive early detection of AR.
Collapse
Affiliation(s)
- Mengrong He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenpei Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jia Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lingling Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yishu Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Rui Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenyuan Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lufang Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wuqi Zhou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Boping Jing
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| |
Collapse
|
53
|
Du W, Fan L, Du J. Neuroinflammation-associated miR-106a-5p serves as a biomarker for the diagnosis and prognosis of acute cerebral infarction. BMC Neurol 2023; 23:248. [PMID: 37369997 DOI: 10.1186/s12883-023-03241-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Acute cerebral infarction (ACI) is a common cerebrovascular disease. Previous studies have shown that some abnormally expressed microRNAs (miRNAs) play important roles in ACI. This study aimed to investigate the role of miR-106a-5p in the diagnosis and prognosis of ACI patients, and analyze the regulatory potential of miR-106a-5p on the inflammation of BV-2 microglial cells. METHOD Serum and cerebrospinal fluid (CSF) samples were collected from 98 ACI patients, and the expression of serum miR-106a-5p was analyzed using qRT-PCR. A receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic value of miR-106a-5p. The association of miR-106a-5p with ACI prognosis was evaluated using the logistic analysis. In vitro experiments were performed in BV-2 cells by oxygen glucose deprivation (OGD) treatment, and the effects of miR-106a-5p on BV-2 inflammation were assessed using an enzyme linked immunosorbent assay (ELISA). RESULT It was observed that miR-106a-5p was significantly upregulated in the serum and CSF of ACI patients (all P < 0.001), and had considerable diagnostic accuracy. The highest serum miR-106a-5p was observed in severe ACI cases, and miR-106a-5p expression was significantly increased in unfavorable prognosis patients. Serum and CSF expression of miR-106a-5p was positively correlated with proinflammatory cytokines in ACI patients, and the inflammation of OGD-induced BV-2 cells was suppressed by miR-106a-5p reduction. CONCLUSION MiR-106a-5p is overexpressed in ACI patients and may serve as a diagnostic and prognostic biomarker for ACI. Furthermore, miR-106a-5p may be involved in ACI progression by regulating neuroinflammation.
Collapse
Affiliation(s)
- Wei Du
- Department of Neurology, Qing Dao Fu Wai Cardiovascular Hospital, Qingdao, 266000, Shandong, China
| | - Lingyan Fan
- Department of Neurology, Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Juan Du
- Department of Neurology, Yantaishan Hospital, No. 91 Jiefang Road, Yantai, 264001, Shandong, China.
| |
Collapse
|
54
|
Ždralević M, Raonić J, Popovic N, Vučković L, Rovčanin Dragović I, Vukčević B, Todorović V, Vukmirović F, Marzano F, Tullo A, Guaragnella N, Giannattasio S, Radunović M. The role of miRNA in colorectal cancer diagnosis: A pilot study. Oncol Lett 2023; 25:267. [PMID: 37216163 PMCID: PMC10193376 DOI: 10.3892/ol.2023.13853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Despite recent advances in diagnosis and treatment, colorectal cancer (CRC) remains the third most common cancer worldwide, and has both a poor prognosis and a high recurrence rate, thus indicating the need for new, sensitive and specific biomarkers. MicroRNAs (miRNAs/miRs) are important regulators of gene expression, which are involved in numerous biological processes implicated in tumorigenesis. The objective of the present study was to investigate the expression of miRNAs in plasma and tissue samples from patients with CRC, and to examine their potential as CRC biomarkers. Using reverse transcription-quantitative PCR, it was revealed that miR-29a, miR-101, miR-125b, miR-146a and miR-155 were dysregulated in the formalin-fixed paraffin-embedded tissues of patients with CRC, compared with the surrounding healthy tissue, and these miRNAs were associated with several pathological features of the tumor. Bioinformatics analysis of overlapping target genes identified AGE-RAGE signaling as a putative joint regulatory pathway. miR-146a was also upregulated in the plasma of patients with CRC, compared with the healthy control group, and had a fair discriminatory power (area under the curve, 0.7006), with 66.7% sensitivity and 77.8% specificity. To the best of our knowledge, this distinct five-miRNA deregulation pattern in tumor tissue, and upregulation of plasma miR-146a, were shown for the first time in patients with CRC; however, studies on larger patient cohorts are warranted to confirm their potential to be used as CRC diagnostic biomarkers.
Collapse
Affiliation(s)
- Maša Ždralević
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
| | - Janja Raonić
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Pathology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Natasa Popovic
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
| | - Ljiljana Vučković
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Pathology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | | | - Batrić Vukčević
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Digestive Surgery, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Vladimir Todorović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Institute for Oncology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Filip Vukmirović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Pathology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Flaviana Marzano
- Institute for Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
| | - Apollonia Tullo
- Institute for Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
| | - Nicoletta Guaragnella
- Department of Biosciences, Biotechnologies and Environment, University of Bari ‘Aldo Moro’, I-70126 Bari, Italy
| | - Sergio Giannattasio
- Institute for Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
| | - Miodrag Radunović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Digestive Surgery, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| |
Collapse
|
55
|
Gigante B. Present and Future Perspectives on the Role of Biomarkers in Atherosclerotic Cardiovascular Disease Risk Stratification. Eur Cardiol 2023; 18:e13. [PMID: 37405345 PMCID: PMC10316363 DOI: 10.15420/ecr.2022.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 07/06/2023] Open
Affiliation(s)
- Bruna Gigante
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
56
|
Xuan S, Zhang J, Guo Q, Zhao L, Yao X. A Diagnostic Classifier Based on Circulating miRNA Pairs for COPD Using a Machine Learning Approach. Diagnostics (Basel) 2023; 13:diagnostics13081440. [PMID: 37189541 DOI: 10.3390/diagnostics13081440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is highly underdiagnosed, and early detection is urgent to prevent advanced progression. Circulating microRNAs (miRNAs) have been diagnostic candidates for multiple diseases. However, their diagnostic value has not yet been fully established in COPD. The purpose of this study was to develop an effective model for the diagnosis of COPD based on circulating miRNAs. We included circulating miRNA expression profiles of two independent cohorts consisting of 63 COPD and 110 normal samples, and then we constructed a miRNA pair-based matrix. Diagnostic models were developed using several machine learning algorithms. The predictive performance of the optimal model was validated in our external cohort. In this study, the diagnostic values of miRNAs based on the expression levels were unsatisfactory. We identified five key miRNA pairs and further developed seven machine learning models. The classifier based on LightGBM was selected as the final model with the area under the curve (AUC) values of 0.883 and 0.794 in test and validation datasets, respectively. We also built a web tool to assist diagnosis for clinicians. Enriched signaling pathways indicated the potential biological functions of the model. Collectively, we developed a robust machine learning model based on circulating miRNAs for COPD screening.
Collapse
Affiliation(s)
- Shurui Xuan
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Jiayue Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Qinxing Guo
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Liang Zhao
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China
| | - Xin Yao
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
57
|
Wangzhou K, Lu Z, Lai Z, Fu W, Liu C, Tan Y, Hao C. Upregulated circ_0002141 facilitates oral squamous cell carcinoma progression via the miR-1231/EGFR axis. Oral Dis 2023; 29:902-912. [PMID: 34739167 DOI: 10.1111/odi.14070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The dysregulation of circular RNAs (circRNAs) is implicated in the progression of various cancers. This study was aimed at expounding the role and mechanism of hsa_circ_0002141 in the OSCC progression. MATERIALS AND METHODS Circ_0002141 expression was examined in 52 pairs of OSCC tissues and matched adjacent tissue samples by quantitative real-time polymerase chain reaction (qRT-PCR) assay. After circ_0002141 was overexpressed or knocked down in OSCC cell lines, cell counting kit-8 (CCK-8) assay, Transwell assay, flow cytometry, and Western blotting were conducted to detect the changes in the growth, migration, invasion and apoptosis of OSCC cells. Western blot assay, qRT-PCR and dual-luciferase reporter assay were performed to clarify the interplay among circ_0002141, miR-1231, and epidermal growth factor receptor (EGFR). RESULTS Circ_0002141 expression was significantly upregulated in OSCC tissues and cell lines. Circ_0002141 overexpression markedly promoted the proliferation, migration, and invasion of OSCC cells whereas reduced the apoptotic of OSCC cells. Also, circ_0002141 knockdown suppressed the malignant characteristics of OSCC cells. EGFR was validated as the target of miR-1231. Besides, circ_0002141 could sponge miR-1231 and upregulate EGFR expression in OSCC cells. CONCLUSION Circ_0002141/miR-1231/EGFR axis is involved in the progression of OSCC.
Collapse
Affiliation(s)
- Kaixin Wangzhou
- School of Management, Hainan Medical University, Haikou, Hainan, China
| | - Zishao Lu
- School of Stomatology, Hainan Medical University, Haikou, Hainan, China
| | - Zhiying Lai
- School of Stomatology, Hainan Medical University, Haikou, Hainan, China
| | - Wanren Fu
- School of Stomatology, Hainan Medical University, Haikou, Hainan, China
| | - Cheng Liu
- Department of Stomatology, Harbin Stomatological Hospital, Harbin, Heilongjiang, China
| | - Yi Tan
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Chunbo Hao
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
58
|
Ge S, Chen G, Deng J, Gu Y, Mao Y, Zhou X, Li G. Multiplex signal amplification strategy-based early-stage diagnosis of Parkinson's disease on a SERS-enabled LoC system. Anal Chim Acta 2023; 1247:340890. [PMID: 36781256 DOI: 10.1016/j.aca.2023.340890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/30/2023]
Abstract
In this paper, a multiplex signal amplification strategy was developed for the determination of miR-214 and miR-221 on a surface-enhanced Raman scattering (SERS)-enabled lab-on-a-chip (LoC) system to realize the early-stage diagnosis of Parkinson's disease (PD). The gold nanobipyramids (GNBPs) with great monodispersity were functionalized with Raman reporter molecules and hairpin DNA 1, serving as the SERS nanotags. The presence of targets can initial the strand displacement amplification (SDA) reaction and the numerous short-stranded trigger DNA (tDNA) can be released under the action of polymerase and nicking enzyme. Then, the tDNA can trigger the catalytic hairpin assembly (CHA) event between the SERS nanotags and the capture nanoprobes (Magnetic beads (MBs) modified with hairpin DNA 2), resulting in the aggregation of GNBPs on the MBs surface. The multiplex signal amplification contributed by the SDA-CHA strategy and the magnet-induced aggregation effect can ultimately lead to the significant improvement of the detection sensitivity and the limit of detection (LOD) was low to aM level with reproducibility and specificity meanwhile. Furthermore, a MPTP-induced PD mice model was established to verify the practicability and the expression level of miR-214 and miR-221 at different stages analyzed with the LoC system was confirmed by qRT-PCR.
Collapse
Affiliation(s)
- Shengjie Ge
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, PR China
| | - Gaoyang Chen
- Department of Oncology, The Second People's Hospital of Taizhou City, Taizhou, 225300, PR China
| | - Jialin Deng
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Yuexing Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Yu Mao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Xinyu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Guang Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, PR China.
| |
Collapse
|
59
|
Dawoud A, Ihab Zakaria Z, Hisham Rashwan H, Braoudaki M, Youness RA. Circular RNAs: New layer of complexity evading breast cancer heterogeneity. Noncoding RNA Res 2023; 8:60-74. [PMID: 36380816 PMCID: PMC9637558 DOI: 10.1016/j.ncrna.2022.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Advances in high-throughput sequencing techniques and bioinformatic analysis have refuted the "junk" RNA hypothesis that was claimed against non-coding RNAs (ncRNAs). Circular RNAs (circRNAs); a class of single-stranded covalently closed loop RNA molecules have recently emerged as stable epigenetic regulators. Although the exact regulatory role of circRNAs is still to be clarified, it has been proven that circRNAs could exert their functions by interacting with other ncRNAs or proteins in their own physiologically authentic environment, regulating multiple cellular signaling pathways and other classes of ncRNAs. CircRNAs have also been reported to exhibit a tissue-specific expression and have been associated with the malignant transformation process of several hematological and solid malignancies. Along this line of reasoning, this review aims to highlight the importance of circRNAs in Breast Cancer (BC), which is ranked as the most prevalent malignancy among females. Notwithstanding the substantial efforts to develop a suitable anticancer therapeutic regimen against the heterogenous BC, inter- and intra-tumoral heterogeneity have resulted in an arduous challenge for drug development research, which in turn necessitates the investigation of other markers to be therapeutically targeted. Herein, the potential of circRNAs as possible diagnostic and prognostic biomarkers have been highlighted together with their possible application as novel therapeutic targets.
Collapse
Affiliation(s)
- Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Zeina Ihab Zakaria
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Hannah Hisham Rashwan
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Maria Braoudaki
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire hosted By Global Academic Foundation, New Administrative Capital, 11586, Cairo, Egypt
| |
Collapse
|
60
|
Yang Y, Lu Y, Zhou Y, Sun H, Ma Y, Tan J, Li N, Li H. Identification and characterization of microRNAs, especially gga-miR-181b-5p, in chicken macrophages associated with avian pathogenic E. coli infection. Avian Pathol 2023; 52:185-198. [PMID: 36803112 DOI: 10.1080/03079457.2023.2181146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
AbstractAvian pathogenic E. coli (APEC) is a common pathogen in the poultry industry, which can cause substantial economic losses. Recently, emerging evidence showed that the miRNAs were involved in various viral and bacterial infection. To elucidate the role of miRNAs in chicken macrophages in response to APEC infection, we attempted to investigate the miRNAs expression pattern upon APEC infection via miRNA-seq, and to identify the molecular mechanism of the important miRNAs by using RT-qPCR, Western blotting, dual-luciferase reporter assay, and CCK-8. Results showed that a total of 80 differentially expressed (DE) miRNAs were identified in the comparison of APEC vs. wild type group, which corresponded to 724 target genes. Moreover, the target genes of the identified DE miRNAs were mainly significantly enriched in MAPK signaling pathway, Autophagy-animal, mTOR signaling pathway, ErbB signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway. Remarkably, gga-miR-181b-5p is capable to participate in host immune and inflammatory response against APEC infection via targeting of TGFBR1 to modulate the activation of TGF-beta signaling pathway. Collectively, this study provides a perspective of miRNA expression pattern in chicken macrophages upon APEC infection. These findings provide the insight into miRNAs against APEC infection and gga-miR-181b-5p might be a potential target for treating APEC infection.
Collapse
Affiliation(s)
- Yexin Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuyang Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yuyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jishuang Tan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Naying Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou University, Yangzhou, China.,Yangzhou Engineering Research Center of Agricultural Products Intelligent Measurement and Control & Cleaner Production, Yangzhou 225009, China
| |
Collapse
|
61
|
Li K, Chi R, Liu L, Feng M, Su K, Li X, He G, Shi Y. 3D genome-selected microRNAs to improve Alzheimer's disease prediction. Front Neurol 2023; 14:1059492. [PMID: 36860572 PMCID: PMC9968804 DOI: 10.3389/fneur.2023.1059492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a type of neurodegenerative disease that has no effective treatment in its late stage, making the early prediction of AD critical. There have been an increase in the number of studies indicating that miRNAs play an important role in neurodegenerative diseases including Alzheimer's disease via epigenetic modifications including DNA methylation. Therefore, miRNAs may serve as excellent biomarkers in early AD prediction. Methods Considering that the non-coding RNAs' activity may be linked to their corresponding DNA loci in the 3D genome, we collected the existing AD-related miRNAs combined with 3D genomic data in this study. We investigated three machine learning models in this work under leave-one-out cross-validation (LOOCV): support vector classification (SVC), support vector regression (SVR), and knearest neighbors (KNNs). Results The prediction results of different models demonstrated the effectiveness of incorporating 3D genome information into the AD prediction models. Discussion With the assistance of the 3D genome, we were able to train more accurate models by selecting fewer but more discriminatory miRNAs, as witnessed by several ML models. These interesting findings indicate that the 3D genome has great potential to play an important role in future AD research.
Collapse
Affiliation(s)
- Keyi Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Runqiu Chi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjie Liu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mofan Feng
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Su
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Guang He ✉
| | - Yi Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China,Yi Shi ✉
| |
Collapse
|
62
|
Diallo I, Jacob RA, Vion E, Kozak RA, Mossman K, Provost P. Altered microRNA Transcriptome in Cultured Human Airway Cells upon Infection with SARS-CoV-2. Viruses 2023; 15:v15020496. [PMID: 36851710 PMCID: PMC9962802 DOI: 10.3390/v15020496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Numerous proteomic and transcriptomic studies have been carried out to better understand the current multi-variant SARS-CoV-2 virus mechanisms of action and effects. However, they are mostly centered on mRNAs and proteins. The effect of the virus on human post-transcriptional regulatory agents such as microRNAs (miRNAs), which are involved in the regulation of 60% of human gene activity, remains poorly explored. Similar to research we have previously undertaken with other viruses such as Ebola and HIV, in this study we investigated the miRNA profile of lung epithelial cells following infection with SARS-CoV-2. At the 24 and 72 h post-infection time points, SARS-CoV-2 did not drastically alter the miRNome. About 90% of the miRNAs remained non-differentially expressed. The results revealed that miR-1246, miR-1290 and miR-4728-5p were the most upregulated over time. miR-196b-5p and miR-196a-5p were the most downregulated at 24 h, whereas at 72 h, miR-3924, miR-30e-5p and miR-145-3p showed the highest level of downregulation. In the top significantly enriched KEGG pathways of genes targeted by differentially expressed miRNAs we found, among others, MAPK, RAS, P13K-Akt and renin secretion signaling pathways. Using RT-qPCR, we also showed that SARS-CoV-2 may regulate several predicted host mRNA targets involved in the entry of the virus into host cells (ACE2, TMPRSS2, ADAM17, FURIN), renin-angiotensin system (RAS) (Renin, Angiotensinogen, ACE), innate immune response (IL-6, IFN1β, CXCL10, SOCS4) and fundamental cellular processes (AKT, NOTCH, WNT). Finally, we demonstrated by dual-luciferase assay a direct interaction between miR-1246 and ACE-2 mRNA. This study highlights the modulatory role of miRNAs in the pathogenesis of SARS-CoV-2.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Rajesh Abraham Jacob
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Elodie Vion
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Robert A. Kozak
- Division of Microbiology, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Karen Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Patrick Provost
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 48842)
| |
Collapse
|
63
|
Wang B, Duan X, Xu Q, Li Y. Diagnostic and prognostic significance of miR-451a in patients with atherosclerosis. Vascular 2023; 31:47-53. [PMID: 34920681 DOI: 10.1177/17085381211058571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Atherosclerosis (AS) is a chronic inflammatory vascular disease. This study aimed to detect the expression level of miR-451a and investigate the diagnostic and prognostic values of miR-451a for AS patients. METHODS The relative expression of miR-451a was assessed by qRT-PCR. Comparison of groups was analyzed with the t-test and chi-squared test. Pearson analysis was used to validate the correlation of miR-451 with CRP and CIMT. The receiver operating characteristic (ROC) curves, K-M analysis, and Cox regression analysis were conducted to explore the roles of miR-451a in diagnosing AS patients and predicting outcomes of AS patients. RESULTS The expression of miR-451a was significantly decreased in the serum of AS patients. The results of Pearson analysis showed the expression of miR-451a was negatively correlated with CRP and CIMT. The data of ROC proposed miR-451a could differentiate AS patients from healthy individuals with high sensitivity and specificity. K-M analysis and Cox regression showed miR-451a might be an independent biomarker of suffering cardiovascular endpoint diseases in AS patients. The expression of miR-451a was obviously inhibited in AS patients with cardiovascular endpoint events. CONCLUSION Deregulation of miR-451a might be associated with the development of AS. MiR-451a might be used as a promising diagnostic and prognostic biomarker for clinical treatment of AS patients.
Collapse
Affiliation(s)
- Baizhi Wang
- Department of Emergency, Weifang People's Hospital, Weifang, Shandong, China
| | - Xingliang Duan
- Department of Emergency, Weifang People's Hospital, Weifang, Shandong, China
| | - Qing Xu
- Department of Pharmacy, Weifang People's Hospital, Weifang, Shandong, China
| | - Yani Li
- Department of Second Cardiology, Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
64
|
Cheng Y, Du Y, Wang Q, Lv Q, Xue Y, Zhou W, Zhang C, Chen X, Wang D. Human cytomegalovirus-encoded microRNAs expression profile in plasma of patients with aortic dissection. J Cardiothorac Surg 2023; 18:39. [PMID: 36653806 PMCID: PMC9848029 DOI: 10.1186/s13019-023-02122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Aortic dissection (AD) is a rare disease with high mortality for which no effective diagnostic biomarkers are available. Human cytomegalovirus (HCMV) infection is an important cause of the occurrence and progression of many diseases, but the relationship between HCMV infection and AD is not clear. METHODS In this study, we first used quantitative reverse transcription polymerase chain reaction (qRT-PCR) to determine the expression profile of 25 HCMV-encoded microRNAs (HCMV miRNAs) in the plasma within a training set consisting of 20 AD patients and 20 healthy controls. Then, abnormal expressed HCMV miRNAs were verified in a validation set of 12 AD patients and 12 healthy controls. In addition, HCMV infection was detected in the third cohort consisting of 20 AD patients and 20 healthy controls. RESULTS The 95% quantile of the expression levels of HCMV miRNAs in the training set was used as the threshold for distinction between AD patients and healthy controls. The proportion of individuals with high level of five types of HCMV miRNAs was significantly different between AD patients and healthy controls. In the validation set, only the proportion of individuals with high levels of hcmv-miR-UL112-5p and hcmv-miR-UL22A-5p, two of the five HCMV miRNAs obtained in the preliminary screening, showed significant difference between AD patients and healthy controls. In the third cohort, there was no significant difference in HCMV DNA levels and anti-HCMV IgG concentrations between AD patients and healthy controls. CONCLUSIONS The HCMV miRNAs levels in plasma differed in AD patients and healthy controls. This finding may contribute to a further understanding of the relationship between HCMV infection and AD and are worthy of future research on the diagnosis and etiology of AD.
Collapse
Affiliation(s)
- Yongqing Cheng
- grid.41156.370000 0001 2314 964XDepartment of Cardio-Thoracic Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, 210008 Jiangsu China
| | - Yufan Du
- grid.41156.370000 0001 2314 964XPresent Address: State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210033 Jiangsu China
| | - Qi Wang
- grid.41156.370000 0001 2314 964XPresent Address: State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210033 Jiangsu China
| | - Qinghe Lv
- grid.41156.370000 0001 2314 964XPresent Address: State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210033 Jiangsu China
| | - Yunxin Xue
- grid.41156.370000 0001 2314 964XDepartment of Cardio-Thoracic Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, 210008 Jiangsu China
| | - Weihong Zhou
- grid.41156.370000 0001 2314 964XDepartment of Health Management Centre, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, 210008 Jiangsu China
| | - Chenyu Zhang
- grid.41156.370000 0001 2314 964XPresent Address: State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210033 Jiangsu China
| | - Xi Chen
- grid.41156.370000 0001 2314 964XPresent Address: State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210033 Jiangsu China
| | - Dongjin Wang
- grid.41156.370000 0001 2314 964XDepartment of Cardio-Thoracic Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, 210008 Jiangsu China
| |
Collapse
|
65
|
Lightfoot HL, Smith GF. Targeting RNA with small molecules-A safety perspective. Br J Pharmacol 2023. [PMID: 36631428 DOI: 10.1111/bph.16027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/30/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
RNA is a major player in cellular function, and consequently can drive a number of disease pathologies. Over the past several years, small molecule-RNA targeting (smRNA targeting) has developed into a promising drug discovery approach. Numerous techniques, tools, and assays have been developed to support this field, and significant investments have been made by pharmaceutical and biotechnology companies. To date, the focus has been on identifying disease validated primary targets for smRNA drug development, yet RNA as a secondary (off) target for all small molecule drug programs largely has been unexplored. In this perspective, we discuss structure, target, and mechanism-driven safety aspects of smRNAs and highlight how these parameters can be evaluated in drug discovery programs to produce potentially safer drugs.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Safety and Mechanistic Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Graham F Smith
- Data Science and AI, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
66
|
Ares Blanco J, Lambert C, Fernandez-Sanjurjo M, Morales-Sanchez P, Pujante P, Pinto-Hernández P, Iglesias-Gutiérrez E, Menendez Torre E, Delgado E. miR-24-3p and Body Mass Index as Type 2 Diabetes Risk Factors in Spanish Women 15 Years after Gestational Diabetes Mellitus Diagnosis. Int J Mol Sci 2023; 24:ijms24021152. [PMID: 36674679 PMCID: PMC9861277 DOI: 10.3390/ijms24021152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as any degree of glucose intolerance that is diagnosed for the first time during pregnancy. The objective of this study is to know the glucose tolerance status after 15 years of pregnancy in patients diagnosed with gestational diabetes and to assess the long-term effect of GDM on the circulating miRNA profile of these women. To answer these, 30 randomly selected women diagnosed with GDM during 2005-2006 were included in the study, and glucose tolerance was measured using the National Diabetes Data Group criteria. Additionally, four miRNAs (hsa-miR-1-3p, hsa-miR-24-3p, hsa-miR-329-3p, hsa-miR-543) were selected for their analysis in the plasma of women 15 years after the diagnosis of GDM. In our study we discovered that, fifteen years after the diagnosis of GDM, 50% of women have some degree of glucose intolerance directly related to body weight and body mass index during pregnancy. Dysglycemic women also showed a significantly increased level of circulating hsa-miR-24-3p. Thus, we can conclude that initial weight and BMI, together with circulating expression levels of hsa-miR-24-3p, could be good predictors of the future development of dysglycemia in women with a previous diagnosis of GDM.
Collapse
Affiliation(s)
- Jessica Ares Blanco
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Endocrinology and Nutrition Department, Asturias Central University Hospital, Av. Roma s/n, 33011 Oviedo, Spain
- Medicine Department, University of Oviedo, 33011 Oviedo, Spain
| | - Carmen Lambert
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- University of Barcelona, 08007 Barcelona, Spain
- Correspondence: (C.L.); (E.D.)
| | - Manuel Fernandez-Sanjurjo
- Department of Functional Biology, University of Oviedo, 33007 Oviedo, Spain
- Translational Health Interventions Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Paula Morales-Sanchez
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pedro Pujante
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- University of Barcelona, 08007 Barcelona, Spain
| | - Paola Pinto-Hernández
- Department of Functional Biology, University of Oviedo, 33007 Oviedo, Spain
- Translational Health Interventions Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Eduardo Iglesias-Gutiérrez
- Department of Functional Biology, University of Oviedo, 33007 Oviedo, Spain
- Translational Health Interventions Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Edelmiro Menendez Torre
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Endocrinology and Nutrition Department, Asturias Central University Hospital, Av. Roma s/n, 33011 Oviedo, Spain
- Medicine Department, University of Oviedo, 33011 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elias Delgado
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Endocrinology and Nutrition Department, Asturias Central University Hospital, Av. Roma s/n, 33011 Oviedo, Spain
- Medicine Department, University of Oviedo, 33011 Oviedo, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (C.L.); (E.D.)
| |
Collapse
|
67
|
Aamri ME, Mohammadi H, Amine A. Paper-Based Colorimetric Detection of miRNA-21 Using Pre-Activated Nylon Membrane and Peroxidase-Mimetic Activity of Cysteamine-Capped Gold Nanoparticles. BIOSENSORS 2023; 13:74. [PMID: 36671909 PMCID: PMC9855695 DOI: 10.3390/bios13010074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Irregular expression of MicroRNA-21 (miRNA-21) is considered as a promising biomarker for early cancer diagnosis. In this paper, a new genosensor based on paper and nanozyme activity of cysteamine-capped gold nanoparticles (Cys/AuNPs) was developed to detect picomolar concentrations of miRNA-21. Such nanozyme catalyzes the colorimetric reaction of hydrogen peroxide (H2O2) and 3,3',5,5' tetramethylbenzidine (TMB), to produce a blue color measurable by a smartphone. Due to their positive charge, Cys/AuNPs were attached to the negative phosphate groups of the DNA strand backbone via electrostatic interactions, leading to the quantitative determination of miRNA-21 concentration by the peroxidase-like activity of Cys/AuNPs. Furthermore, a paper-based assay was carried out on nylon disk devices to allow fast immobilization of DNAprobe. After performing the paper-based assay, a good linear range was observed between 1 pM and 1 nM (Y = 0.080 [MiRNA-21]/pM + 13.846, R2 = 0.993) with a detection limit of 0.5 pM. The developed method was effective, selective, and sensitive for the miRNA-21 detection. The application of the proposed method for miRNA-21 detection was examined in a human serum sample, and a recovery rate of 90.0-97.6% was obtained showing the acceptable accuracy of the developed approach.
Collapse
|
68
|
Li J, Wang D, Yang Z, Liu M. HEGANLDA: A Computational Model for Predicting Potential Lncrna-Disease Associations Based On Multiple Heterogeneous Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:388-398. [PMID: 34932483 DOI: 10.1109/tcbb.2021.3136886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) play vital regulatory roles in many human complex diseases, however, the number of validated lncRNA-disease associations is notable rare so far. How to predict potential lncRNA-disease associations precisely through computational methods remains challenging. In this study, we proposed a novel method, LDVCHN (LncRNA-Disease Vector Calculation Heterogeneous Networks), and also developed the corresponding model, HEGANLDA (Heterogeneous Embedding Generative Adversarial Networks LncRNA-Disease Association), for predicting potential lncRNA-disease associations. In HEGANLDA, the graph embedding algorithm (HeGAN) was introduced for mapping all nodes in the lncRNA-miRNA-disease heterogeneous network into the low-dimensional vectors which severed as the inputs of LDVCHN. HEGANLDA effectively adopted the XGBoost (eXtreme Gradient Boosting) classifier, which was trained by the low-dimensional vectors, to predict potential lncRNA-disease associations. The 10-fold cross-validation method was utilized to evaluate the performance of our model, our model finally achieved an area under the ROC curve of 0.983. According to the experiment results, HEGANLDA outperformed any one of five current state-of-the-art methods. To further evaluate the effectiveness of HEGANLDA in predicting potential lncRNA-disease associations, both case studies and robustness tests were performed and the results confirmed its effectiveness and robustness. The source code and data of HEGANLDA are available at https://github.com/HEGANLDA/HEGANLDA.
Collapse
|
69
|
Gareev I, Beylerli O, Liang Y, Lu E, Ilyasova T, Sufianov A, Sufianova G, Shi H, Ahmad A, Yang G. The Role of Mitochondria-Targeting miRNAs in Intracerebral Hemorrhage. Curr Neuropharmacol 2023; 21:1065-1080. [PMID: 35524670 PMCID: PMC10286585 DOI: 10.2174/1570159x20666220507021445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/02/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022] Open
Abstract
Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Arterial hypertension (AH) is most often the cause of ICH, followed by atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication and vitamin deficiencies. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. AH is difficult to treat, requires surgery and can lead to disability or death. One of the important directions in the study of the pathogenesis of ICH is mitochondrial dysfunction and its regulation. The key role of mitochondrial dysfunction in AH and atherosclerosis, as well as in the development of brain damage after hemorrhage, has been acknowledged. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that regulate a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., primarily through gene repression. There is growing evidence to support dysregulated miRNAs in various cardiovascular diseases, including ICH. Further, the realization of miRNAs within mitochondrial compartment has challenged the traditional knowledge of signaling pathways involved in the regulatory network of cardiovascular diseases. However, the role of miRNAs in mitochondrial dysfunction for ICH is still under-appreciated, with comparatively much lesser studies and investigations reported, than those in other cardiovascular diseases. In this review, we summarize the up-to-date findings on the published role miRNAs in mitochondrial function for ICH, and the potential use of miRNAs in clinical settings, such as potential therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Federal Centre of Neurosurgery, Tyumen, Russia
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Ozal Beylerli
- Federal Centre of Neurosurgery, Tyumen, Russia
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| | - Enzhou Lu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Albert Sufianov
- Federal Centre of Neurosurgery, Tyumen, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| | - Aamir Ahmad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
70
|
Abu-Halima M, Keller A, Becker LS, Fischer U, Engel A, Ludwig N, Kern F, Rounge TB, Langseth H, Meese E, Keller V. Dynamic and static circulating cancer microRNA biomarkers - a validation study. RNA Biol 2023; 20:1-9. [PMID: 36511578 PMCID: PMC9754110 DOI: 10.1080/15476286.2022.2154470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
For cancers and other pathologies, early diagnosis remains the most promising path to survival. Profiling of longitudinal cohorts facilitates insights into trajectories of biomarkers. We measured microRNA expression in 240 serum samples from patients with colon, lung, and breast cancer and from cancer-free controls. Each patient provided at least two serum samples, one prior to diagnosis and one following diagnosis. The median time interval between the samples was 11.6 years. Using computational models, we evaluated the circulating profiles of 21 microRNAs. The analysis yielded two sets of biomarkers, static ones that show an absolute difference between certain cancer types and controls and dynamic ones where the level over time provided higher diagnostic information content. In the first group, miR-99a-5p stands out for all three cancer types. In the second group, miR-155-5p allows to predict lung cancers and colon cancers. Classification in samples from cancer and non-cancer patients using gradient boosted trees reached an average accuracy of 79.9%. The results suggest that individual change over time or an absolute value at one time point may predict a disease with high specificity and sensitivity.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Institute of Human Genetics, Saarland University, Homburg, Germany
- These authors contributed equally to the study
| | - Andreas Keller
- These authors contributed equally to the study
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, Saarland University Campus, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saar, Saarbrücken, Germany
| | | | - Ulrike Fischer
- Institute of Human Genetics, Saarland University, Homburg, Germany
| | - Annika Engel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, Saarland University Campus, Saarbrücken, Germany
| | - Nicole Ludwig
- Institute of Human Genetics, Saarland University, Homburg, Germany
| | - Fabian Kern
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, Saarland University Campus, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saar, Saarbrücken, Germany
| | - Trine B. Rounge
- Department of Research, Cancer Registry of Norway, Norway
- Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Norway
| | - Hilde Langseth
- Department of Research, Cancer Registry of Norway, Norway
- Department of Internal Medicine, Saarland University, Homburg, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Homburg, Germany
| | - Verena Keller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, Saarland University Campus, Saarbrücken, Germany
- Internal Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
71
|
Nie H, Wang F, Zeng X, Bao H, Liu X. Analysis of Communal Molecular Mechanism Between Chronic Obstructive Pulmonary Disease and Osteoporosis. Int J Chron Obstruct Pulmon Dis 2023; 18:259-271. [PMID: 36937804 PMCID: PMC10017835 DOI: 10.2147/copd.s395492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) patients with osteoporosis (OP) usually experience more frequent exacerbations, worse quality of life, and heavier economic burden, however, few studies have investigated common molecular mechanisms of COPD and OP. Objective To explore the relationship between COPD and OP through bioinformatics analysis. Methods The miRNA microarray data of COPD and OP were retrieved from the Gene Expression Database (GEO), and the differentially expressed microRNAs (DEmiRNAs) were screened and the intersection was obtained. The Targetscan, miRDB, and miRWalk databases were used to predict the target genes of DEmiRNA, and the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the R package clusterProfiler, the STRING database was used to analyze the target protein-protein interaction network (PPI) and screens to determine the core modules and core genes. Results Two DEmiRNAs (miR-23a-5p, miR-194-3p) have been found in COPD and OP, which have predicted 76 and 114 target genes, respectively. GO functional annotations of miR-23a-5p were significantly enriched in CD40 signaling pathway, ubiquitin-conjugating enzyme activity, etc; KEGG pathways of miR-23a-5p were significantly enriched in ubiquitin-mediated proteolysis, folate biosynthesis, and regulation of actin cytoskeleton. GO function annotations of miR-194-3p were significantly enriched in T cell activation regulation, ubiquitin protein ligase activity, and DNA transcription factor binding; KEGG pathways of miR-194-3p were significantly enriched in cell adhesion molecules, intercellular tight junctions, and lysosomal pathway. PPI analysis found target coding proteins formed complex regulatory networks. Ten core genes (TP53, SRC, PXN, CHD4, SYK, TNRC6B, PML, KAT5, BRD1 and IGF2) were picked out among them, then we used the MCODE plugin found three core subnetworks. Conclusion Two identical DEmiRNAs (miR-23a-5p, miR-194-3p) exist in the peripheral blood of COPD and OP patients, which are important biomarkers for COPD patients with OP and may represent novel targets for diagnosis and treatment of COPD patients with OP.
Collapse
Affiliation(s)
- Hui Nie
- The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
- Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Fei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiaoli Zeng
- Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Hairong Bao
- Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiaoju Liu
- Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
- Correspondence: Xiaoju Liu, Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People’s Republic of China, Email
| |
Collapse
|
72
|
El-Daly SM, Gouhar SA, Abd Elmageed ZY. Circulating microRNAs as Reliable Tumor Biomarkers: Opportunities and Challenges Facing Clinical Application. J Pharmacol Exp Ther 2023; 384:35-51. [PMID: 35809898 PMCID: PMC9827506 DOI: 10.1124/jpet.121.000896] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs (miRNAs) are involved in the development of human malignancies, and cells have the ability to secrete these molecules into extracellular compartments. Thus, cell-free miRNAs (circulating miRNAs) can potentially be used as biomarkers to evaluate pathophysiological changes. Although circulating miRNAs have been proposed as potential noninvasive tumor biomarkers for diagnosis, prognosis, and response to therapy, their routine application in the clinic is far from being achieved. This review focuses on the recent progress regarding the value of circulating miRNAs as noninvasive biomarkers, with specific consideration of their relevant clinical applications. In addition, we provide an in-depth analysis of the technical challenges that impact the assessment of circulating miRNAs. We also highlight the significance of integrating circulating miRNAs with the standard laboratory biomarkers to boost sensitivity and specificity. The current status of circulating miRNAs in clinical trials as tumor biomarkers is also covered. These insights and general guidelines will assist researchers in experimental practice to ensure quality standards and repeatability, thus improving future studies on circulating miRNAs. SIGNIFICANCE STATEMENT: Our review will boost the knowledge behind the inconsistencies and contradictory results observed among studies investigating circulating miRNAs. It will also provide a solid platform for better-planned strategies and standardized techniques to optimize the assessment of circulating cell-free miRNAs.
Collapse
Affiliation(s)
- Sherien M El-Daly
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, Cairo, Egypt (S.M.E-D., S.A.G.); Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt (S.M.E-D.); and Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana-Monroe, Monroe, Louisiana (Z.Y.A.)
| | - Shaimaa A Gouhar
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, Cairo, Egypt (S.M.E-D., S.A.G.); Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt (S.M.E-D.); and Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana-Monroe, Monroe, Louisiana (Z.Y.A.)
| | - Zakaria Y Abd Elmageed
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, Cairo, Egypt (S.M.E-D., S.A.G.); Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt (S.M.E-D.); and Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana-Monroe, Monroe, Louisiana (Z.Y.A.)
| |
Collapse
|
73
|
Szydełko J, Matyjaszek-Matuszek B. MicroRNAs as Biomarkers for Coronary Artery Disease Related to Type 2 Diabetes Mellitus-From Pathogenesis to Potential Clinical Application. Int J Mol Sci 2022; 24:ijms24010616. [PMID: 36614057 PMCID: PMC9820734 DOI: 10.3390/ijms24010616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with still growing incidence among adults and young people worldwide. Patients with T2DM are more susceptible to developing coronary artery disease (CAD) than non-diabetic individuals. The currently used diagnostic methods do not ensure the detection of CAD at an early stage. Thus, extensive research on non-invasive, blood-based biomarkers is necessary to avoid life-threatening events. MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that are stable in human body fluids and easily detectable. A number of reports have highlighted that the aberrant expression of miRNAs may impair the diversity of signaling pathways underlying the pathophysiology of atherosclerosis, which is a key player linking T2DM with CAD. The preclinical evidence suggests the atheroprotective and atherogenic influence of miRNAs on every step of T2DM-induced atherogenesis, including endothelial dysfunction, endothelial to mesenchymal transition, macrophage activation, vascular smooth muscle cells proliferation/migration, platelet hyperactivity, and calcification. Among the 122 analyzed miRNAs, 14 top miRNAs appear to be the most consistently dysregulated in T2DM and CAD, whereas 10 miRNAs are altered in T2DM, CAD, and T2DM-CAD patients. This up-to-date overview aims to discuss the role of miRNAs in the development of diabetic CAD, emphasizing their potential clinical usefulness as novel, non-invasive biomarkers and therapeutic targets for T2DM individuals with a predisposition to undergo CAD.
Collapse
|
74
|
Nazzari M, Hauser D, van Herwijnen M, Romitti M, Carvalho DJ, Kip AM, Caiment F. CODA: a combo-Seq data analysis workflow. Brief Bioinform 2022; 24:6955042. [PMID: 36545800 PMCID: PMC9851309 DOI: 10.1093/bib/bbac582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
The analysis of the combined mRNA and miRNA content of a biological sample can be of interest for answering several research questions, like biomarkers discovery, or mRNA-miRNA interactions. However, the process is costly and time-consuming, separate libraries need to be prepared and sequenced on different flowcells. Combo-Seq is a library prep kit that allows us to prepare combined mRNA-miRNA libraries starting from very low total RNA. To date, no dedicated bioinformatics method exists for the processing of Combo-Seq data. In this paper, we describe CODA (Combo-seq Data Analysis), a workflow specifically developed for the processing of Combo-Seq data that employs existing free-to-use tools. We compare CODA with exceRpt, the pipeline suggested by the kit manufacturer for this purpose. We also evaluate how Combo-Seq libraries analysed with CODA perform compared with conventional poly(A) and small RNA libraries prepared from the same samples. We show that using CODA more successfully trimmed reads are recovered compared with exceRpt, and the difference is more dramatic with short sequencing reads. We demonstrate how Combo-Seq identifies as many genes and fewer miRNAs compared to the standard libraries, and how miRNA validation favours conventional small RNA libraries over Combo-Seq. The CODA code is available at https://github.com/marta-nazzari/CODA.
Collapse
Affiliation(s)
- Marta Nazzari
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Duncan Hauser
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Marcel van Herwijnen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Mírian Romitti
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium
| | - Daniel J Carvalho
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Anna M Kip
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Florian Caiment
- Corresponding author: Florian Caiment, Tel.: +31433881218; E-mail:
| |
Collapse
|
75
|
Carvalho de Oliveira J, Mathias C, Oliveira VC, Pezuk JA, Brassesco MS. The Double Face of miR-708: A Pan-Cancer Player with Dissociative Identity Disorder. Genes (Basel) 2022; 13:genes13122375. [PMID: 36553642 PMCID: PMC9777992 DOI: 10.3390/genes13122375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Over the last decades, accumulating evidence has shown tumor-dependent profiles of miR-708, being either up- or downregulated, and thus, acting as a "Janus" regulator of oncogenic pathways. Herein, its functional duality was assessed through a thorough review of the literature and further validation in silico using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. In the literature, miR-708 was found with an oncogenic role in eight tumor types, while a suppressor tumor role was described in seven cancers. This double profile was also found in TCGA and GEO databases, with some tumor types having a high expression of miR-708 and others with low expression compared with non-tumor counterparts. The investigation of validated targets using miRBase, miRTarBase, and miRecords platforms, identified a total of 572 genes that appeared enriched for PI3K-Akt signaling, followed by cell cycle control, p53, Apellin and Hippo signaling, endocrine resistance, focal adhesion, and cell senescence regulations, which are all recognized contributors of tumoral phenotypes. Among these targets, a set of 15 genes shared by at least two platforms was identified, most of which have important roles in cancer cells that influence either tumor suppression or progression. In a clinical scenario, miR-708 has shown to be a good diagnostic and prognosis marker. However, its multitarget nature and opposing roles in diverse human tumors, aligned with insufficient experimental data and the lack of proper delivery strategies, hamper its potential as a sequence-directed therapeutic.
Collapse
Affiliation(s)
| | - Carolina Mathias
- Department of Genetics, Federal University of Paraná, Curitiba 80060-000, Brazil
- Laboratory of Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil
| | - Verônica Cristina Oliveira
- Department of Biotechnology and Health Innovation, Anhanguera University of São Paulo, Pirituba 05145-200, Brazil
| | - Julia Alejandra Pezuk
- Department of Biotechnology and Health Innovation, Anhanguera University of São Paulo, Pirituba 05145-200, Brazil
| | - María Sol Brassesco
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
- Correspondence:
| |
Collapse
|
76
|
Zhao L, Huang J, Wu S, Li Y, Pan Y. Integrative analysis of miRNA and mRNA expression associated with the immune response in the intestine of rainbow trout (Oncorhynchus mykiss) infected with infectious hematopoietic necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2022; 131:54-66. [PMID: 36174908 DOI: 10.1016/j.fsi.2022.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss), an economically important cold-water fish cultured worldwide, suffers from infectious hematopoietic necrosis virus (IHNV) infection, resulting in huge financial losses. In order to understand the immune response of rainbow trout during virus infection, we explored trout intestine transcriptome profiles following IHNV challenge, and identified 3355 differentially expressed genes (DEGs) and 80 differentially expressed miRNAs (DEMs). Transcriptome analysis revealed numerous DEGs involved in immune responses, such as toll-like receptor 3 (TLR3), toll-like receptor 7/8 (TLR7/8), tripartite motif-containing 25 (TRIM25), DExH-Box helicase 58 (DHX58), interferon-induced with helicase C domain 1 (IFIH1), interferon regulatory factor 3 (IRF3/7), signal transducer and activator of transcription 1 (STAT1) and heat shock protein 90-alpha 1 (HSP90A1). Integrated analysis identified five key miRNAs (miR-19-y, miR-181-z, miR-203-y, miR-143-z and miR-206-y) targeting at least two important immune genes (TRIM25, DHX58, STAT1, TLR7/8 and HSP90A1). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that DEGs and target genes were significantly enriched in various immune-related terms including immune system process, binding, cell part and pathways of Toll-like receptor signalling, RIG-I-like receptor signalling, NOD-like receptor signalling, JAK-STAT signalling, PI3K-Akt signalling, NF-kappa B signalling, IL-17 signalling and AGE-RAGE signalling. In addition, protein-protein interaction networks (PPI) was used to display highly interactive DEG networks involving eight immune-related pathways. The expression trends of 12 DEGs and 10 DEMs were further verified by quantitative real-time PCR, which confirmed the reliability of the transcriptome sequencing results. This study expands our understanding of the immune response of rainbow trout infected with IHNV, and provides valuable resources for future studies on the immune molecular mechanism and disease resistance breeding.
Collapse
Affiliation(s)
- Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yucai Pan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
77
|
Zhao SL, Wen ZX, Mo XY, Zhang XY, Li HN, Cheung WH, Fu D, Zhang SH, Wan Y, Chen BL. Bone-Metabolism-Related Serum microRNAs to Diagnose Osteoporosis in Middle-Aged and Elderly Women. Diagnostics (Basel) 2022; 12:2872. [PMID: 36428932 PMCID: PMC9689310 DOI: 10.3390/diagnostics12112872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Objective: Postmenopausal osteoporosis (PMOP), a chronic systemic metabolic disease prevalent in middle-aged and elderly women, heavily relies on bone mineral density (BMD) measurement as the diagnostic indicator. In this study, we investigated serum microRNAs (miRNAs) as a possible screening tool for PMOP. Methods: This investigation recruited 83 eligible participants from 795 community-dwelling postmenopausal women between June 2020 and August 2021. The miRNA expression profiles in the serum of PMOP patients were evaluated via miRNA microarray (six PMOP patients and four postmenopausal women without osteoporosis (n-PMOP) as controls). Subsequently, results were verified in independent sample sets (47 PMOP patients and 26 n-PMOP controls) using quantitative real-time PCR. In addition, the target genes and main functions of the differentially expressed miRNAs were explored by bioinformatics analysis. Results: Four highly expressed miRNAs in the serum of patients (hsa-miR-144-5p, hsa-miR-506-3p, hsa-miR-8068, and hsa-miR-6851-3p) showed acceptable disease-independent discrimination performance (area under the curve range: 0.747-0.902) in the training set and verification set, outperforming traditional bone turnover markers. Among four key miRNAs, hsa-miR-144-5p is the only one that can simultaneously predict changes in BMD in lumbar spine 1-4, total hip, and femoral neck (β = -0.265, p = 0.022; β = -0.301, p = 0.005; and β = -0.324, p = 0.003, respectively). Bioinformatics analysis suggested that the differentially expressed miRNAs were targeted mainly to YY1, VIM, and YWHAE genes, which are extensively involved in bone metabolism processes. Conclusions: Bone-metabolism-related serum miRNAs, such as hsa-miR-144-5p, hsa-miR-506-3p, hsa-miR-8068, and hsa-miR-6851-3p, can be used as novel biomarkers for PMOP diagnosis independent of radiological findings and traditional bone turnover markers. Further study of these miRNAs and their target genes may provide new insights into the epigenetic regulatory mechanisms of the onset and progression of the disease.
Collapse
Affiliation(s)
- Sheng-Li Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Zhen-Xing Wen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Xiao-Yi Mo
- Department of Orthopaedics, Guangzhou First People’s Hospital, Guangzhou 510180, China
| | - Xiao-Yan Zhang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hao-Nan Li
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Dan Fu
- Department of Orthopedics, Kiang Wu Hospital, Macau SAR 999078, China
| | - Shi-Hong Zhang
- Department of Laboratry Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Bai-Ling Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| |
Collapse
|
78
|
Zhang Q, Chen B, Yang P, Wu J, Pang X, Pang C. Bioinformatics-based study reveals that AP2M1 is regulated by the circRNA-miRNA-mRNA interaction network and affects Alzheimer's disease. Front Genet 2022; 13:1049786. [PMID: 36468008 PMCID: PMC9716081 DOI: 10.3389/fgene.2022.1049786] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 09/30/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological disease that worsens with time. The hallmark illnesses include extracellular senile plaques caused by β-amyloid protein deposition, neurofibrillary tangles caused by tau protein hyperphosphorylation, and neuronal loss accompanying glial cell hyperplasia. Noncoding RNAs are substantially implicated in related pathophysiology, according to mounting data. However, the function of these ncRNAs is mainly unclear. Circular RNAs (circRNAs) include many miRNA-binding sites (miRNA response elements, MREs), which operate as miRNA sponges or competing endogenous RNAs (ceRNAs). The purpose of this study was to look at the role of circular RNAs (circRNAs) and microRNAs (miRNAs) in Alzheimer's disease (AD) as possible biomarkers. The Gene Expression Omnibus (GEO) database was used to obtain an expression profile of Alzheimer's disease patients (GSE5281, GSE122603, GSE97760, GSE150693, GSE1297, and GSE161435). Through preliminary data deletion, 163 genes with significant differences, 156 miRNAs with significant differences, and 153 circRNAs with significant differences were identified. Then, 10 key genes, led by MAPT and AP2M1, were identified by the mediation center algorithm, 34 miRNAs with obvious prognosis were identified by the cox regression model, and 16 key circRNAs were selected by the database. To develop competitive endogenous RNA (ceRNA) networks, hub circRNAs and mRNAs were used. Finally, GO analysis and clinical data verification of key genes were carried out. We discovered that a down-regulated circRNA (has_circ_002048) caused the increased expression of numerous miRNAs, which further inhibited the expression of a critical mRNA (AP2M1), leading to Alzheimer's disease pathology. The findings of this work contribute to a better understanding of the circRNA-miRNA-mRNA regulating processes in Alzheimer's disease. Furthermore, the ncRNAs found here might become novel biomarkers and potential targets for the development of Alzheimer's drugs.
Collapse
Affiliation(s)
- Qi Zhang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Bishuang Chen
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Ping Yang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Jipan Wu
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Xinping Pang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Chaoyang Pang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
79
|
Salmeri N, Carbone IF, Cavoretto PI, Farina A, Morano D. Epigenetics Beyond Fetal Growth Restriction: A Comprehensive Overview. Mol Diagn Ther 2022; 26:607-626. [PMID: 36028645 DOI: 10.1007/s40291-022-00611-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 12/30/2022]
Abstract
Fetal growth restriction is a pathological condition occurring when the fetus does not reach the genetically determined growth potential. The etiology of fetal growth restriction is expected to be multifactorial and include fetal, maternal, and placental factors, the latter being the most frequent cause of isolated fetal growth restriction. Severe fetal growth restriction has been related to both an increased risk of perinatal morbidity and mortality, and also a greater susceptibility to developing diseases (especially cardio-metabolic and neurological disorders) later in life. In the last decade, emerging evidence has supported the hypothesis of the Developmental Origin of Health and Disease, which states that individual developmental 'programming' takes place via a delicate fine tuning of fetal genetic and epigenetic marks in response to a large variety of 'stressor' exposures during pregnancy. As the placenta is the maternal-fetal interface, it has a crucial role in fetal programming, such that any perturbation altering placental function interferes with both in-utero fetal growth and also with the adult life phenotype. Several epigenetic mechanisms have been highlighted in modulating the dynamic placental epigenome, including alterations in DNA methylation status, post-translational modification of histones, and non-coding RNAs. This review aims to provide a comprehensive and critical overview of the available literature on the epigenetic background of fetal growth restriction. A targeted research strategy was performed using PubMed, MEDLINE, Embase, and The Cochrane Library up to January 2022. A detailed and fully referenced synthesis of available literature following the Scale for the Assessment of Narrative Review Articles guidelines is provided. A variety of epigenetic marks predominantly interfering with placental development, function, and metabolism were found to be potentially associated with fetal growth restriction. Available evidence on the role of environmental exposures in shaping the placental epigenome and the fetal phenotype were also critically discussed. Because of the highly dynamic crosstalk between epigenetic mechanisms and the extra level of complexity in interpreting the final placental transcriptome, a full comprehension of these phenomenon is still lacking and advances in multi-omics approaches are urgently needed. Elucidating the role of epigenetics in the developmental origins of health and disease represents a new challenge for the coming years, with the goal of providing early interventions and prevention strategies and, hopefully, new treatment opportunities.
Collapse
Affiliation(s)
- Noemi Salmeri
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Ilma Floriana Carbone
- Unit of Obstetrics, Department of Woman, Child and Neonate, Mangiagalli Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Ivo Cavoretto
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Antonio Farina
- Division of Obstetrics and Prenatal Medicine, Department of Medicine and Surgery (DIMEC), IRCCS Sant'Orsola-Malpighi Hospital, University of Bologna, 40138, Bologna, Italy.
| | - Danila Morano
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynecology, Azienda Ospedaliero-Universitaria S. Anna, University of Ferrara, Cona, Ferrara, Italy
| |
Collapse
|
80
|
Huang T, Wu Z, Zhu S. The roles and mechanisms of the lncRNA-miRNA axis in the progression of esophageal cancer: a narrative review. J Thorac Dis 2022; 14:4545-4559. [PMID: 36524088 PMCID: PMC9745524 DOI: 10.21037/jtd-22-1449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Esophageal cancer is one of the most common malignant digestive tract tumors. Despite various treatment methods, the prognosis of patients remains unsatisfactory, largely due to an insufficient understanding of the mechanisms involved in the pathogenesis and progression of esophageal cancer. More than 98% of the nucleotide sequences in the human genome do not encode proteins, and their transcription products are noncoding RNAs (ncRNAs), mainly long noncoding RNAs (lncRNAs) and microRNAs (miRNAs). Experiments have shown that lncRNAs and miRNAs play crucial roles in the occurrence and progression of various human malignancies. These ncRNAs influence the progression of esophageal cancer through an intricate regulatory network. We herein summarized the roles and mechanisms of the lncRNA-miRNA axis in esophageal cancer cell proliferation, apoptosis, epithelial-mesenchymal transition (EMT), invasion and metastasis, drug resistance, radiotherapy resistance, and angiogenesis. This review provides a rationale for anticancer therapy that targets the lncRNA-miRNA axis in esophageal cancer. METHODS Related articles published in the PubMed database between 05/30/2008 to 09/10/2022 were identified using the following terms: "lncRNA AND miRNA AND esophageal cancer", "lncRNA AND miRNA AND cell proliferation", "lncRNA AND miRNA AND apoptosis", "lncRNA AND miRNA AND EMT", "lncRNA AND miRNA AND invasion and metastasis", "lncRNA AND miRNA AND drug resistance", and "lncRNA AND miRNA AND radiotherapy resistance". Published articles written in English available to readers were considered. KEY CONTENT AND FINDINGS We summarized the roles of the lncRNA-miRNA axis in the progression of esophageal cancer, including cell proliferation, apoptosis, EMT, invasion and metastasis, drug resistance, radio resistance, and other progressions, and determined that the lncRNA-miRNA axis may serve as a potential clinical treatment target for esophageal cancer. CONCLUSIONS The lncRNA-miRNA axis is closely related to the progression of esophageal cancer and may act as a potential biological target for the clinical treatment of patients with esophageal cancer.
Collapse
Affiliation(s)
- Tao Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China
| | - Zhihao Wu
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Shaojin Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| |
Collapse
|
81
|
Menegatti J, Nakel J, Stepanov YK, Caban KM, Ludwig N, Nord R, Pfitzner T, Yazdani M, Vilimova M, Kehl T, Lenhof HP, Philipp SE, Meese E, Fröhlich T, Grässer FA, Hart M. Changes of Protein Expression after CRISPR/Cas9 Knockout of miRNA-142 in Cell Lines Derived from Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14205031. [PMID: 36291816 PMCID: PMC9600116 DOI: 10.3390/cancers14205031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary The gene of the human tumor suppressive microRNA-142 (miR-142) carries mutations in about 20% of cases of diffuse large B-cell lymphoma (DLBCL). Because microRNAs post-transcriptionally regulate the protein expression of their cognate messenger RNA (mRNAs) targets, we determined the effect of miR-142 knockout on protein expression in two cell lines derived from DLBCL. We found a significant up-regulation of 52 proteins but also a down-regulation of 41 proteins upon miR-142 deletion. Knockout of a miRNA may be used to identify novel targets, and seed-sequence mutants of a miRNA unable to bind to their targets can be used to confirm potential novel targets. With this approach, we identify AKT1S1, CCNB1, LIMA1 and TFRC as novel targets of miR-142. As miR-142 is highly present in the miRNA processing RISC complexes, the deletion of this miRNA might result in its replacement by other miRNAs, thus introducing an additional layer of complexity regarding gene regulation. Abstract Background: As microRNA-142 (miR-142) is the only human microRNA gene where mutations have consistently been found in about 20% of all cases of diffuse large B-cell lymphoma (DLBCL), we wanted to determine the impact of miR-142 inactivation on protein expression of DLBCL cell lines. Methods: miR-142 was deleted by CRISPR/Cas9 knockout in cell lines from DLBCL. Results: By proteome analyses, miR-142 knockout resulted in a consistent up-regulation of 52 but also down-regulation of 41 proteins in GC-DLBCL lines BJAB and SUDHL4. Various mitochondrial ribosomal proteins were up-regulated in line with their pro-tumorigenic properties, while proteins necessary for MHC-I presentation were down-regulated in accordance with the finding that miR-142 knockout mice have a defective immune response. CFL2, CLIC4, STAU1, and TWF1 are known targets of miR-142, and we could additionally confirm AKT1S1, CCNB1, LIMA1, and TFRC as new targets of miR-142-3p or -5p. Conclusions: Seed-sequence mutants of miR-142 confirmed potential targets and novel targets of miRNAs can be identified in miRNA knockout cell lines. Due to the complex contribution of miRNAs within cellular regulatory networks, in particular when miRNAs highly present in RISC complexes are replaced by other miRNAs, primary effects on gene expression may be covered by secondary layers of regulation.
Collapse
Affiliation(s)
- Jennifer Menegatti
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Jacqueline Nakel
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Youli K. Stepanov
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Karolina M. Caban
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Nicole Ludwig
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Ruth Nord
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Thomas Pfitzner
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Maryam Yazdani
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Monika Vilimova
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Tim Kehl
- Center for Bioinformatics, Saarland University, 66041 Saarbrücken, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland University, 66041 Saarbrücken, Germany
| | - Stephan E. Philipp
- Experimental and Clinical Pharmacology and Toxicology, Saarland University Medical School, 66421 Homburg, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Friedrich A. Grässer
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
- Correspondence: (F.A.G.); (M.H.)
| | - Martin Hart
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
- Correspondence: (F.A.G.); (M.H.)
| |
Collapse
|
82
|
Dimuccio V, Bellucci L, Genta M, Grange C, Brizzi MF, Gili M, Gallo S, Centomo ML, Collino F, Bussolati B. Upregulation of miR145 and miR126 in EVs from Renal Cells Undergoing EMT and Urine of Diabetic Nephropathy Patients. Int J Mol Sci 2022; 23:12098. [PMID: 36292960 PMCID: PMC9603196 DOI: 10.3390/ijms232012098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 08/30/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe kidney-related complication of type 1 and type 2 diabetes and the most frequent cause of end-stage kidney disease. Extracellular vesicles (EVs) present in the urine mainly derive from the cells of the nephron, thus representing an interesting tool mirroring the kidney's physiological state. In search of the biomarkers of disease progression, we here assessed a panel of urinary EV miRNAs previously related to DN in type 2 diabetic patients stratified based on proteinuria levels. We found that during DN progression, miR145 and miR126 specifically increased in urinary EVs from diabetic patients together with albuminuria. In vitro, miRNA modulation was assessed in a model of TGF-β1-induced glomerular damage within a three-dimensional perfusion system, as well as in a model of tubular damage induced by albumin and glucose overload. Both renal tubular cells and podocytes undergoing epithelial to mesenchymal transition released EVs containing increased miR145 and miR126 levels. At the same time, miR126 levels were reduced in EVs released by glomerular endothelial cells. This work highlights a modulation of miR126 and miR145 during the progression of kidney damage in diabetes as biomarkers of epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Veronica Dimuccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy
| | - Linda Bellucci
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Marianna Genta
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy
| | - Cristina Grange
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | | | - Maddalena Gili
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Sara Gallo
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Maria Laura Centomo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy
| | - Federica Collino
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy
| |
Collapse
|
83
|
A critical review of datasets and computational suites for improving cancer theranostics and biomarker discovery. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:206. [PMID: 36175717 DOI: 10.1007/s12032-022-01815-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 10/14/2022]
Abstract
Cancer has been constantly evolving and so is the research pertaining to cancer diagnosis and therapeutic regimens. Early detection and specific therapeutics are the key features of modern cancer therapy. These requirements can only be fulfilled with the integration of diverse high-throughput technologies. Integration of advanced omics methodology involving genomics, epigenomics, proteomics, and transcriptomics provide a clear understanding of multi-faceted cancer. In the past few years, tremendous high-throughput data have been generated from cancer genomics and epigenomic analyses, which on further methodological analyses can yield better biological insights. The major epigenetic alterations reported in cancer are DNA methylation levels, histone post-translational modifications, and epi-miRNA regulating the oncogenes and tumor suppressor genes. While the genomic analyses like gene expression profiling, cancer gene prediction, and genome annotation divulge the genetic alterations in oncogenes or tumor suppressor genes. Also, systems biology approach using biological networks is being extensively used to identify novel cancer biomarkers. Therefore, integration of these multi-dimensional approaches will help to identify potential diagnostic and therapeutic biomarkers. Here, we reviewed the critical databases and tools dedicated to various epigenomic and genomic alterations in cancer. The review further focuses on the multi-omics resources available for further validating the identified cancer biomarkers. We also highlighted the tools for cancer biomarker discovery using a systems biology approach utilizing genomic and epigenomic data. Biomarkers predicted using such integrative approaches are shown to be more clinically relevant.
Collapse
|
84
|
Luu BE, Mossa AH, Cammisotto PG, Uri Saragovi H, Campeau L. Modulation of diabetic kidney disease markers by an antagonist of p75 NTR in streptozotocin-treated mice. Gene 2022; 838:146729. [PMID: 35835402 DOI: 10.1016/j.gene.2022.146729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/12/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
Two therapeutic agents targeting p75NTR pathways have been recently developed to alleviate retinopathy and bladder dysfunction in diabetes mellitus (DM), namely the small molecule p75NTR antagonist THX-B and a monoclonal antibody (mAb) that neutralizes the receptor ligand proNGF. We herein explore these two components in the context of diabetic kidney disease (DKD). Streptozotocin-injected mice were treated for 4 weeks with THX-B or anti-proNGF mAb. Kidneys were taken for quantification of microRNAs and mRNAs by RT-qPCR and for detection of proteins by immunohistochemistry, immunoblotting and ELISA. Blood was sampled to measure plasma levels of urea, creatinine, and albumin. DM led to increases in plasma concentrations of urea and creatinine and decreases in plasma albumin. Receptor p75NTR was expressed in kidneys and its expression was decreased by DM. All these changes were reversed by THX-B treatment while the effect of mAb was less pronounced. MicroRNAs tightly linked to DKD (miR-21-5p, miR-214-3p and miR-342-3p) were highly expressed in diabetic kidneys compared to healthy ones. Also, miR-146a, a marker of kidney inflammation, and mRNA levels of Fn-1 and Nphs, two markers of fibrosis and inflammation, were elevated in DM. Treatments with THX-B or mAb partially or completely reduced the expression of the aforementioned microRNAs and mRNAs. P75NTR antagonism and proNGF mAb might constitute new therapeutic tools to treat or slow down the progression of kidney disease in DM, along with other diabetic related complications. The translational potential of these strategies is currently being investigated.
Collapse
Affiliation(s)
- Bryan E Luu
- Lady Davis Institute, McGill University, Montreal, Quebec, Canada
| | - Abubakr H Mossa
- Lady Davis Institute, McGill University, Montreal, Quebec, Canada
| | | | - H Uri Saragovi
- Lady Davis Institute, McGill University, Montreal, Quebec, Canada; Pharmacology and Therapeutics, McGill University, Canada; Ophthalmology and Vision Sciences. McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Lysanne Campeau
- Lady Davis Institute, McGill University, Montreal, Quebec, Canada; Division of Urology, Department of Surgery, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
85
|
MiR-299-3p Inhibits Nasopharyngeal Carcinoma Cell Proliferation and Migration by Targeting MMP-2. JOURNAL OF ONCOLOGY 2022; 2022:2322565. [PMID: 36059797 PMCID: PMC9436588 DOI: 10.1155/2022/2322565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
Purpose Nasopharyngeal carcinoma (NPC) is a type of squamous cell carcinoma that originated from the epithelial cells of the nose and throat, and its incidence ranks the first among head and neck tumors. However, NPC has a unique and complex etiology that is not completely understood. MiR-299-3p was discovered to be abnormally expressed in cancers. However, the involvement of miR-299-3p in the incidence and progression of nasopharyngeal cancer remains unknown. Methods The miR-299-3p expression in nasopharyngeal cancer samples and cell lines was identified using quantitative PCR (qPCR). Nasopharyngeal cancer cells were evaluated for proliferation, migration, and invasion using MTT, colony formation assay, and Transwell invasion assay. MiRBase and TargetScan databases identified the possible miR-299-3p target genes that were confirmed using a dual-luciferase reporter analysis. Additionally, the miR-299-3p target genes were validated by Western blot, colony formation assay, and Transwell assays. Results It was found that miR-299-3p expression was low in nasopharyngeal cancer tissues and cell lines, according to qPCR data. Cell proliferation, colony formation, and migration were considerably reduced by miR-299-3p overexpression. Furthermore, matrix metalloproteinase 2 (MMP-2) expression was regulated by miR-299-3p, whereas MMP-2 knockdown significantly inhibited the capacity of nasopharyngeal cancer cells to form colonies and migrate. Overexpression of MMP-2 substantially reduced the miR-299-3p inhibitory impact on nasopharyngeal cancer cell migration and colony formation. Conclusion The miR-299-3p acts as a tumor suppressor gene to suppress the growth and spread of nasopharyngeal cancer by regulating MMP-2 expression. Therefore, miR-299-3p and MMP-2 could be important therapeutic targets for suppressing nasopharyngeal cancer growth and metastasis.
Collapse
|
86
|
Gareev I, Beylerli O, Sufianov A, Zhang D. Editorial: Potential clinical applications of circulating microRNAs in neurosurgery. Front Surg 2022; 9:993898. [PMID: 36061046 PMCID: PMC9428398 DOI: 10.3389/fsurg.2022.993898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Ilgiz Gareev
- Department of Neurosurgery, Federal Center of Neurosurgery, Tyumen, Russia
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow,Russian Federation
- Correspondence: Ilgiz Gareev
| | - Ozal Beylerli
- Department of Neurosurgery, Federal Center of Neurosurgery, Tyumen, Russia
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow,Russian Federation
| | - Albert Sufianov
- Department of Neurosurgery, Federal Center of Neurosurgery, Tyumen, Russia
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow,Russian Federation
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Daming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
87
|
Makowska M, Smolarz B, Romanowicz H. microRNAs in Subarachnoid Hemorrhage (Review of Literature). J Clin Med 2022; 11:jcm11154630. [PMID: 35956244 PMCID: PMC9369929 DOI: 10.3390/jcm11154630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, many studies have shown that microRNAs (miRNAs) in extracellular bioliquids are strongly associated with subarachnoid hemorrhage (SAH) and its complications. The article presents issues related to the occurrence of subarachnoid hemorrhage (epidemiology, symptoms, differential diagnosis, examination, and treatment of the patient) and a review of current research on the correlation between miRNAs and the complications of SAH. The potential use of miRNAs as biomarkers in the treatment of SAH is presented.
Collapse
Affiliation(s)
- Marianna Makowska
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
- Correspondence: ; Tel.: +48-42-271-12-90
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
88
|
Kochhar P, Vukku M, Rajashekhar R, Mukhopadhyay A. microRNA signatures associated with fetal growth restriction: a systematic review. Eur J Clin Nutr 2022; 76:1088-1102. [PMID: 34741137 DOI: 10.1038/s41430-021-01041-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022]
Abstract
Placental-origin microRNA (miRNA) profiles can be useful toward early diagnosis and management of fetal growth restriction (FGR) and associated complications. We conducted a systematic review to identify case-control studies that have examined miRNA signatures associated with human FGR. We systematically searched PubMed and ScienceDirect databases for relevant articles and manually searched reference lists of the relevant articles till May 18th, 2021. Of the 2133 studies identified, 21 were included. FGR-associated upregulation of miR-210 and miR-424 and downregulation of a placenta-specific miRNA cluster miRNA located on C19MC (miR-518b, miR-519d) and miR-221-3p was reported by >1 included studies. Analysis of the target genes of these miRNA as well as pathway analysis pointed to the involvement of angiogenesis and growth signaling pathways, such as the phosphatidylinositol 3-kinase- protein kinase B (PI3K-Akt) pathway. Only 3 out of the 21 included studies reported FGR-associated miRNAs in matched placental and maternal blood samples. We conclude that FGR-associated placental miRNAs could be utilized to inform clinical practice towards early diagnosis of FGR, provided enough evidence from studies on matched placental and maternal blood samples become available.Prospective Register of Systematic Reviews (PROSPERO) registration number: CRD42019136762.
Collapse
Affiliation(s)
- P Kochhar
- Division of Nutrition, St. John's Research Institute, A Recognized Research Centre of University of Mysore, Bangalore, India
| | - M Vukku
- Division of Nutrition, St. John's Research Institute, A Recognized Research Centre of University of Mysore, Bangalore, India
| | - R Rajashekhar
- Division of Nutrition, St. John's Research Institute, A Recognized Research Centre of University of Mysore, Bangalore, India.,Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - A Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, A Recognized Research Centre of University of Mysore, Bangalore, India.
| |
Collapse
|
89
|
Aamri ME, Mohammadi H, Amine A. Novel Label-free Colorimetric and Electrochemical Detection for MiRNA-21 Based on the Complexation of Molybdate with Phosphate. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
90
|
Gagliardi D, Rizzuti M, Brusa R, Ripolone M, Zanotti S, Minuti E, Parente V, Dioni L, Cazzaniga S, Bettica P, Bresolin N, Comi GP, Corti S, Magri F, Velardo D. MicroRNAs as serum biomarkers in Becker muscular dystrophy. J Cell Mol Med 2022; 26:4678-4685. [PMID: 35880500 PMCID: PMC9443944 DOI: 10.1111/jcmm.17462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Becker muscular dystrophy (BMD) is an X‐linked neuromuscular disorder due to mutation in the DMD gene, encoding dystrophin. Despite a wide clinical variability, BMD is characterized by progressive muscle degeneration and proximal muscle weakness. Interestingly, a dysregulated expression of muscle‐specific microRNAs (miRNAs), called myomirs, has been found in patients affected with muscular dystrophies, although few studies have been conducted in BMD. We analysed the serum expression levels of a subset of myomirs in a cohort of 29 ambulant individuals affected by BMD and further classified according to the degree of alterations at muscle biopsy and in 11 age‐matched healthy controls. We found a significant upregulation of serum miR‐1, miR‐133a, miR‐133b and miR‐206 in our cohort of BMD patients, supporting the role of these miRNAs in the pathophysiology of the disease, and we identified serum cut‐off levels discriminating patients from healthy controls, confiming the potential of circulating miRNAs as promising noninvasive biomarkers. Moreover, serum levels of miR‐133b were found to be associated with fibrosis at muscle biopsy and with patients' motor performances, suggesting that miR‐133b might be a useful prognostic marker for BMD patients. Taken together, our data showed that these serum myomirs may represent an effective tool that may support stratification of BMD patients, providing the opportunity of both monitoring disease progression and assessing the treatment efficacy in the context of clinical trials.
Collapse
Affiliation(s)
- Delia Gagliardi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Mafalda Rizzuti
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberta Brusa
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Zanotti
- Neuromuscular and Rare Diseases Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Minuti
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Parente
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Dioni
- EPIGET Lab, Unit of Occupational Medicine, Department of Clinical Sciences and Community Health, IRCCS Ca' Granda Foundation Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | | | - Nereo Bresolin
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy.,Neuromuscular and Rare Diseases Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Francesca Magri
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neuromuscular and Rare Diseases Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Velardo
- Neuromuscular and Rare Diseases Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
91
|
Fan J, Ren M, He Y. Diagnostic and Therapeutic Properties of Exosomes in Cardiac Fibrosis. Front Cell Dev Biol 2022; 10:931082. [PMID: 35859903 PMCID: PMC9289295 DOI: 10.3389/fcell.2022.931082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibrosis results from both the differentiation of cardiac fibroblasts and excessive accumulation of extracellular matrix (ECM), leading to myocardial stiffness and reduced compliance of the ventricular wall. The conversion of cardiac fibroblasts to myofibroblasts is the most important initiating step in the process of this pathological cardiac remodeling. It occurs during the progression of many cardiovascular diseases, adversely influencing both the clinical course and outcome of the disease. The pathogenesis is complex and there is no effective treatment. Exosomes are extracellular vesicles that mediate intercellular communication through delivering specific cargoes of functional nucleic acids and proteins derived from particular cell types. Recent studies have found that exosomes play an important role in the diagnosis and treatment of cardiac fibrosis, and is a potential biotherapeutics and drug delivery vectors for the treatment of cardiac fibrosis. The present review aimed to summarize the current knowledge of exosome-related mechanisms underlying cardiac fibrosis and to suggest potential therapy that could be used to treat the condition.
Collapse
Affiliation(s)
- Jiwen Fan
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Ren
- Department of Medical Oncology, Jilin Provincial Cancer Hospital, Changchun, China
| | - Yuquan He
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yuquan He,
| |
Collapse
|
92
|
miRNA-6515-5p regulates particulate matter-induced inflammatory responses by targeting CSF3 in human bronchial epithelial cells. Toxicol In Vitro 2022; 84:105428. [DOI: 10.1016/j.tiv.2022.105428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022]
|
93
|
Li J, Shen Z, Chen W, Feng Z, Fang L, Zhao J, Liu C, Du J, Cheng Y. Screening of miRNAs in White Blood Cell as a Radiation Biomarkers for Rapid Assessment of Acute Radiation Injury. Dose Response 2022; 20:15593258221123679. [PMID: 36132708 PMCID: PMC9483971 DOI: 10.1177/15593258221123679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Accidental radiation exposure is a threat to human health that necessitates
effective clinical diagnosis. Suitable biomarkers are urgently needed for early
assessment of exposure dose. Existing technologies being used to assess the
extent of radiation have notable limitations. As a radiation biomarker, miRNA
has the advantages of simple detection and high throughput. In this study, we
screened for miRNAs with dose and time dependent responses in peripheral blood
leukocytes via miRNA sequencing in establishing the animal model of acute
radiation injury. Four radiation-sensitive and stably expressed miRNAs were
selected out in the 24 h group of leukocyte miRNAs: mmu-miR-130b-5p,
mmu-miR-148b-5p, mmu-miR-184-3p, mmu-miR-26a-2-3p, and five were screened in the
48 h group of leukocyte miRNAs: mmu-miR-130b-5p, mmu-miR-423-5p, mmu-miR-676-3p,
mmu-miR-150-5p, mmu-miR-342-3p.The correlation curves between their expression
and irradiation dose were plotted. Then, the results were validated by RT-qPCR
in mouse peripheral blood. As a result, mmu-miR-150-5p and mmu-miR-342-3p showed
the highest correlation at 48h after irradiation, and mmu-miR-130b-5p showed
good correlation at both 24 h and 48 h after irradiation. In a conclusion, the
miRNAs that are sensitive to ionizing radiation with dose dependent effects were
selected out, which have the potential of forming a rapid assessment scheme for
acute radiation injury.
Collapse
Affiliation(s)
- Jiaxun Li
- College of Basic Medicine, Naval Medical University, Shanghai, China
| | - Zhefan Shen
- College of Basic Medicine, Naval Medical University, Shanghai, China
| | - Wei Chen
- Naval Medical Center, Naval Medical University, Shanghai, China
| | | | - Lan Fang
- Naval Medical University, Shanghai, China
| | | | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Ying Cheng
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
94
|
Chronic Pesticide Exposure in Farm Workers Is Associated with the Epigenetic Modulation of hsa-miR-199a-5p. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127018. [PMID: 35742265 PMCID: PMC9222590 DOI: 10.3390/ijerph19127018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
The increasing use of pesticides in intensive agriculture has had a negative impact on human health. It was widely demonstrated how pesticides can induce different genetic and epigenetic alterations associated with the development of different diseases, including tumors and neurological disorders. Therefore, the identification of effective indicators for the prediction of harmful pesticide exposure is mandatory. In this context, the aim of the study was to evaluate the modification of hsa-miR-199a-5p expression levels in liquid biopsy samples obtained from healthy donors and farm workers with chronic exposure to pesticides. For this purpose, the high-sensitive droplet digital PCR assay (ddPCR) was used to detect variation in the expression levels of the selected microRNA (miRNA). The ddPCR analyses revealed a significant down-regulation of hsa-miR-199a-5p observed in individuals exposed to pesticides compared to control samples highlighting the good predictive value of this miRNA as demonstrated by statistical analyses. Overall, the obtained results encourage the analysis of miRNAs as predictive biomarkers of chronic pesticide exposure thus improving the current strategies for the monitoring of harmful pesticide exposure.
Collapse
|
95
|
Ruiz M, González S, Bonnet C, Deng SX. Extracellular miR-6723-5p could serve as a biomarker of limbal epithelial stem/progenitor cell population. Biomark Res 2022; 10:36. [PMID: 35642012 PMCID: PMC9153202 DOI: 10.1186/s40364-022-00384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/16/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Dysfunction or loss of limbal stem cells can result in limbal stem cell deficiency (LSCD), a disease that cause corneal opacity, pain, and loss of vision. Cultivated limbal epithelial transplantation (CLET) can be used to restore stem cell niche homeostasis and replenish the progenitor pool. Transplantation has been reported with high success rate, but there is an unmet need of prognostic markers that correlate with clinical outcomes. To date, the progenitor content in the graft is the only parameter that has been retrospectively linked to success. METHODS In this study, we investigate extracellular micro RNAs (miRNAs) associated with stem/progenitor cells in cultivated limbal epithelial cells (cLECs). Using micro RNA sequencing and linear regression modelling, we identify a miRNA signature in cultures containing high proportion of stem/progenitor cells. We then develop a robust RNA extraction workflow from culture media to confirm a positive miRNA correlation with stem/progenitor cell proportion. RESULTS miR-6723-5p is associated with cultures containing high proportion of stem/progenitor cells, and is detected in the basal layer of corneal epithelium. CONCLUSIONS These results indicate that miR-6723-5p could potentially serve as a stem/progenitor cell marker in cLECs.
Collapse
Affiliation(s)
- M. Ruiz
- Cornea Division, Stein Eye Institute, University of California, 100 Stein Plaza, Los Angeles, CA 90095 USA
| | - S. González
- Cornea Division, Stein Eye Institute, University of California, 100 Stein Plaza, Los Angeles, CA 90095 USA
| | - C. Bonnet
- Cornea Division, Stein Eye Institute, University of California, 100 Stein Plaza, Los Angeles, CA 90095 USA
- Cornea Department, Paris University, Cochin Hospital, AP-HP, F-75014 Paris, France
| | - S. X. Deng
- Cornea Division, Stein Eye Institute, University of California, 100 Stein Plaza, Los Angeles, CA 90095 USA
| |
Collapse
|
96
|
Sasso J, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. J Med Chem 2022; 65:6975-7015. [PMID: 35533054 PMCID: PMC9115888 DOI: 10.1021/acs.jmedchem.2c00024] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 02/08/2023]
Abstract
In the past decade, there has been a shift in research, clinical development, and commercial activity to exploit the many physiological roles of RNA for use in medicine. With the rapid success in the development of lipid-RNA nanoparticles for mRNA vaccines against COVID-19 and with several approved RNA-based drugs, RNA has catapulted to the forefront of drug research. With diverse functions beyond the role of mRNA in producing antigens or therapeutic proteins, many classes of RNA serve regulatory roles in cells and tissues. These RNAs have potential as new therapeutics, with RNA itself serving as either a drug or a target. Here, based on the CAS Content Collection, we provide a landscape view of the current state and outline trends in RNA research in medicine across time, geography, therapeutic pipelines, chemical modifications, and delivery mechanisms.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Barbara J. B. Ambrose
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Rumiana Tenchov
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Ruchira S. Datta
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Matthew T. Basel
- College
of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Robert K. DeLong
- Nanotechnology
Innovation Center Kansas State, Kansas State
University, Manhattan, Kansas 66506, United States
| | - Qiongqiong Angela Zhou
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
97
|
Yanai K, Kaneko S, Ishii H, Aomatsu A, Hirai K, Ookawara S, Morishita Y. MicroRNA Expression Profiling in Age-Dependent Renal Impairment. Front Med (Lausanne) 2022; 9:849075. [PMID: 35646947 PMCID: PMC9140741 DOI: 10.3389/fmed.2022.849075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAge-dependent renal impairment contributes to renal dysfunction in both the general population and young and middle-aged patients with renal diseases. Pathological changes in age-dependent renal impairment include glomerulosclerosis and tubulointerstitial fibrosis. The molecules involved in age-dependent renal impairment are not fully elucidated. MicroRNA (miRNA) species were reported to modulate various renal diseases, but the miRNA species involved in age-dependent renal impairment are unclear. Here, we investigated miRNAs in age-dependent renal impairment, and we evaluated their potential as biomarkers and therapeutic targets.MethodsWe conducted an initial microarray profiling analysis to screen miRNAs whose expression levels changed in kidneys of senescence-accelerated resistant (SAMR1)-10-week-old (wk) mice and SAMR1-50wk mice and senescence-accelerated prone (SAMP1)-10wk mice and SAMP1-50wk mice. We then evaluated the expressions of differentially expressed miRNAs in serum from 13 older patients (>65 years old) with age-dependent renal impairment (estimated glomerular filtration ratio <60 mL/min/1.73 m2) by a quantitative real-time polymerase chain reaction (qRT-PCR) and compared the expressions with those of age-matched subjects with normal renal function. We also administered miRNA mimics or inhibitors (5 nmol) with a non-viral vector (polyethylenimine nanoparticles: PEI-NPs) to SAMP1-20wk mice to investigate the therapeutic effects.ResultsThe qRT-PCR revealed a specific miRNA (miRNA-503-5p) whose level was significantly changed in SAMP1-50wk mouse kidneys in comparison to the controls. The expression level of miRNA-503-5p was upregulated in the serum of the 13 patients with age-dependent renal impairment compared to the age-matched subjects with normal renal function. The administration of a miRNA-503-5p-inhibitor with PEI-NPs decreased the miRNA-503-5p expression levels, resulting in the inhibition of renal fibrosis in mice via an inhibition of a pro-fibrotic signaling pathway and a suppression of glomerulosclerosis in mice by inhibiting intrinsic signaling pathways.ConclusionThe serum levels of miRNA-503-5p were decreased in patients with age-dependent renal impairment. However, inhibition of miRNA-503-5p had no effect on age-dependent renal impairment, although inhibition of miRNA-503-5p had therapeutic effects on renal fibrosis and glomerulosclerosis in an in vivo animal model. These results indicate that miRNA-503-5p might be related to age-dependent renal impairment.
Collapse
Affiliation(s)
- Katsunori Yanai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Shohei Kaneko
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Hiroki Ishii
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Akinori Aomatsu
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
- Division of Intensive Care Unit, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Keiji Hirai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
- *Correspondence: Yoshiyuki Morishita
| |
Collapse
|
98
|
Ma D, Zhou X, Wang Y, Dai L, Yuan J, Peng J, Zhang X, Wang C. Changes in the Small Noncoding RNAome During M1 and M2 Macrophage Polarization. Front Immunol 2022; 13:799733. [PMID: 35619693 PMCID: PMC9127141 DOI: 10.3389/fimmu.2022.799733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages belong to a special phagocytic subgroup of human leukocytes and are one of the important cells of the human immune system. Small noncoding RNAs are a group of small RNA molecules that can be transcribed without the ability to encode proteins but could play a specific function in cells. SncRNAs mainly include microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs) and repeat RNAs. We used high-throughput sequencing analysis and qPCR to detect the expression changes of the small noncoding RNAome during macrophage polarization. Our results showed that 84 miRNAs and 47 miRNAs with were downregulated during M1 macrophage polarization and that 11 miRNAs were upregulated and 19 miRNAs were downregulated during M2 macrophage polarization. MiR-novel-3-nature and miR-27b-5p could promote expression of TNF-α which was marker gene of M1 macrophages. The piRNA analysis results showed that 69 piRNAs were upregulated and 61 piRNAs were downregulated during M1 macrophage polarization and that 3 piRNAs were upregulated and 10 piRNAs were downregulated during M2 macrophage polarization. DQ551351 and DQ551308 could promote the mRNA expression of TNF-α and DQ551351overexpression promoted the antitumor activity of M1 macrophages. SnoRNA results showed that 62 snoRNAs were upregulated and 59 snoRNAs were downregulated during M1 macrophage polarization, whereas 6 snoRNAs were upregulated and 10 snoRNAs were downregulated during M2 macrophage polarization. Overexpression of snoRNA ENSMUST00000158683.2 could inhibit expression of TNF-α. For snRNA, we found that 12 snRNAs were upregulated and 15 snRNAs were downregulated during M1 macrophage polarization and that 2 snRNAs were upregulated during M2 macrophage polarization. ENSMUSG00000096786 could promote expression of IL-1 and iNOS and ENSMUSG00000096786 overexpression promoted the antitumor activity of M1 macrophages. Analysis of repeat RNAs showed that 7 repeat RNAs were upregulated and 9 repeat RNAs were downregulated during M1 macrophage polarization and that 2 repeat RNAs were downregulated during M2 macrophage polarization. We first reported the expression changes of piRNA, snoRNA, snRNA and repeat RNA during macrophage polarization, and preliminarily confirmed that piRNA, snoRNA and snRNA can regulate the function of macrophages.
Collapse
Affiliation(s)
- Ding Ma
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xing Zhou
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Yu Wang
- Department of Cardiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Liming Dai
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jie Yuan
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianping Peng
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| |
Collapse
|
99
|
ROS-Responsive miR-150-5p Downregulation Contributes to Cigarette Smoke-Induced COPD via Targeting IRE1α. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5695005. [PMID: 35571237 PMCID: PMC9098354 DOI: 10.1155/2022/5695005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) have been reported in human diseases, in which chronic obstructive pulmonary disease (COPD) is included. Herein, we assessed the role along with the possible mechanisms of miR-150-5p in cigarette smoke- (CS-) induced COPD. The plasma miR-150-5p expression was lower in patients with COPD and acute exacerbation of COPD (AECOPD) and was related to disease diagnosis, disease severity, and lung function. Consistently, exposure to CS for 3 months or 3 days reduced miR-150-5p in the plasma and lung tissues of mice, and CS extract (CSE) inhibited miR-150-5p in human bronchial epithelial cells (HBECs) in a concentration along with time-dependent approach. In vitro, miR-150-5p overexpression decreased the contents of inflammatory factors interleukin- (IL-) 6, IL-8 along with cyclooxygenase-2 (COX-2), and endoplasmic reticulum (ER) stress markers glucose-regulated protein (GRP) 78 and C/-EBP homologous protein (CHOP) and promoted cell migrate. Mechanistically, miR-150-5p could bind with the 3′-untranslated region (UTR) of inositol requiring enzyme 1α (IRE1α), while IRE1α overexpression obliterated the impacts of miR-150-5p. Besides, N-acetyl-cysteine (NAC) reversed CSE-induced miR-150-5p downregulation and its downstream effects. In vivo, miR-150-5p overexpression counteracted CS-triggered IRE1α upregulation, inflammation, and ER stress in the lung tissues of mice. In conclusion, our findings illustrated that ROS-mediated downregulation of miR-150-5p led to CS-induced COPD by inhibiting IRE1α expression, suggesting to serve as a useful biomarker for diagnosing and treating COPD.
Collapse
|
100
|
Circulating microRNA profiling is altered in the acute respiratory distress syndrome related to SARS-CoV-2 infection. Sci Rep 2022; 12:6929. [PMID: 35484171 PMCID: PMC9047579 DOI: 10.1038/s41598-022-10738-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
One of the hallmarks of SARS-CoV-2 infection is an induced immune dysregulation, in some cases resulting in cytokine storm syndrome and acute respiratory distress syndrome (ARDS). Several physiological parameters are altered as a result of infection and cytokine storm. Among them, microRNAs (miRNAs) might reflect this poor condition since they play a significant role in immune cellular performance including inflammatory responses. Circulating miRNAs in patients who underwent ARDS and needed mechanical ventilation (MV+; n = 15) were analyzed by next generation sequencing in comparison with patients who had COVID-19 poor symptoms but without intensive care unit requirement (MV−; n = 13). A comprehensive in silico analysis by integration with public gene expression dataset and pathway enrichment was performed. Whole miRNA sequencing identified 170 differentially expressed miRNAs between patient groups. After the validation step by qPCR in an independent sample set (MV+ = 10 vs. MV− = 10), the miR-369-3p was found significantly decreased in MV+ patients (Fold change − 2.7). After integrating with gene expression results from COVID-19 patients, the most significant GO enriched pathways were acute inflammatory response, regulation of transmembrane receptor protein Ser/Thr, fat cell differentiation, and regulation of biomineralization and ossification. In conclusion, miR-369-3p was altered in patients with mechanical ventilation requirement in comparison with COVID-19 patients without this requirement. This miRNA is involved in inflammatory response which it can be considered as a prognosis factor for ARDS in COVID-19 patients.
Collapse
|