51
|
Covic L, Silva NF, Lew RR. Functional characterization of ARAKIN (ATMEKK1): a possible mediator in an osmotic stress response pathway in higher plants. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1451:242-54. [PMID: 10556579 DOI: 10.1016/s0167-4889(99)00096-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The Arabidopsis thaliana ARAKIN (ATMEKK1) gene shows strong homology to members of the (MAP) mitogen-activated protein kinase family, and was previously shown to functionally complement a mating defect in Saccharomyces cerevisiae at the level of the MEKK kinase ste11. The yeast STE11 is an integral component of two MAP kinase cascades: the mating pheromone pathway and the HOG (high osmolarity glycerol response) pathway. The HOG signal transduction pathway is activated by osmotic stress and causes increased glycerol synthesis. Here, we first demonstrate that ATMEKK1 encodes a protein with kinase activity, examine its properties in yeast MAP kinase cascades, then examine its expression under stress in A. thaliana. Yeast cells expressing the A. thaliana ATMEKK1 survive and grow under high salt (NaCl) stress, conditions that kill wild-type cells. Enhanced glycerol production, observed in non-stressed cells expressing ATMEKK1 is the probable cause of yeast survival. Downstream components of the HOG response pathway, HOG1 and PBS2, are required for ATMEKK1-mediated yeast survival. Because ATMEKK1 functionally complements the sho1/ssk2/ssk22 triple mutant, it appears to function at the level of the MEKK kinase step of the HOG response pathway. In A. thaliana, ATMEKK1 expression is rapidly (within 5 min) induced by osmotic (NaCl) stress. This is the same time frame for osmoticum-induced effects on the electrical properties of A. thaliana cells, both an immediate response and adaptation. Therefore, we propose that the A. thaliana ATMEKK1 may be a part of the signal transduction pathway involved in osmotic stress.
Collapse
Affiliation(s)
- L Covic
- Department of Biology, York University, 4700 Keele Street, Toronto, Ont., Canada
| | | | | |
Collapse
|
52
|
Thomashow MF. PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. ACTA ACUST UNITED AC 1999; 50:571-599. [PMID: 15012220 DOI: 10.1146/annurev.arplant.50.1.571] [Citation(s) in RCA: 1808] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many plants increase in freezing tolerance upon exposure to low nonfreezing temperatures, a phenomenon known as cold acclimation. In this review, recent advances in determining the nature and function of genes with roles in freezing tolerance and the mechanisms involved in low temperature gene regulation and signal transduction are described. One of the important conclusions to emerge from these studies is that cold acclimation includes the expression of certain cold-induced genes that function to stabilize membranes against freeze-induced injury. In addition, a family of Arabidopsis transcription factors, the CBF/DREB1 proteins, have been identified that control the expression of a regulon of cold-induced genes that increase plant freezing tolerance. These results along with many of the others summarized here further our understanding of the basic mechanisms that plants have evolved to survive freezing temperatures. In addition, the findings have potential practical applications as freezing temperatures are a major factor limiting the geographical locations suitable for growing crop and horticultural plants and periodically account for significant losses in plant productivity.
Collapse
Affiliation(s)
- Michael F. Thomashow
- Department of Crop and Soil Sciences, Department of Microbiology, Michigan State University, East Lansing, Michigan 48824; e-mail:
| |
Collapse
|
53
|
Abstract
The first plant protein kinase sequences were reported as recently as 1989, but by mid-1998 there were more than 500, including 175 in Arabidopsis thaliana alone. Despite this impressive pace of discovery, progress in understanding the detailed functions of protein kinases in plants has been slower. Protein serine/threonine kinases from A. thaliana can be divided into around a dozen major groups based on their sequence relationships. For each of these groups, studies on animal and fungal homologs are briefly reviewed, and direct studies of their physiological functions in plants are then discussed in more detail. The network of protein-serine/threonine kinases in plant cells appears to act as a "central processor unit" (cpu), accepting input information from receptors that sense environmental conditions, phytohormones, and other external factors, and converting it into appropriate outputs such as changes in metabolism, gene expression, and cell growth and division.
Collapse
Affiliation(s)
- D. G. Hardie
- Biochemistry Department, Dundee University, Dundee, Scotland, DD1 5EH, United Kingdom; e-mail:
| |
Collapse
|
54
|
Nakashima S, Wang S, Hisamoto N, Sakai H, Andoh M, Matsumoto K, Nozawa Y. Molecular cloning and expression of a stress-responsive mitogen-activated protein kinase-related kinase from Tetrahymena cells. J Biol Chem 1999; 274:9976-83. [PMID: 10187773 DOI: 10.1074/jbc.274.15.9976] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify genes responsive to cold stress, we employed the differential display mRNA analysis technique to isolate a novel gene from Tetrahymena thermophila which encodes a protein kinase of 430 amino acids. A homolog of this kinase with 90% amino acid sequence identity was also found in T. pyriformis. Both kinases contain 11 subdomains typical of protein kinases. Sequence analysis revealed that the predicted amino acid sequences resemble those of mitogen-activated protein kinase (MAPK), especially p38 and stress-activated protein kinase which are known to be involved in various stress responses. However, it should be noted that the tyrosine residue in the normally conserved MAPK phosphorylation site (Thr-X-Tyr) is replaced by histidine (Thr226-Gly-His228) in this MAPK-related kinase (MRK). The recombinant MRK expressed in Escherichia coli phosphorylated myelin basic protein (MBP) and became autophosphorylated. However, the mutated recombinant protein in which Thr226 was replaced by Ala lost the ability to phosphorylate MBP, suggesting that Thr226 residue is essential for kinase activity. The MRK mRNA transcript in T. thermophila increased markedly upon temperature downshift from 35 to 15 degrees C (0.8 degrees C/min). Interestingly, osmotic shock either by sorbitol (100-200 mM) or NaCl (25-100 mM) also induced mRNA expression of the MRK in T. pyriformis. In addition, the activity of the kinase as determined by an immune complex kinase assay using MBP as a substrate was also induced by osmotic stress. This is the first demonstration of a MAPK-related kinase in the unicellular eukaryotic protozoan Tetrahymena that is induced by physical stresses such as cold temperature and osmolarity. The present results suggest that this MRK may function in the stress-signaling pathway in Tetrahymena cells.
Collapse
Affiliation(s)
- S Nakashima
- Department of Biochemistry, Gifu University School of Medicine, Tsukasamachi-40, Gifu 500-8705, Japan
| | | | | | | | | | | | | |
Collapse
|
55
|
Barizza E, Lo Schiavo F, Terzi M, Filippini F. Evidence suggesting protein tyrosine phosphorylation in plants depends on the developmental conditions. FEBS Lett 1999; 447:191-4. [PMID: 10214943 DOI: 10.1016/s0014-5793(99)00272-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protein tyrosine phosphorylation plays a central role in a variety of signal transduction pathways regulating animal cell growth and differentiation, but its relevance and role in plants are controversial and still largely unknown. We report here that a large number of proteins from all plant subcellular fractions are recognized by recombinant, highly specific, anti-phosphotyrosine antibodies. Protein tyrosine phosphorylation patterns vary among different adult plant tissues or somatic embryo stages and somatic embryogenesis is blocked in vivo by a cell-permeable tyrosyl-phosphorylation inhibitor, demonstrating the involvement of protein tyrosine phosphorylation in control of specific steps in plant development.
Collapse
Affiliation(s)
- E Barizza
- Dipartimento di Biologia, Padua, Italy
| | | | | | | |
Collapse
|
56
|
Abstract
The gaseous hormone ethylene induces diverse effects in plants throughout their life cycle. Ethylene response is regulated at multiple levels, from hormone synthesis and perception to signal transduction and transcriptional regulation. As more genes in the ethylene response pathway are cloned and characterized, they illustrate the precision with which signaling can be controlled. Wounding, pathogenic attack, flooding, fruit ripening, development, senescence, and ethylene treatment itself induce ethylene production. Ethylene binding to receptors with homology to two-component regulators triggers a kinase cascade that is propagated through the CTR1 Raf-like kinase and other components to the nucleus. Activation of the EIN3 family of nuclear proteins leads to induction of the relevant ethylene-responsive genes via other transcription factors, eliciting a response appropriate to the original stimulus.
Collapse
Affiliation(s)
- P R Johnson
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018, USA.
| | | |
Collapse
|
57
|
Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 1999; 79:143-80. [PMID: 9922370 DOI: 10.1152/physrev.1999.79.1.143] [Citation(s) in RCA: 1987] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) are serine-threonine protein kinases that are activated by diverse stimuli ranging from cytokines, growth factors, neurotransmitters, hormones, cellular stress, and cell adherence. Mitogen-activated protein kinases are expressed in all eukaryotic cells. The basic assembly of MAPK pathways is a three-component module conserved from yeast to humans. The MAPK module includes three kinases that establish a sequential activation pathway comprising a MAPK kinase kinase (MKKK), MAPK kinase (MKK), and MAPK. Currently, there have been 14 MKKK, 7 MKK, and 12 MAPK identified in mammalian cells. The mammalian MAPK can be subdivided into five families: MAPKerk1/2, MAPKp38, MAPKjnk, MAPKerk3/4, and MAPKerk5. Each MAPK family has distinct biological functions. In Saccharomyces cerevisiae, there are five MAPK pathways involved in mating, cell wall remodelling, nutrient deprivation, and responses to stress stimuli such as osmolarity changes. Component members of the yeast pathways have conserved counterparts in mammalian cells. The number of different MKKK in MAPK modules allows for the diversity of inputs capable of activating MAPK pathways. In this review, we define all known MAPK module kinases from yeast to humans, what is known about their regulation, defined MAPK substrates, and the function of MAPK in cell physiology.
Collapse
Affiliation(s)
- C Widmann
- Program in Molecular Signal Transduction, Division of Basic Sciences, National Jewish Medical and Research Center, Denver, Colorado, USA
| | | | | | | |
Collapse
|
58
|
Ichimura K, Mizoguchi T, Irie K, Morris P, Giraudat J, Matsumoto K, Shinozaki K. Isolation of ATMEKK1 (a MAP kinase kinase kinase)-interacting proteins and analysis of a MAP kinase cascade in Arabidopsis. Biochem Biophys Res Commun 1998; 253:532-43. [PMID: 9878570 DOI: 10.1006/bbrc.1998.9796] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In plants, a number of MAP kinase (MAPK), MAPK kinase (MAPKK), and MAPKK kinase (MAPKKK) homologues have been reported. However, there have been no reports of protein-protein interactions between these kinases or molecular analysis of MAPK cascades in higher plants. To analyze a possible MAPK cascade in Arabidopsis thaliana, we took two molecular approaches. One is the two-hybrid screening of ATMEKK1 (a MAPKKK)-interacting proteins; the other is an analysis of physical and functional interactions among isolated MAPK, MAPKK, and MAPKKK homologues from Arabidopsis. In two-hybrid screening using ATMEKK1 as bait, we isolated a novel MAPKK homologue, ATMKK2, a MAPK homologue, ATMPK4, and an unknown protein. ATMKK2 has high sequence similarity with MEK1 (a MAPKK) in Arabidopsis. Based on yeast two-hybrid analysis, we detected protein-protein interactions between ATMEKK1 and ATMKK2/MEK1 (MAPKKs), between ATMKK2/MEK1 and ATMPK4 (a MAPK), and between ATMPK4 and ATMEKK1. ATMPK4 and ATMKK2/MEK1 interacted with two distinct regions of ATMEKK1, the N-terminal regulatory domain and the C-terminal kinase domain, respectively. Coexpression of ATMEKK1 increased the ability of two closely related MAPKKs, ATMKK2 and MEK1, to complement a growth defect of the yeast pbs2 mutant. Coexpression of ATMPK4 and MEK1 complemented a growth defect of the yeast mpk1 and bck1 mutants. By contrast, other combinations of MAPKs and MAPKKs did not suppress these yeast mutations. These results suggest that ATMEKK1, ATMKK2/MEK1, and ATMPK4 may constitute a MAP kinase cascade.
Collapse
Affiliation(s)
- K Ichimura
- Laboratory of Plant Molecular Biology, Institute of Physical and Chemical Research (RIKEN), Tsukuba Life Science Center, Japan
| | | | | | | | | | | | | |
Collapse
|
59
|
Gupta R, Huang Y, Kieber J, Luan S. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:581-589. [PMID: 10036776 DOI: 10.1046/j.1365-313x.1998.00327.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) play a key role in plant responses to stress and pathogens. Activation and inactivation of MAPKs involve phosphorylation and dephosphorylation on both threonine and tyrosine residues in the kinase domain. Here we report the identification of an Arabidopsis gene encoding a dual-specificity protein phosphatase capable of hydrolysing both phosphoserine/threonine and phosphotyrosine in protein substrates. This enzyme, designated AtDsPTP1 (Arabidopsis thaliana dual-specificity protein tyrosine phosphatase), dephosphorylated and inactivated AtMPK4, a MAPK member from the same plant. Replacement of a highly conserved cysteine by serine abolished phosphatase activity of AtDsPTP1, indicating a conserved catalytic mechanism of dual-specificity protein phosphatases from all eukaryotes.
Collapse
Affiliation(s)
- R Gupta
- Department of Plant and Microbial Biology, University of California at Berkeley 94720, USA
| | | | | | | |
Collapse
|
60
|
Miyata S, Urao T, Yamaguchi-Shinozaki K, Shinozaki K. Characterization of genes for two-component phosphorelay mediators with a single HPt domain in Arabidopsis thaliana. FEBS Lett 1998; 437:11-4. [PMID: 9804162 DOI: 10.1016/s0014-5793(98)01188-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Three cDNAs that encode two-component phosphorelay-mediator-like proteins were cloned from Arabidopsis thaliana. Putative proteins (ATHP1-3) contain an HPt (Histidine-containing Phospho transfer)-like domain with a conserved histidine and some invariant residues that are involved in phosphorelay. Growth retardation of YPD1-disrupted yeast cells was reversed with ATHPs, which indicates that ATHPs function as phosphorelay mediators in yeast cells. The ATHP genes are expressed more in roots than in other tissues, similar to the expression of genes for a sensor histidine kinase, ATHK1, and response regulators ATRR1-4. These results suggest that ATHPs function as two-component phosphorelay mediators between sensor histidine kinase and response regulators in Arabidopsis.
Collapse
Affiliation(s)
- S Miyata
- Biological Resources Division, Japan International Research Center for Agricultural Science, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki
| | | | | | | |
Collapse
|
61
|
Mizoguchi T, Ichimura K, Irie K, Morris P, Giraudat J, Matsumoto K, Shinozaki K. Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants. FEBS Lett 1998; 437:56-60. [PMID: 9804171 DOI: 10.1016/s0014-5793(98)01197-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A possible MAP kinase (MAPK) cascade of Arabidopsis thaliana was identified on the basis of both yeast 2-hybrid analysis and complementation analysis of yeast mutants. Specific protein-protein interactions between ATMPK4 (a MAPK) and MEK1 (a MAPKK) and interactions between MEK1 and ATMEKK1 (a MAPKKK) were detected by using the 2-hybrid system. A growth defect of the yeast mpk1delta mutant was reversed by coexpression of ATMPK4 and MEK1. Coexpression of the N-terminal deletion form of ATMEKK1 increased the ability of MEK1 to suppress a growth defect of the yeast pbs2delta mutant. These results suggest that ATMPK4, MEK1, and ATMEKK1 may interact with each other and constitute a specific MAPK cascade in Arabidopsis. This is the first demonstration of a possible MAPK cascade in plants.
Collapse
Affiliation(s)
- T Mizoguchi
- Laboratory of Plant Molecular Biology, Institute of Physical and Chemical Research (RIKEN), Tsukuba Life Science Center, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
62
|
Tena G, Renaudin JP. Cytosolic acidification but not auxin at physiological concentration is an activator of MAP kinases in tobacco cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:173-82. [PMID: 9839464 DOI: 10.1046/j.1365-313x.1998.00283.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In higher plants, MAP kinase cascades are involved in the transduction of numerous stress-related signals but much less is known about the effect of mitogenic signals. We have analysed MAP kinase activation in tobacco cells after treatment by auxin, a growth factor required at physiological concentrations for mitosis in plant cell cultures. From in-gel assay of myelin basic protein kinase and from immunochemical detection of ERK related kinases, we show that the mitogenic effect of auxin, which was confirmed by the specific increase of several mRNAs species, did not rely on MAP kinase activation within the first 2 hours. These data contest previous results which could be due to the activation of MAP kinase by a signal other than auxin. In the second part of this study, we show that the treatment of the cells with high concentrations of various weak lipophilic acids such as auxin, in a nonphysiological concentration range, butyric or acetic acid is sufficient to activate transiently a MAP kinase. The data show that MAP kinase activation is the consequence of cytosolic acidification. Moreover, it is not sensitive to the protein kinase inhibitor staurosporine. These results suggest a functional role for cytosolic acidification as a second messenger mediating MAP kinase activation in the response of plant cells to various stresses.
Collapse
Affiliation(s)
- G Tena
- Laboratory of Plant Physiology and Molecular Biochemistry, National Institute for Agronomic Research, Montpellier, France
| | | |
Collapse
|
63
|
Urao T, Yakubov B, Yamaguchi-Shinozaki K, Shinozaki K. Stress-responsive expression of genes for two-component response regulator-like proteins in Arabidopsis thaliana. FEBS Lett 1998; 427:175-8. [PMID: 9607306 DOI: 10.1016/s0014-5793(98)00418-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Four cDNAs that encode two-component response regulator-like proteins were cloned from Arabidopsis thaliana. Putative proteins (ATRR1-4) contain a receiver domain with a conserved aspartate residue - a possible phosphorylation site - at the N-terminal half. ATRR2 lacks the C-terminal half; the others contain a C-terminal domain abundant in acidic amino acids or proline residues. ATRR1 and ATRR2 are expressed more in roots than in other tissues and are induced by low temperature, dehydration and high salinity. Levels of ATRR3 and ATRR4 were not affected by stress treatments. These results suggest that ATRRs play distinct physiological roles in Arabidopsis, and that some are involved in stress responses.
Collapse
Affiliation(s)
- T Urao
- Biological Resources Division, Japan International Research Center for Agricultural Science, Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
64
|
Wiese M. A mitogen-activated protein (MAP) kinase homologue of Leishmania mexicana is essential for parasite survival in the infected host. EMBO J 1998; 17:2619-28. [PMID: 9564044 PMCID: PMC1170603 DOI: 10.1093/emboj/17.9.2619] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The parasitic protozoon Leishmania mexicana undergoes two major developmental stages in its life cycle exhibiting profound physiological and morphological differences, the promastigotes in the insect vector and the amastigotes in mammalian macrophages. A deletion mutant, Deltalmsap1/2, for the secreted acid phosphatase (SAP) gene locus, comprising the two SAP genes separated by an intergenic region of approximately 11.5 kb, lost its ability to cause a progressive disease in Balb/c mice. While in vitro growth of promastigotes, invasion of host cells and differentiation from promastigotes to amastigotes was indistinguishable from the wild-type, the mutant parasites ceased to proliferate when transformed to amastigotes in infected macrophages or in a macrophage-free in vitro differentiation system, suggesting a stage-specific growth arrest. This phenotype could be reverted by complementation with 6 kb of the intergenic region of the SAP gene locus. Sequence analysis identified two open reading frames, both encoding single copy genes; one gene product shows high homology to mitogen-activated protein (MAP) kinases. Complementation experiments revealed that the MAP kinase homologue, designated LMPK, is required and is sufficient to restore the infectivity of the Deltalmsap1/2 mutant. Therefore, LMPK is a kinase that is essential for the survival of L.mexicana in the infected host by affecting the cell division of the amastigotes.
Collapse
Affiliation(s)
- M Wiese
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, Corrensstrasse 38, D-72076 Tübingen, Germany.
| |
Collapse
|
65
|
Lessard P, Kreis M, Thomas M. [Protein phosphatases and protein kinases in higher plants]. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1997; 320:675-88. [PMID: 9377173 DOI: 10.1016/s0764-4469(97)84815-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The recent gain in knowledge concerning enzymes involved in signal transduction pathways is a direct consequence of the considerable advances made in molecular biology. Protein kinases and protein phosphatases, the two major enzymes implicated in post-translational modifications, have been studied in particular. The number of characterized plant genes and/or cDNAs encoding these enzymes is increasing everyday. Since 1991, 26 genes and cDNAs coding for plant protein phosphatases have been isolated and characterized. The huge number of protein kinases (estimated at several thousands) makes it impossible to give an exhaustive list of the genes already identified, but a classification of these enzymes, based on phylogenetic criteria, allows us to appreciate the range of functions this protein family may play in plants.
Collapse
Affiliation(s)
- P Lessard
- Laboratoire de biologie du développement des plantes, université de Paris-Sud, Orsay, France.
| | | | | |
Collapse
|
66
|
Mizoguchi T, Ichimura K, Shinozaki K. Environmental stress response in plants: the role of mitogen-activated protein kinases. Trends Biotechnol 1997; 15:15-9. [PMID: 9032988 DOI: 10.1016/s0167-7799(96)10074-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades have essential roles in diverse intracellular signaling processes in plants, animals and yeasts. In plants, transcription of genes encoding protein kinases involved in MAPK cascades is upregulated by environmental stresses and plant hormones; in addition, MAPK-like kinase activities are transiently activated in response to environmental stresses. Consequently, MAPK cascades are now thought to have important roles in stress signal transduction pathways in higher plants.
Collapse
Affiliation(s)
- T Mizoguchi
- Laboratory of Plant Molecular Biology, Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Japan
| | | | | |
Collapse
|
67
|
Toda T, Dhut S, Superti-Furga G, Gotoh Y, Nishida E, Sugiura R, Kuno T. The fission yeast pmk1+ gene encodes a novel mitogen-activated protein kinase homolog which regulates cell integrity and functions coordinately with the protein kinase C pathway. Mol Cell Biol 1996; 16:6752-64. [PMID: 8943330 PMCID: PMC231678 DOI: 10.1128/mcb.16.12.6752] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have isolated a gene, pmk1+, a third mitogen-activated protein kinase (MAPK) gene homolog from the fission yeast Schizosaccharomyces pombe. The predicted amino acid sequence shows the most homology (63 to 65% identity) to those of budding yeast Saccharomyces Mpk1 and Candida Mkc1. The Pmk1 protein contains phosphorylated tyrosines, and the level of tyrosine phosphorylation was increased in the dsp1 mutant which lacks an attenuating phosphatase for Pmk1. The level of tyrosine phosphorylation appears constant during hypotonic or heat shock treatment. The cells with pmk1 deleted (delta pmk1) are viable but show various defective phenotypes, including cell wall weakness, abnormal cell shape, a cytokinesis defect, and altered sensitivities to cations, such as hypersensitivity to potassium and resistance to sodium. Consistent with a high degree of conservation of amino acid sequence, multicopy plasmids containing the MPK1 gene rescued the defective phenotypes of the delta pmk1 mutant. The frog MAPK gene also suppressed the pmk1 disruptant. The results of genetic analysis indicated that Pmk1 lies on a novel MAPK pathway which does not overlap functionally with the other two MAPK pathways, the Spk1-dependent mating signal pathway and Sty1/Spc1/Phh1-dependent stress-sensing pathway. In Saccharomyces cerevisiae, Mpk1 is involved in cell wall integrity and functions downstream of the protein kinase C homolog. In contrast, in S. pombe, Pmk1 may not act in a linear manner with respect to fission yeast protein kinase C homologs. Interestingly, however, these two pathways are not independent; instead, they regulate cell integrity in a coordinate manner.
Collapse
Affiliation(s)
- T Toda
- Cell Regulation Laboratory, Imperial Cancer Research Fund, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
68
|
Doerig CM, Parzy D, Langsley G, Horrocks P, Carter R, Doerig CD. A MAP kinase homologue from the human malaria parasite, Plasmodium falciparum. Gene X 1996; 177:1-6. [PMID: 8921836 DOI: 10.1016/0378-1119(96)00281-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pfmap-1, a gene encoding a novel protein kinase, has been identified in the human malaria parasite Plasmodium falciparum, using the polymerase chain reaction with degenerate oligodeoxyribonucleotides designed to hybridise to conserved regions of cdc2-related kinases. Computer comparison with other protein kinases strongly suggests that the protein encoded by this gene is closely related to mitogen-activated protein (MAP) kinases, which play important roles in eukaryotic adaptative response and signal transduction. In addition to the conserved MAP kinase catalytic domain, Pfmap-1 contains a highly charged C-terminal extension that includes two sets of repeated amino acid motifs. Pfmap-1 is located on chromosome 14 of P.falciparum, and its mRNA has a size of 3.7 kb.
Collapse
Affiliation(s)
- C M Doerig
- Unité INSERM 399, Faculté de Médecine de Marseille, France
| | | | | | | | | | | |
Collapse
|
69
|
Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H. Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci U S A 1996; 93:11274-9. [PMID: 8855346 PMCID: PMC38320 DOI: 10.1073/pnas.93.20.11274] [Citation(s) in RCA: 254] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Yeast and animals use mitogen-activated protein (MAP) kinase cascades to mediate stress and extracellular signals. We have tested whether MAP kinases are involved in mediating environmental stress responses in plants. Using specific peptide antibodies that were raised against different alfalfa MAP kinases, we found exclusive activation of p44MMK4 kinase in drought- and cold-treated plants. p44MMK4 kinase was transiently activated by these treatments and was correlated with a shift in the electrophoretic mobility of the p44MMK4 protein. Although transcript levels of the MMK4 gene accumulated after drought and cold treatment, no changes in p44MMK4 steady state protein levels were observed, indicating a posttranslational activation mechanism. Extreme temperatures, drought, and salt stress are considered to be different forms of osmotic stress. However, high salt concentrations or heat shock did not induce activation of p44MMK4, indicating the existence of distinct mechanisms to mediate different stresses in alfalfa. Stress adaptation in plants is mediated by abscisic acid (ABA)-dependent and ABA-independent processes. Although ABA rapidly induced the transcription of an ABA-inducible marker gene, MMK4 transcript levels did not increase and p44MMK4 kinase was not activated. These data indicate that the MMK4 kinase pathway mediates drought and cold signaling independently of ABA.
Collapse
Affiliation(s)
- C Jonak
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
70
|
Krysan PJ, Young JC, Tax F, Sussman MR. Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport. Proc Natl Acad Sci U S A 1996; 93:8145-50. [PMID: 8755618 PMCID: PMC38890 DOI: 10.1073/pnas.93.15.8145] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The transferred DNA (T-DNA) of Agrobacterium tumefaciens serves as an insertional mutagen once integrated into a host plant's genome. As a means of facilitating reverse genetic analysis in Arabidopsis thaliana, we have developed a method that allows one to search for plants carrying F-DNA insertions within any sequenced Arabidopsis gene. Using PCR, we screened a collection of 9100 independent T-DNA-transformed Arabidopsis lines and found 17 T-DNA insertions within the 63 genes analyzed. The genes surveyed include members of various gene families involved in signal transduction and ion transport. As an example, data are shown for a T-DNA insertion that was found within CPK-9, a member of the gene family encoding calmodulin-domain protein kinases.
Collapse
Affiliation(s)
- P J Krysan
- Cell and Molecular Biology Program and the Department of Horticulture, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
71
|
Abstract
A variety of plant genes are induced by drought and cold stress, and they are thought to be involved in the stress tolerance of the plant. At least five signal transduction pathways control these genes: two are dependent on abscisic acid (ABA), and the others are ABA-independent. A novel cis-acting element involved in one of the ABA-independent signal transduction pathways has been identified. In addition, a number of genes for protein kinases and transcription factors thought to be involved in the stress signal transduction cascades have been shown to be induced by environmental stresses.
Collapse
Affiliation(s)
- K Shinozaki
- Laboratory of Plant Molecular Biology, The Institute of Physical and Chemical Research (RIKEN), Tsukuba Life Science Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305, Japan.
| | | |
Collapse
|
72
|
|
73
|
Covic L, Lew RR. Arabidopsis thaliana cDNA isolated by functional complementation shows homology to serine/threonine protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1305:125-9. [PMID: 8597596 DOI: 10.1016/0167-4781(95)00233-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The yeast Saccharomyces cerevisiae ste6 mutant is defective in transport of a-mating factor, resulting in an inability of ste6 a cells to mate with alpha cells. The gene encodes an ATP-binding cassette, ABC transporter. We used functional complementation of a yeast ste6 mutant with an Arabidopsis thaliana expression library in an attempt to clone an Arabidopsis homolog. Sequence analysis of the isolated Arabidopsis complementing cDNA however showed no homology to the STE6 gene. High sequence similarity was detected to members of the mitogen-activated serine/threonine protein (MAP) kinase family involved in signal transduction: STE20, STE11, BCK1, Byr2 and p65PAK. The Arabidopsis clone failed to complement a fus3/kss1 mutant of S. cerevisiae, but did complement a defect in ste11, ste20, as well as ste6. The isolated clone encodes a protein that is truncated at its amino-terminal, and might function in a similar way as a dominant STE11 truncation allele. These results suggest that the Arabidopsis cDNA encodes a putative serine/threonine kinase that can function in the mating response pathway upstream of FUS3/KSS1 in S. cerevisiae, at the level of STE11 gene. Interestingly, this clone is able to restore the ability of the ste6 yeast mutant to export a-factor.
Collapse
Affiliation(s)
- L Covic
- Department of Biology, York University, North York, ON, Canada
| | | |
Collapse
|
74
|
Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A 1996; 93:765-9. [PMID: 8570631 PMCID: PMC40129 DOI: 10.1073/pnas.93.2.765] [Citation(s) in RCA: 298] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We describe here the cloning and characterization of a cDNA encoding a protein kinase that has high sequence homology to members of the mitogen-activated protein kinase (MAPK) kinase kinase (MAPKKK or MEKK) family; this cDNA is named cATMEKKI (Arabidopsis thaliana MAP kinase or ERK kinase kinase 1). The catalytic domain of the putative ATMEKK1 protein shows approximately 40% identity with the amino acid sequences of the catalytic domains of MAPKKKs (such as Byr2 from Schizosaccharomyces pombe, Ste11 from Saccharomyces cerevisiae, Bck1 from S. cerevisiae, MEKK from mouse, and NPK1 from tobacco). In yeast cells that overexpress ATMEKK1, the protein kinase replaces Ste11 in responding to mating pheromone. In this study, the expression of three protein kinases was examined by Northern blot analyses: ATMEKK1 (structurally related to MAPKKK), ATMPK3 (structurally related to MAPK), and ATPK19 (structurally related to ribosomal S6 kinase). The mRNA levels of these three protein kinases increased markedly and simultaneously in response to touch, cold, and salinity stress. These results suggest that MAP kinase cascades, which are thought to respond to a variety of extracellular signals, are regulated not only at the posttranslational level but also at the transcriptional level in plants and that MAP kinase cascades in plants may function in transducing signals in the presence of environmental stress.
Collapse
Affiliation(s)
- T Mizoguchi
- Laboratory of Plant Molecular Biology, Institute of Physical and Chemical Research (RIKEN), Tsukuba Life Science Center, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
75
|
Jonak C, Kiegerl S, Lloyd C, Chan J, Hirt H. MMK2, a novel alfalfa MAP kinase, specifically complements the yeast MPK1 function. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:686-94. [PMID: 7476871 DOI: 10.1007/bf02191708] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases that are activated in response to a variety of stimuli. Here we report the isolation of an alfalfa cDNA encoding a functional MAP kinase, termed MMK2. The predicted amino acid sequence of MMK2 shares 65% identity with a previously identified alfalfa MAP kinase, termed MMK1. Both alfalfa cDNA clones encode functional kinases when expressed in bacteria, undergoing autophosphorylation and activation to phosphorylate myelin basic protein in vitro. However, only MMK2 was able to phosphorylate a 39 kDa protein from the detergent-resistant cytoskeleton of carrot cells. The distinctiveness of MMK2 was further shown by complementation analysis of three different MAP kinase-dependent yeast pathways; this revealed a highly specific replacement of the yeast MPK1(SLT2) kinase by MMK2, which was found to be dependent on activation by the upstream regulators of the pathway. These results establish the existence of MAP kinases with different characteristics in higher plants, suggesting the possibility that they could mediate different cellular responses.
Collapse
Affiliation(s)
- C Jonak
- Institute of Microbiology and Genetics, Biocenter Vienna, Austria
| | | | | | | | | |
Collapse
|
76
|
Wilson C, Anglmayer R, Vicente O, Heberle-Bors E. Molecular cloning, functional expression in Escherichia coli, and characterization of multiple mitogen-activated-protein kinases from tobacco. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:249-57. [PMID: 7588752 DOI: 10.1111/j.1432-1033.1995.249_1.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A screening of four tobacco cDNA libraries by PCR, using degenerate oligonucleotides corresponding to motifs conserved in mitogen-activated-protein kinases from animals and yeasts, resulted in the isolation of five different PCR fragments that showed high sequence similarity to mitogen-activated-protein kinases from other organisms. Full-length cDNAs were obtained for two of these, ntf4 and ntf6, and we have previously reported the isolation of one of the other cDNAs, ntf3 [Wilson, C., Eller, N., Gartner, A., Vicente, O. & Heberle-Bors, E. (1993) Plant Mol. Biol. 23, 543-551]. The three cDNAs, ntf3, ntf4 and ntf6, as well as a mutated form of ntf3, were fused to the glutathione-S-transferase gene and expressed as fusion proteins in Escherichia coli. All three wild-type recombinant proteins, with or without the glutathione-S-transferase fragment, are capable of autophosphorylation and phosphorylate myelin basic protein, in a reaction that is more strongly supported by Mn2+ than by Mg2+, while the kinase-negative Ntf3 mutant did not show any activity. Western-blot analysis showed that the recombinant proteins autophosphorylate on tyrosine residues and are recognized by antibodies prepared against mammalian mitogen-activated-protein kinases.
Collapse
Affiliation(s)
- C Wilson
- Vienna Biocenter, Institute of Microbiology and Genetics, University of Vienna, Austria
| | | | | | | |
Collapse
|
77
|
Usami S, Banno H, Ito Y, Nishihama R, Machida Y. Cutting activates a 46-kilodalton protein kinase in plants. Proc Natl Acad Sci U S A 1995; 92:8660-4. [PMID: 11607579 PMCID: PMC41026 DOI: 10.1073/pnas.92.19.8660] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using SDS/polyacrylamide gels that contained myelin basic protein, we identified a 46-kDa protein kinase in tobacco that is transiently activated by cutting. Although the activity of the kinase was rarely detectable in mature leaves, marked activity became apparent within several minutes after isolation of leaf discs and subsided within 30 min. In the presence of cycloheximide (CHX), the kinase activity did not diminish after the isolation over the course of 2 hr, suggesting that protein synthesis was not required for the activation of the kinase. A second cutting of leaf discs between 30 min and 60 min after the isolation failed to activate the kinase, whereas a second cutting given 3 hr after isolation apparently activated the kinase. These results suggest that the 46-kDa protein kinase is desensitized immediately after the first activation, which can be blocked by CHX, but the response ability recovers with time. When protein extracts containing the active kinase were treated with serine/threonine-specific or tyrosine-specific protein phosphatase, the kinase activity was abolished. After immunoprecipitation with antibody against phosphotyrosine, activity of the kinase was recovered in the immunoprecipitate. These results suggest that the active form of the kinase is phosphorylated at both serine/threonine and tyrosine residues. It seems likely that the 46-kDa protein kinase can be activated by dual phosphorylation. The activity of a 46-kDa protein kinase was also detected in leaves of a wide variety of plant species including dicotyledonous and monocotyledonous plants. We propose the name PMSAP (plant multisignal-activated protein) kinase for this kinase because the kinase was also activated by various signals other than cutting.
Collapse
Affiliation(s)
- S Usami
- Department of Biology, Faculty of Science, Nagoya University, Nagoya, Japan
| | | | | | | | | |
Collapse
|
78
|
Abstract
Ethylene (C2H4), the chemically simplest plant hormone, is among the best-characterized plant growth regulators. It participates in a variety of stress responses and developmental processes. Genetic studies in Arabidopsis have defined a number of genes in the ethylene signal transduction pathway. Isolation of two of these genes has revealed that plants sense this gas through a combination of proteins that resemble both prokaryotic and eukaryotic signaling proteins. Ethylene signaling components are likely conserved for responses as diverse as cell elongation, cell fate patterning in the root epidermis, and fruit ripening. Genetic manipulation of these genes will provide agriculture with new tools to prevent or modify ethylene responses in a variety of plants.
Collapse
Affiliation(s)
- J R Ecker
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018, USA
| |
Collapse
|
79
|
Huttly AK, Phillips AL. Gibberellin-regulated expression in oat aleurone cells of two kinases that show homology to MAP kinase and a ribosomal protein kinase. PLANT MOLECULAR BIOLOGY 1995; 27:1043-52. [PMID: 7766874 DOI: 10.1007/bf00037031] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
cDNA fragments from ten different protein kinases expressed in Avena sativa aleurone cells were amplified from mRNA by RT-PCR with degenerate primers. These could be classified into five groups: Aspk1-3 showed homology to the Snf1-related protein kinases, Aspk4-5 to a wheat ABA up-regulated protein kinase, Aspk6-8 to the Ca-dependent, calmodulin-independent protein kinase family, Aspk9 encoded a MAP kinase and Aspk10 was closely related to a novel Arabidopsis ribosomal protein kinase. GA caused a rapid increase in transcripts hybridising to Aspk10, while inhibiting the dramatic accumulation of transcripts hybridising to Aspk9 that occurred in the absence of GA.
Collapse
Affiliation(s)
- A K Huttly
- IACR-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, UK
| | | |
Collapse
|
80
|
Shibata W, Banno H, Ito Y, Hirano K, Irie K, Usami S, Machida C, Machida Y. A tobacco protein kinase, NPK2, has a domain homologous to a domain found in activators of mitogen-activated protein kinases (MAPKKs). MOLECULAR & GENERAL GENETICS : MGG 1995; 246:401-10. [PMID: 7891653 DOI: 10.1007/bf00290443] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A cDNA (cNPK2) that encodes a protein of 518 amino acids was isolated from a library prepared from poly(A)+ RNAs of tobacco cells in suspension culture. The N-terminal half of the predicted NPK2 protein is similar in amino acid sequence to the catalytic domains of kinases that activate mitogen-activated protein kinases (designated here MAPKKs) from various animals and to those of yeast homologs of MAPKKs. The N-terminal domain of NPK2 was produced as a fusion protein in Escherichia coli, and the purified fusion protein was found to be capable of autophosphorylation of threonine and serine residues. These results indicate that the N-terminal domain of NPK2 has activity of a serine/threonine protein kinase. Southern blot analysis showed that genomic DNAs from various plant species, including Arabidopsis thaliana and sweet potato, hybridized strongly with cNPK2, indicating that these plants also have genes that are closely related to the gene for NPK2. The structural similarity between the catalytic domain of NPK2 and those of MAPKKs and their homologs suggests that tobacco NPK2 corresponds to MAPKKs of other organisms. Given the existence of plant homologs of an MAP kinase and tobacco NPK1, which is structurally and functionally homologous to one of the activator kinases of yeast homologs of MAPKK (MAPKKKs), it seems likely that a signal transduction pathway mediated by a protein kinase cascade that is analogous to the MAP kinase cascades proposed in yeasts and animals, is also conserved in plants.
Collapse
Affiliation(s)
- W Shibata
- Department of Biology, Faculty of Science, Nagoya University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Decroocq-Ferrant V, Decroocq S, Van Went J, Schmidt E, Kreis M. A homologue of the MAP/ERK family of protein kinase genes is expressed in vegetative and in female reproductive organs of Petunia hybrida. PLANT MOLECULAR BIOLOGY 1995; 27:339-350. [PMID: 7888623 DOI: 10.1007/bf00020188] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The mitogen activated protein (MAP) kinase pathway of eukaryotes is stimulated by many growth factors and is required for the integration of multiple cellular signals. In order to study the function of MAP kinases during plant ovule development we have synthesized a Petunia hybrida ovule-specific cDNA library and screened for MAP protein kinase-related sequences using a DNA probe obtained by PCR. A full-length cDNA clone was identified (PMEK for Petunia hybrida MAP/ERK-related protein kinase) and shown to encode a protein related to the family of MAP/ERK protein kinases. Southern blot analysis showed that PMEK is a member of a small multigene family in P. hybrida. The cDNA codes for a protein (PMEK1) of 44.4 kDa with an overall sequence identity of 44% to the products of the mammalian ERK/MAP kinase gene, and the budding yeast KSS1 and FUS3 genes. PMEK1 displays 96 and 80% identity respectively with the tobacco NTF3 and Arabidopsis ATMPK1 kinases, and only 50% to the more distantly related plant MAP kinase MsERK1 from alfalfa. The two phosphorylation sites found in the loop between subdomain VII and VIII in all the other MAP kinases are also present in PMEK1. RNA gel blot and RT-PCR analyses demonstrated that PMEK1 is expressed in vegetative organs and preferentially accumulated in female reproductive organs of P. hybrida. In situ hybridization experiments showed that in the reproductive organs PMEK1 is expressed only in the ovary and not in the stamen.
Collapse
Affiliation(s)
- V Decroocq-Ferrant
- Université de Paris-Sud, IBP, URA-CNRS 1128, Biologie du Développement des Plantes, Orsay, France
| | | | | | | | | |
Collapse
|