51
|
Liu M, Chung S, Shelness GS, Parks JS. Hepatic ABCA1 and VLDL triglyceride production. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:770-7. [PMID: 22001232 PMCID: PMC3272310 DOI: 10.1016/j.bbalip.2011.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 02/04/2023]
Abstract
Elevated plasma triglyceride (TG) and reduced high density lipoprotein (HDL) concentrations are prominent features of metabolic syndrome (MS) and type 2 diabetes (T2D). Individuals with Tangier disease also have elevated plasma TG concentrations and a near absence of HDL, resulting from mutations in ATP binding cassette transporter A1 (ABCA1), which facilitates the efflux of cellular phospholipid and free cholesterol to assemble with apolipoprotein A-I (apoA-I), forming nascent HDL particles. In this review, we summarize studies focused on the regulation of hepatic very low density lipoprotein (VLDL) TG production, with particular attention on recent evidence connecting hepatic ABCA1 expression to VLDL, LDL, and HDL metabolism. Silencing ABCA1 in McArdle rat hepatoma cells results in diminished assembly of large (>10nm) nascent HDL particles, diminished PI3 kinase activation, and increased secretion of large, TG-enriched VLDL1 particles. Hepatocyte-specific ABCA1 knockout (HSKO) mice have a similar plasma lipid phenotype as Tangier disease subjects, with a two-fold elevation of plasma VLDL TG, 50% lower LDL, and 80% reduction in HDL concentrations. This lipid phenotype arises from increased hepatic secretion of VLDL1 particles, increased hepatic uptake of plasma LDL by the LDL receptor, elimination of nascent HDL particle assembly by the liver, and hypercatabolism of apoA-I by the kidney. These studies highlight a novel role for hepatic ABCA1 in the metabolism of all three major classes of plasma lipoproteins and provide a metabolic link between elevated TG and reduced HDL levels that are a common feature of Tangier disease, MS, and T2D. This article is part of a Special Issue entitled: Triglyceride Metabolism and Disease.
Collapse
Affiliation(s)
- Mingxia Liu
- Department of Pathology/Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | |
Collapse
|
52
|
Meurs I, Calpe-Berdiel L, Habets KLL, Zhao Y, Korporaal SJA, Mommaas AM, Josselin E, Hildebrand RB, Ye D, Out R, Kuiper J, Van Berkel TJC, Chimini G, Van Eck M. Effects of deletion of macrophage ABCA7 on lipid metabolism and the development of atherosclerosis in the presence and absence of ABCA1. PLoS One 2012; 7:e30984. [PMID: 22403608 PMCID: PMC3293875 DOI: 10.1371/journal.pone.0030984] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/29/2011] [Indexed: 11/19/2022] Open
Abstract
ABCA7, a close relative of ABCA1 which facilitates cholesterol efflux to lipid-poor apoproteins, has been implicated in macrophage lipid efflux and clearance of apoptotic cells in in vitro studies. In the current study, we investigated the in vivo effects of macrophage ABCA7 deficiency on lipid metabolism and atherosclerosis. Chimeras with dysfunctional ABCA7 in macrophages and other blood cells were generated by transplantation of bone marrow from ABCA7 knockout (KO) mice into irradiated low-density lipoprotein receptor (LDLr) KO mice. Unexpectedly, macrophage ABCA7 deficiency did not significantly affect atherosclerosis susceptibility of LDLr KO mice after 10 weeks Western-type diet feeding. However, ABCA7 deficiency was associated with 2-fold (p<0.05) higher macrophage ABCA1 mRNA expression levels. Combined disruption of ABCA1 and ABCA7 in bone-marrow-derived cells increased atherosclerotic lesion development (1.5-fold (p>0.05) as compared to wild type transplanted mice. However, single deletion of ABCA1 had a similar effect (1.8-fold, p<0.05). Macrophage foam cell accumulation in the peritoneal cavity was reduced in ABCA1/ABCA7 dKO transplanted animals as compared to single ABCA1 KO transplanted mice, which was associated with increased ABCG1 expression. Interestingly, spleens of ABCA1/ABCA7 double KO transplanted mice were significantly larger as compared to the other 3 groups and showed massive macrophage lipid accumulation, a reduction in CD3+ T-cells, and increased expression of key regulators of erythropoiesis. In conclusion, deletion of ABCA7 in bone marrow-derived cells does not affect atherogenesis in the arterial wall neither in the absence or presence of ABCA1. Interestingly, combined deletion of bone marrow ABCA1 and ABCA7 causes severe splenomegaly associated with cellular lipid accumulation, a reduction in splenic CD3+ T cells, and induced markers of erythropoeisis. Our data indicate that ABCA7 may play a role in T cell proliferation and erythropoeisis in spleen.
Collapse
Affiliation(s)
- Illiana Meurs
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
- Current position at Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Calpe-Berdiel
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Kim L. L. Habets
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Ying Zhao
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Suzanne J. A. Korporaal
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - A. Mieke Mommaas
- Electron Microscopy Section, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emmanuelle Josselin
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Université de la Méditerranée, Marseille, France
| | - Reeni B. Hildebrand
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Dan Ye
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Ruud Out
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Theo J. C. Van Berkel
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Giovanna Chimini
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Université de la Méditerranée, Marseille, France
| | - Miranda Van Eck
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
53
|
Lee J, Park Y, Koo SI. ATP-binding cassette transporter A1 and HDL metabolism: effects of fatty acids. J Nutr Biochem 2011; 23:1-7. [PMID: 21684139 DOI: 10.1016/j.jnutbio.2011.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/14/2011] [Accepted: 03/18/2011] [Indexed: 01/08/2023]
Abstract
Ample evidence indicates that dietary fatty acids alter the plasma levels of high-density lipoprotein cholesterol (HDL-C). However, the mechanisms underlying the effects of fatty acids still remain elusive. Recent advances in our understanding of ATP-binding cassette transporter A1 (ABCA1) function and regulation have provided a valuable insight into the mechanisms by which fatty acids may affect plasma HDL-C levels. ABCA1 mediates the assembly of phospholipids and free cholesterol with apolipoprotein A-I, which is a critical step for HDL biogenesis. Studies have shown that unsaturated fatty acids, but not saturated fatty acids, repress the expression of ABCA1 in vitro. Although information on mechanisms for the fatty-acid-mediated regulation of ABCA1 expression is still limited and controversial, recent evidence suggests that unsaturated fatty acids inhibit the expression of ABCA1 at the transcriptional and posttranscriptional levels. The transcriptional repression of ABCA1 expression by unsaturated fatty acids is likely liver X receptor dependent. Evidence also suggests that histone deacetylation may play a role in the repression. Posttranscriptionally, unsaturated fatty acids may facilitate ABCA1 protein degradation, which may involve phosphorylation of ABCA1 by protein kinases. Further studies are warranted to better understand the role of dietary fatty acids in HDL metabolism and their effects on cardiovascular health.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut 06269, USA.
| | | | | |
Collapse
|
54
|
Demina EP, Miroshnikova VV, Rodygina TI, Kurianov PS, Vinogradov AG, Denisenko AD, Schwarzman AL. ABCA1 gene expression in peripheral blood lymphocytes and macrophages in patients with atherosclerosis. Mol Biol 2011; 45:258-66. [DOI: 10.1134/s0026893310061019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
55
|
Cao XL, Yin RX, Wu DF, Miao L, Aung LHH, Hu XJ, Li Q, Yan TT, Lin WX, Pan SL. Genetic variant of V825I in the ATP-binding cassette transporter A1 gene and serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Lipids Health Dis 2011; 10:14. [PMID: 21247457 PMCID: PMC3034691 DOI: 10.1186/1476-511x-10-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 01/19/2011] [Indexed: 12/04/2022] Open
Abstract
Background Several genetic variants in the ATP-binding cassette transporter A1 (ABCA1) gene have associated with modifications of serum high-density lipoprotein cholesterol (HDL-C) levels and the susceptibility for coronary heart disease, but the findings are still controversial in diverse racial/ethnic groups. Bai Ku Yao is an isolated subgroup of the Yao minority in southern China. The present study was undertaken to detect the possible association of V825I (rs2066715) polymorphism in the ABCA1 gene and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Methods A total of 677 subjects of Bai Ku Yao and 646 participants of Han Chinese were randomly selected from our previous stratified randomized cluster samples. Polymerase chain reaction and restriction fragment length polymorphism assay combined with gel electrophoresis were performed for the genotyping of V825I variant, and then confirmed by direct sequencing. Results The levels of serum total cholesterol (TC), HDL-C, apolipoprotein (Apo) AI and ApoB were lower in Bai Ku Yao than in Han (P < 0.01 for all). The frequency of G and A alleles was 57.4% and 42.6% in Bai Ku Yao, and 57.7% and 42.3% in Han (P > 0.05); respectively. The frequency of GG, GA and AA genotypes was 33.7%, 47.4% and 18.9% in Bai Ku Yao, and 33.4%, 48.6% and 18.0% in Han (P > 0.05); respectively. There was no difference in the genotypic and allelic frequencies between males and females in the both ethnic groups. The subjects with AA genotype in Bai Ku Yao had higher serum TC levels than the subjects with GG and GA genotypes (P < 0.05). The participants with AA genotype in Han had lower serum HDL-C and ApoAI levels than the participants with GG and GA genotypes (P < 0.05 for each), but these results were found in males but not in females. Multivariate linear regression analysis showed that the levels of TC in Bai Ku Yao and HDL-C and ApoAI in male Han were correlated with genotypes (P < 0.05 for all). Serum lipid parameters were also correlated with sex, age, body mass index, alcohol consumption, and blood pressure in both ethnic groups (P < 0.05-0.001). Conclusion The present study suggests that the V825I polymorphism in the ABCA1 gene is associated with male serum HDL-C and ApoAI levels in the Han, and serum TC levels in the Bai Ku Yao populations. The difference in the association of V825I polymorphism and serum lipid levels between the two ethnic groups might partly result from different ABCA1 gene-enviromental interactions.
Collapse
Affiliation(s)
- Xiao-Li Cao
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Mogilenko DA, Shavva VS, Dizhe EB, Orlov SV, Perevozchikov AP. PPARγ activates ABCA1 gene transcription but reduces the level of ABCA1 protein in HepG2 cells. Biochem Biophys Res Commun 2010; 402:477-82. [PMID: 20951680 DOI: 10.1016/j.bbrc.2010.10.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 10/12/2010] [Indexed: 01/25/2023]
Abstract
Synthesis of ABCA1 protein in liver is necessary for high-density lipoproteins (HDL) formation in mammals. Nuclear receptor PPARγ is known as activator of ABCA1 expression, but details of PPARγ-mediated regulation of ABCA1 at both transcriptional and post-transcriptional levels in hepatocytes have not still been well elucidated. In this study we have shown, that PPARγ activates ABCA1 gene transcription in human hepatoma cells HepG2 through increasing of LXRβ binding with promoter region of ABCA1 gene. Treatment of HepG2 cells with PPARγ agonist GW1929 leads to dissociation of LXRβ from ABCA1/LXRβ complex and to nuclear translocation of this nuclear receptor resulting in reduction of ABCA1 protein level 24h after treatment. Inhibition of protein kinases MEK1/2 abolishes PPARγ-mediated dissociation of LXRβ from ABCA1/LXRβ complex, but does not block PPARγ-dependent down-regulation of ABCA1 protein in HepG2 cells. These data suggest that PPARγ may be important for regulation of the level of hepatic ABCA1 protein and indicate the new interplays between PPARγ, LXRβ and MEK1/2 in regulation of ABCA1 mRNA and protein expression.
Collapse
Affiliation(s)
- Denis A Mogilenko
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, 197376 St. Petersburg, Russia.
| | | | | | | | | |
Collapse
|
57
|
Berge KE, Leren TP. Mutations in APOA-I and ABCA1 in Norwegians with low levels of HDL cholesterol. Clin Chim Acta 2010; 411:2019-23. [PMID: 20800056 DOI: 10.1016/j.cca.2010.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 08/13/2010] [Accepted: 08/18/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND Epidemiological studies have shown that low levels of plasma high density lipoprotein (HDL) cholesterol are associated with increased risk of ischemic heart disease (IHD), but it appears that genetic forms of low HDL cholesterol levels, as opposed to lifestyle-induced low levels of HDL cholesterol, do not result in increased risk of IHD. Therefore, the etiology of reduced levels of plasma HDL cholesterol may represent a factor that should be considered in risk stratification with respect to primary prevention. Genes encoding proteins involved in HDL metabolism, such as the ATP-binding cassette transporter A1 (ABCA1) and apolipoprotein (apo) A-I genes, are candidate genes for harboring mutations that lead to low HDL cholesterol levels. METHODS The ABCA1 and apoA-I genes in 56 Norwegian patients, with a mean HDL cholesterol level of 0.53 (±0.15) mmol/l, were subjected to DNA sequencing. RESULTS Several mutations were identified in the ABCA1 gene, and two mutations were identified in the apoA-I gene. A total of 18 patients (32%) were carriers of mutations considered to be pathogenic. Their mean HDL cholesterol level was 0.45 (±0.15) mmol/l compared to 0.57 (±0.14) mmol/l in noncarriers (p<0.005). CONCLUSION Mutations in the genes encoding ABCA1 and apoA-I are common in Norwegians, with a markedly decreased HDL cholesterol level.
Collapse
Affiliation(s)
- Knut Erik Berge
- Medical Genetics Laboratory, Department of Medical Genetics, Oslo University Hospital, Rikshospitalet, Norway.
| | | |
Collapse
|
58
|
Lu Y, Feskens EJM, Boer JMA, Imholz S, Verschuren WMM, Wijmenga C, Vaarhorst A, Slagboom E, Müller M, Dollé MET. Exploring genetic determinants of plasma total cholesterol levels and their predictive value in a longitudinal study. Atherosclerosis 2010; 213:200-5. [PMID: 20832063 DOI: 10.1016/j.atherosclerosis.2010.08.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 08/06/2010] [Accepted: 08/08/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND Plasma total cholesterol (TC) levels are highly genetically determined. Although ample evidence of genetic determination of separate lipoprotein cholesterol levels has been reported, using TC level directly as a phenotype in a relatively large broad-gene based association study has not been reported to date. METHODS AND RESULTS We genotyped 361 single nucleotide polymorphisms (SNPs) across 243 genes based on pathways potentially relevant to cholesterol metabolism in 3575 subjects that were examined thrice over 11 years. Twenty-three SNPs were associated with TC levels after adjustment for multiple testing. We used 12 of them (rs7412 and rs429358 in APOE, rs646776 in CELSR2, rs1367117 in APOB, rs6756629 in ABCG5, rs662799 in APOA5, rs688 in LDLR, rs10889353 in DOCK7, rs2304130 in NCAN, rs3846662 in HMGCR, rs2275543 in ABCA1, rs7275 in SMARCA4) that were confirmed in previous candidate association or genome-wide-association studies to define a gene risk score (GRS). Average TC levels increased from 5.23 ± 0.82 mmol/L for those with 11 or less cholesterol raising alleles to 6.03 ± 1.11 mmol/L for those with 18 or more (P for trend<0.0001). The association with TC levels was slightly stronger when the weighted GRS that weighted the magnitude of allelic effects was used. CONCLUSION A panel of common genetic variants in the genes pivotal in cholesterol metabolism could possibly help identify those people who are at risk of high cholesterol levels.
Collapse
Affiliation(s)
- Yingchang Lu
- Division of Human Nutrition, Wageningen University and Research Center, PO Box 8129, 6700 EV Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Yin K, Liao DF, Tang CK. ATP-binding membrane cassette transporter A1 (ABCA1): a possible link between inflammation and reverse cholesterol transport. Mol Med 2010; 16:438-49. [PMID: 20485864 DOI: 10.2119/molmed.2010.00004] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 05/11/2010] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is characterized by a chronic inflammatory condition that involves numerous cellular and molecular inflammatory components. A wide array of inflammatory mediators, such as cytokines and proteins produced by macrophages and other cells, play a critical role in the development and progression of the disease. ATP-binding membrane cassette transporter A1 (ABCA1) is crucial for cellular cholesterol efflux and reverse cholesterol transport (RCT) and is also identified as an important target in antiatherosclerosis treatment. Evidence from several recent studies indicates that inflammation, along with other atherogenic-related mediators, plays distinct regulating roles in ABCA1 expression. Proatherogenic cytokines such as interferon (IFN)-γ and interleukin (IL)-1β have been shown to inhibit the expression of ABCA1, while antiatherogenic cytokines, including IL-10 and transforming growth factor (TGF)-β1, have been shown to promote the expression of ABCA1. Moreover, some cytokines such as tumor necrosis factor (TNF)-α seem to regulate ABCA1 expression in species-specific and dose-dependent manners. Inflammatory proteins such as C-reactive protein (CRP) and cyclooxygenase (COX)-2 are likely to inhibit ABCA1 expression during inflammation, and inflammation induced by lipopolysaccharide (LPS) was also found to block the expression of ABCA1. Interestingly, recent experiments revealed ABCA1 can function as an antiinflammatory receptor to suppress the expression of inflammatory factors, suggesting that ABCA1 may be the molecular basis for the interaction between inflammation and RCT. This review aims to summarize recent findings on the role of inflammatory cytokines, inflammatory proteins, inflammatory lipids, and the endotoxin-mediated inflammatory process in expression of ABCA1. Also covered is the current understanding of the function of ABCA1 in modulating the immune response and inflammation through its direct and indirect antiinflammatory mechanisms including lipid transport, high-density lipoprotein (HDL) formation and apoptosis.
Collapse
Affiliation(s)
- Kai Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang, China
| | | | | |
Collapse
|
60
|
Weissglas-Volkov D, Pajukanta P. Genetic causes of high and low serum HDL-cholesterol. J Lipid Res 2010; 51:2032-57. [PMID: 20421590 DOI: 10.1194/jlr.r004739] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Plasma levels of HDL cholesterol (HDL-C) have a strong inherited basis with heritability estimates of 40-60%. The well-established inverse relationship between plasma HDL-C levels and the risk of coronary artery disease (CAD) has led to an extensive search for genetic factors influencing HDL-C concentrations. Over the past 30 years, candidate gene, genome-wide linkage, and most recently genome-wide association (GWA) studies have identified several genetic variations for plasma HDL-C levels. However, the functional role of several of these variants remains unknown, and they do not always correlate with CAD. In this review, we will first summarize what is known about HDL metabolism, monogenic disorders associated with both low and high HDL-C levels, and candidate gene studies. Then we will focus this review on recent genetic findings from the GWA studies and future strategies to elucidate the remaining substantial proportion of HDL-C heritability. Comprehensive investigation of the genetic factors conferring to low and high HDL-C levels using integrative approaches is important to unravel novel pathways and their relations to CAD, so that more effective means of diagnosis, treatment, and prevention will be identified.
Collapse
|
61
|
Majdalawieh A, Ro HS. PPARgamma1 and LXRalpha face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. NUCLEAR RECEPTOR SIGNALING 2010; 8:e004. [PMID: 20419060 PMCID: PMC2858268 DOI: 10.1621/nrs.08004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/09/2010] [Indexed: 12/26/2022]
Abstract
Peroxisome proliferator-activated receptor γ1 (PPARγ1) and liver X receptor α (LXRα) are nuclear receptors that play pivotal roles in macrophage cholesterol homeostasis and inflammation; key biological processes in atherogenesis. The activation of PPARγ1 and LXRα by natural or synthetic ligands results in the transactivation of ABCA1, ABCG1, and ApoE; integral players in cholesterol efflux and reverse cholesterol transport. In this review, we describe the structure, isoforms, expression pattern, and functional specificity of PPARs and LXRs. Control of PPARs and LXRs transcriptional activity by coactivators and corepressors is also highlighted. The specific roles that PPARγ1 and LXRα play in inducing macrophage cholesterol efflux mediators and antagonizing macrophage inflammatory responsiveness are summarized. Finally, this review focuses on the recently reported regulatory functions that adipocyte enhancer-binding protein 1 (AEBP1) exerts on PPARγ1 and LXRα transcriptional activity in the context of macrophage cholesterol homeostasis and inflammation.
Collapse
|
62
|
Edgel KA, LeBoeuf RC, Oram JF. Tumor necrosis factor-α and lymphotoxin-α increase macrophage ABCA1 by gene expression and protein stabilization via different receptors. Atherosclerosis 2010; 209:387-92. [DOI: 10.1016/j.atherosclerosis.2009.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 09/07/2009] [Accepted: 10/11/2009] [Indexed: 11/15/2022]
|
63
|
Chung S, Timmins JM, Duong M, Degirolamo C, Rong S, Sawyer JK, Singaraja RR, Hayden MR, Maeda N, Rudel LL, Shelness GS, Parks JS. Targeted deletion of hepatocyte ABCA1 leads to very low density lipoprotein triglyceride overproduction and low density lipoprotein hypercatabolism. J Biol Chem 2010; 285:12197-209. [PMID: 20178985 DOI: 10.1074/jbc.m109.096933] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loss of ABCA1 activity in Tangier disease (TD) is associated with abnormal apoB lipoprotein (Lp) metabolism in addition to the complete absence of high density lipoprotein (HDL). We used hepatocyte-specific ABCA1 knock-out (HSKO) mice to test the hypothesis that hepatic ABCA1 plays dual roles in regulating Lp metabolism and nascent HDL formation. HSKO mice recapitulated the TD lipid phenotype with postprandial hypertriglyceridemia, markedly decreased LDL, and near absence of HDL. Triglyceride (TG) secretion was 2-fold higher in HSKO compared with wild type mice, primarily due to secretion of larger TG-enriched VLDL secondary to reduced hepatic phosphatidylinositol 3-kinase signaling. HSKO mice also displayed delayed clearance of postprandial TG and reduced post-heparin plasma lipolytic activity. In addition, hepatic LDLr expression and plasma LDL catabolism were increased 2-fold in HSKO compared with wild type mice. Last, adenoviral repletion of hepatic ABCA1 in HSKO mice normalized plasma VLDL TG and hepatic phosphatidylinositol 3-kinase signaling, with a partial recovery of HDL cholesterol levels, providing evidence that hepatic ABCA1 is involved in the reciprocal regulation of apoB Lp production and HDL formation. These findings suggest that altered apoB Lp metabolism in TD subjects may result from hepatic VLDL TG overproduction and increased hepatic LDLr expression and highlight hepatic ABCA1 as an important regulatory factor for apoB-containing Lp metabolism.
Collapse
Affiliation(s)
- Soonkyu Chung
- Department of Pathology/Section on Lipid Sciences, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Frikke-Schmidt R. Genetic variation in the ABCA1 gene, HDL cholesterol, and risk of ischemic heart disease in the general population. Atherosclerosis 2009; 208:305-16. [PMID: 19596329 DOI: 10.1016/j.atherosclerosis.2009.06.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/23/2009] [Accepted: 06/02/2009] [Indexed: 12/13/2022]
Abstract
Epidemiological studies consistently demonstrate a strong inverse association between low levels of high-density lipoprotein (HDL) cholesterol and increased risk of ischemic heart disease (IHD). This review focuses on whether both rare and common genetic variation in ABCA1 contributes to plasma levels of HDL cholesterol and to risk of IHD in the general population, and further seeks to understand whether low levels of HDL cholesterol per se are causally related to IHD. Studies of the ABCA1 gene demonstrate a general strategy for detecting functional genetic variants, and show that both common and rare ABCA1 variants contribute to levels of HDL cholesterol and risk of IHD in the general population. The association between ABCA1 variants and risk of IHD appears, however, to be independent of plasma levels of HDL cholesterol. With the recent identification of the largest number of individuals heterozygous for loss-of-function mutations in ABCA1 worldwide, population studies suggests that genetically low HDL cholesterol per se does not predict an increased risk of IHD, and thus questions the causality of isolated low levels of HDL cholesterol for the development of IHD.
Collapse
Affiliation(s)
- Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen Ø DK-2100, Denmark.
| |
Collapse
|
65
|
Tang C, Oram JF. The cell cholesterol exporter ABCA1 as a protector from cardiovascular disease and diabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:563-72. [PMID: 19344785 DOI: 10.1016/j.bbalip.2009.03.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/17/2009] [Accepted: 03/17/2009] [Indexed: 01/28/2023]
Abstract
ATP-binding cassette transporter A1 (ABCA1) is an integral cell membrane protein that exports cholesterol from cells and suppresses macrophage inflammation. ABCA1 exports cholesterol by a multistep pathway that involves forming cell-surface lipid domains, solubilizing these lipids by apolipoproteins, binding of apolipoproteins to ABCA1, and activating signaling processes. Thus, ABCA1 behaves both as a lipid exporter and a signaling receptor. ABCA1 transcription is highly induced by sterols, and its expression and activity are regulated post-transcriptionally by diverse processes. ABCA1 mutations can reduce plasma HDL levels, accelerate cardiovascular disease, and increase the risk for type 2 diabetes. Genetic manipulations of ABCA1 expression in mice also affect plasma HDL levels, inflammation, atherogenesis, and pancreatic beta cell function. Metabolites elevated in individuals with the metabolic syndrome and diabetes destabilize ABCA1 protein and decrease cholesterol export from macrophages, raising the possibility that an impaired ABCA1 pathway contributes to the enhanced atherogenesis associated with common inflammatory and metabolic disorders. The ABCA1 pathway has therefore become a promising new therapeutic target for treating cardiovascular disease and diabetes.
Collapse
Affiliation(s)
- Chongren Tang
- Department of Medicine, University of Washington, Seattle, Washington 98195-8055, USA.
| | | |
Collapse
|
66
|
Abstract
The association of genetic factors and cerebral infarction (CI) has long been established. A positive family history alone is a recognized risk factor for CI and vascular events in general. However, there are certain inherited conditions that further increase the risk of stroke. These conditions are generally metabolic and mitochondrial genetic defects that have variable modes of inheritance. This article reviews major inherited metabolic disorders that predispose an individual to CI. Ten main conditions will be discussed: Fabry's disease, cerebrotendinous xanthomatosis, tangier disease, familial hypercholesterolemia, homocystinuria, methylmalonic acidemia, glutaric aciduria type I, propionic acidemia, ornithine transcarbamylase deficiency and mitochondrial encephalopathy, lactic acidosis and stroke-like phenomenon.
Collapse
Affiliation(s)
- Kavita Kalidas
- Department of Neurology, University of South Florida College of Medicine, Tampa, FL 33606, USA.
| | | |
Collapse
|
67
|
Wang JH, Keisala T, Solakivi T, Minasyan A, Kalueff AV, Tuohimaa P. Serum cholesterol and expression of ApoAI, LXRbeta and SREBP2 in vitamin D receptor knock-out mice. J Steroid Biochem Mol Biol 2009; 113:222-6. [PMID: 19429425 DOI: 10.1016/j.jsbmb.2009.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 12/18/2008] [Accepted: 01/12/2009] [Indexed: 11/22/2022]
Abstract
Vitamin D insufficiency has been reported to be associated with increased blood cholesterol concentrations. Here we used two strains of VDR knock-out (VDR-KO) mice to study whether a lack of vitamin D action has any effect on cholesterol metabolism. In 129S1 mice, both in male and female VDR-KO mice serum total cholesterol levels were significantly higher than those in wild type (WT) mice (20.7% (P=0.05) and 22.2% (P=0.03), respectively). In addition, the serum high-density lipoprotein-bound cholesterol (HDL-C) level was 22% (P=0.03), respectively higher in male VDR-KO mice than in WT mice. The mRNA expression levels of five cholesterol metabolism related genes in livers of 129S1 mice were studied using quantitative real-time PCR (QRT-PCR): ATP-binding cassette transporter A1 (ABCA1), regulatory element binding protein (SREBP2), apolipoprotein A-I (ApoAI), low-density lipoprotein receptor (LDLR) and liver X receptor beta (LXRbeta). In the mutant male mice, the mRNA level of ApoAI and LXRbeta were 49.2% (P=0.005) and 38.8% (P=0.034) higher than in the WT mice. These changes were not observed in mutant female mice, but the female mutant mice showed 52.5% (P=0.006) decrease of SREBP2 mRNA expression compared to WT mice. Because the mutant mice were fed with a special rescue diet, we wanted to test whether the increased cholesterol levels in mutant mice were due to the diet. Both the WT and mutant NMRI mice were given the same diet for 3 weeks before the blood sampling. No difference in cholesterol or in HDL-C between WT and mutant mice was found. The results suggest that the food, gender and genetic background have an effect on the cholesterol metabolism. Although VDR seems to regulate some of the genes involved in cholesterol metabolism, its role in the regulation of serum cholesterol seems to be minimal.
Collapse
Affiliation(s)
- Jing-Huan Wang
- Department of Anatomy, Medical School, University of Tampere, Medisiinarinkatu 3, Tampere, Finland.
| | | | | | | | | | | |
Collapse
|
68
|
Sacks FM, Rudel LL, Conner A, Akeefe H, Kostner G, Baki T, Rothblat G, de la Llera-Moya M, Asztalos B, Perlman T, Zheng C, Alaupovic P, Maltais JAB, Brewer HB. Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo. J Lipid Res 2009; 50:894-907. [PMID: 19144994 DOI: 10.1194/jlr.m800622-jlr200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Uptake of cholesterol from peripheral cells by nascent small HDL circulating in plasma is necessary to prevent atherosclerosis. This process, termed reverse cholesterol transport, produces larger cholesterol-rich HDL that transfers its cholesterol to the liver facilitating excretion. Most HDL in plasma is cholesterol-rich. We demonstrate that treating plasma with a novel selective delipidation procedure converts large to small HDL [HDL-selectively delipidated (HDL-sdl)]. HDL-sdl contains several cholesterol-depleted species resembling small alpha, prebeta-1, and other prebeta forms. Selective delipidation markedly increases efficacy of plasma to stimulate ABCA1-mediated cholesterol transfer from monocytic cells to HDL. Plasma from African Green monkeys underwent selective HDL delipidation. The delipidated plasma was reinfused into five monkeys. Prebeta-1-like HDL had a plasma residence time of 8 +/- 6 h and was converted entirely to large alpha-HDL having residence times of 13-14 h. Small alpha-HDL was converted entirely to large alpha-HDL. These findings suggest that selective HDL delipidation activates reverse cholesterol transport, in vivo and in vitro. Treatment with delipidated plasma tended to reduce diet-induced aortic atherosclerosis in monkeys measured by intravascular ultrasound. These findings link the conversion of small to large HDL, in vivo, to improvement in atherosclerosis.
Collapse
Affiliation(s)
- Frank M Sacks
- Harvard School of Public Health and Harvard Medical School, Boston, MA, USA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
MIYACHI KIYOMITSU, HANKINS RALEIGHW, UEHARA YOSHINARI, HOMMA YASUHIKO, SHIGEMATSU HIROSHI, MIKOSHIBA KATSUHIKO, ZHANG BO, SAKU KEIJIRO. A Postmenopausal Patient with Tangier Disease Developing Sjögren’s Syndrome. J Rheumatol 2009; 36:208-10. [DOI: 10.3899/jrheum.080417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
70
|
Santos RD, Asztalos BF, Martinez LRC, Miname MH, Polisecki E, Schaefer EJ. Clinical presentation, laboratory values, and coronary heart disease risk in marked high-density lipoprotein-deficiency states. J Clin Lipidol 2008; 2:237-47. [PMID: 21291740 DOI: 10.1016/j.jacl.2008.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 06/05/2008] [Accepted: 06/08/2008] [Indexed: 11/30/2022]
Abstract
Our purpose is to provide a framework for diagnosing the inherited causes of marked high-density lipoprotein (HDL) deficiency (HDL cholesterol levels <10 mg/dL in the absence of severe hypertriglyceridemia or liver disease) and to provide information about coronary heart disease (CHD) risk for such cases. Published articles in the literature on severe HDL deficiencies were used as sources. If apolipoprotein (Apo) A-I is not present in plasma, then three forms of ApoA-I deficiency, all with premature CHD,and normal low-density lipoprotein (LDL) cholesterol levels have been described: ApoA-I/C-III/A-IV deficiency with fat malabsorption, ApoA-I/C-III deficiency with planar xanthomas, and ApoA-I deficiency with planar and tubero-eruptive xanthomas (pictured in this review for the first time). If ApoA-I is present in plasma at a concentration <10 mg/dL, with LDL cholesterol that is about 50% of normal and mild hypertriglyceridemia, a possible diagnosis is Tangier disease due to mutations at the adenosine triphosphate binding cassette protein A1 (ABCA1) gene locus. These patients may develop premature CHD and peripheral neuropathy, and have evidence of cholesteryl ester-laden macrophages in their liver, spleen, tonsils, and Schwann cells, as well as other tissues. The third form of severe HDL deficiency is characterized by plasma ApoA-I levels <40 mg/dL, moderate hypertriglyceridemia, and decreased LDL cholesterol, and the finding that most of the cholesterol in plasma is in the free rather than the esterified form, due to a deficiency in lecithin:cholesterol acyltransferase activity. These patients have marked corneal opacification and splenomegaly, and are at increased risk of developing renal failure, but have no clear evidence of premature CHD. Marked HDL deficiency has different etiologies and is generally associated with early CHD risk.
Collapse
Affiliation(s)
- Raul D Santos
- Lipid Clinic, Heart Institute (InCor) University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
71
|
Wang JH, Tuohimaa P. Calcitriol and TO-901317 interact in human prostate cancer LNCaP cells. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 2:97-105. [PMID: 19787078 PMCID: PMC2733103 DOI: 10.4137/grsb.s562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vitamin D receptor (VDR) and liver X receptor (LXR) are nuclear receptors, which regulate gene transcription upon binding of their specific ligands. VDR seems to play a role in the regulation of prostate cancer cell proliferation. ATP-binding cassette transporter A1 (ABCA1) is known to be a target gene of LXR and it has been reported to be inhibited by androgen and to be involved in the regulation of LNCaP proliferation. We find that calcitriol (1 alpha,25(OH)(2)D(3)) inhibits both basal and a LXR agonist, TO-901317, induced ABCA1 mRNA expression but has no effect on the mRNA expression of ATP-binding cassette transporter G1 (ABCG1), LXR alpha nor LXR beta. TO-901317 increases both basal and calcitriol induced 25-hydroxyvitamin D(3)-24-hydroxylase (CYP24) mRNA expression and it slightly but significantly inhibits VDR mRNA expression. The inhibition of ABCA1 by calcitriol appears to be androgen-independent. Cell growth assay shows that when each of calcitriol and 5 alpha-dihydrotestosterone (DHT) was co-treated with ABCA1 blocker, glybenclamide, cell-growth is significantly decreased compared to their own treatments respectively. Our study suggests a possible interaction between calcitriol and TO-901317 in LNCaP cells. Alike DHT, the inhibition of ABCA1 by calcitriol may be involved in its regulation of LNCaP growth.
Collapse
Affiliation(s)
- Jing-Huan Wang
- Department of Anatomy, Medical School, 33014 University of Tampere, Tampere, Finland.
| | | |
Collapse
|
72
|
Rahalkar AR, Hegele RA. Monogenic pediatric dyslipidemias: classification, genetics and clinical spectrum. Mol Genet Metab 2008; 93:282-94. [PMID: 18023224 DOI: 10.1016/j.ymgme.2007.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/09/2007] [Accepted: 10/09/2007] [Indexed: 12/20/2022]
Abstract
Monogenic disorders that cause abnormal levels of plasma cholesterol and triglycerides have received much attention due to their role in metabolic dysfunction and cardiovascular disease. While these disorders often present clinically during adulthood, some present most commonly in the pediatric population and can have serious consequences if misdiagnosed or untreated. This review provides an overview of monogenic lipid disorders that present with unusually high or low levels of plasma cholesterol and/or triglycerides during infancy, childhood and adolescence. Biochemical and genetic findings, clinical presentation and treatment options are discussed with an emphasis upon recent advances in our understanding and management of these monogenic disorders.
Collapse
Affiliation(s)
- Amit R Rahalkar
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ont., Canada
| | | |
Collapse
|
73
|
Kim WS, Weickert CS, Garner B. Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 2008; 104:1145-66. [DOI: 10.1111/j.1471-4159.2007.05099.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
74
|
Yan D, Mäyränpää MI, Wong J, Perttilä J, Lehto M, Jauhiainen M, Kovanen PT, Ehnholm C, Brown AJ, Olkkonen VM. OSBP-related Protein 8 (ORP8) Suppresses ABCA1 Expression and Cholesterol Efflux from Macrophages. J Biol Chem 2008; 283:332-340. [DOI: 10.1074/jbc.m705313200] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
75
|
Govindaraju DR, Adrienne Cupples L, Kannel WB, O'Donnell CJ, Atwood LD, D'Agostino RB, Fox CS, Larson M, Levy D, Murabito J, Vasan RS, Lee Splansky G, Wolf PA, Benjamin EJ. Genetics of the Framingham Heart Study population. ADVANCES IN GENETICS 2008; 62:33-65. [PMID: 19010253 PMCID: PMC3014216 DOI: 10.1016/s0065-2660(08)00602-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This chapter provides an introduction to the Framingham Heart Study and the genetic research related to cardiovascular diseases conducted in this unique population. It briefly describes the origins of the study, the risk factors that contribute to heart disease, and the approaches taken to discover the genetic basis of some of these risk factors. The genetic architecture of several biological risk factors has been explained using family studies, segregation analysis, heritability, and phenotypic and genetic correlations. Many quantitative trait loci underlying cardiovascular diseases have been discovered using different molecular markers. Additionally, initial results from genome-wide association studies using 116,000 markers and the prospects of using 550,000 markers for association studies are presented. Finally, the use of this unique sample to study genotype and environment interactions is described.
Collapse
Affiliation(s)
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118
| | | | | | - Larry D Atwood
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118
| | - Ralph B D'Agostino
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118; NHLBI's Framingham Heart Study, Framingham, Massachusetts 01702
| | - Caroline S Fox
- NHLBI's Framingham Heart Study, Framingham, Massachusetts 01702
| | - Marty Larson
- NHLBI's Framingham Heart Study, Framingham, Massachusetts 01702
| | - Daniel Levy
- NHLBI's Framingham Heart Study, Framingham, Massachusetts 01702
| | - Joanne Murabito
- NHLBI's Framingham Heart Study, Framingham, Massachusetts 01702; Section of General Internal Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Ramachandran S Vasan
- NHLBI's Framingham Heart Study, Framingham, Massachusetts 01702; Department of Cardiology, Boston University School of Medicine, Boston, Massachusetts 02118; Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts 02118
| | | | - Philip A Wolf
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Emelia J Benjamin
- NHLBI's Framingham Heart Study, Framingham, Massachusetts 01702; Department of Cardiology, Boston University School of Medicine, Boston, Massachusetts 02118; Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts 02118
| |
Collapse
|
76
|
Schaefer EJ, Asztalos BF. Increasing high-density lipoprotein cholesterol, inhibition of cholesteryl ester transfer protein, and heart disease risk reduction. Am J Cardiol 2007; 100:n25-31. [PMID: 18047849 DOI: 10.1016/j.amjcard.2007.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our purpose is to review recent research in the area of high-density lipoprotein (HDL) cholesterol raising and coronary artery disease (CAD) risk reduction. It is known that a decreased HDL cholesterol level is an important CAD risk factor and that raising HDL cholesterol has been associated with CAD risk reduction. A relative new strategy for raising HDL cholesterol, inhibition of cholesteryl ester transfer protein (CETP), is markedly effective. CETP inhibitors prevent the transfer of cholesteryl ester from HDL to triglyceride-rich lipoproteins in exchange for triglyceride. One inhibitor, torcetrapib, binds to CETP on HDL, markedly increases HDL cholesteryl ester, has no effect on fecal cholesterol excretion, but can raise blood pressure. A large clinical trial in patients with CAD who were taking atorvastatin was recently stopped prematurely because of excess mortality in those receiving torcetrapib versus placebo, and 2 other trials reported no benefit of torcetrapib on coronary atherosclerosis or carotid intima-media thickness as compared with subjects on atorvastatin alone. The adverse effects of torcetrapib may be compound specific, and because the crystal structure of CETP is now known, it should be possible to develop more optimal CETP inhibitors that do not form a nonproductive complex with CETP on the HDL particle, as has been reported for torcetrapib. Another alternative for increasing HDL levels is to develop more effective and better tolerated niacin preparations.
Collapse
Affiliation(s)
- Ernst J Schaefer
- Cardiovascular Research and Lipid Metabolism Laboratories, Tufts University, Boston, Massachusetts 02111, USA.
| | | |
Collapse
|
77
|
Fan AZ, Dwyer JH. Sex differences in the relation of HDL cholesterol to progression of carotid intima-media thickness: The Los Angeles Atherosclerosis Study. Atherosclerosis 2007; 195:e191-6. [PMID: 17482196 DOI: 10.1016/j.atherosclerosis.2007.03.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 03/03/2007] [Accepted: 03/27/2007] [Indexed: 11/20/2022]
Abstract
Epidemiologic studies have revealed that the protective association of high-density lipoprotein cholesterol (HDL-C) with CHD is stronger in older men and younger women. We aimed to investigate sex differences in the relation of HDL-C to progression of carotid intima-media thickness (IMT) (an indicator of subclinical atherosclerosis) in middle age. IMT progression and serum HDL-C were determined for a cohort of 500 women and men aged 40-60 years over three examinations (1.5-year intervals). IMT at baseline was inversely associated with serum levels of HDL-C and the associations were comparable in women and men. However, in multivariate longitudinal growth models adjusting for potential confounders, IMT progression was inversely associated with serum levels of HDL-C in men, but directly associated in women (p=0.0007 for interaction). Our results suggest that although HDL-C was protective against progression of carotid atherosclerosis in middle-aged men, anti-atherogenic effects of HDL may diminish in women around the age of menopause.
Collapse
Affiliation(s)
- Amy Z Fan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Alhambra, CA, United States.
| | | |
Collapse
|
78
|
Schaefer EJ, Asztalos BF. Where are we with high-density lipoprotein raising and inhibition of cholesteryl ester transfer for heart disease risk reduction? Curr Opin Cardiol 2007; 22:373-8. [PMID: 17556892 DOI: 10.1097/hco.0b013e3281fbd3c7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To review recent research in the area of high-density lipoprotein raising and coronary heart disease risk reduction. RECENT FINDINGS A decreased high-density lipoprotein-cholesterol is an important coronary heart disease risk factor and raising high-density lipoprotein-cholesterol has been associated with coronary heart disease risk reduction. A relative new strategy for raising high-density lipoprotein-cholesterol, i.e. inhibition of cholesteryl ester transfer protein, is markedly effective. Cholesteryl ester transfer protein inhibitors prevent the transfer of cholesteryl ester from high-density lipoprotein to triglyceride-rich lipoproteins in exchange for triglyceride. One inhibitor, torcetrapib, binds to cholesteryl ester transfer protein on high-density lipoprotein, markedly raises high-density lipoprotein-cholesteryl ester and has no effect on fecal cholesterol excretion, but can raise blood pressure. A large clinical trial in coronary heart disease patients on atorvastatin was recently stopped prematurely because of excess mortality in those receiving torcetrapib vs. placebo and two other trials reported no benefit of torcetrapib on coronary atherosclerosis or carotid artery intimal medial thickness as compared with subjects on atorvastatin alone. SUMMARY The adverse effects of torcetrapib may be compound-specific and, since the crystal structure of cholesteryl ester transfer protein is now known, it should be possible to develop more optimal cholesteryl ester transfer protein inhibitors that do not form a nonproductive complex with cholesteryl ester transfer protein on the high-density lipoprotein particle, as has been reported for torcetrapib. The alternative for high-density lipoprotein raising is to develop more effective and better tolerated niacin preparations.
Collapse
Affiliation(s)
- Ernst J Schaefer
- Cardiovascular Research and Lipid Metabolism Laboratories, Tufts University, Boston, Massachusetts 02111, USA.
| | | |
Collapse
|
79
|
Mulya A, Lee JY, Gebre AK, Thomas MJ, Colvin PL, Parks JS. Minimal lipidation of pre-beta HDL by ABCA1 results in reduced ability to interact with ABCA1. Arterioscler Thromb Vasc Biol 2007; 27:1828-36. [PMID: 17510466 DOI: 10.1161/atvbaha.107.142455] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The aim of this study was to determine the role of ATP binding cassette transporter A1 (ABCA1) on generation of different-sized nascent HDLs. METHODS AND RESULTS HEK293 cells stably-transfected with ABCA1 (HEK293-ABCA1) or non-transfected (control) cells were incubated with lipid free 125I-apoA-I for 24 hours. Incubation of apoA-I with HEK293-ABCA1 cells, but not control cells, led to the formation of heterogeneous-sized, pre-beta migrating nascent HDL subpopulations (pre-beta1 to -4) that varied in size (7.1 to 15.7 nm), lipid, and apoA-I content. Kinetic studies suggested that all subpopulations were formed simultaneously, with no evidence for a precursor-product relationship between smaller and larger-sized particles. When isolated nascent pre-beta HDLs (pre-beta1 to -4) were added back to HEK293-ABCA1 cells, their ability to bind to ABCA1 and efflux lipid was severely compromised. Heat-denaturation of pre-beta1 HDL resulted in partial recovery of ABCA1 binding, suggesting that initial interaction of apoA-I with ABCA1 results in a constrained conformation of apoA-I that decreases subsequent binding. CONCLUSIONS Interaction of apoA-I with ABCA1 results in the simultaneous generation of pre-beta HDLs of discrete size and chemical composition. These nascent particles are poor substrates for subsequent lipidation by ABCA1 and presumably require additional non-ABCA1-mediated lipidation for further maturation.
Collapse
Affiliation(s)
- Anny Mulya
- Department of Pathology/Section on Lipid Sciences, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, NC 27157-1040, USA
| | | | | | | | | | | |
Collapse
|
80
|
Kyriakou T, Pontefract DE, Viturro E, Hodgkinson CP, Laxton RC, Bogari N, Cooper G, Davies M, Giblett J, Day INM, Simpson IA, Albrecht C, Ye S. Functional polymorphism in ABCA1 influences age of symptom onset in coronary artery disease patients. Hum Mol Genet 2007; 16:1412-22. [PMID: 17412755 DOI: 10.1093/hmg/ddm091] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ATP-binding-cassette-transporter-A1 (ABCA1) plays a pivotal role in intracellular cholesterol removal, exerting a protective effect against atherosclerosis. ABCA1 gene severe mutations underlie Tangier disease, a rare Mendelian disorder that can lead to premature coronary artery disease (CAD), with age of CAD onset being two decades earlier in mutant homozygotes and one decade earlier in heterozygotes than in mutation non-carriers. It is unknown whether common polymorphisms in ABCA1 could influence age of symptom onset of CAD in the general population. We examined common promoter and non-synonymous coding polymorphisms in relation to age of symptom onset in a group of CAD patients (n = 1164), and also carried out in vitro assays to test effects of the promoter variations on ABCA1 promoter transcriptional activity and effects of the coding variations on ABCA1 function in mediating cellular cholesterol efflux. Age of symptom onset was found to be associated with the promoter - 407G > C polymorphism, being 2.82 years higher in C allele homozygotes than in G allele homozygotes and intermediate in heterozygotes (61.54, 59.79 and 58.72 years, respectively; P = 0.002). In agreement, patients carrying ABCA1 haplotypes containing the -407C allele had higher age of symptom onset. Patients of the G/G or G/C genotype of the -407G > C polymorphism had significant coronary artery stenosis (>75%) at a younger age than those of the C/C genotype (P = 0.003). Reporter gene assays showed that ABCA1 haplotypes bearing the -407C allele had higher promoter activity than haplotypes with the -407G allele. Functional analyses of the coding polymorphisms showed an effect of the V825I substitution on ABCA1 function, with the 825I variant having higher activity in mediating cholesterol efflux than the wild-type (825V). A trend towards higher symptom onset age in 825I allele carriers was observed. The data indicate an influence of common ABCA1 functional polymorphisms on age of symptom onset in CAD patients.
Collapse
|
81
|
Familial occurrence of abnormalities of high-density lipoprotein cholesterol. J Clin Lipidol 2007; 1:31-40. [DOI: 10.1016/j.jacl.2007.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 01/25/2007] [Indexed: 11/23/2022]
|
82
|
Wang Y, Oram JF. Unsaturated fatty acids phosphorylate and destabilize ABCA1 through a protein kinase C delta pathway. J Lipid Res 2007; 48:1062-8. [PMID: 17325386 DOI: 10.1194/jlr.m600437-jlr200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abnormal HDL metabolism among patients with diabetes and insulin resistance may contribute to their increased risk of atherosclerosis. ABCA1 mediates the transport of cholesterol and phospholipids from cells to HDL apolipoproteins and thus modulates HDL levels and atherogenesis. Unsaturated fatty acids, which are increased in diabetes, impair the ABCA1 pathway in cultured cells by destabilizing ABCA1 protein. We previously reported that unsaturated fatty acids destabilize ABCA1 in murine macrophages and ABCA1-transfected baby hamster kidney cells by increasing its serine phosphorylation through a phospholipase D (PLD) pathway. Here, we examined the cellular pathway downstream of PLD that mediates the ABCA1-destabilizing effects of unsaturated fatty acids. The protein kinase C delta (PKCdelta)-specific inhibitor rottlerin and PKCdelta small interfering RNA completely abolished the ability of unsaturated fatty acids to inhibit lipid transport activity, to reduce protein levels, and to increase serine phosphorylation of ABCA1, implicating a role for PKCdelta in the ABCA1-destabilizing effects of fatty acids. These data indicate that unsaturated fatty acids destabilize ABCA1 by activating a PKCdelta pathway that phosphorylates ABCA1 serines.
Collapse
Affiliation(s)
- Yutong Wang
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
83
|
Abstract
Plasma lipid disorders can occur either as a primary event or secondary to an underlying disease or use of medications. Familial dyslipidaemias are traditionally classified according to the electrophoretic profile of lipoproteins. In more recent texts, this phenotypic classification has been replaced with an aetiological classification. Familial dyslipidaemias are generally grouped into disorders leading to hypercholesterolaemia, hypertriglyceridaemia, a combination of hyper-cholesterolaemia and hypertriglyceridaemia, or abnormal high-density lipoprotein-cholesterol (HDL-C) levels. The management of these disorders requires an understanding of plasma lipid and lipoprotein metabolism. Lipid transport and metabolism involves three general pathways: (i) the exogenous pathway, whereby chylomicrons are synthesised by the small intestine, and dietary triglycerides (TGs) and cholesterol are transported to various cells of the body; (ii) the endogenous pathway, whereby very low-density lipoprotein-cholesterol (VLDL-C) and TGs are synthesised by the liver for transport to various tissues; and (iii) the reverse cholesterol transport, whereby HDL cholesteryl ester is exchanged for TGs in low-density lipoptrotein (LDL) and VLDL particles through cholesteryl ester transfer protein in a series of steps to remove cholesterol from the peripheral tissues for delivery to the liver and steroidogenic organs. The plasma lipid profile can provide a framework to guide the selection of appropriate diet and drug treatment. Many patients with hyperlipoproteinaemia can be treated effectively with diet. However, dietary regimens are often insufficient to bring lipoprotein levels to within acceptable limits. In this article, we review lipid transport and metabolism, discuss the more common lipid disorders and suggest some management guidelines. The choice of a particular agent depends on the baseline lipid profile achieved after 6-12 weeks of intense lifestyle changes and possible use of dietry supplements such as stanols and plant sterols. If the predominant lipid abnormality is hypertriglyceridaemia, omega-3 fatty acids, a fibric acid derivative (fibrate) or nicotinic acid would be considered as the first choice of therapy. In subsequent follow-up, when LDL-C is >130 mg/dL (3.36 mmol/L) then an HMG-CoA reductase inhibitor (statin) should be added as a combination therapy. If the serum TG levels are <500 mg/dL (2.26 mmol/L) and the LDL-C values are over 130 mg/dL (3.36 mmol/L) then a statin would be the first drug of choice. The statin dose can be titrated up to achieve the therapeutic goal or, alternatively, ezetimibe can be added. A bile acid binding agent is an option if the serum TG levels do not exceed 200 mg/dL (5.65 mmol/L), otherwise a fibrate or nicotinic acid should be considered. The decision to treat a particular person has to be individualised.
Collapse
Affiliation(s)
- Sahar B Hachem
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | | |
Collapse
|
84
|
Abstract
A hallmark of atherosclerotic cardiovascular disease (CVD) is the accumulation of cholesterol in arterial macrophages. Factors that modulate circulating and tissue cholesterol levels have major impacts on initiation, progression, and regression of CVD. Four members of the ATP-binding cassette (ABC) transporter family play important roles in this modulation. ABCA1 and ABCG1 export excess cellular cholesterol into the HDL pathway and reduce cholesterol accumulation in macrophages. ABCG5 and ABCG8 form heterodimers that limit absorption of dietary sterols in the intestine and promote cholesterol elimination from the body through hepatobiliary secretion. All 4 transporters are induced by the same sterol-sensing nuclear receptor system. ABCA1 expression and activity are also highly regulated posttranscriptionally by diverse processes. ABCA1 mutations can cause a severe HDL-deficiency syndrome characterized by cholesterol deposition in tissue macrophages and prevalent atherosclerosis. ABCG5 or ABCG8 mutations can cause sitosterolemia, in which patients accumulate cholesterol and plant sterols in the circulation and develop premature CVD. Disrupting Abca1 or Abcg1 in mice promotes accumulation of excess cholesterol in macrophages, and manipulating mouse macrophage ABCA1 expression affects atherogenesis. Overexpressing ABCG5 and ABCG8 in mice attenuates diet-induced atherosclerosis in association with reduced circulating and liver cholesterol. Metabolites elevated in individuals with the metabolic syndrome and diabetes destabilize ABCA1 protein and inhibit transcription of all 4 transporters. Thus, impaired ABC cholesterol transporters might contribute to the enhanced atherogenesis associated with common inflammatory and metabolic disorders. Their beneficial effects on cholesterol homeostasis have made these transporters important new therapeutic targets for preventing and reversing CVD.
Collapse
Affiliation(s)
- John F Oram
- Department of Medicine, Box 356426, University of Washington, Seattle, WA 98195-6426, USA.
| | | |
Collapse
|
85
|
Imai R, Kawai K, Kubokawa S, Seki S, Takahashi S, Fukatani M, Hamashige N, Irie H, Enzan H, Kumon Y. Tangier Disease with Severe Coronary Artery Disease and Arteriosclerosis Obliterans. ACTA ACUST UNITED AC 2007; 96:1697-9. [PMID: 17802720 DOI: 10.2169/naika.96.1697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
86
|
Abstract
This review summarizes the mechanisms of cellular cholesterol transport and monogenic human diseases caused by defects in intracellular cholesterol processing. In addition, selected mouse models of disturbed cholesterol trafficking are discussed. Current pharmacological strategies to prevent atherosclerosis are largely based on altering cellular cholesterol balance and are introduced in this context. Finally, because of the organizing potential of cholesterol in membranes, disturbances in cellular cholesterol transport have implications for a wide variety of human diseases, of which selected examples are given.
Collapse
Affiliation(s)
- Elina Ikonen
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
87
|
Kim WS, Guillemin GJ, Glaros EN, Lim CK, Garner B. Quantitation of ATP-binding cassette subfamily-A transporter gene expression in primary human brain cells. Neuroreport 2006; 17:891-6. [PMID: 16738483 DOI: 10.1097/01.wnr.0000221833.41340.cd] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Five ATP-binding cassette (ABC) subfamily-A transporters (ABCA1, ABCA2, ABCA3, ABCA7 and ABCA8) are expressed in the brain. These transporters may regulate brain lipid transport; however, their relative expression level in isolated human brain cells is unknown. We developed real-time polymerase chain reaction assays to quantify the expression of these genes in human neurons, astrocytes, oligodendrocytes, microglia and cell lines. Neurons expressed predominantly ABCA1 and ABCA3; astrocytes ABCA1, ABCA2 and ABCA3; microglia ABCA1 and oligodendrocytes ABCA2 and ABCA3. Although ABCA7 and ABCA8 expression was relatively low in all cells, the highest expression occurred in microglia and neurons, respectively. ABCA gene expression in the NTERA-2 and MO3.13 cell lines closely resembled the ABCA expression pattern of primary neurons and oligodendrocytes, respectively.
Collapse
Affiliation(s)
- Woojin S Kim
- Prince of Wales Medical Research Institute, Randwick, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
88
|
Benton JL, Ding J, Tsai MY, Shea S, Rotter JI, Burke GL, Post W. Associations between two common polymorphisms in the ABCA1 gene and subclinical atherosclerosis: Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 2006; 193:352-60. [PMID: 16879828 DOI: 10.1016/j.atherosclerosis.2006.06.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/09/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE ABCA1 controls the first step in reverse cholesterol transport. The potential associations between G1051A (R219K) and -565C/T genetic polymorphisms in the ABCA1 gene, high-density lipoprotein cholesterol (HDL-C) and subclinical cardiovascular disease in the general population remains unclear. We examined these associations in a sample of Multi-Ethnic Study of Atherosclerosis (MESA) participants. METHODS Nine hundred and sixty-nine MESA participants were genotyped and underwent CT examinations for coronary artery calcification (CAC) and carotid ultrasound examinations for intima media thickness. Genetic association analyses were performed. RESULTS The AA genotype was associated with a 2.4mg/dl higher HDL-C, adjusting for age, gender, race/ethnicity and clinic site (p=0.04). There was a 28% lower prevalence of CAC (p=0.002) in those with AA genotype that persisted after further adjustment for HDL-C. There were no significant associations between -565C/T genotype and HDL-C. There were trends towards a higher prevalence of CAC in those with CT (PR=1.13, p=0.08) and TT (PR=1.16, p=0.08) genotypes, compared with CC genotype. Neither G1051A nor -565C/T polymorphisms were associated with carotid intima media thickness. CONCLUSION The AA genotype of the G1051A polymorphism is associated with slightly higher HDL-C and lower prevalence of CAC and thus may protect against subclinical cardiovascular disease. The T allele of -565 C/T polymorphism may increase risk for subclinical cardiovascular disease.
Collapse
Affiliation(s)
- Jeana L Benton
- The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
Longitudinal population studies have confirmed plasma levels of high-density lipoprotein (HDL) cholesterol to be an important inverse coronary risk factor. Although environmental influences are known to regulate HDL cholesterol levels, genetic factors are also known to be important, and over 25 candidate genes have been proposed to be associated with variation in HDL cholesterol levels. A variety of monogenic conditions of extremely low or high HDL cholesterol has helped to delineate the physiology of HDL cholesterol metabolism in humans, which has led to the development of new therapeutic approaches to HDL cholesterol. However, most causes of genetic variation in HDL cholesterol in the general population are likely oligogenic or polygenic. We review the monogenic disorders associated with both high and low HDL cholesterol and the relevance of mutations and polymorphisms in these genes to variation in HDL cholesterol levels in the general population.
Collapse
Affiliation(s)
- Atif Qasim
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
90
|
Abstract
There is a distinct inverse relationship between high-density lipoprotein cholesterol (HDL-C) and cardiovascular disease risk. HDL-C mediates cholesterol efflux from the vasculature and promotes anti-oxidant, anti-inflammatory, and anti-thrombotic effects. There are multiple lifestyle and therapeutic interventions that raise HDL-C, and there is increasing evidence that these interventions improve cardiovascular outcomes. Recent findings regarding the role of HDL-C in cholesterol metabolism offer new strategies designed to target atherosclerosis. This review highlights the utility of existing HDL-C-raising strategies and examines new potential therapies.
Collapse
Affiliation(s)
- Jeffrey T Kuvin
- Division of Cardiology, Department of Medicine, Tufts-New England Medical Center, Tufts University School of Medicine Boston, Massachusettes 0211, USA.
| | | | | |
Collapse
|
91
|
Abstract
Reverse cholesterol transport (RCT) is a pathway by which accumulated cholesterol is transported from the vessel wall to the liver for excretion, thus preventing atherosclerosis. Major constituents of RCT include acceptors such as high-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I), and enzymes such as lecithin:cholesterol acyltransferase (LCAT), phospholipid transfer protein (PLTP), hepatic lipase (HL) and cholesterol ester transfer protein (CETP). A critical part of RCT is cholesterol efflux, in which accumulated cholesterol is removed from macrophages in the subintima of the vessel wall by ATP-binding membrane cassette transporter A1 (ABCA1) or by other mechanisms, including passive diffusion, scavenger receptor B1 (SR-B1), caveolins and sterol 27-hydroxylase, and collected by HDL and apoA-I. Esterified cholesterol in the HDL is then delivered to the liver for excretion. In patients with mutated ABCA1 genes, RCT and cholesterol efflux are impaired and atherosclerosis is increased. In studies with transgenic mice, disruption of ABCA1 genes can induce atherosclerosis. Levels of HDL are inversely correlated with incidences of cardiovascular disease. Supplementation with HDL or apoA-I can reverse atherosclerosis by accelerating RCT and cholesterol efflux. On the other hand, pro-inflammatory factors such as interferon-gamma (IFN-gamma), endotoxin, tumour necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1beta), can be atherogenic by impairing RCT and cholesterol efflux, according to in vitro studies. RCT and cholesterol efflux play a major role in anti-atherogenesis, and modification of these processes may provide new therapeutic approaches to cardiovascular disease. Further research on new modifying factors for RCT and cholesterol efflux is warranted.
Collapse
Affiliation(s)
- R Ohashi
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston 77030, USA
| | | | | | | | | |
Collapse
|
92
|
Oram JF, Heinecke JW. ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev 2005; 85:1343-72. [PMID: 16183915 DOI: 10.1152/physrev.00005.2005] [Citation(s) in RCA: 390] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Blood high-density lipoprotein (HDL) levels are inversely related to risk for cardiovascular disease, implying that factors associated with HDL metabolism are atheroprotective. One of these factors is ATP-binding cassette transporter A1 (ABCA1), a cell membrane protein that mediates the transport of cholesterol, phospholipids, and other metabolites from cells to lipid-depleted HDL apolipoproteins. ABCA1 transcription is highly induced by sterols, a major substrate for cellular export, and its expression and activity are regulated posttranscriptionally by diverse processes. Liver ABCA1 initiates formation of HDL particles, and macrophage ABCA1 protects arteries from developing atherosclerotic lesions. ABCA1 mutations can cause a severe HDL deficiency syndrome characterized by cholesterol deposition in tissue macrophages and prevalent atherosclerosis. Genetic manipulations of ABCA1 expression in mice also affect plasma HDL levels and atherogenesis. Metabolites elevated in individuals with the metabolic syndrome and diabetes destabilize ABCA1 protein and decrease cholesterol export from macrophages. Moreover, oxidative modifications of HDL found in patients with cardiovascular disease reduce the ability of apolipoproteins to remove cellular cholesterol by the ABCA1 pathway. These observations raise the possibility that an impaired ABCA1 pathway contributes to the enhanced atherogenesis associated with common inflammatory and metabolic disorders. The ABCA1 pathway has therefore become an important new therapeutic target for treating cardiovascular disease.
Collapse
Affiliation(s)
- John F Oram
- Department of Medicine, University of Washington, Seattle, WA 98195-6426, USA.
| | | |
Collapse
|
93
|
Tang C, Vaughan AM, Anantharamaiah GM, Oram JF. Janus kinase 2 modulates the lipid-removing but not protein-stabilizing interactions of amphipathic helices with ABCA1. J Lipid Res 2005; 47:107-14. [PMID: 16210729 DOI: 10.1194/jlr.m500240-jlr200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABCA1 mediates the transport of cellular cholesterol and phospholipids to HDL apolipoproteins. Apolipoprotein A-I (apoA-I) interactions with ABCA1-expressing cells elicit several responses, including removing cellular lipids, stabilizing ABCA1 protein, and activating Janus kinase 2 (JAK2). Here, we used synthetic apolipoprotein-mimetic peptides to characterize the relationship between these responses. Peptides containing one amphipathic helix of L- or D-amino acids (2F, D-2F, or 4F) and a peptide containing two helices (37pA) all promoted ABCA1-dependent cholesterol efflux, competed for apoA-I binding to ABCA1-expressing cells, blocked covalent cross-linking of apoA-I to ABCA1, and inhibited ABCA1 degradation. 37pA was cross-linked to ABCA1, confirming the direct binding of amphipathic helices to ABCA1. 2F, 4F, 37pA, and D-37pA all stimulated JAK2 autophosphorylation. Inhibition of JAK2 greatly reduced peptide-mediated cholesterol efflux, peptide binding to ABCA1-expressing cells, and peptide cross-linking to ABCA1, indicating that these processes require an active JAK2. In contrast, apoA-I and peptides stabilized ABCA1 protein even in the absence of an active JAK2, implying that this process is independent of JAK2 and lipid efflux-promoting binding of amphipathic helices to ABCA1. These findings show that amphipathic helices coordinate the activity of ABCA1 by several distinct mechanisms that are likely to involve different cell surface binding sites.
Collapse
Affiliation(s)
- Chongren Tang
- Division of Metabolism, Endocrinology, and Nutrition, University of Alabama at Birmingham Medical Center, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
94
|
Frikke-Schmidt R, Nordestgaard BG, Schnohr P, Steffensen R, Tybjaerg-Hansen A. Mutation in ABCA1 predicted risk of ischemic heart disease in the Copenhagen City Heart Study Population. J Am Coll Cardiol 2005; 46:1516-20. [PMID: 16226177 DOI: 10.1016/j.jacc.2005.06.066] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 06/16/2005] [Accepted: 06/20/2005] [Indexed: 01/28/2023]
Abstract
OBJECTIVES We tested whether heterozygosity for the K776N mutation (frequency: 0.4%) in ATP-binding cassette transporter A1 (ABCA1) predicted ischemic heart disease (IHD) in the Copenhagen City Heart Study population. BACKGROUND In a complex trait like IHD, genetic variation is considered to be conferred by common DNA polymorphisms, although rare mutations may have a larger impact. Tangier disease, a rare high-density lipoprotein cholesterol (HDL-C) deficiency syndrome with IHD, is caused by homozygous ABCA1 mutations. METHODS We analyzed blood samples from a large cohort study of 9,076 Danish individuals followed for 24 years (167,287 person-years), during which 1,033 incident IHD events occurred. The hypothesis was retested in an independent case-control study comparing 562 IHD patients with 3,103 controls. RESULTS The cumulative incidence of IHD as a function of age was increased in K776N heterozygotes compared with non-carriers (log-rank test: p = 0.005). At the age of 80 years, 48% of heterozygotes and 23% of non-carriers had IHD. Incidence rates in non-carriers and K776N heterozygotes were 61 and 157 per 10,000 person-years. The age-adjusted hazard ratio for IHD in K776N heterozygotes versus non-carriers was 2.4 (95% confidence interval 1.3 to 4.5). Adjusting for HDL-C, or for smoking, diabetes, and hypertension did not change the result, suggesting that genotype predicted risk of IHD beyond that offered by HDL-C, and by other conventional risk factors. Similar trends were obtained in an independent case-control study. CONCLUSIONS Heterozygosity for an ABCA1 mutation (K776N) conferred two- to three-fold risk of IHD in 37 participants in the Copenhagen City Heart study.
Collapse
Affiliation(s)
- Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
95
|
Alsheikh-Ali AA, Kuvin JT, Karas RH. High-density lipoprotein cholesterol in the cardiovascular equation: does the "good" still count? Atherosclerosis 2005; 180:217-23. [PMID: 15910846 DOI: 10.1016/j.atherosclerosis.2005.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 11/16/2004] [Indexed: 11/25/2022]
Abstract
This article will discuss our current understanding of the role of HDL-C in the statin era, focusing on the question as to whether HDL-C still "counts" when determining cardiovascular risk. Epidemiologic evidence consistently demonstrates that low HDL-C is a strong and independent risk factor for CHD. The epidemiologic evidence is complimented by clinical data showing that interventions that raise HDL-C are associated with reductions in CHD risk, as well as by a growing body of experimental data demonstrating biologically plausible mechanisms that may underlie the observed clinical findings. Analyses of large statin trials also indicate that the significant and independent relationship between HDL-C and CHD risk persists despite the therapeutic effects of statins, and that HDL-C levels in statin-treated patients, both at baseline and in response to statin therapy, are relevant. Early studies on novel HDL targeting therapies are promising, but their long term safety profile and impact on clinical outcomes is yet to be determined in larger studies. Recent guidelines emphasize low HDL-C as an independent risk factor for cardiovascular disease, specifically identify HDL-C as a target for intervention, and encourage the use of HDL-C raising interventions in high-risk patients with low HDL-C levels.
Collapse
Affiliation(s)
- Alawi A Alsheikh-Ali
- Molecular Cardiology Research Institute, Division of Cardiology, Tufts-New England Medical Center, Tufts University School of Medicine, 750 Washington Street, Box 80, Boston, MA 02111, USA
| | | | | |
Collapse
|
96
|
Wang Y, Oram JF. Unsaturated fatty acids phosphorylate and destabilize ABCA1 through a phospholipase D2 pathway. J Biol Chem 2005; 280:35896-903. [PMID: 16118212 DOI: 10.1074/jbc.m506210200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abnormal high density lipoprotein (HDL) metabolism among patients with diabetes and insulin resistance may contribute to their increased risk of atherosclerosis. ATP-binding cassette transporter ABCA1 mediates the transport of cholesterol and phospholipids from cells to HDL apolipoproteins and thus modulates HDL levels and atherogenesis. Unsaturated fatty acids, which are elevated in diabetes, impair the ABCA1 pathway in cultured cells by destabilizing ABCA1 protein. Here we examined the cellular pathway that mediates the ABCA1 destabilizing effects of fatty acids. The long-chain acyl-CoA synthetase inhibitor triacsin C completely reversed fatty acid-induced ABCA1 destabilization, indicating that fatty acids need to be activated to their CoA derivatives to enhance ABCA1 degradation. Unsaturated but not saturated fatty acids stimulated phospholipase D (PLD) activity, the PLD inhibitor 1-butanol prevented the unsaturated fatty acid-induced reduction in ABCA1 levels, and the PLD2 activator mastoparan markedly reduced ABCA1 protein levels, implicating a role for PLD2 in the ABCA1 destabilizing effects of fatty acids. Unsaturated fatty acids and mastoparan increased phosphorylation of ABCA1 serines. PLD2 small interfering RNA abolished the ability of unsaturated fatty acids to inhibit lipid transport activity, to reduce protein levels, and to increase serine phosphorylation of ABCA1. The diacylglycerol analog oleoylacetylglycerol also reduced ABCA1 protein levels and increased its serine phosphorylation, suggesting that PLD2-generated diacylglycerols promote the destabilizing phosphorylation of ABCA1. These data provide evidence that intracellular unsaturated acyl-CoA derivatives destabilize ABCA1 by activating a PLD2 signaling pathway.
Collapse
Affiliation(s)
- Yutong Wang
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
97
|
Passarelli M, Tang C, McDonald TO, O'Brien KD, Gerrity RG, Heinecke JW, Oram JF. Advanced glycation end product precursors impair ABCA1-dependent cholesterol removal from cells. Diabetes 2005; 54:2198-205. [PMID: 15983222 DOI: 10.2337/diabetes.54.7.2198] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abnormal HDL metabolism may contribute to the increased atherosclerosis associated with diabetes. The ATP-binding cassette transporter A1 (ABCA1) is an atheroprotective cell protein that mediates cholesterol transport from cells to apolipoprotein (apo) A-I, the major protein in HDL. Because formation of advanced glycation end products (AGEs) is associated with diabetic vascular complications, we examined the effects of carbonyls implicated in AGE formation on the ABCA1 pathway in cultured fibroblasts and macrophages. Treating cells with glycolaldehyde (GA) and glyoxal (GO) strongly inhibited ABCA1-dependent transport of cholesterol from cells to apoA-I, while methylglyoxal had little effect. This occurred under conditions where other lipoprotein receptors or lipid metabolic pathways were little affected, indicating that ABCA1 was uniquely sensitive to these carbonyls. GA and GO destabilized ABCA1 and nearly abolished its binding of apoA-I, indicating that these carbonyls directly modified ABCA1. Immunohistology of coronary arteries from hyperlipidemic swine revealed that inducing diabetes with streptozotocin increased atherosclerotic lesion area and dramatically reduced the fraction of macrophages that expressed detectable ABCA1. These results raise the possibility that reactive carbonyl-mediated damage to ABCA1 promotes accumulation of cholesterol in arterial macrophages and thus contribute to the increased cardiovascular disease associated with diabetes, insulin resistance, and other inflammatory conditions.
Collapse
Affiliation(s)
- Marisa Passarelli
- Department of Medicine, Box 356426, University of Washington, Seattle, WA 98195-6426, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
PURPOSE OF REVIEW High-density lipoprotein cholesterol (HDL-C) has been well established as an inverse predictor of coronary heart disease (CHD), and in recent years, investigations have focused on the genetic regulation of high-density lipoprotein. Although numerous candidate genes contribute to the low HDL-C phenotype, their impact on CHD is heterogeneous, reflecting diverse gene-gene interactions and gene-environmental relationships. This review summarizes recent data involving HDL regulatory genes and their role in atherothrombosis. RECENT FINDINGS The primary genetic determinants associated with relative HDL-C deficiency states are the ATP binding cassette protein, ABCA1; apolipoprotein (APO) A1; and lecithin cholesteryl acyl transferase. Other potentially important candidates invoked in low HDL-C syndromes in humans include APOC3, lipoprotein lipase, sphingomyelin phosphodiesterase 1, and glucocerebrosidase. Molecular variation in ABCAI and APOAI and, in selected cases, lecithin cholesteryl acyl transferase deficiency have been associated with increased CHD, whereas two notable variants, APOAIMilano and APOAIParis, are associated with reduced risk. SUMMARY Low HDL-C syndromes have generally been correlated with an increased risk of CHD. However, single-gene abnormalities responsible for HDL-C deficiency states may have variable effects on atherothrombotic risk.
Collapse
Affiliation(s)
- Michael Miller
- Department of Medicine, University of Maryland Hospital and Veterans Affairs Medical Center, Baltimore, Maryland, USA.
| | | |
Collapse
|
99
|
Kuivenhoven JA, Hovingh GK, van Tol A, Jauhiainen M, Ehnholm C, Fruchart JC, Brinton EA, Otvos JD, Smelt AHM, Brownlee A, Zwinderman AH, Hayden MR, Kastelein JJP. Heterozygosity for ABCA1 gene mutations: effects on enzymes, apolipoproteins and lipoprotein particle size. Atherosclerosis 2004; 171:311-9. [PMID: 14644402 DOI: 10.1016/j.atherosclerosis.2003.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cohort of 13 female and 14 male heterozygotes for ATP binding cassette A1 (ABCA1) gene defects was directly compared with 13 and 14 unaffected female and male family members of almost exact same age. The activities of three proteins that play key roles in HDL metabolism were measured in addition to extensive lipid and (apo) lipoprotein subfraction analysis. Compared to controls, LCAT activity was reduced by 15% in affected subjects (P < 0.001) while PLTP activity was unaffected. Interestingly, CETP activity was elevated by 50% in the heterozygote siblings of one kindred but was unaffected in heterozygotes of the three other families. With respect to lipids, the heterozygotes had normal total cholesterol (TC), and LDL-cholesterol concentrations but presented with a trend towards increased triglyceride levels (13%; P = 0.08). HDL metabolism, by contrast, was severely affected as illustrated by 40% reductions in HDL-cholesterol (P < 0.001) with concomitant reductions in apoAI (25%; P < 0.001) levels and in lipoprotein subfraction LpAI (28%; P < 0.001), LpAI:AII (24%; P=0.014), and LpCIII:nonB (34%; P < 0.001) concentrations. We furthermore observed reduced average HDL particle size (5%; P = 0.004; 16% in female and 3.6% in male) and reduced plasma apoCIII concentration (15%; P = 0.006) while apoAII, apoAIV, apoE and apoB levels were unchanged. In conclusion, heterozygosity for ABCA1 defects was associated with reduced LCAT activity in absence of effects on PLTP activity. Of special interest was our finding that the effects of compromised ABCA1 function on HDL were more pronounced in women than in men.
Collapse
Affiliation(s)
- J A Kuivenhoven
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Ng DS. Treating low HDL—From bench to bedside. Clin Biochem 2004; 37:649-59. [PMID: 15302606 DOI: 10.1016/j.clinbiochem.2004.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 04/05/2004] [Accepted: 04/05/2004] [Indexed: 01/21/2023]
Abstract
The inverse relationship between the plasma high-density lipoprotein cholesterol (HDL-C) and the risk of coronary heart disease (CHD) is well recognized in the general population. However, the development of effective therapeutics targeting HDL continues to be challenging, which is due in part to the heterogeneity of its structure and composition and the complexity of its metabolism. In this paper, we review a number of recent advances in our understanding of HDL metabolism and its role in atherogenesis. We discuss the HDL-C raising effect of a selected number of currently available lipid-modifying drugs and on a selected number of novel HDL-targeted therapeutic strategies under development.
Collapse
Affiliation(s)
- Dominic S Ng
- Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|