51
|
Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 2001; 353:417-39. [PMID: 11171037 PMCID: PMC1221586 DOI: 10.1042/0264-6021:3530417] [Citation(s) in RCA: 936] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein phosphatase 2A (PP2A) comprises a family of serine/threonine phosphatases, minimally containing a well conserved catalytic subunit, the activity of which is highly regulated. Regulation is accomplished mainly by members of a family of regulatory subunits, which determine the substrate specificity, (sub)cellular localization and catalytic activity of the PP2A holoenzymes. Moreover, the catalytic subunit is subject to two types of post-translational modification, phosphorylation and methylation, which are also thought to be important regulatory devices. The regulatory ability of PTPA (PTPase activator), originally identified as a protein stimulating the phosphotyrosine phosphatase activity of PP2A, will also be discussed, alongside the other regulatory inputs. The use of specific PP2A inhibitors and molecular genetics in yeast, Drosophila and mice has revealed roles for PP2A in cell cycle regulation, cell morphology and development. PP2A also plays a prominent role in the regulation of specific signal transduction cascades, as witnessed by its presence in a number of macromolecular signalling modules, where it is often found in association with other phosphatases and kinases. Additionally, PP2A interacts with a substantial number of other cellular and viral proteins, which are PP2A substrates, target PP2A to different subcellular compartments or affect enzyme activity. Finally, the de-regulation of PP2A in some specific pathologies will be touched upon.
Collapse
Affiliation(s)
- V Janssens
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | |
Collapse
|
52
|
Tolstykh T, Lee J, Vafai S, Stock JB. Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. EMBO J 2000; 19:5682-91. [PMID: 11060019 PMCID: PMC305779 DOI: 10.1093/emboj/19.21.5682] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phosphoprotein phosphatase 2A (PP2A) is a major phosphoserine/threonine protein phosphatase in all eukaryotes. It has been isolated as a heterotrimeric holoenzyme composed of a 65 kDa A subunit, which serves as a scaffold for the association of the 36 kDa catalytic C subunit, and a variety of B subunits that control phosphatase specificity. The C subunit is reversibly methyl esterified by specific methyltransferase and methylesterase enzymes at a completely conserved C-terminal leucine residue. Here we show that methylation plays an essential role in promoting PP2A holoenzyme assembly and that demethylation has an opposing effect. Changes in methylation indirectly regulate PP2A phosphatase activity by controlling the binding of regulatory B subunits to AC dimers.
Collapse
Affiliation(s)
- T Tolstykh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
53
|
Marcellus RC, Chan H, Paquette D, Thirlwell S, Boivin D, Branton PE. Induction of p53-independent apoptosis by the adenovirus E4orf4 protein requires binding to the Balpha subunit of protein phosphatase 2A. J Virol 2000; 74:7869-77. [PMID: 10933694 PMCID: PMC112317 DOI: 10.1128/jvi.74.17.7869-7877.2000] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have indicated that the E4orf4 protein of human adenovirus type 2 (Ad2) induces p53-independent apoptosis. We believe that this process may play a role in cell death and viral spread at the final stages of productive infection. E4orf4 may also be of therapeutic value in treating some diseases, including cancer, through its ability to induce apoptosis when expressed individually. The only previously identified biochemical function of E4orf4 is its ability to associate with the Balpha subunit of protein phosphatase 2A (PP2A). We have used a genetic approach to determine the role of such interactions in E4orf4-induced cell death. E4orf4 deletion mutants were of only limited value, as all were highly defective. We found that E4orf4 proteins from most if not all adenovirus serotypes induced cell death, and thus point mutations were introduced that converted the majority of highly conserved residues to alanines. Such mutants were used to correlate Balpha-subunit binding, association with PP2A activity, and cell killing following the transfection of appropriate cDNAs into p53-null H1299 or C33A cells. The results indicated that binding of the Balpha subunit is essential for induction of cell death, as every mutant that failed to bind efficiently was totally defective for cell killing. This class of mutations (class I) largely involved residues between amino acids 51 and 89. Almost all E4orf4 mutant proteins that associated with PP2A killed cancer cells at high levels; however, several mutants that associated with significant levels of PP2A were defective for killing (class II). Thus, binding of E4orf4 to PP2A is essential for induction of p53-independent apoptosis, but E4orf4 may possess one or more additional functions required for cell killing.
Collapse
Affiliation(s)
- R C Marcellus
- GeminX Biotechnologies Inc., Montreal, Quebec, Canada H2W 2M9
| | | | | | | | | | | |
Collapse
|
54
|
Yang J, Hurley TD, DePaoli-Roach AA. Interaction of inhibitor-2 with the catalytic subunit of type 1 protein phosphatase. Identification of a sequence analogous to the consensus type 1 protein phosphatase-binding motif. J Biol Chem 2000; 275:22635-44. [PMID: 10807923 DOI: 10.1074/jbc.m003082200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibitor-2 (I-2) is the regulatory subunit of a cytosolic type 1 Ser/Thr protein phosphatase (PP1) and potently inhibits the activity of the free catalytic subunit (CS1). Previous work from the laboratory had proposed that the interaction of I-2 with CS1 involved multiple sites (Park, I. K., and DePaoli-Roach, A. A. (1994) J. Biol. Chem. 269, 28919-28928). The present study refines the earlier analysis and arrives at a more detailed model for the interaction between I-2 and CS1. Although the NH(2)-terminal I-2 regions containing residues 1-35 and 1-64 have no inhibitory activity on their own, they increase the IC(50) for I-2 by approximately 30-fold, indicating the presence of a CS1-interacting site. Based on several experimental approaches, we have also identified the sequence Lys(144)-Leu-His-Tyr(147) as a second site of interaction that corresponds to the RVXF motif present in many CS1-binding proteins. The peptide I-2(135-151) significantly increases the IC(50) for I-2 and attenuates CS1 inhibition. Replacement of Leu and Tyr with Ala abolishes the ability to counteract inhibition by I-2. The I-2(135-151) peptide, but not I-2(1-35), also antagonizes inhibition of CS1 by DARPP-32 in a pattern similar to that of I-2. Furthermore, a peptide derived from the glycogen-binding subunit, R(GL)/G(M)(61-80), which contains a consensus CS1-binding motif, completely counteracts CS1 inhibition by I-2 and DARPP-32. The NH(2)-terminal 35 residues of I-2 bind to CS1 at a site that is specific for I-2, whereas the KLHY sequence interacts with CS1 at a site shared with other interacting proteins. Other results suggest the presence of yet more sites of interaction. A model is presented in which multiple "anchoring interactions" serve to position a segment of I-2 such that it sterically occludes the catalytic pocket but need not make high affinity contacts itself.
Collapse
Affiliation(s)
- J Yang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | |
Collapse
|
55
|
Venturi GM, Bloecher A, Williams-Hart T, Tatchell K. Genetic interactions between GLC7, PPZ1 and PPZ2 in saccharomyces cerevisiae. Genetics 2000; 155:69-83. [PMID: 10790385 PMCID: PMC1461071 DOI: 10.1093/genetics/155.1.69] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
GLC7 encodes an essential serine/threonine protein type I phosphatase in Saccharomyces cerevisiae. Three other phosphatases (Ppz1p, Ppz2p, and Sal6p) share >59% identity in their catalytic region with Glc7p. ppz1 ppz2 null mutants have no apparent growth defect on rich media. However, null alleles of PPZ1 and PPZ2, in combination with mutant alleles of GLC7, confer a range of growth defects varying from slow growth to lethality. These results indicate that Glc7p, Ppz1p, and Ppz2p may have overlapping functions. To determine if this overlap extends to interaction with targeting subunits, Glc7p-binding proteins were tested for interaction in the two-hybrid system with the functional catalytic domain of Ppz1p. Ppz1p interacts strongly with a number of Glc7p regulatory subunits, including Glc8p, a protein that shares homology with mammalian PP1 inhibitor I2. Genetic data suggest that Glc8p positively affects both Glc7p and Ppz1p functions. Together our data suggest that Ppz1p and Ppz2p may have overlapping functions with Glc7p and that all three phosphatases may act through common regulatory proteins.
Collapse
Affiliation(s)
- G M Venturi
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, Louisiana 71130, USA
| | | | | | | |
Collapse
|
56
|
Hong G, Trumbly RJ, Reimann EM, Schlender KK. Sds22p is a subunit of a stable isolatable form of protein phosphatase 1 (Glc7p) from Saccharomyces cerevisiae. Arch Biochem Biophys 2000; 376:288-98. [PMID: 10775415 DOI: 10.1006/abbi.2000.1715] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein phosphatase 1 (PP1) is one of the major protein phosphatases in eukaryotic cells. PP1 activity is believed to be controlled by the interaction of PP1 catalytic subunit with various regulatory subunits. The essential gene GLC7 encodes the PP1 catalytic subunit in Saccharomyces cerevisiae. In this study, full-length GLC7(1-312), C-terminal deletion mutants, and C-terminally poly-his tagged mutants were constructed and expressed in a GLC7 knockout strain of S. cerevisiae. Viability studies of the GLC7 knockout strains carrying the plasmids expressing GLC7 C-terminal deletion mutants and their tagged forms showed that the mutants 1-295 and 1-304 were functional, whereas the mutant 1-245 was not. The C-terminally poly-his tagged Glc7p with and without an N-terminal hemagglutinin (HA) tag was partially purified by immobilized Ni(2+) affinity chromatography and further analyzed by gel filtration and ion exchange chromatography. Phosphatase activity assays, SDS-PAGE, and Western blot analyses of the chromatographic fractions suggested that the Glc7p associated with regulatory subunits in vivo. A 40-kDa protein was copurified with tagged Glc7p through several chromatographic procedures. Monoclonal antibody against the HA tag coimmunoprecipitated the tagged Glc7p and the 40-kDa protein. This protein was further purified by a reverse phase HPLC column. Analysis by CNBr digestion, peptide sequencing, and electrospray mass spectrometry showed that this 40-kDa protein is Sds22p, one of the proteins proposed to be a regulatory subunit of Glc7. These results demonstrate that Sds22p forms a complex with Glc7p and that Sds22p:Glc7p is a stable isolatable form of yeast PP1.
Collapse
Affiliation(s)
- G Hong
- Department of Biochemistry and Molecular Biology, Department of Pharmacology, Medical College of Ohio, 3035 Arlington Avenue, Toledo, Ohio 43614-5804, USA
| | | | | | | |
Collapse
|
57
|
Bloecher A, Tatchell K. Dynamic localization of protein phosphatase type 1 in the mitotic cell cycle of Saccharomyces cerevisiae. J Cell Biol 2000; 149:125-40. [PMID: 10747092 PMCID: PMC2175104 DOI: 10.1083/jcb.149.1.125] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/1999] [Accepted: 03/01/2000] [Indexed: 11/29/2022] Open
Abstract
Protein phosphatase type I (PP1), encoded by the single essential gene GLC7 in Saccharomyces cerevisiae, functions in diverse cellular processes. To identify in vivo subcellular location(s) where these processes take place, we used a functional green fluorescent protein (GFP)-Glc7p fusion protein. Time-lapse fluorescence microscopy revealed GFP-Glc7p localizes predominantly in the nucleus throughout the mitotic cell cycle, with the highest concentrations in the nucleolus. GFP-Glc7p was also observed in a ring at the bud neck, which was dependent upon functional septins. Supporting a role for Glc7p in bud site selection, a glc7-129 mutant displayed a random budding pattern. In alpha-factor treated cells, GFP-Glc7p was located at the base of mating projections, again in a septin-dependent manner. At the start of anaphase, GFP-Glc7p accumulated at the spindle pole bodies and remained there until cytokinesis. After anaphase, GFP-Glc7p became concentrated in a ring that colocalized with the actomyosin ring. A GFP-Glc7-129 fusion was defective in localizing to the bud neck and SPBs. Together, these results identify sites of Glc7p function and suggest Glc7p activity is regulated through dynamic changes in its location.
Collapse
Affiliation(s)
- Andrew Bloecher
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, Louisiana 71130
| | - Kelly Tatchell
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, Louisiana 71130
| |
Collapse
|
58
|
Jiang W, Hallberg RL. Isolation and characterization of par1(+) and par2(+): two Schizosaccharomyces pombe genes encoding B' subunits of protein phosphatase 2A. Genetics 2000; 154:1025-38. [PMID: 10757751 PMCID: PMC1460981 DOI: 10.1093/genetics/154.3.1025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is one of the major serine/threonine phosphatases found in eukaryotic cells. We cloned two genes, par1(+) and par2(+), encoding distinct B' subunits of PP2A in fission yeast. They share 52% identity at the amino acid sequence level. Neither gene is essential but together they are required for normal septum positioning and cytokinesis, for growth at both high and low temperature, and for growth under a number of stressful conditions. Immunofluorescence microscopy revealed that Par2p has a cell-cycle-related localization pattern, being localized at cell ends during interphase and forming a medial ring in cells that are undergoing septation and cytokinesis. Our analyses also indicate that Par1p is more abundant than Par2p in the cell. Cross-organism studies showed that both par1(+) and par2(+) could complement the rts1Delta allele in Saccharomyces cerevisiae, albeit to different extents, in spite of the fact that neither contains a serine/threonine-rich N-terminal domain like that found in the S. cerevisiae homolog Rts1p. Thus, while Schizosaccharomyces pombe is more similar to higher eukaryotes with respect to its complement of B'-encoding genes, the function of those proteins is conserved relative to that of Rts1p.
Collapse
Affiliation(s)
- W Jiang
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA
| | | |
Collapse
|
59
|
Verin AD, Wang P, Garcia JG. Immunochemical characterization of myosin-specific phosphatase 1 regulatory subunits in bovine endothelium. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000301)76:3<489::aid-jcb15>3.0.co;2-a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
60
|
Abstract
Protein kinase CK2 is a ubiquitous and pleiotropic seryl/threonyl protein kinase which is highly conserved in evolution indicating a vital cellular role for this kinase. The holoenzyme is generally composed of two catalytic (alpha and/or alpha') and two regulatory (beta) subunits, but the free alpha/alpha' subunits are catalytically active by themselves and can be present in cells under some circumstances. Special attention has been devoted to phosphorylation status and structure of these enzymic molecules, however, their regulation and roles remain intriguing. Until recently, CK2 was believed to represent a kinase especially required for cell cycle progression in non-neural cells. At present, with respect to recent findings, four essential features suggest potentially important roles for this enzyme in specific neural functions: (1) CK2 is much more abundant in brain than in any other tissue; (2) there appear to be a myriad of substrates for CK2 in both synaptic and nuclear compartments that have clear implications in development, neuritogenesis, synaptic transmission, synaptic plasticity, information storage and survival; (3) CK2 seems to be associated with mechanisms underlying long-term potentiation in hippocampus; and (4) neurotrophins stimulate activity of CK2 in hippocampus. In addition, some data are suggestive that CK2 might play a role in processes underlying progressive disorders due to Alzheimer's disease, ischemia, chronic alcohol exposure or immunodeficiency virus HIV. The present review focuses mainly on the latest data concerning the regulatory mechanisms and the possible neurophysiological functions of this enzyme.
Collapse
Affiliation(s)
- P R Blanquet
- Unité de Recherche de Physiopharmacologie du Système Nerveux, U-161 INSERM, Paris, France.
| |
Collapse
|
61
|
Strovel ET, Wu D, Sussman DJ. Protein phosphatase 2Calpha dephosphorylates axin and activates LEF-1-dependent transcription. J Biol Chem 2000; 275:2399-403. [PMID: 10644691 DOI: 10.1074/jbc.275.4.2399] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Dishevelled (Dvl) gene family encodes cytoplasmic proteins that are necessary for Wnt signal transduction. Utilizing the yeast two-hybrid system, we identified protein phosphatase 2Calpha (PP2C) as a Dvl-PDZ domain-interacting protein. PP2C exists in a complex with Dvl, beta-catenin, and Axin, a negative regulator of Wnt signaling. In a Wnt-responsive LEF-1 reporter gene assay, expression of PP2C activates transcription and also elicits a synergistic response with beta-catenin and Wnt-1. In addition, PP2C expression relieves Axin-mediated repression of LEF-1-dependent transcription. PP2C utilizes Axin as a substrate both in vitro and in vivo and decreases its half-life. These results indicate that PP2C is a positive regulator of Wnt signal transduction and mediates its effects through the dephosphorylation of Axin.
Collapse
Affiliation(s)
- E T Strovel
- Division of Human Genetics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
62
|
Terry-Lorenzo RT, Inoue M, Connor JH, Haystead TA, Armbruster BN, Gupta RP, Oliver CJ, Shenolikar S. Neurofilament-L is a protein phosphatase-1-binding protein associated with neuronal plasma membrane and post-synaptic density. J Biol Chem 2000; 275:2439-46. [PMID: 10644697 DOI: 10.1074/jbc.275.4.2439] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Far Westerns with digoxigenin-conjugated protein phosphatase-1 (PP1) catalytic subunit identified PP1-binding proteins in extracts from bovine, rat, and human brain. A major 70-kDa PP1-binding protein was purified from bovine brain cortex plasma membranes, using affinity chromatography on the immobilized phosphatase inhibitor, microcystin-LR. Mixed peptide sequencing following cyanogen bromide digestion identified the 70-kDa membrane-bound PP1-binding protein as bovine neurofilament-L (NF-L). NF-L was the major PP1-binding protein in purified preparations of bovine spinal cord neurofilaments and the cytoskeletal compartment known as post-synaptic density, purified from rat brain cortex. Bovine neurofilaments, at nanomolar concentrations, inhibited the phosphorylase phosphatase activity of rabbit skeletal muscle PP1 catalytic subunit but not the activity of PP2A, another major serine/threonine phosphatase. PP1 binding to bovine NF-L was mapped to the head region. This was confirmed by both binding and inhibition of PP1 by recombinant human NF-L fragments. Together, these studies indicate that NF-L fulfills many of the biochemical criteria established for a PP1-targeting subunit and suggest that NF-L may target the functions of PP1 in membranes and cytoskeleton of mammalian neurons.
Collapse
Affiliation(s)
- R T Terry-Lorenzo
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Herzig S, Neumann J. Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Physiol Rev 2000; 80:173-210. [PMID: 10617768 DOI: 10.1152/physrev.2000.80.1.173] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review deals with the influence of serine/threonine-specific protein phosphatases on the function of ion channels in the plasma membrane of excitable tissues. Particular focus is given to developments of the past decade. Most of the electrophysiological experiments have been performed with protein phosphatase inhibitors. Therefore, a synopsis is required incorporating issues from biochemistry, pharmacology, and electrophysiology. First, we summarize the structural and biochemical properties of protein phosphatase (types 1, 2A, 2B, 2C, and 3-7) catalytic subunits and their regulatory subunits. Then the available pharmacological tools (protein inhibitors, nonprotein inhibitors, and activators) are introduced. The use of these inhibitors is discussed based on their biochemical selectivity and a number of methodological caveats. The next section reviews the effects of these tools on various classes of ion channels (i.e., voltage-gated Ca(2+) and Na(+) channels, various K(+) channels, ligand-gated channels, and anion channels). We delineate in which cases a direct interaction between a protein phosphatase and a given channel has been proven and where a more complex regulation is likely involved. Finally, we present ideas for future research and possible pathophysiological implications.
Collapse
Affiliation(s)
- S Herzig
- Institut für Pharmakologie, Universität Köln, Köln, Germany.
| | | |
Collapse
|
64
|
Strack S, Chang D, Zaucha JA, Colbran RJ, Wadzinski BE. Cloning and characterization of B delta, a novel regulatory subunit of protein phosphatase 2A. FEBS Lett 1999; 460:462-6. [PMID: 10556517 DOI: 10.1016/s0014-5793(99)01377-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Variable regulatory subunits of protein phosphatase 2A (PP2A) modulate activity, substrate selectivity and subcellular targeting of the enzyme. We have cloned a novel member of the B type regulatory subunit family, B delta, which is most highly related to B alpha. B delta shares with B alpha epitopes previously used to generate subunit-specific antibodies. Like B alpha, but unlike B beta and B gamma which are highly brain-enriched, B delta mRNA and protein expression in tissues is widespread. B delta is a cytosolic subunit of PP2A with a subcellular localization different from B alpha and may therefore target a pool of PP2A holoenzymes to specific substrates.
Collapse
Affiliation(s)
- S Strack
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
65
|
Deruère J, Jackson K, Garbers C, Söll D, Delong A. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:389-399. [PMID: 10607292 DOI: 10.1046/j.1365-313x.1999.00607.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.
Collapse
Affiliation(s)
- J Deruère
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
66
|
Strack S, Kini S, Ebner FF, Wadzinski BE, Colbran RJ. Differential cellular and subcellular localization of protein phosphatase 1 isoforms in brain. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991025)413:3<373::aid-cne2>3.0.co;2-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
67
|
Wilson WA, Mahrenholz AM, Roach PJ. Substrate targeting of the yeast cyclin-dependent kinase Pho85p by the cyclin Pcl10p. Mol Cell Biol 1999; 19:7020-30. [PMID: 10490639 PMCID: PMC84697 DOI: 10.1128/mcb.19.10.7020] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1999] [Accepted: 07/26/1999] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, PHO85 encodes a cyclin-dependent protein kinase (Cdk) catalytic subunit with multiple regulatory roles thought to be specified by association with different cyclin partners (Pcls). Pcl10p is one of four Pcls with little sequence similarity to cyclins involved in cell cycle control. It has been implicated in specifying the phosphorylation of glycogen synthase (Gsy2p). We report that recombinant Pho85p and Pcl10p produced in Escherichia coli reconstitute an active Gsy2p kinase in vitro. Gsy2p phosphorylation required Pcl10p, occurred at physiologically relevant sites, and resulted in inactivation of Gsy2p. The activity of the reconstituted enzyme was even greater than Pho85p-Pcl10p isolated from yeast, and we conclude that, unlike many Cdks, Pho85p does not require phosphorylation for activity. Pcl10p formed complexes with Gsy2p, as judged by (i) gel filtration of recombinant Pcl10p and Gsy2p, (ii) coimmunoprecipitation from yeast cell lysates, and (iii) enzyme kinetic behavior consistent with Pcl10p binding the substrate. Synthetic peptides modeled on the sequences of known Pho85p sites were poor substrates with high K(m) values, and we propose that Pcl10p-Gsy2p interaction is important for substrate selection. Gel filtration of yeast cell lysates demonstrated that most Pho85p was present as a monomer, although a portion coeluted in high-molecular-weight fractions with Pcl10p and Gsy2p. Overexpression of Pcl10p sequestered most of the Pho85p into association with Pcl10p. We suggest a model for Pho85p function in the cell whereby cyclins like Pcl10p recruit Pho85p from a pool of monomers, both activating the kinase and targeting it to substrate.
Collapse
Affiliation(s)
- W A Wilson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
68
|
Erlichman J, Gutierrez-Juarez R, Zucker S, Mei X, Orr GA. Developmental expression of the protein kinase C substrate/binding protein (clone 72/SSeCKS) in rat testis identification as a scaffolding protein containing an A-kinase-anchoring domain which is expressed during late-stage spermatogenesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:797-805. [PMID: 10469144 DOI: 10.1046/j.1432-1327.1999.00561.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The coordinated interaction of kinases, phosphatases and other regulatory molecules with scaffolding proteins is emerging as a major theme in intracellular signaling networks. In this report we show that a cDNA isolated from a rat testis expression library by interactive cloning using the regulatory subunit (R) of a type-II protein kinase A (PKA) is identical with a previously characterized protein kinase C (PKC)-binding protein termed either clone 72 [Chapline, C., Mousseau, B., Ramsay, K., Duddy, S., Li, Y., Kiley, S. C. & Jaken, S. (1996) J. Biol. Chem. 271, 6417-6422] or SSeCKS [Lin, X., Tombler, E., B., Nelson, P.J., Ross, M. & Gelman, I.H. (1996) J. Biol. Chem. 271, 28430-28438]. Deletion mutagenesis demonstrated that amino acids 1495-1524 of clone 72/SSeCKS had the ability to interact with RII. Antibodies prepared against the recombinant protein recognized a 280/290-kDa doublet and a 240-kDa protein on Western blots of rat testis cytosolic and Triton X-100 extracts. Expression of clone 72/SSeCKS mRNA and protein levels was developmentally regulated in rat testis. Northern-blot analysis showed a dramatic increase in clone 72/SSeCKS-hybridizing mRNA starting 30 days after birth. Immunohistochemical examination showed high expression levels in elongating spermatids. Clone 72/SSeCKS was not detected in mature sperm. These studies suggest a role for clone 72/SSeCKS, a PKA/PKC scaffolding protein, during the process of spermiogenesis.
Collapse
Affiliation(s)
- J Erlichman
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | | | |
Collapse
|
69
|
Everett AD, Xue C, Stoops T. Developmental expression of protein phosphatase 2A in the kidney. J Am Soc Nephrol 1999; 10:1737-45. [PMID: 10446941 DOI: 10.1681/asn.v1081737] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Although a number of growth and transcription factors are known to regulate renal growth and development, the signal transduction molecules necessary to mediate these developmental signals are relatively unknown. Therefore, the activity and mRNA and protein expression of the signal transduction molecule protein phosphatase 2A (PP2A) were examined during rat kidney development. Northern analysis of total kidney RNA or Western analysis of kidney protein homogenates from embryonic day 15 to 90-d-old adults demonstrated developmental regulation of the catalytic, major 55-kD B regulatory subunit and A structural subunit with the highest levels of expression in late embryonic and newborn kidneys. Similarly, okadaic acid-inhibitable phosphatase enzyme activity was highest in the embryonic and newborn kidney. To map cell-specific expression of PP2A in the developing kidney, in situ hybridization with a catalytic subunit digoxigenin-labeled cRNA was performed on embryonic day 20 and newborn kidneys. PP2A was found predominately in the nephrogenic cortex and particularly in the developing glomeruli and non-brush border tubules in the embryonic day 20 and newborn kidneys. Similarly, immunocytochemistry with a specific PP2A catalytic subunit polyclonal anti-peptide antibody demonstrated catalytic subunit protein particularly concentrated in the podocytes of glomeruli in the newborn kidney. In the adult kidney, PP2A protein was no longer detectable except in the nuclei of distal tubular cells. Therefore, the developmental regulation of PP2A activity and protein during kidney development and its mapping to the nephrogenic cortex, developing glomeruli, and tubules suggests a role for PP2A in the regulation of nephron growth and differentiation.
Collapse
Affiliation(s)
- A D Everett
- Department of Pediatrics, University of Virginia Health Sciences Center, Charlottesville 22908, USA.
| | | | | |
Collapse
|
70
|
da-Silva AM, Zapella PD, Andrioli LP, Campanhã RB, Fiorini LC, Etchebehere LC, da-Costa-Maia JC, Terenzi HF. Searching for the role of protein phosphatases in eukaryotic microorganisms. Braz J Med Biol Res 1999; 32:835-9. [PMID: 10454741 DOI: 10.1590/s0100-879x1999000700006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs) into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively). Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.
Collapse
Affiliation(s)
- A M da-Silva
- Departamento de Bioquímica, Universidade de São Paulo, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Ceulemans H, Van Eynde A, Pérez-Callejón E, Beullens M, Stalmans W, Bollen M. Structure and splice products of the human gene encoding sds22, a putative mitotic regulator of protein phosphatase-1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:36-42. [PMID: 10231361 DOI: 10.1046/j.1432-1327.1999.00344.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
sds22 is a regulatory subunit of protein phosphatase-1 that is required for the completion of mitosis in yeast. It consists largely of 11 tandem leucine-rich repeats of 22 residues that are expected to mediate interactions with other polypeptides, including protein phosphatase-1. In this paper, we report on the structure of the human gene encoding sds22, designated PPP1R7. This gene (33 kb) comprises 11 exons, but these do not coincide with the sequences encoding the leucine-rich repeats. Up to six splice variants can be generated by exon skipping and alternative polyadenylation, as revealed by expressed sequence tag database analysis, RT-PCR and Northern blot analysis. The sds22 transcripts are expected to encode four different polypeptides. sds22alpha1 corresponds to the variant cloned previously from human brain [Renouf et al. (1995) FEBS Lett. 375, 75-78]. Sds22beta1 is truncated within the ninth repeat and has a short and different C-terminus. Both variants also exist without the sequence corresponding to exon 2, and these are termed sds22alpha2 and sds22beta2. The 5'-flanking region of PPP1R7 contains two NF-Y-binding CCAAT boxes near the transcription start site and potential binding sites for the transcription factors c-Myb, Ik-2 and NF-1, which are conserved in the mouse gene.
Collapse
Affiliation(s)
- H Ceulemans
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
72
|
Uzunoglu S, Uslu R, Tobu M, Saydam G, Terzioglu E, Buyukkececi F, Omay SB. Augmentation of methylprednisolone-induced differentiation of myeloid leukemia cells by serine/threonine protein phosphatase inhibitors. Leuk Res 1999; 23:507-12. [PMID: 10374865 DOI: 10.1016/s0145-2126(99)00040-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To elucidate the roles of serine/threonine protein phosphatases type 1 (PP1) and type 2A (PP2A) in methylprednisolone-induced differentiation of HL60 cells into granulocytes and K562 cells into monocytes, we examined the effect of serine/threonine protein phosphatase inhibitors, okadaic acid and Cal-A on the proliferation/differentiation of HL60 and K562 cells. Okadaic acid and Cal-A augmented methylprednisolone induced granulocytic differentiation and cell death of HL60 cells and monocytic differentiation and cell death of K562 cells in different dose ranges, respectively. These data suggest an important role of PP1 and PP2A in the mechanism leading to differentiation of leukemic cells.
Collapse
Affiliation(s)
- S Uzunoglu
- Department of Molecular Biology, Celal Bayar University, Faculty of Science and Arts, Manisa, Turkey
| | | | | | | | | | | | | |
Collapse
|
73
|
Van Eynde A, Pérez-Callejón E, Schoenmakers E, Jacquemin M, Stalmans W, Bollen M. Organization and alternate splice products of the gene encoding nuclear inhibitor of protein phosphatase-1 (NIPP-1). EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:291-300. [PMID: 10103062 DOI: 10.1046/j.1432-1327.1999.00272.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nuclear inhibitor of protein phosphatase-1 (NIPP-1) is one of two major regulatory subunits of protein phosphatase-1 in mammalian nuclei. We report here the cloning and structural characterization of the human NIPP-1 genes, designated PPP1R8P and PPP1R8 in human gene nomenclature. PPP1R8P (1.2 kb) is a processed pseudogene and was localized by in situ hybridization to chromosome 1p33-32. PPP1R8 is an authentic NIPP-1 gene and was localized to chromosome 1p35. PPP1R8 (25.2 kb) is composed of seven exons and encodes four different transcripts, as determined from cDNA library screening, reverse transcriptase-PCR (RT-PCR) and/or EST (expressed sequence tag) database search analysis. NIPP-1alpha mRNA represents the major transcript in human tissues and various cell lines, and encodes a polypeptide of 351 residues that only differs from the previously cloned calf thymus NIPP-1 by a single residue. The other transcripts, termed NIPP-1beta, gamma and delta, are generated by alternative 5'-splice site usage, by exon skipping and/or by alternative polyadenylation. The NIPP-1beta/delta and NIPP-1gamma mRNAs are expected to encode fragments of NIPP-1alpha that differ from the latter by the absence of the first 142 and 224 residues, respectively. NIPP-1gamma corresponds to 'activator of RNA decay-1' (Ard-1) which, unlike NIPP-1alpha, displays in vitro and endoribonuclease activity and lacks an RVXF consensus motif for interaction with protein phosphatase-1. While the NIPP-1alpha/beta/delta-transcripts were found to be present in various human tissues, the NIPP-1gamma transcript could only be detected in human transformed B-lymphocytes.
Collapse
Affiliation(s)
- A Van Eynde
- Afdeling Biochemie, Campus Gasthuisberg KULeuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
74
|
Abstract
Much attention has focused on the important role played by phosphatases in the control of gene transcription, cell differentiation and memory regulation. It is also clear that phosphatases may regulate a number of biochemical pathways which can modulate cellular function. Of particular interest is the role of phosphatases in the control of neuronal function. Alterations in neuronal function may contributed to the heightened airways responsiveness observed in asthma to a number of physiological stimuli including distilled water, sulfur dioxide, metabisulfite, hypertonic saline, exercise, allergens, viruses and cold air. An understanding of the mechanisms which regulate the function of sensory nerves could have important clinical implications. In this review we will highlight a number of studies that have investigated the role of phosphatases in the regulation of airway nerve function.
Collapse
Affiliation(s)
- S Harrison
- Department of Respiratory Medicine and Allergy, GKT School of Medicine, King's College London, UK
| | | | | |
Collapse
|
75
|
Kloeker S, Wadzinski BE. Purification and identification of a novel subunit of protein serine/threonine phosphatase 4. J Biol Chem 1999; 274:5339-47. [PMID: 10026142 DOI: 10.1074/jbc.274.9.5339] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic subunit of protein serine/threonine phosphatase 4 (PP4C) has greater than 65% amino acid identity to the catalytic subunit of protein phosphatase 2A (PP2AC). Despite this high homology, PP4 does not appear to associate with known PP2A regulatory subunits. As a first step toward characterization of PP4 holoenzymes and identification of putative PP4 regulatory subunits, PP4 was purified from bovine testis soluble extracts. PP4 existed in two complexes of approximately 270-300 and 400-450 kDa as determined by gel filtration chromatography. The smaller PP4 complex was purified by sequential phenyl-Sepharose, Source 15Q, DEAE2, and Superdex 200 gel filtration chromatographies. The final product contained two major proteins: the PP4 catalytic subunit plus a protein that migrated as a doublet of 120-125 kDa on SDS-polyacrylamide gel electrophoresis. The associated protein, termed PP4R1, and PP4C also bound to microcystin-Sepharose. Mass spectrometry analysis of the purified complex revealed two major peaks, at 35 (PP4C) and 105 kDa (PP4R1). Amino acid sequence information of several peptides derived from the 105 kDa protein was utilized to isolate a human cDNA clone. Analysis of the predicted amino acid sequence revealed 13 nonidentical repeats similar to repeats found in the A subunit of PP2A (PP2AA). The PP4R1 cDNA clone engineered with an N-terminal Myc tag was expressed in COS M6 cells and PP4C co-immunoprecipitated with Myc-tagged PP4R1. These data indicate that one form of PP4 is similar to the core complex of PP2A in that it consists of a catalytic subunit and a "PP2AA-like" structural subunit.
Collapse
Affiliation(s)
- S Kloeker
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | | |
Collapse
|
76
|
Westphal RS, Coffee RL, Marotta A, Pelech SL, Wadzinski BE. Identification of kinase-phosphatase signaling modules composed of p70 S6 kinase-protein phosphatase 2A (PP2A) and p21-activated kinase-PP2A. J Biol Chem 1999; 274:687-92. [PMID: 9873003 DOI: 10.1074/jbc.274.2.687] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A growing body of evidence indicates that regulation of protein-serine/threonine phosphatase 2A (PP2A) involves its association with other cellular and viral proteins in multiprotein complexes. PP2A-containing protein complexes may exist that contribute to PP2A's important regulatory role in many cellular processes. To identify such protein complexes, PP2A was partially purified from rat brain soluble extracts following treatment with a reversible cross-linker to stabilize large molecular size forms of PP2A. Compared with native (uncross-linked) PP2A, cross-linked PP2A revealed an enrichment of p70 S6 kinase and two p21-activated kinases (PAK1 and PAK3) in the PP2A complex, indicating these kinases may associate with PP2A. The existence of protein kinase-PP2A complexes in rat brain soluble extracts was further substantiated by the following results: 1) independent immunoprecipitation of the kinases revealed that PP2A co-precipitated with p70 S6 kinase and the two PAK isoforms; 2) glutathione S-transferase fusion proteins of p70 S6 kinase and PAK3 each isolated PP2A; and 3) PAK3 and p70 S6 kinase bound to microcystin-Sepharose (an affinity resin for PP2A-PP1). Cumulatively, these findings provide evidence for association of PP2A with p70 S6 kinase, PAK1, and PAK3 in the context of the cellular environment. Moreover, together with the recent reports describing associations of PP2A with Ca2+/calmodulin-dependent protein kinase IV (Westphal, R. S., Anderson, K. A., Means, A. R., and Wadzinski, B. E. (1998) Science 280, 1258-1261) and casein kinase IIalpha (Heriche, J. K., Lebrin, F., Rabilloud, T., Leroy, D., Chambaz, E. M., and Goldberg, Y. (1997) Science 276, 952-955), the present data provide compelling evidence for the existence of protein kinase-PP2A signaling modules as a new paradigm for the control of various intracellular signaling cascades.
Collapse
Affiliation(s)
- R S Westphal
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, USA
| | | | | | | | | |
Collapse
|
77
|
Berrebi-Bertrand I, Souchet M, Camelin JC, Laville MP, Calmels T, Bril A. Biophysical interaction between phospholamban and protein phosphatase 1 regulatory subunit GM. FEBS Lett 1998; 439:224-30. [PMID: 9845327 DOI: 10.1016/s0014-5793(98)01364-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Regulation of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA 2a) depends on the phosphorylation state of phospholamban (PLB). When PLB is phosphorylated, its inhibitory effect towards SERCA 2a is relieved, leading to an enhanced myocardial performance. This process is reversed by a sarcoplasmic reticulum (SR)-associated type 1 protein phosphatase (PP1) composed of a catalytic subunit PP1C and a regulatory subunit GM. Human GM and PLB have been produced in an in vitro transcription/translation system and used for co-immunoprecipitation and biosensor experiments. The detected interaction between the two partners suggests that cardiac PPI is targeted to PLB via GM and we believe that this process occurs with the identified transmembrane domains of the two proteins. Thus, the interaction between PLB and GM may represent a specific way to modulate the SR function in human cardiac muscle.
Collapse
Affiliation(s)
- I Berrebi-Bertrand
- SmithKline Beecham Laboratoires Pharmaceutiques, Saint-Grégoire, France.
| | | | | | | | | | | |
Collapse
|
78
|
Connor JH, Quan HN, Ramaswamy NT, Zhang L, Barik S, Zheng J, Cannon JF, Lee EY, Shenolikar S. Inhibitor-1 interaction domain that mediates the inhibition of protein phosphatase-1. J Biol Chem 1998; 273:27716-24. [PMID: 9765309 DOI: 10.1074/jbc.273.42.27716] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibitor-1 (I-1), a cyclic AMP-regulated phosphoprotein, inhibits protein phosphatase-1 (PP1) activity in response to hormones. The molecular mechanism for PP1 inhibition by I-1 remains unknown. Mutation of nine acidic residues lining a proposed I-1-binding channel in rabbit PP1alpha yielded one mutant (E256A) slightly impaired in its inhibition by I-1, with the IC50 increased by 3-fold, and one mutant (E275R) located in the beta12-beta13 loop that showed 4-fold enhanced inhibition by I-1. Substituting Tyr-272, a proposed binding site for the toxins okadaic acid and microcystin-LR, in the beta12-beta13 loop with Trp, Phe, Asp, Arg, or Ala impaired PP1alpha inhibition by I-1 by 8-10-fold. Chemical mutagenesis of the Saccharomyces cerevisiae PP1 gene (GLC7) yielded 20 point mutations in the PP1 coding region. Two-hybrid analyses and biochemical assays of these yeast enzymes identified four additional residues in the beta12-beta13 loop that were required for PP1 binding and inhibition by I-1. Ten-fold higher concentrations of I-1 were required to inhibit these mutants. Finally, deletion of the beta12-beta13 loop from PP1alpha maintained full enzyme activity, but attenuated inhibition by I-1 by >100-fold. These data identified the beta12-beta13 loop in the PP1 catalytic subunit as a domain that mediates binding and enzyme inhibition by I-1.
Collapse
Affiliation(s)
- J H Connor
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Dignam SS, Koushik JS, Wang J, Trumbly RJ, Schlender KK, Lee EY, Reimann EM. Purification and characterization of type 1 protein phosphatase from Saccharomyces cerevisiae: effect of the R73C mutation. Arch Biochem Biophys 1998; 357:58-66. [PMID: 9721183 DOI: 10.1006/abbi.1998.0780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type 1 protein phosphatase encoded by the GLC7 gene was purified from Saccharomyces cerevisiae as a 1:1 complex with mammalian inhibitor 2 fused to glutathione S-transferase. The complex was inactive and required treatment with Co2+ and trypsin for maximal activity. The specific activity toward phosphorylase a was about 1.8 units/mg of Glc7p, and IC50's for inhibitor 2, okadaic acid, and microcystin-LR were 7.3, 81, and 0.30 nM, respectively. The complex could be activated by glycogen synthase kinase-3 in the presence of Mg2+ and ATP to 20% of the activity seen with Co2+ and trypsin. Thus, the catalytic properties of the yeast type 1 phosphatase are similar to those of the mammalian protein phosphatase 1. The R73C mutant phosphatase from the glycogen-deficient strain, glc7-1, purified as a 1:1 complex with the inhibitor 2 fusion, had a specific activity toward phosphorylase a of 0.9 unit/mg of Glc7p, and IC50's for inhibitor 2, okadaic acid, and microcystin-LR were 13. 1, 113, and 0.37 nM, respectively. The R73C mutation slightly decreases the specific activity and sensitivity to inhibitors, suggesting that changes in biochemical properties may affect glycogen levels. However, the modest changes are consistent with our previous proposal (E. M. Reimann et al., 1993, Adv. Protein Phosphatases 7,173-182) and with the results of Stuart et al. (1994, Mol. Cell. Biol. 14, 896-905) that the mutation may selectively alter the interaction of Glc7p with regulatory proteins.
Collapse
Affiliation(s)
- S S Dignam
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo, Ohio 43614, USA.
| | | | | | | | | | | | | |
Collapse
|
80
|
Strack S, Zaucha JA, Ebner FF, Colbran RJ, Wadzinski BE. Brain protein phosphatase 2A: Developmental regulation and distinct cellular and subcellular localization by B subunits. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980323)392:4<515::aid-cne8>3.0.co;2-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
81
|
Nelle TD, Verderame MF, Leis J, Wills JW. The major site of phosphorylation within the Rous sarcoma virus MA protein is not required for replication. J Virol 1998; 72:1103-7. [PMID: 9445005 PMCID: PMC124583 DOI: 10.1128/jvi.72.2.1103-1107.1998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
About one-third of the MA protein in Rous sarcoma virus (RSV) is phosphorylated. Previous analyses of this fraction have suggested that serine residues 68 and 106 are the major sites of phosphorylation. As a follow-up to that study, we have characterized mutants which have these putative phosphorylation sites changed to alanine, either separately or together. None of the substitutions (S68A, S106A, or S68/106A) had an effect on the budding efficiency or infectivity of the virus. Upon examination of the 32P-labeled viral proteins, we found that the S68A substitution did not affect phosphorylation in vivo at all. In contrast, the S106A substitution prevented all detectable phosphorylation of MA, suggesting that there is only one major site of phosphorylation in MA. We also found that the RSV MA protein is phosphorylated on tyrosine, but the amount was low and detectable only with large numbers of virions and an antibody specific for phosphotyrosine.
Collapse
Affiliation(s)
- T D Nelle
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
82
|
Abstract
Protein phosphatase 2A (PP2A) is a second messenger involved in cell cycle regulation, cell transformation, and cell fate determination. We previously identified a gene encoding the alpha catalytic subunit of PP2A in the embryonic rat heart, but its role in cardiac morphogenesis was unknown. In this study, we examined the developmental expression of PP2A alpha mRNA and protein in the heart using Northern and Western analysis, in situ hybridization, and immumohistochemical staining. We found two major PP2A alpha transcripts in the rat heart (1.8 and 2.4 kb), at all stages examined. By Western blotting, PP2A alpha protein levels were twice as high in the embryonic rat heart compared with the adult. In situ hybridization on embryonic d 12 showed that PP2A alpha mRNA was expressed in the heart, brain, tail, and limb buds. Cardiac PP2A alpha expression was regionally restricted to the atrium, ventricle, and truncus arteriosus. PP2A alpha expression did not extend into the more distal aortic sac or aortic arches. Cross-sectional hybridization revealed PP2A alpha mRNA in the epicardium, pericardium, and endothelium. Later in development, mRNA expression was also detected at high levels in mesenchymal cells populating the endocardial cushions and in myocardium. At term, PP2A alpha was highly expressed in endothelial cells, but not in the underlying myocardium. PP2A alpha protein had a similar distribution at all embryonic stages examined. These results show that there is transcriptional, translational, and cell-specific regulation of PP2A alpha during heart development. We speculate on the role of PP2A alpha-mediated dephosphorylation in cardiac morphogenesis and suggest a number of possible molecular targets.
Collapse
Affiliation(s)
- F A Heller
- Department of Pediatrics, University of Virginia, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
83
|
Vulsteke V, Beullens M, Waelkens E, Stalmans W, Bollen M. Properties and phosphorylation sites of baculovirus-expressed nuclear inhibitor of protein phosphatase-1 (NIPP-1). J Biol Chem 1997; 272:32972-8. [PMID: 9407077 DOI: 10.1074/jbc.272.52.32972] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
NIPP-1 is the RNA-binding subunit of a major species of protein phosphatase-1 in the nucleus. We have expressed nuclear inhibitor of protein phosphatase-1 (NIPP-1) in Sf9 cells, using the baculovirus-expression system. The purified recombinant protein was a potent (Ki = 9.9 +/- 0.3 pM) and specific inhibitor of protein phosphatase-1 and was stoichiometrically phosphorylated by protein kinases A and CK2. At physiological ionic strength, phosphorylation by these protein kinases drastically decreased the inhibitory potency of free NIPP-1. Phosphorylation of NIPP-1 in a heterodimeric complex with the catalytic subunit of protein phosphatase-1 resulted in an activation of the holoenzyme without a release of NIPP-1. Sequencing and phosphoamino acid analysis of tryptic phosphopeptides enabled us to identify Ser178 and Ser199 as the phosphorylation sites of protein kinase A, whereas Thr161 and Ser204 were phosphorylated by protein kinase CK2. These residues all conform to consensus recognition sites for phosphorylation by protein kinases A or CK2 and are clustered near a RVXF sequence that has been identified as a motif that interacts with the catalytic subunit of protein phosphatase-1.
Collapse
Affiliation(s)
- V Vulsteke
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
84
|
Kloeker S, Bryant JC, Strack S, Colbran RJ, Wadzinski BE. Carboxymethylation of nuclear protein serine/threonine phosphatase X. Biochem J 1997; 327 ( Pt 2):481-6. [PMID: 9359419 PMCID: PMC1218819 DOI: 10.1042/bj3270481] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Specific rabbit polyclonal antibodies against peptides corresponding to the highly homologous protein serine/threonine phosphatase 2A and X catalytic subunits (PP2A/C and PPX/C respectively) were used to investigate the cellular and subcellular distribution of PP2A/C and PPX/C, as well as their methylation state. Immunoblots of rat tissue extracts revealed a widespread distribution of these enzymes but particularly high levels of PP2A/C and PPX/C in brain and testes respectively. In addition, immunoblots of subcellular fractions and immunocytochemical analyses of rat brain sections demonstrated that PPX/C is predominantly localized to the nucleus, whereas PP2A/C is largely cytoplasmic. Treatment of nuclear extracts with alkali resulted in increased PPX/C immunoreactivity to a polyclonal antibody directed against the C-terminus; no change in PPX immunoreactivity was observed using an antibody against an internal peptide. Alkali treatment of brain and liver cytosolic and nuclear extracts did not change the molecular mass or the isoelectric point of PPX/C. Furthermore, tritiated PPX/C was immunoprecipitated from COS cell extracts incubated with the methyl donor S-adenosyl-l-[methyl-3H]methionine. Thus the increase in immunoreactivity probably results from removal of a carboxymethyl group from PPX/C, as has been shown previously for PP2A/C [Favre, Zolnierowicz, Turowski and Hemmings (1994) J. Biol. Chem. 269, 16311-16317]. Together, our results indicate that the PPX catalytic subunit is a predominantly nuclear phosphatase and is methylated at its C-terminus.
Collapse
Affiliation(s)
- S Kloeker
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
85
|
Strack S, Westphal RS, Colbran RJ, Ebner FF, Wadzinski BE. Protein serine/threonine phosphatase 1 and 2A associate with and dephosphorylate neurofilaments. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 49:15-28. [PMID: 9387859 DOI: 10.1016/s0169-328x(97)00117-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The phosphorylation state of neurofilaments plays an important role in the control of cytoskeletal integrity, axonal transport, and axon diameter. Immunocytochemical analyses of spinal cord revealed axonal localization of all protein phosphatase subunits. To determine whether protein phosphatases associate with axonal neurofilaments, neurofilament proteins were isolated from bovine spinal cord white matter by gel filtration. approximately 15% of the total phosphorylase a phosphatase activity was present in the neurofilament fraction. The catalytic subunits of PP1 and PP2A, as well as the A and B alpha regulatory subunits of PP2A, were detected in the neurofilament fraction by immunoblotting, whereas PP2B and PP2C were found exclusively in the low molecular weight soluble fractions. PP1 and PP2A subunits could be partially dissociated from neurofilaments by high salt but not by phosphatase inhibitors, indicating that the interaction does not involve the catalytic site. In both neurofilament and soluble fractions, 75% of the phosphatase activity towards exogenous phosphorylase a could be attributed to PP2A, and the remainder to PP1 as shown with specific inhibitors. Neurofilament proteins were phosphorylated in vitro by associated protein kinases which appeared to include protein kinase A, calcium/calmodulin-dependent protein kinase, and heparin-sensitive and -insensitive cofactor-independent kinases. Dephosphorylation of phosphorylated neurofilament subunits was mainly (60%) catalyzed by associated PP2A, with PP1 contributing minor activity (10-20%). These studies suggest that neurofilament-associated PP1 and PP2A play an important role in the regulation of neurofilament phosphorylation.
Collapse
Affiliation(s)
- S Strack
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232-0615, USA
| | | | | | | | | |
Collapse
|
86
|
Jagiello I, Beullens M, Vulsteke V, Wera S, Sohlberg B, Stalmans W, von Gabain A, Bollen M. NIPP-1, a nuclear inhibitory subunit of protein phosphatase-1, has RNA-binding properties. J Biol Chem 1997; 272:22067-71. [PMID: 9268347 DOI: 10.1074/jbc.272.35.22067] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
NIPP-1 is a nuclear inhibitory subunit of protein phosphatase-1 with structural similarities to some proteins involved in RNA processing. We report here that baculovirus-expressed recombinant NIPP-1 displays RNA-binding properties, as revealed by North-Western analysis, by UV-mediated cross-linking, by RNA mobility-shift assays, and by chromatography on poly(U)-Sepharose. NIPP-1 preferentially bound to U-rich sequences, including RNA-destabilizing AUUUA motifs. NIPP-1 also associated with single-stranded DNA, but had no affinity for double-stranded DNA. The binding of NIPP-1 to RNA was blocked by antibodies directed against the COOH terminus of NIPP-1, but was not affected by prior phosphorylation of NIPP-1 with protein kinase A or casein kinase-2, which decreases the affinity of NIPP-1 for protein phosphatase-1. The catalytic subunit of protein phosphatase-1 did not bind to poly(U)-Sepharose, but it bound very tightly after complexation with NIPP-1. These data are in agreement with a function of NIPP-1 in targeting protein phosphatase-1 to RNA.
Collapse
Affiliation(s)
- I Jagiello
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Wera S, Van Eynde A, Stalmans W, Bollen M. Inhibition of translation by mRNA encoding NIPP-1, a nuclear inhibitor of protein phosphatase-1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:411-5. [PMID: 9249054 DOI: 10.1111/j.1432-1033.1997.00411.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transient transfection of COS-1 cells with an expression vector for NIPP-1, a nuclear subunit of protein phosphatase-1, did not result in an overexpression of NIPP-1 protein, although the levels of mRNA encoding NIPP-1 increased dramatically. Moreover, high concentrations of NIPP-1 mRNA inhibited the translation in reticulocyte lysates of various unrelated mRNAs. This inhibition of translation was caused by the NIPP-1 messenger and not by the translation product, since mutation of the start codon abolished NIPP-1 protein production, but had no influence on the translational inhibition. Analysis of deletion mutants showed that the inhibition was mediated by a 0.5-kb fragment in the 5'-end of the NIPP-1 mRNA. This region, when inserted in the 5'-untranslated region of the beta-galactosidase messenger, inhibited the translation of beta-galactosidase mRNA in COS-1 cells. A predicted highly stable secondary structure deltaG = -239.5 kJ/mol) is present between residues 300 and 500 of NIPP-1 mRNA. The possible importance of this structure in the translational inhibition is discussed.
Collapse
Affiliation(s)
- S Wera
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Belgium
| | | | | | | |
Collapse
|
88
|
Shu Y, Yang H, Hallberg E, Hallberg R. Molecular genetic analysis of Rts1p, a B' regulatory subunit of Saccharomyces cerevisiae protein phosphatase 2A. Mol Cell Biol 1997; 17:3242-53. [PMID: 9154823 PMCID: PMC232177 DOI: 10.1128/mcb.17.6.3242] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Saccharomyces cerevisiae gene RTS1 encodes a protein homologous to a variable B-type regulatory subunit of the mammalian heterotrimeric serine/threonine protein phosphatase 2A (PP2A). We present evidence showing that Rts1p assembles into similar heterotrimeric complexes in yeast. Strains in which RTS1 has been disrupted are temperature sensitive (ts) for growth, are hypersensitive to ethanol, are unable to grow with glycerol as their only carbon source, and accumulate at nonpermissive temperatures predominantly as large-budded cells with a 2N DNA content and a nondivided nucleus. This cell cycle arrest can be overcome and partial suppression of the ts phenotype of rts1-null cells occurs if the gene CLB2, encoding a Cdc28 kinase-associated B-type cyclin, is expressed on a high-copy-number plasmid. However, CLB2 overexpression has no suppressive effects on other aspects of the rts1-null phenotype. Expression of truncated forms of Rts1p can also partially suppress the ts phenotype and can fully suppress the inability of cells to grow on glycerol and the hypersensitivity of cells to ethanol. By contrast, the truncated forms do not suppress the accumulation of large-budded cells at high temperatures. Coexpression of truncated Rts1p and high levels of Clb2p fully suppresses the ts phenotype, indicating that the inhibition of growth of rts1-null cells at high temperatures is due to both stress-related and cell cycle-related defects. Genetic analyses show that the role played by Rts1p in PP2A regulation is distinctly different from that played by the other known variable B regulatory subunit, Cdc55p, a protein recently implicated in checkpoint control regulation.
Collapse
Affiliation(s)
- Y Shu
- Department of Biology, Syracuse University, New York 13244, USA
| | | | | | | |
Collapse
|
89
|
Zhao Y, Boguslawski G, Zitomer RS, DePaoli-Roach AA. Saccharomyces cerevisiae homologs of mammalian B and B' subunits of protein phosphatase 2A direct the enzyme to distinct cellular functions. J Biol Chem 1997; 272:8256-62. [PMID: 9079645 DOI: 10.1074/jbc.272.13.8256] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a major cellular serine/threonine protein phosphatase, present in the cell in a variety of heterotrimeric forms that differ in their associated regulatory B-subunit. Cloning of the mammalian B' subunit has allowed the identification of a highly homologous Saccharomyces cerevisiae gene, RTS1. Disruption of the gene results in a temperature-sensitive growth defect that can be suppressed by expression of rabbit B'alpha or B'gamma isoforms. The B'alpha subunit is much more effective in restoring normal growth at 37 degrees C than B'gamma. Immunoprecipitated Rts1p was found associated with type 2A-specific protein phosphatase activity that is sensitive to 2 nM okadaic acid, but not to 100 nM phosphatase inhibitor-2, and to be phosphorylated in vivo. However, overexpression of RTS1 was unable to suppress the cold sensitivity, defective cytokinesis, and abnormal cell morphology resulting from defects in the CDC55 gene, which encodes the yeast homolog of a different B subunit of another form of 2A phosphatase, PP2A1. These results indicate that Rts1p is a yeast homolog of the mammalian B' subunit and that the various regulatory B-subunits of PP2A are not functionally redundant but direct the enzyme to distinct cellular functions.
Collapse
Affiliation(s)
- Y Zhao
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | | | |
Collapse
|
90
|
Zhu T, Matsuzawa S, Mizuno Y, Kamibayashi C, Mumby MC, Andjelkovic N, Hemmings BA, Onoé K, Kikuchi K. The interconversion of protein phosphatase 2A between PP2A1 and PP2A0 during retinoic acid-induced granulocytic differentiation and a modification on the catalytic subunit in S phase of HL-60 cells. Arch Biochem Biophys 1997; 339:210-7. [PMID: 9056251 DOI: 10.1006/abbi.1996.9835] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alterations in protein phosphatase 2A (PP2A) during retinoic acid-induced differentiation of HL-60 cells have been investigated. PP2A activity of HL-60 cells for phosphorylated myelin basic protein showed a sharp and transient increase after 18-h treatment with 1 microM retinoic acid, which corresponded to G1/S boundary of the cell cycle. This PP2A of the 18-h treated cells was eluted from a DEAE-Sepharose column with 0.13 M NaCl, while PP2A from control cells was eluted with 0.23 M NaCl. The phosphorylase phosphatase activity of PP2A in the 0.13 M eluate was greatly enhanced in the presence of protamine compared with that of the later eluting PP2A. Immunoblot analyses with antisera against B' and B alpha subunits showed that the PP2A in the 0.13 M NaCl eluate from 18-h retinoic acid-treated cells was PP2A0 (AC-B'), whereas the PP2A eluted with 0.23 M NaCl from 24-h retinoic acid-treated cells and 0-, 18-, and 24-h control cells was PP2A1 (AC-B alpha). These results strongly suggest that PP2A undergoes a transient and reversible interconversion of holoenzyme forms during the initial stage of retinoic acid-induced granulocytic differentiation. PP2A activity assayed after dissociation of the catalytic subunit, for phosphorylase as substrate, showed a sharp and transient decrease in S phase of HL-60 cells irrespective of the presence or absence of retinoic acid. Immunoblot analyses with antisera against C-terminus and N-terminus of the catalytic subunit of PP2A suggested that a modification at the C-terminus is responsible for the decrease in PP2A activity. Immunoreactivity to the C-terminal antibody was restored after treatments of the S-phase extract with alkali or ethanol, the conditions which remove the methyl group from the C-terminus. These results suggest that the C-terminus of PP2A catalytic subunit is transiently methylated in S phase of HL-60 cells.
Collapse
Affiliation(s)
- T Zhu
- Section of Biochemistry, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Wu J, Kleiner U, Brautigan DL. Protein phosphatase type-1 and glycogen bind to a domain in the skeletal muscle regulatory subunit containing conserved hydrophobic sequence motif. Biochemistry 1996; 35:13858-64. [PMID: 8901529 DOI: 10.1021/bi961669e] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study identifies a 100-residue domain within the rabbit skeletal muscle regulatory subunit (PP1G) that binds both type-1 protein phosphatase (PP1C) and glycogen. An N-terminal portion of PP1G was cloned by RT-PCR, and different sized fragments were expressed in bacteria as glutathione S-transferase (GST) fusion proteins. A GST-PP1G fusion containing residues 51-240 bound both PPIC and glycogen, whereas GST alone or fusions containing residues 51-140 or 241-360 bound neither PP1C nor glycogen. The PPIC in whole cell lysates or partially purified PP1C from skeletal muscle, or a complex of PP1C-MCLR-biotin, all bound more effectively than Mn(2+)-activated, recombinant PP1C purified from bacteria. Binding was enhanced by increasing the ionic strength and was disrupted by ethylene glycol, consistent with hydrophobic interactions being critical for stable association. Phosphorylation of the GST-PP1G fusion by cAMP-dependent protein kinase prevented completely association of PP1C. This domain of PP1G, from residues 141-240, contains two sequence motifs of hydrophobic residues: Gx8FEKx10W and DxFxFxIxL, that are conserved among the known glycogen-binding PP1 regulatory subunits. These segments are predicted to form an alpha helix and a beta sheet, and we propose that they are the sites for association with PP1C and glycogen, respectively.
Collapse
Affiliation(s)
- J Wu
- Center for Cell Signaling, University of Virginia, Charlottesville 22908, USA
| | | | | |
Collapse
|
92
|
Wang X, Hoekstra MF, DeMaggio AJ, Dhillon N, Vancura A, Kuret J, Johnston GC, Singer RA. Prenylated isoforms of yeast casein kinase I, including the novel Yck3p, suppress the gcs1 blockage of cell proliferation from stationary phase. Mol Cell Biol 1996; 16:5375-85. [PMID: 8816449 PMCID: PMC231536 DOI: 10.1128/mcb.16.10.5375] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The GCS1 gene of the budding yeast Saccharomyces cerevisiae mediate the resumption of cell proliferation from the starved, stationary-phase state. Here we identify yeast genes that, in increased dosages, overcome the growth defect of gcs1 delta mutant cells. Among these are YCK1 (CK12) and YCK2 (CKI1), encoding membrane-associated casein kinase I, and YCK3, encoding a novel casein kinase I isoform. Some Yck3p gene product was found associated with the plasma membrane, like Yck1p and Yck2p, but most confractionated with the nucleus, like another yeast casein kinase I isoform, Hrr25p. Genetic studies showed that YCK3 and HRR25 constitute an essential gene family and that Yck3p can weakly substitute for Yck1p-Yck2p. For gcs1 delta suppression, both a protein kinase domain and a C-terminal prenylation motif were shown to be necessary. An impairment in endocytosis was found for gcs1 delta mutant cells, which was alleviated by an increased YCK2 gene dosage. The ability of an increased casein kinase I gene dosage to suppress the effects caused by the absence of Gcs1p suggests that Gcs1p and Yck1p-Yck2p affect parallel pathways.
Collapse
Affiliation(s)
- X Wang
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
93
|
McCright B, Rivers AM, Audlin S, Virshup DM. The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem 1996; 271:22081-9. [PMID: 8703017 DOI: 10.1074/jbc.271.36.22081] [Citation(s) in RCA: 307] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Protein phosphatase 2A is a heterotrimeric protein serine/threonine phosphatase consisting of a 36-kDa catalytic C subunit, a 65-kDa structural A subunit, and a variable regulatory B subunit. The B subunits determine the substrate specificity of the enzyme. There have been three families of cellular B subunits identified to date: B55, B56 (B'), and PR72/130. We have now cloned five genes encoding human B56 isoforms. Polypeptides encoded by all but one splice variant (B56gamma1) are phosphoproteins, as shown by mobility shift after treatment with alkaline phosphatase and metabolic labeling with [32P]phosphate. All labeled isoforms contain solely phosphoserine. Indirect immunofluorescence microscopy demonstrates distinct patterns of intracellular targeting by different B56 isoforms. Specifically, B56alpha, B56beta, and B56epsilon complexed with the protein phosphatase 2A A and C subunits localize to the cytoplasm, whereas B56delta, B56gamma1, and B56gamma3 are concentrated in the nucleus. Two isoforms (B56beta and B56delta) are highly expressed in adult brain; here we show that mRNA for these isoforms increases severalfold when neuroblastoma cell lines are induced to differentiate by retinoic acid treatment. These studies demonstrate an increasing diversity of regulatory mechanisms to control the activity of this key intracellular protein phosphatase and suggest distinct functions for isoforms targeted to different intracellular locations.
Collapse
Affiliation(s)
- B McCright
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, 84112, USA
| | | | | | | |
Collapse
|
94
|
Daniel S, Zhang S, DePaoli-Roach AA, Kim KH. Dephosphorylation of Sp1 by protein phosphatase 1 is involved in the glucose-mediated activation of the acetyl-CoA carboxylase gene. J Biol Chem 1996; 271:14692-7. [PMID: 8663083 DOI: 10.1074/jbc.271.25.14692] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
When mouse 30A5 preadipocytes are exposed to high glucose concentrations, acetyl-CoA carboxylase is induced through glucose activation of promoter II of the acetyl-CoA carboxylase gene. Glucose treatment of the cells increases Sp1 binding to two GC-rich glucose response elements in promoter II. We have investigated the mechanism by which glucose increases Sp1 binding and transactivation of promoter II in 30A5 cells. DNA mobility shift assays have shown that nuclear extracts from glucose-treated cells exhibit increased Sp1 binding activity. This increase in the binding activity is not due to glucose-mediated changes in the amount of Sp1 in the nucleus but to an increase in the activity that modifies Sp1 so that it binds more effectively to the promoter sequence. This Sp1 modifying activity is inhibited by okadaic acid and phosphatase inhibitor 2, and has a molecular mass of 38-42 kDa. The catalytic subunit of type 1 protein phosphatase, whose molecular mass is 38 kDa, also increased the ability of Sp1 to bind to promoter II. Treatment of nuclear extract with antibodies against the catalytic subunit partially suppressed the nuclear activity for Sp1 activation. From these results, we conclude that the Sp1 transcription factor exhibits enhanced binding to promoter II and transcriptional activation is the result of glucose-induced dephosphorylation by type 1 phosphatase.
Collapse
Affiliation(s)
- S Daniel
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
95
|
Gaussin V, Hue L, Stalmans W, Bollen M. Activation of hepatic acetyl-CoA carboxylase by glutamate and Mg2+ is mediated by protein phosphatase-2A. Biochem J 1996; 316 ( Pt 1):217-24. [PMID: 8645208 PMCID: PMC1217325 DOI: 10.1042/bj3160217] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The activation of hepatic acetyl-CoA carboxylase by Na(+)-cotransported amino acids such as glutamine has been attributed mainly to the stimulation of its dephosphorylation by accumulating dicarboxylic acids, e.g. glutamate. We report here on a hepatic species of protein phosphatase-2A that activates acetyl-CoA carboxylase in the presence of physiological concentrations of glutamate or Mg2+ and, under these conditions, accounts for virtually all the hepatic acetyl-CoA carboxylase phosphatase activity. Glutamate also stimulated the dephosphorylation of a synthetic pentadecapeptide encompassing the Ser-79 phosphorylation site of rat acetyl-CoA carboxylase, but did not affect the dephosphorylation of other substrates such as phosphorylase. Conversely, protamine, which stimulated the dephosphorylation of phosphorylase, inhibited the activation of acetyl-CoA carboxylase. A comparison with various species of muscle protein phosphatase-2A showed that the stimulatory effects of glutamate and Mg2+ on the acetyl-CoA carboxylase phosphatase activity are largely mediated by the regulatory A subunit. Glutamate and Mg2+ emerge from our study as novel regulators of protein phosphatase-2A when acting on acetyl-CoA carboxylase.
Collapse
Affiliation(s)
- V Gaussin
- Hormone and Metabolic Research Unit, University of Louvain Medical School, Brussels, Belgium
| | | | | | | |
Collapse
|
96
|
Wera S, Bollen M, Moens L, Stalmans W. Time-dependent pseudo-activation of hepatic glycogen synthase b by glucose 6-phosphate without involvement of protein phosphatases. Biochem J 1996; 315 ( Pt 1):91-6. [PMID: 8670137 PMCID: PMC1217201 DOI: 10.1042/bj3150091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During a 30 min incubation at 25 degrees C in the presence of 5-10 mM glucose 6-phosphate, pure glycogen-bound glycogen synthase b from dog liver was progressively converted into a form that was fully catalytically active in the presence of 10 mM Na2SO4 plus 0.5 mM glucose 6-phosphate. The latter enzyme was unlike synthase a (which does not require glucose 6-phosphate for activity), and unlike synthase b (which is strongly inhibited by sulphate). The conversion was insensitive to various inhibitors of Ser/Thr-protein phosphatases and alkaline phosphatases, and was therefore termed 'pseudo-activation'. Kinetically, pseudo-activation increased the V(max) 4-fold without affecting the K(m) for the substrate UDP-glucose. Pseudo-activation appeared to be an irreversible process, but several lines of evidence argue against a limited proteolysis. Pseudo-activation of glycogen synthase occurred also readily in a rat liver cytosol, but it was not observed with purified synthase from skeletal muscle. These observations have important implications for the assay of liver gycogen-synthase phosphatase; the possible physiological implications remain to be explored.
Collapse
Affiliation(s)
- S Wera
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Belgium
| | | | | | | |
Collapse
|
97
|
Csortos C, Zolnierowicz S, Bakó E, Durbin SD, DePaoli-Roach AA. High complexity in the expression of the B' subunit of protein phosphatase 2A0. Evidence for the existence of at least seven novel isoforms. J Biol Chem 1996; 271:2578-88. [PMID: 8576224 DOI: 10.1074/jbc.271.5.2578] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Association of the catalytic subunit (C2) with a variety of regulatory subunits is believed to modulate the activity and specificity of protein phosphatase 2A (PP2A). In this study we report the cloning and expression of a new family of B-subunit, the B', associated with the PP2A0 form. Polymerase chain reactions and cDNA library screening have identified at least seven cDNA isotypes, designated alpha, beta 1, beta 2, beta 3, beta 4, gamma, and delta. The different beta subtypes appear to be generated by alternative splicing. The deduced amino acid sequences of the alpha, beta 2, beta 3, beta 4 and gamma isoforms predict molecular weights of 57,600, 56,500, 60,900, 52,500, and 68,000, respectively. The proteins are 60-80% identical and differ mostly at their termini. Two of the isoforms, B' beta 3 and B' gamma, contain a bipartite nuclear localization signal in their COOH terminus. No homology was found with other B- or B- related subunits. Northern analyses indicate a tissue-specific expression of the isoforms. Expression of B' alpha protein in Escherichia coli generated a polypeptide of approximately 53 kDa, similar to the size of the B' subunit present in the purified PP2A0. The recombinant protein was recognized by antibody raised against native B' and interacted with the dimeric PP2A (A.C2) to generate a trimeric phosphatase. The deduced amino acid sequences of the B' isoforms show significant homology to mammalian, fungal, and plant nucleotide sequences of unknown function present in the data bases. Notably, a high degree of homology (55-66%) was found with a yeast gene, RTS1, encoding a multicopy suppressor of a rox3 mutant. Our data indicate that at least seven B' subunit isoforms may participate in the generation of a large number of PP2A0 holoenzymes that may be spatially and/or functionally targeted to different cellular processes.
Collapse
Affiliation(s)
- C Csortos
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122, USA
| | | | | | | | | |
Collapse
|
98
|
Renouf S, Beullens M, Wera S, Van Eynde A, Sikela J, Stalmans W, Bollen M. Molecular cloning of a human polypeptide related to yeast sds22, a regulator of protein phosphatase-1. FEBS Lett 1995; 375:75-8. [PMID: 7498485 DOI: 10.1016/0014-5793(95)01180-m] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
sds22 is a regulatory polypeptide of protein phosphatase-1 that is required for the completion of mitosis in both fission and budding yeast. We report here the cDNA cloning of a human polypeptide that is 46% identical to yeast sds22. The human homolog of sds22 consists of 360 residues, has a calculated molecular mass of 41.6 kDa and shows a tandem array of 11 leucine-rich repeat structures of 22 residues. Northern analysis revealed a major transcript of 1.39 kb in all 8 investigated human tissues. sds22 was detected by western analysis in both the cytoplasm and the nucleus of rat liver cells as a polypeptide of 44 kDa.
Collapse
Affiliation(s)
- S Renouf
- Afdeling Biochemie, Faculteit Geneeskunde, Katholicke Universiteit Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
99
|
McCright B, Virshup DM. Identification of a new family of protein phosphatase 2A regulatory subunits. J Biol Chem 1995; 270:26123-8. [PMID: 7592815 DOI: 10.1074/jbc.270.44.26123] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a major intracellular protein phosphatase that regulates multiple aspects of cell growth and metabolism. The ability of this widely distributed heterotrimeric enzyme to act on a diverse array of substrates is largely controlled by the nature of its regulatory B subunit. Only two gene families encoding endogenous B subunits have been cloned to date, although the existence of several additional regulatory subunits is likely. We have identified by two-hybrid interaction a new human gene family encoding PP2A B subunits. This family, denoted B56, contains three distinct genes, one of which is differentially spliced. B56 polypeptides co-immunoprecipitate with PP2A A and C subunits and with an okadaic acid-inhibitable, heparin-stimulated phosphatase activity. The three B56 family members are 70% identical to each other but share no obvious homology with previously identified B subunits. These phosphatase regulators are differentially expressed, with B56 alpha and B56 gamma highly expressed in heart and skeletal muscle and B56 beta highly expressed in brain. The identification of this novel phosphatase regulator gene family will facilitate future studies on the control of protein dephosphorylation and the role of PP2A in cellular function.
Collapse
Affiliation(s)
- B McCright
- Department of Oncological Sciences, University of Utah, Salt Lake City 84112, USA
| | | |
Collapse
|
100
|
Affiliation(s)
- S Wera
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|