51
|
Riedel H. Epidermal growth factor (EGF) modulation of feline sarcoma virus fms tyrosine kinase activity, internalization, degradation, and transforming potential in an EGF receptor/v-fms chimera. J Virol 1994; 68:411-24. [PMID: 8254751 PMCID: PMC236301 DOI: 10.1128/jvi.68.1.411-424.1994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The feline sarcoma virus oncogene v-fms has significantly contributed to the dissection of peptide growth factor action since it encodes the transmembrane tyrosine kinase gp140v-fms, a transforming version of colony-stimulating factor 1 receptor, a member of the growth factor receptor tyrosine kinase family. In this study, the functional significance of structural differences between distinct tyrosine kinase types, in particular between cellular receptors and viral transforming proteins of distinct structural types, has been further investigated, and their functional compatibility has been addressed. For this purpose, major functional domains of three structurally distinct tyrosine kinases were combined into two chimeric receptors. The cytoplasmic gp140v-fms kinase domain and the kinase domain of Rous sarcoma virus pp60v-src were each fused to the extracellular ligand-binding domain of the epidermal growth factor (EGF) receptor to create chimeras EFR and ESR, respectively, which were studied upon stable expression in NIH 3T3 fibroblasts. Both chimeras were faithfully synthesized and routed to the cell surface, where they displayed EGF-specific, low-affinity ligand-binding domains in contrast to the high- and low-affinity EGF-binding sites of normal EGF receptors. While the EFR kinase was EGF controlled for autophosphorylation and substrate phosphorylation in vitro, in vivo, and in digitonin-treated cells, the ESR kinase was not responsive to EGF. While ESR appeared to recycle to the cell surface upon endocytosis, EGF induced efficient EFR internalization and degradation, and phorbol esters stimulated protein kinase C-mediated downmodulation of EFR. Despite its ligand-inducible kinase activity, EFR was partly EGF independent in mediating mitogenesis and cell transformation, while ESR appeared biologically inactive.
Collapse
Affiliation(s)
- H Riedel
- Department of Developmental Biology, Genetech, Inc., South San Francisco, California 94080
| |
Collapse
|
52
|
Carlberg K, Rohrschneider L. The effect of activating mutations on dimerization, tyrosine phosphorylation and internalization of the macrophage colony stimulating factor receptor. Mol Biol Cell 1994; 5:81-95. [PMID: 7514458 PMCID: PMC301011 DOI: 10.1091/mbc.5.1.81] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncogenic activation of the macrophage colony stimulating factor (M-CSF) receptor (c-Fms) requires mutation or truncation of the carboxyl terminus and specific amino acid substitutions in or near the fourth immunoglobulin (Ig)-like loop in the extracellular domain. Using a murine c-Fms system, we investigated the effect of C-terminal truncation, substitutions at amino acids 301 and 374 in the fourth Ig-like loop of the extracellular domain, or the combined mutations on individual steps in receptor activation. The mutations at amino acids 301 and 374 were necessary, but not sufficient, for receptor dimerization in the absence of M-CSF. Only receptors with a truncated C-terminus as well as the extracellular domain mutations dimerized efficiently in the absence of M-CSF, suggesting that the C-terminus of c-Fms also regulates receptor oligomerization. Truncation of the C-terminus alone did not cause receptor dimerization and did not activate the kinase enzymatic activity. Thus, truncation of the C-terminus did not activate receptor monomers in cis. Receptors with both a truncated C-terminus and the extracellular domain mutations underwent ligand-independent aggregation, transphosphorylation, and phosphorylation of cellular proteins, followed by rapid internalization and degradation. These results suggest that M-CSF binding to c-Fms initiates activation by inducing conformational changes in both the cytoplasmic C-terminal domain and the fourth Ig-like loop of the extracellular domain, leading to the formation of stable receptor dimers.
Collapse
Affiliation(s)
- K Carlberg
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | |
Collapse
|
53
|
Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase. Mol Cell Biol 1993. [PMID: 8413267 DOI: 10.1128/mcb.13.11.6711] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oncogenic activation of the met (hepatocyte growth factor/scatter factor) receptor tyrosine kinase involves a genomic rearrangement that generates a hybrid protein containing tpr-encoded sequences at its amino terminus fused directly to the met-encoded receptor kinase domain. Deletion of Tpr sequences abolishes the transforming ability of this protein, implicating this region in oncogenic activation. We demonstrate, by site-directed mutagenesis and coimmunoprecipitation experiments, that a leucine zipper motif within Tpr mediates dimerization of the tpr-met product and is essential for the transforming activity of the met oncogene. By analogy with ligand-stimulated activation of receptor tyrosine kinases, we propose that constitutive dimerization mediated by a leucine zipper motif within Tpr is responsible for oncogenic activation of the Met kinase. The possibility that this mechanism of activation represents a paradigm for a class of receptor tyrosine kinase oncogenes activated by DNA rearrangement is discussed.
Collapse
|
54
|
Rodrigues GA, Park M. Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase. Mol Cell Biol 1993; 13:6711-22. [PMID: 8413267 PMCID: PMC364734 DOI: 10.1128/mcb.13.11.6711-6722.1993] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Oncogenic activation of the met (hepatocyte growth factor/scatter factor) receptor tyrosine kinase involves a genomic rearrangement that generates a hybrid protein containing tpr-encoded sequences at its amino terminus fused directly to the met-encoded receptor kinase domain. Deletion of Tpr sequences abolishes the transforming ability of this protein, implicating this region in oncogenic activation. We demonstrate, by site-directed mutagenesis and coimmunoprecipitation experiments, that a leucine zipper motif within Tpr mediates dimerization of the tpr-met product and is essential for the transforming activity of the met oncogene. By analogy with ligand-stimulated activation of receptor tyrosine kinases, we propose that constitutive dimerization mediated by a leucine zipper motif within Tpr is responsible for oncogenic activation of the Met kinase. The possibility that this mechanism of activation represents a paradigm for a class of receptor tyrosine kinase oncogenes activated by DNA rearrangement is discussed.
Collapse
Affiliation(s)
- G A Rodrigues
- Molecular Oncology Laboratory, Royal Victoria Hospital, Montreal, Canada
| | | |
Collapse
|
55
|
Zong CS, Poon B, Chen J, Wang LH. Molecular and biochemical bases for activation of the transforming potential of the proto-oncogene c-ros. J Virol 1993; 67:6453-62. [PMID: 8411348 PMCID: PMC238081 DOI: 10.1128/jvi.67.11.6453-6462.1993] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The transforming gene of avian sarcoma virus UR2, v-ros, encodes a receptor-like protein tyrosine kinase and differs from its proto-oncogene, c-ros, in its 5' truncation and fusion to viral gag, a three-amino-acid (aa) insertion in the transmembrane (TM) domain, and changes in the carboxyl region. To explore the basis for activation of the c-ros transforming potential, various c-ros retroviral vectors containing those changes were constructed and studied for their biological and biochemical properties. Ufcros codes for the full-length c-ros protein of 2,311 aa, Uppcros has 1,661-aa internal deletion in the extracellular domain, CCros contains the 3' c-ros cDNA fused 150 aa upstream of the TM domain to the UR2 gag, CVros is the same as CCros except that the 3' region is replaced by that of v-ros, and VCros is the same as CCros except that the 5' region is replaced by that of v-ros. The Ufcros, Uppcros, CCros, and CVros are inactive in transforming chicken embryo fibroblasts, whereas VCros is as potent as UR2 in cell-transforming and tumorigenic activities. Upon passages of CCros and CVros viruses, the additional extracellular sequence in comparison with that of v-ros was delected; concurrently, both viruses (named CC5d and CV5d, respectively) attained moderate transforming activity, albeit significantly lower than that of UR2 or VCros. The native c-ros protein has a very low protein tyrosine kinase activity, whereas the ppcros protein is constitutively activated in kinase activity. The inability of CCros and CVros to transform chicken embryo fibroblasts is consistent with the inefficient membrane association, instability, and low kinase activity of their encoded proteins. The CC5d and CV5d proteins are indistinguishable in kinase activity, membrane association, and stability from the v-ros protein. The reduced transforming potency of CC5d and CV5d proteins can be attributed only to their differential substrate interaction, notably the failure to phosphorylate a 88-kDa protein. We conclude that the 5' rather than the 3' modification of c-ros is essential for its oncogenic activation; the sequence upstream of the TM domain has a negative effect on the transforming activity of CCros and CVros and needs to be deleted to activate their biological activity.
Collapse
Affiliation(s)
- C S Zong
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029-6574
| | | | | | | |
Collapse
|
56
|
Furitsu T, Tsujimura T, Tono T, Ikeda H, Kitayama H, Koshimizu U, Sugahara H, Butterfield JH, Ashman LK, Kanayama Y. Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J Clin Invest 1993; 92:1736-44. [PMID: 7691885 PMCID: PMC288334 DOI: 10.1172/jci116761] [Citation(s) in RCA: 646] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The c-kit proto-oncogene encodes a receptor tyrosine kinase. Binding of c-kit ligand, stem cell factor (SCF) to c-kit receptor (c-kitR) is known to activate c-kitR tyrosine kinase, thereby leading to autophosphorylation of c-kitR on tyrosine and to association of c-kitR with substrates such as phosphatidylinositol 3-kinase (PI3K). In a human mast cell leukemia cell line HMC-1, c-kitR was found to be constitutively phosphorylated on tyrosine, activated, and associated with PI3K without the addition of SCF. The expression of SCF mRNA transcript in HMC-1 cells was not detectable by means of PCR after reverse transcription (RT-PCR) analysis, suggesting that the constitutive activation of c-kitR was ligand independent. Sequencing of whole coding region of c-kit cDNA revealed that c-kit genes of HMC-1 cells were composed of a normal, wild-type allele and a mutant allele with two point mutations resulting in intracellular amino acid substitutions of Gly-560 for Val and Val-816 for Asp. Amino acid sequences in the regions of the two mutations are completely conserved in all of mouse, rat, and human c-kit. In order to determine the causal role of these mutations in the constitutive activation, murine c-kit mutants encoding Gly-559 and/or Val-814, corresponding to human Gly-560 and/or Val-816, were constructed by site-directed mutagenesis and expressed in a human embryonic kidney cell line, 293T cells. In the transfected cells, both c-kitR (Gly-559, Val-814) and c-kitR (Val-814) were abundantly phosphorylated on tyrosine and activated in immune complex kinase reaction in the absence of SCF, whereas tyrosine phosphorylation and activation of c-kitR (Gly-559) or wild-type c-kitR was modest or little, respectively. These results suggest that conversion of Asp-816 to Val in human c-kitR may be an activating mutation and responsible for the constitutive activation of c-kitR in HMC-1 cells.
Collapse
Affiliation(s)
- T Furitsu
- Second Department of Internal Medicine, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Identification of the ligand-binding regions in the macrophage colony-stimulating factor receptor extracellular domain. Mol Cell Biol 1993. [PMID: 8355686 DOI: 10.1128/mcb.13.9.5348] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The c-fms gene encodes the receptor for the macrophage colony-stimulating factor (M-CSF), and its extracellular domain consists of five immunoglobulin-like subdomains. To identify which of the five immunoglobulin-like regions are involved in ligand binding, we polymerase chain reaction-cloned five segments of the extracellular domain of the murine c-fms gene, each starting with the normal initiation codon and containing successive additions of the immunoglobulin-like subdomains. These protein segments are designated A, B, C, D, and E and contain, from the N-terminal end, either one, two, three, four, or all five immunoglobulin-like subdomains, respectively. Each segment was expressed as a secreted soluble protein from a baculovirus expression vector in Sf9 insect cells. In addition, segments A, B, C, and E were produced as soluble alkaline phosphatase fusion proteins, as was a segment containing only the fourth and fifth immunoglobulin domains. These segments of the Fms extracellular domain were used to assess M-CSF binding by competition radioimmunoassays, plate binding immunoassays, and immunoprecipitation analyses. The results indicated that the first two N-terminal immunoglobulin-like domains did not interact with M-CSF but, in combination with the third immunoglobulin-like domain, provided high-affinity M-CSF binding. The fourth and fifth immunoglobulin-like domains near the cell membrane did not exhibit M-CSF binding and may inhibit interaction of M-CSF with the first three immunoglobulin domains. These results suggest that the three N-terminal immunoglobulin-like domains constitute the high-affinity M-CSF binding region and that the fourth and fifth immunoglobulin-like domains may perform functions other than ligand binding.
Collapse
|
58
|
Wang ZE, Myles GM, Brandt CS, Lioubin MN, Rohrschneider L. Identification of the ligand-binding regions in the macrophage colony-stimulating factor receptor extracellular domain. Mol Cell Biol 1993; 13:5348-59. [PMID: 8355686 PMCID: PMC360234 DOI: 10.1128/mcb.13.9.5348-5359.1993] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The c-fms gene encodes the receptor for the macrophage colony-stimulating factor (M-CSF), and its extracellular domain consists of five immunoglobulin-like subdomains. To identify which of the five immunoglobulin-like regions are involved in ligand binding, we polymerase chain reaction-cloned five segments of the extracellular domain of the murine c-fms gene, each starting with the normal initiation codon and containing successive additions of the immunoglobulin-like subdomains. These protein segments are designated A, B, C, D, and E and contain, from the N-terminal end, either one, two, three, four, or all five immunoglobulin-like subdomains, respectively. Each segment was expressed as a secreted soluble protein from a baculovirus expression vector in Sf9 insect cells. In addition, segments A, B, C, and E were produced as soluble alkaline phosphatase fusion proteins, as was a segment containing only the fourth and fifth immunoglobulin domains. These segments of the Fms extracellular domain were used to assess M-CSF binding by competition radioimmunoassays, plate binding immunoassays, and immunoprecipitation analyses. The results indicated that the first two N-terminal immunoglobulin-like domains did not interact with M-CSF but, in combination with the third immunoglobulin-like domain, provided high-affinity M-CSF binding. The fourth and fifth immunoglobulin-like domains near the cell membrane did not exhibit M-CSF binding and may inhibit interaction of M-CSF with the first three immunoglobulin domains. These results suggest that the three N-terminal immunoglobulin-like domains constitute the high-affinity M-CSF binding region and that the fourth and fifth immunoglobulin-like domains may perform functions other than ligand binding.
Collapse
Affiliation(s)
- Z E Wang
- Cell Biology Department, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | | | | | |
Collapse
|
59
|
Kanakura Y, Ikeda H, Kitayama H, Sugahara H, Furitsu T. Expression, function and activation of the proto-oncogene c-kit product in human leukemia cells. Leuk Lymphoma 1993; 10:35-41. [PMID: 7690631 DOI: 10.3109/10428199309147354] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The c-kit proto-oncogene encodes a receptor tyrosine kinase that is considered to play important roles in hematopoiesis. The proto-oncogene c-kit product is expressed on various types of human cell lines derived from leukemic cells of erythroid, megakaryocytic and mast-cell lineages. Also, the c-kit product is detectable in blast cells in most cases of acute myeloblastic leukemia (AML) and in some cases of chronic myelogenous leukemia (CML) in blastic crisis (BC). By contrast, little or no expression of c-kit is observed in human leukemia cell lines of lymphoid lineage and in blast cells in acute lymphoblastic leukemia (ALL). Tyrosine phosphorylation and activation of the c-kit product with the ligand for c-kit (stem cell factor: SCF) results in proliferation of some human leukemia cell lines, such as M07E, and blast cells in a substantial fraction of AML cases. In addition, SCF appears to have an activity in inducing differentiation of certain types of leukemic cells. In some cases, further, the c-kit product is found to be activated in leukemic cells even before the stimulation with SCF. These results suggest that c-kit may be involved in excessive proliferation and aberrant differentiation of human leukemia cells.
Collapse
Affiliation(s)
- Y Kanakura
- Second Department of Internal Medicine, Osaka University Medical School, Japan
| | | | | | | | | |
Collapse
|
60
|
de Parseval N, Bordereaux D, Gisselbrecht S, Sola B. Reassessment of the murine c-fms proto-oncogene sequence. Nucleic Acids Res 1993; 21:750. [PMID: 8441691 PMCID: PMC309185 DOI: 10.1093/nar/21.3.750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
61
|
Jong SM, Zong CS, Dorai T, Wang LH. Transforming properties and substrate specificities of the protein tyrosine kinase oncogenes ros and src and their recombinants. J Virol 1992; 66:4909-18. [PMID: 1321277 PMCID: PMC241332 DOI: 10.1128/jvi.66.8.4909-4918.1992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To determine the sequences of the oncogenes src (encoded by Rous sarcoma virus [RSV]) and ros (encoded by UR2) that are responsible for causing different transformation phenotypes and to correlate those sequences with differences in substrate recognition, we constructed recombinants of the two transforming protein tyrosine kinases (PTKs) and studied their biological and biochemical properties. A recombinant with a 5' end from src and a 3' end from ros, called SRC x ROS, transformed chicken embryo fibroblasts (CEF) to a spindle shape morphology, mimicking that of UR2. Neither of the two reverse constructs, ROS x SRC I and ROS x SRC II, could transform CEF. However, a transforming variant of ROS x SRC II appeared during passages of the transfected cells and was called ROS x SRC (R). ROS x SRC (R) contains a 16-amino-acid deletion that includes the 3' half of the transmembrane domain of ros. Unlike RSV, ROS x SRC (R) also transformed CEF to an elongated shape similar to that of UR2. We conclude that distinct phenotypic changes of RSV- and UR2-infected cells do not depend solely on the kinase domains of their oncogenes. We next examined cellular proteins phosphorylated by the tyrosine kinases of UR2, RSV, and their recombinants as well as a number of other avian sarcoma viruses including Fujinami sarcoma virus Y73, and some ros-derived variants. Our results indicate that the UR2-encoded receptorlike PTK P68gag-ros and its derivatives have a very restricted substrate specificity in comparison with the nonreceptor PTKs encoded by the rest of the avian sarcoma viruses. Data from ros and src recombinants indicate that sequences both inside and outside the catalytic domains of ros and src exert a significant effect on the substrate specificity of the two recombinant proteins. Phosphorylation of most of the proteins in the 100- to 200-kDa range correlated with the presence of the 5' src domain, including the SH2 region, but not with the kinase domain in the recombinants. This corroborates the conclusion given above that the kinase domain of src or ros per se is not sufficient to dictate the transforming morphology of these two oncogenes. High-level tyrosyl phosphorylation of most of the prominent substrates of src is not sufficient to cause a round-shape transformation morphology.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Avian Sarcoma Viruses/enzymology
- Avian Sarcoma Viruses/genetics
- Base Sequence
- Cell Transformation, Neoplastic
- Cells, Cultured
- Chick Embryo
- Cloning, Molecular
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Fibroblasts
- Genes, src
- Molecular Sequence Data
- Oligodeoxyribonucleotides
- Oncogene Protein pp60(v-src)/genetics
- Oncogene Protein pp60(v-src)/isolation & purification
- Oncogene Protein pp60(v-src)/metabolism
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/isolation & purification
- Oncogene Proteins, Viral/metabolism
- Polymerase Chain Reaction/methods
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/isolation & purification
- Protein-Tyrosine Kinases/metabolism
- Receptor Protein-Tyrosine Kinases
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Recombination, Genetic
- Restriction Mapping
- Substrate Specificity
Collapse
Affiliation(s)
- S M Jong
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029-6574
| | | | | | | |
Collapse
|
62
|
Substitution of the insulin receptor transmembrane domain with the c-neu/erbB2 transmembrane domain constitutively activates the insulin receptor kinase in vitro. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42298-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
63
|
Natazuka T, Matsui T, Ito M, Nakata H, Nakagawa T, Nakamura H, Masaoka T, Isobe T, Nakao Y. Rare point mutation at codon 301 and 969 of FMS/M-CSF receptor in acute myelomonocytic and monocytic leukemia. Leuk Res 1992; 16:541-3. [PMID: 1385636 DOI: 10.1016/0145-2126(92)90182-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have investigated whether point mutations occurred at codon 301 or 969 of FMS (M-CSF receptor) in 19 patients with acute myelomonocytic (M4) and monocytic leukemia (M5). Nineteen peripheral blood and bone marrow blood samples collected from M4 and M5 patients were examined by using polymerase chain reaction and hybridization to allele specific oligonucleotide probes. Mutations at codon 301 and 969 of FMS were not detected in any samples. FMS gene mutations at codon 301 and 969 were rarely involved in M4 and M5 patients in Japan.
Collapse
Affiliation(s)
- T Natazuka
- Department of Medicine, Kobe University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Isolation and characterization of a second protein tyrosine phosphatase gene, PTP2, from Saccharomyces cerevisiae. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50194-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
65
|
Lee AW. Signal transduction by the colony-stimulating factor-1 receptor; comparison to other receptor tyrosine kinases. CURRENT TOPICS IN CELLULAR REGULATION 1992; 32:73-181. [PMID: 1318184 DOI: 10.1016/b978-0-12-152832-4.50005-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- A W Lee
- Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
66
|
Borycki AG, Guillier M, Leibovitch MP, Leibovitch SA. Molecular cloning of CSF-1 receptor from rat myoblasts. Sequence analysis and regulation during myogenesis. Growth Factors 1992; 6:209-18. [PMID: 1389227 DOI: 10.3109/08977199209026928] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have isolated and sequenced a cDNA (mrfms) encoding rat c-fms gene (CSF-1 receptor) from proliferating L6 alpha 1 myoblasts. The predicted amino acid sequence was highly identical with the c-fms protein found in monocytes and macrophages (98, 76 and 84% identity from mouse, cat and human c-fms proteins, respectively). The mechanisms responsible for the regulation of mrfms gene expression during myogenesis were examined. Mrfms products were observed during proliferation of L6 alpha 1 myoblasts and were downregulated during differentiation. Run-on transcription assays demonstrated that the mrfms gene was transcriptionally active only in undifferentiated myoblasts. These findings suggested that mrfms levels in L6 alpha 1 myoblasts are controlled by transcriptional mechanisms. The half-life of mrfms transcripts was found to be at least 5 hr while inhibition of protein synthesis with cycloheximide (CHX) decreased this half-life to 30 min without changes in the rate of mrfms gene transcription. In addition oncogenic transformation of L6 alpha 1 myoblasts by the v-fms induced constitutive upregulation of mrfms mRNAs, and nuclear run-on assays demonstrated that mrfms transcription was not growth-factor dependent. Furthermore, these findings with others previously published indicate that mrfms gene products may play a role in the normal and neoplastic growth of muscular cells.
Collapse
Affiliation(s)
- A G Borycki
- Laboratoire d'Oncologie Moléculaire UA 1158--URA 126 du CNRS, Institut Gustave Roussy 39, Villejuif, France
| | | | | | | |
Collapse
|
67
|
Affiliation(s)
- P Roth
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
68
|
Defective posttranslational processing activates the tyrosine kinase encoded by the MET proto-oncogene (hepatocyte growth factor receptor). Mol Cell Biol 1991. [PMID: 1658624 DOI: 10.1128/mcb.11.12.6084] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The MET proto-oncogene encodes a 190-kDa disulfide-linked heterodimeric receptor (p190 alpha beta) whose tyrosine kinase activity is triggered by the hepatocyte growth factor. The mature receptor is made of two subunits: an alpha chain of 50 kDa and a beta chain of 145 kDa, arising from proteolytic cleavage of a single-chain precursor of 170 kDa (pr170). In a colon carcinoma cell line (LoVo), the precursor is not cleaved and the Met protein is exposed at the cell surface as a single-chain polypeptide of 190 kDa (p190NC). The expression of the uncleaved Met protein is due to defective posttranslational processing, since in this cell line (i) the proteolytic cleavage site Lys-303-Arg-Lys-Lys-Arg-Ser-308 is present in the precursor, (ii) p190NC is sensitive to mild trypsin digestion of the cell surface, generating alpha and beta chains of the correct size, and (iii) the 205-kDa insulin receptor precursor is not cleaved as well. p190NC is a functional tyrosine kinase in vitro and is activated in vivo, as shown by constitutive autophosphorylation on tyrosine. The MET gene is neither amplified nor rearranged in LoVo cells. Overlapping cDNA clones selected from a library derived from LoVo mRNA were sequenced. No mutations were present in the MET-coding region. These data indicate that the tyrosine kinase encoded by the MET proto-oncogene can be activated as a consequence of a posttranslational defect.
Collapse
|
69
|
Mondino A, Giordano S, Comoglio PM. Defective posttranslational processing activates the tyrosine kinase encoded by the MET proto-oncogene (hepatocyte growth factor receptor). Mol Cell Biol 1991; 11:6084-92. [PMID: 1658624 PMCID: PMC361782 DOI: 10.1128/mcb.11.12.6084-6092.1991] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The MET proto-oncogene encodes a 190-kDa disulfide-linked heterodimeric receptor (p190 alpha beta) whose tyrosine kinase activity is triggered by the hepatocyte growth factor. The mature receptor is made of two subunits: an alpha chain of 50 kDa and a beta chain of 145 kDa, arising from proteolytic cleavage of a single-chain precursor of 170 kDa (pr170). In a colon carcinoma cell line (LoVo), the precursor is not cleaved and the Met protein is exposed at the cell surface as a single-chain polypeptide of 190 kDa (p190NC). The expression of the uncleaved Met protein is due to defective posttranslational processing, since in this cell line (i) the proteolytic cleavage site Lys-303-Arg-Lys-Lys-Arg-Ser-308 is present in the precursor, (ii) p190NC is sensitive to mild trypsin digestion of the cell surface, generating alpha and beta chains of the correct size, and (iii) the 205-kDa insulin receptor precursor is not cleaved as well. p190NC is a functional tyrosine kinase in vitro and is activated in vivo, as shown by constitutive autophosphorylation on tyrosine. The MET gene is neither amplified nor rearranged in LoVo cells. Overlapping cDNA clones selected from a library derived from LoVo mRNA were sequenced. No mutations were present in the MET-coding region. These data indicate that the tyrosine kinase encoded by the MET proto-oncogene can be activated as a consequence of a posttranslational defect.
Collapse
Affiliation(s)
- A Mondino
- Department of Biomedical Sciences, University of Torino Medical School, Italy
| | | | | |
Collapse
|
70
|
Kadowaki T, Kadowaki H, Accili D, Yazaki Y, Taylor S. Substitution of arginine for histidine at position 209 in the alpha-subunit of the human insulin receptor. A mutation that impairs receptor dimerization and transport of receptors to the cell surface. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54844-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
71
|
Smola U, Hennig D, Hadwiger-Fangmeier A, Schütz B, Pfaff E, Niemann H, Tamura T. Reassessment of the v-fms sequence: threonine phosphorylation of the COOH-terminal domain. J Virol 1991; 65:6181-7. [PMID: 1833563 PMCID: PMC250307 DOI: 10.1128/jvi.65.11.6181-6187.1991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The v-fms oncogene product of the McDonough strain of feline sarcoma virus is a member of the receptor tyrosine kinase family. Its cellular counterpart, the c-fms product, is the receptor for colony-stimulating factor 1 (CSF-1) of macrophages. We have reanalyzed the v-fms gene by direct sequencing of a biologically active clone. An additional A nucleotide was detected in position 2810 of the published v-fms sequence. The frameshift changed the COOH-terminal sequence of the v-fms protein from -R-937-G-P-P-L-COOH to -Q-937-R-T-P-P-V-A-R-COOH. Antibodies against a synthetic peptide representing this new sequence precipitated the v-fms proteins from transformed NRK cells as well as from feline sarcoma virus (McDonough)-infected feline fibroblasts. We show by tryptic peptide mapping that threonine 939 present in the new sequence is phosphorylated by a yet unknown serine/threonine kinase in vivo. In chicken fibroblasts expressing the v-fms gene, this phosphorylation clearly depended on the addition of exogenous CSF-1. Furthermore, addition of CSF-1 appeared to activate the serine/threonine kinase, as judged by phosphorylation of the synthetic peptide QRTPPVAR.
Collapse
Affiliation(s)
- U Smola
- Institut für Virologie, Justus-Liebig-Universität Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
72
|
Bortner DM, Ulivi M, Roussel MF, Ostrowski MC. The carboxy-terminal catalytic domain of the GTPase-activating protein inhibits nuclear signal transduction and morphological transformation mediated by the CSF-1 receptor. Genes Dev 1991; 5:1777-85. [PMID: 1717344 DOI: 10.1101/gad.5.10.1777] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To determine whether ras p21 products are necessary for signal transduction mediated by the colony stimulating factor-1 receptor (CSF-1R, the c-fms proto-oncogene product), we determined whether CSF-1R and ras activate a common nuclear target and whether the interruption of ras action affects CSF-1R signal transduction. Expression of the NVL3 retrotransposon was activated to the same extent in NIH-3T3 cells by both ras and v-fms oncogenes, and the ras-responsive element located in the long terminal repeat of NVL3 was demonstrated to be a common target for oncogene action. Human recombinant CSF-1 stimulated expression of the NVL3 element 30-fold in NIH-3T3 cells that contained human CSF-1R. Expression of the carboxy-terminal 374 amino acid residues of the human ras GTPase-activating protein (GAP) in cells containing CSF-1R was able to inhibit CSF-1 induction of NVL3 expression by 90%. Expression of the catalytic domain of GAP was also able to suppress transformation by either v-fms or ligand-activated CSF-1R. Expression of the c-jun proto-oncogene was activated by CSF-1R but was insensitive to the action of the catalytic domain of GAP. These results provide genetic evidence that in NIH-3T3 cells, ras p21 is involved in signal transduction mediated by CSF-1R.
Collapse
Affiliation(s)
- D M Bortner
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | |
Collapse
|
73
|
Tyrosine 706 and 807 phosphorylation site mutants in the murine colony-stimulating factor-1 receptor are unaffected in their ability to bind or phosphorylate phosphatidylinositol-3 kinase but show differential defects in their ability to induce early response gene transcription. Mol Cell Biol 1991. [PMID: 1652061 DOI: 10.1128/mcb.11.9.4698] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The receptor for colony-stimulating factor-1 (CSF-1) is a receptor protein-tyrosine kinase. To study the possible function of CSF-1 receptor autophosphorylation, two autophosphorylation sites, Tyr-706, located in the kinase insert, and Tyr-807, a residue conserved in all protein-tyrosine kinases, were changed independently to either phenylalanine or glycine. Wild-type and mutant receptors were stably expressed in Rat-2 cells. In response to CSF-1, cells expressing Phe- or Gly-706 mutant receptors showed increased growth rate and altered cell morphology. Both the Phe- and Gly-706 mutant receptors associated with and phosphorylated phosphatidylinositol-3 kinase at levels comparable with those of wild-type receptors. However, these mutant receptors differed subtly from each other and from the wild-type receptor in their ability to induce different aspects of the response to CSF-1. The Phe-706 mutant receptor was most strongly affected in its ability to increase growth rate or elevate the levels of c-fos and NGF1A mRNAs, whereas the Gly-706 mutant receptor was most markedly affected in its ability to induce a change in cell morphology or increase the levels of c-jun and NGF1A mRNAs. These findings indicate that Tyr-706 itself, or this region of the receptor, may be important for interaction of the CSF-1 receptor with different signalling pathways. Gly-807 mutant receptors lacked protein-tyrosine kinase activity, failed to respond to CSF-1, and were defective in biosynthetic processing. Phe-807 mutant receptors had 40 to 60% reduced protein-tyrosine kinase activity in vitro. Although cells expressing Phe-807 receptors were able to respond to CSF-1, the changes in growth rate and cell morphology were significantly less than seen with wild-type receptors, and the induction of early response genes was also slightly lower than for the wild-type receptor. In contrast, Phe-807 receptors were equivalent to wild-type receptors when tested for their ability to interact with phosphatidylinositol-3 kinase. These findings indicate that phosphorylation of Tyr-807 may be important for full activation of the receptor.
Collapse
|
74
|
van der Geer P, Hunter T. Tyrosine 706 and 807 phosphorylation site mutants in the murine colony-stimulating factor-1 receptor are unaffected in their ability to bind or phosphorylate phosphatidylinositol-3 kinase but show differential defects in their ability to induce early response gene transcription. Mol Cell Biol 1991; 11:4698-709. [PMID: 1652061 PMCID: PMC361363 DOI: 10.1128/mcb.11.9.4698-4709.1991] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The receptor for colony-stimulating factor-1 (CSF-1) is a receptor protein-tyrosine kinase. To study the possible function of CSF-1 receptor autophosphorylation, two autophosphorylation sites, Tyr-706, located in the kinase insert, and Tyr-807, a residue conserved in all protein-tyrosine kinases, were changed independently to either phenylalanine or glycine. Wild-type and mutant receptors were stably expressed in Rat-2 cells. In response to CSF-1, cells expressing Phe- or Gly-706 mutant receptors showed increased growth rate and altered cell morphology. Both the Phe- and Gly-706 mutant receptors associated with and phosphorylated phosphatidylinositol-3 kinase at levels comparable with those of wild-type receptors. However, these mutant receptors differed subtly from each other and from the wild-type receptor in their ability to induce different aspects of the response to CSF-1. The Phe-706 mutant receptor was most strongly affected in its ability to increase growth rate or elevate the levels of c-fos and NGF1A mRNAs, whereas the Gly-706 mutant receptor was most markedly affected in its ability to induce a change in cell morphology or increase the levels of c-jun and NGF1A mRNAs. These findings indicate that Tyr-706 itself, or this region of the receptor, may be important for interaction of the CSF-1 receptor with different signalling pathways. Gly-807 mutant receptors lacked protein-tyrosine kinase activity, failed to respond to CSF-1, and were defective in biosynthetic processing. Phe-807 mutant receptors had 40 to 60% reduced protein-tyrosine kinase activity in vitro. Although cells expressing Phe-807 receptors were able to respond to CSF-1, the changes in growth rate and cell morphology were significantly less than seen with wild-type receptors, and the induction of early response genes was also slightly lower than for the wild-type receptor. In contrast, Phe-807 receptors were equivalent to wild-type receptors when tested for their ability to interact with phosphatidylinositol-3 kinase. These findings indicate that phosphorylation of Tyr-807 may be important for full activation of the receptor.
Collapse
Affiliation(s)
- P van der Geer
- Molecular Biology and Virology Laboratory, Salk Institute, San Diego, California 92186
| | | |
Collapse
|
75
|
Brizzi MF, Avanzi GC, Pegoraro L. Hematopoietic growth factor receptors. INTERNATIONAL JOURNAL OF CELL CLONING 1991; 9:274-300. [PMID: 1894957 DOI: 10.1002/stem.5530090404] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The molecular cloning for most of the hematopoietic growth factor receptors has been achieved over the past few years and revealed that they can by assigned to two discrete receptor families, namely the hematopoietic growth factor superfamily (HRS) and the receptor tyrosine kinase family (RTK). The members of the HRS, including granulocyte-macrophage colony-stimulating factor receptor (GM-CSF-R), interleukin 3 receptor (IL-3-R), granulocyte CSF receptor (G-CSF-R) and erythropoietin receptor (Epo-R), share a common binding domain and the absence of a tyrosine kinase domain in their cytoplasmic portion. In some cases (e.g., GM-CSF-R), the high-affinity receptor structure is obtained through the association of the low-affinity binding chain (alpha chain) with an accessory protein (beta chain). It is conceivable that this protein might also represent the common subunit shared by GM-CSF-R and by IL-3-R when they are co-expressed to form the putative GM-CSF-R/IL-3-R complex. Although tyrosine phosphorylation following ligand receptor activation seems to be a common event in the HRS, its role in the signal transduction mechanisms is unknown. Due to the structural analogies among the members of this family any new insight into one particular receptor member, such as its subunit structure and its signal transduction pathways, will be generalizable to the other family members. The subclass III of the RTK family, including the CSF-1-R and c-kit, is characterized by an additional insert into the kinase domain that recognizes and binds protein substrates. Ligand induced activation of the kinase domain and its signaling potential are mediated by receptor oligomerization which stabilizes interactions between adjacent cytoplasmic domains and leads to activation of kinase function by molecular interaction. Interestingly, the receptors included in this subclass are the products of well known cellular proto-oncogenes. A large variety of structural alteration found in receptor-derived oncogene products may lead to constitutive activation of receptor signals that, consequently, result in the subversion of the mechanisms controlling the cell growth.
Collapse
Affiliation(s)
- M F Brizzi
- Dipartimento di Scienze Biomediche e Oncologia Umana, Universitá di Torino, Italy
| | | | | |
Collapse
|
76
|
Basler K, Christen B, Hafen E. Ligand-independent activation of the sevenless receptor tyrosine kinase changes the fate of cells in the developing Drosophila eye. Cell 1991; 64:1069-81. [PMID: 2004416 DOI: 10.1016/0092-8674(91)90262-w] [Citation(s) in RCA: 191] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell fate in the developing eye is determined by a cascade of inductive interactions. In this process, the sevenless protein--a receptor tyrosine kinase--is required for the specification of the R7 photoreceptor cell fate. We have constructed a gain-of-function sevenless mutation (SevS11) by overexpressing a truncated sevenless protein in the cells where sevenless is normally expressed. In SevS11 mutant flies, all sevenless-expressing cells initiate neural development. This results in the formation of multiple R7-like photoreceptors per ommatidium. Therefore, sevenless activity appears to be necessary and sufficient for the determination of R7 cell fate. These results illustrate the central role receptor tyrosine kinases can play in the specification of cell fate during development.
Collapse
Affiliation(s)
- K Basler
- Zoologisches Institut, Universität Zürich, Switzerland
| | | | | |
Collapse
|
77
|
Carpenter CD, Ingraham HA, Cochet C, Walton GM, Lazar CS, Sowadski JM, Rosenfeld MG, Gill GN. Structural analysis of the transmembrane domain of the epidermal growth factor receptor. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67659-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
78
|
Affiliation(s)
- J M Bishop
- Department of Microbiology and Immunology, G.W. Hooper Research Foundation, University of California, San Francisco 94143
| |
Collapse
|
79
|
Parwaresch MR, Kreipe H, Radzun HJ, Griesser H. Lineage-specific receptors in the diagnosis of malignant lymphomas and myelomonocytic neoplasms. CURRENT TOPICS IN PATHOLOGY. ERGEBNISSE DER PATHOLOGIE 1991; 83:495-516. [PMID: 1826097 DOI: 10.1007/978-3-642-75515-6_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
80
|
Tsichlis PN, Lazo PA. Virus-host interactions and the pathogenesis of murine and human oncogenic retroviruses. Curr Top Microbiol Immunol 1991; 171:95-171. [PMID: 1667631 DOI: 10.1007/978-3-642-76524-7_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
MESH Headings
- Animals
- Base Sequence
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Viral
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Genes, Viral
- Genetic Markers
- Genetic Predisposition to Disease
- Growth Substances/genetics
- Growth Substances/physiology
- Humans
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Leukemia Virus, Murine/physiology
- Mice/genetics
- Mice/microbiology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Neoplasms/genetics
- Neoplasms/microbiology
- Neoplasms/veterinary
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/microbiology
- Oncogenes
- Proto-Oncogenes
- Proviruses/genetics
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Repetitive Sequences, Nucleic Acid
- Retroviridae/genetics
- Retroviridae/pathogenicity
- Retroviridae/physiology
- Rodent Diseases/genetics
- Rodent Diseases/microbiology
- Signal Transduction
- Virus Integration
- Virus Replication
Collapse
Affiliation(s)
- P N Tsichlis
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | |
Collapse
|
81
|
Shepherd L, Cameron C, Galbraith P, Windsor S, Lillicrap D. Absence of allelic loss on chromosome 5q by RFLP analysis in preleukemia. Leuk Res 1991; 15:297-303. [PMID: 1675299 DOI: 10.1016/0145-2126(91)90004-d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thirty-eight patients with various forms of myelodysplastic syndrome (MDS) were studied for the loss of restriction fragment length polymorphism (RFLP) heterozygosity on chromosome 5q as inferential support for the presence of a growth regulatory locus in this area of the genome. Conventional chromosomal analysis was performed in addition to RFLP studies of constitutive and granulocyte DNA using five polymorphisms from chromosome 5. Allelic loss in granulocyte DNA was identified in only one patient in whom monosomy 5 had already been defined cytogenetically. These results suggest that DNA sequence loss from chromosome 5q other than that observed cytogenetically is a rare event in MDS. Thus the potential involvement of a growth regulatory gene(s), from this area of the genome, in the leukemogenic process most likely involves a more subtle genetic change.
Collapse
Affiliation(s)
- L Shepherd
- Department of Pathology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
82
|
A mutation in the extracellular domain of the insulin receptor impairs the ability of insulin to stimulate receptor autophosphorylation. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52453-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
83
|
Yoshimura A, Longmore G, Lodish HF. Point mutation in the exoplasmic domain of the erythropoietin receptor resulting in hormone-independent activation and tumorigenicity. Nature 1990; 348:647-9. [PMID: 2174515 DOI: 10.1038/348647a0] [Citation(s) in RCA: 247] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The receptors for erythropoietin and other cytokines constitute a new superfamily. They have no tyrosine-kinase or other enzyme motif and their signal-transducing mechanism is unclear. Here we describe two classes of activating mutations in the erythropoietin receptor (EPOR). A single point mutation in the exoplasmic domain enables it to induce hormone-independent cell growth and tumorigenesis after expression in nontumorigenic, interleukin-3-dependent haematopoietic cells. A C-terminal truncation in the cytoplasmic domain of the EPOR renders the receptor hyperresponsive to erythropoietin, but is insufficient to induce hormone-independent growth or tumorigenicity. The activating point mutation retards intracellular transport and turnover of the receptor. These alterations in metabolism and tumorigenicity caused by the EPOR with activating point mutations are similar to those observed in erythropoietin-independent activation of the wild type EPOR by association with gp55, the Friend spleen focus-forming virus glycoprotein.
Collapse
Affiliation(s)
- A Yoshimura
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | | | | |
Collapse
|
84
|
van Lohuizen M, Berns A. Tumorigenesis by slow-transforming retroviruses--an update. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1032:213-35. [PMID: 2261495 DOI: 10.1016/0304-419x(90)90005-l] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- M van Lohuizen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam
| | | |
Collapse
|
85
|
Interactions of phosphatidylinositol kinase, GTPase-activating protein (GAP), and GAP-associated proteins with the colony-stimulating factor 1 receptor. Mol Cell Biol 1990. [PMID: 2172781 DOI: 10.1128/mcb.10.11.5601] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interactions of the macrophage colony-stimulating factor 1 (CSF-1) receptor with potential targets were investigated after ligand stimulation either of mouse macrophages or of fibroblasts that ectopically express mouse CSF-1 receptors. In Rat-2 cells expressing the mouse CSF-1 receptor, full activation of the receptor and cellular transformation require exogenous CSF-1, whereas NIH 3T3 cells expressing mouse c-fms are transformed by autocrine stimulation. Activated CSF-1 receptors physically associate with a phosphatidylinositol (PI) 3'-kinase. A mutant CSF-1 receptor with a deletion of the kinase insert region was deficient in its ability to bind functional PI 3'-kinase and to induce PI 3'-kinase activity precipitable with antiphosphotyrosine antibodies. In fibroblasts, CSF-1 stimulation also induced the phosphorylation of the GTPase-activating protein (GAP)-associated protein p62 on tyrosine, although GAP itself was a relatively poor substrate. In contrast to PI 3'-kinase association, phosphorylation of p62 and GAP was not markedly affected by deletion of the kinase insert region. These results indicate that the kinase insert region selectively enhances the CSF-1-dependent association of the CSF-1 receptor with active PI 3'-kinase. The insert deletion mutant retains considerable transforming activity in NIH 3T3 cells (G. Taylor, M. Reedijk, V. Rothwell, L. Rohrschneider, and T. Pawson, EMBO J. 8:2029-2037, 1989). This mutant was more seriously impaired in Rat-2 cell transformation, although mutant-expressing Rat-2 cells still formed small colonies in soft agar in the presence of CSF-1. Therefore, phosphorylation of GAP and p62 through activation of the CSF-1 receptor does not result in full fibroblast transformation. The interaction between the CSF-1 receptor and PI 3'-kinase may contribute to c-fms fibroblast transformation and play a role in CSF-1-stimulated macrophages.
Collapse
|
86
|
Reedijk M, Liu XQ, Pawson T. Interactions of phosphatidylinositol kinase, GTPase-activating protein (GAP), and GAP-associated proteins with the colony-stimulating factor 1 receptor. Mol Cell Biol 1990; 10:5601-8. [PMID: 2172781 PMCID: PMC361316 DOI: 10.1128/mcb.10.11.5601-5608.1990] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The interactions of the macrophage colony-stimulating factor 1 (CSF-1) receptor with potential targets were investigated after ligand stimulation either of mouse macrophages or of fibroblasts that ectopically express mouse CSF-1 receptors. In Rat-2 cells expressing the mouse CSF-1 receptor, full activation of the receptor and cellular transformation require exogenous CSF-1, whereas NIH 3T3 cells expressing mouse c-fms are transformed by autocrine stimulation. Activated CSF-1 receptors physically associate with a phosphatidylinositol (PI) 3'-kinase. A mutant CSF-1 receptor with a deletion of the kinase insert region was deficient in its ability to bind functional PI 3'-kinase and to induce PI 3'-kinase activity precipitable with antiphosphotyrosine antibodies. In fibroblasts, CSF-1 stimulation also induced the phosphorylation of the GTPase-activating protein (GAP)-associated protein p62 on tyrosine, although GAP itself was a relatively poor substrate. In contrast to PI 3'-kinase association, phosphorylation of p62 and GAP was not markedly affected by deletion of the kinase insert region. These results indicate that the kinase insert region selectively enhances the CSF-1-dependent association of the CSF-1 receptor with active PI 3'-kinase. The insert deletion mutant retains considerable transforming activity in NIH 3T3 cells (G. Taylor, M. Reedijk, V. Rothwell, L. Rohrschneider, and T. Pawson, EMBO J. 8:2029-2037, 1989). This mutant was more seriously impaired in Rat-2 cell transformation, although mutant-expressing Rat-2 cells still formed small colonies in soft agar in the presence of CSF-1. Therefore, phosphorylation of GAP and p62 through activation of the CSF-1 receptor does not result in full fibroblast transformation. The interaction between the CSF-1 receptor and PI 3'-kinase may contribute to c-fms fibroblast transformation and play a role in CSF-1-stimulated macrophages.
Collapse
Affiliation(s)
- M Reedijk
- Division of Molecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
87
|
Substitution of lysine for asparagine at position 15 in the alpha-subunit of the human insulin receptor. A mutation that impairs transport of receptors to the cell surface and decreases the affinity of insulin binding. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30636-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
88
|
Roussel MF, Shurtleff SA, Downing JR, Sherr CJ. A point mutation at tyrosine-809 in the human colony-stimulating factor 1 receptor impairs mitogenesis without abrogating tyrosine kinase activity, association with phosphatidylinositol 3-kinase, or induction of c-fos and junB genes. Proc Natl Acad Sci U S A 1990; 87:6738-42. [PMID: 2168557 PMCID: PMC54612 DOI: 10.1073/pnas.87.17.6738] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Substitution of phenylalanine for tyrosine-809 in the human colony-stimulating factor 1 receptor (CSF-1R) inhibited its ability to transduce ligand-dependent mitogenic signals in mouse NIH 3T3 cells. When combined with an "activating" mutation at codon 301 that induces constitutive CSF-1R tyrosine kinase activity, the codon 809 mutation suppressed ligand-independent cell transformation. Comparative mapping of tryptic phosphopeptides from mutant and wild-type CSF-1R indicated that tyrosine-809 is a site of ligand-dependent receptor phosphorylation in vivo. The mutant receptor was active as a tyrosine kinase in vitro and in vivo, underwent CSF-1-dependent association with a phosphatidylinositol 3-kinase, and induced expression of the protooncogenes c-fos and junB, underscoring its ability to trigger some of the known cellular responses to CSF-1. The mutant receptor is likely to be impaired in its ability to interact with critical cellular effectors whose activity is required for mitogenesis.
Collapse
Affiliation(s)
- M F Roussel
- Department of Tumor Cell Biology, Saint Jude Children's Research Hospital, Memphis, TN 38104
| | | | | | | |
Collapse
|
89
|
Macrophage lineage switching of murine early pre-B lymphoid cells expressing transduced fms genes. Mol Cell Biol 1990. [PMID: 2160584 DOI: 10.1128/mcb.10.6.2703] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
fms genes encoding either wild-type or constitutively activated colony-stimulating factor 1 receptors (CSF-1R) were introduced by retroviral infection into long-term mouse lymphoid cultures. Four early pre-B-cell lines transformed by the feline v-fms oncogene underwent spontaneous and irreversible differentiation to macrophages when transferred from RPMI 1640 to Iscove modified Dulbecco medium. Expression of wild-type human CSF-1R in early pre-B cells conferred no proliferative advantage unless human CSF-1 was added to the culture medium. A clonal, factor-dependent early pre-B-cell line (D1F9), selected for continuous growth on NIH 3T3 cell feeder layers producing human CSF-1, could be maintained in RPMI 1640 medium containing interleukin-7 (IL-7) but also differentiated to macrophages when grown in Iscove modified Dulbecco medium containing human CSF-1. The macrophages retained parental immunoglobulin gene rearrangements and proviral insertions, lost B-cell antigens, expressed butyrate esterase and MAC-1, were actively phagocytic, and no longer survived in IL-7. Unlike factor-independent v-fms transformants, the irreversible commitment of D1F9 cells to differentiate in the macrophage lineage could be suppressed by IL-7, depended on human (but not mouse) CSF-1, and was inhibited by an antibody to human CSF-1R. Signals mediated by transduced CSF-1R can therefore play a deterministic role in cell differentiation.
Collapse
|
90
|
Identification of tyrosine 706 in the kinase insert as the major colony-stimulating factor 1 (CSF-1)-stimulated autophosphorylation site in the CSF-1 receptor in a murine macrophage cell line. Mol Cell Biol 1990. [PMID: 2160591 DOI: 10.1128/mcb.10.6.2991] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The receptor for colony-stimulating factor 1 (CSF-1) is a ligand-activated protein-tyrosine kinase. It has been shown previously that the CSF-1 receptor is phosphorylated on serine in vivo and that phosphorylation on tyrosine can be induced by stimulation with CSF-1. We studied the phosphorylation of the CSF-1 receptor by using the BAC1.2F5 murine macrophage cell line, which naturally expresses CSF-1 receptors. Two-dimensional tryptic phosphopeptide mapping showed that the CSF-1 receptor is phosphorylated on several different serine residues in vivo. Stimulation with CSF-1 at 37 degrees C resulted in rapid phosphorylation on tyrosine at one major site and one or two minor sites. We identified the major site as Tyr-706. The identity of Tyr-706 was confirmed by mutagenesis. This residue is located within the kinase insert domain. There was no evidence that Tyr-973 (equivalent to Tyr-969 in the human CSF-1 receptor) was phosphorylated following CSF-1 stimulation. When cells were stimulated with CSF-1 at 4 degrees C, additional phosphotyrosine-containing phosphopeptides were detected and the level of phosphorylation of the individual phosphotyrosine-containing phosphopeptides was substantially increased. In addition, we show that CSF-1 receptors are capable of autophosphorylation at six to eight major sites in vitro.
Collapse
|
91
|
Epidermal growth factor receptor cytoplasmic domain mutations trigger ligand-independent transformation. Mol Cell Biol 1990. [PMID: 1971419 DOI: 10.1128/mcb.10.6.3048] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The transforming gene product of avian erythroblastosis virus, v-erbB, is derived from the epidermal growth factor (EGF) receptor but has lost its extracellular ligand-binding domain and was mutated in its cytoplasmic portion, which is thought to be responsible for biological signal generation. We have repaired the deletion of extracellular EGF-binding sequences and investigated the functional consequences of cytoplasmic erbB mutations. Within the resulting EGF receptors, the autophosphorylation activities of the cytoplasmic domains of v-erbB-H and v-erbB-ES4 were fully ligand dependent in intact cells. However, the mitogenic and transforming signaling activities of an EGF receptor carrying v-erbB-ES4 (but not v-erbB-H) cytoplasmic sequences remained ligand independent, whereas those of a receptor with a v-erbB-H cytoplasmic domain were regulated by EGF or transforming growth factor alpha. Thus, structural alterations in the cytoplasmic domain of growth factor receptor tyrosine kinases may induce constitutive signaling activity without autophosphorylation. These findings provide new insight into the mechanism of receptor-mediated signal transduction and suggest a novel alternative for subversion of cellular control mechanisms and proto-oncogene activation.
Collapse
|
92
|
Macrophage colony-stimulating factor-induced tyrosine phosphorylation of c-fms proteins expressed in FDC-P1 and BALB/c 3T3 cells. Mol Cell Biol 1990. [PMID: 2140428 DOI: 10.1128/mcb.10.6.2528] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The c-fms protein is a receptor for macrophage colony-stimulating factor (M-CSF) with intrinsic protein-tyrosine kinase activity. We investigated the tyrosine phosphorylation of murine c-fms proteins expressed from a retroviral vector in factor-dependent myeloid FDC-P1 cells and in BALB/c 3T3 fibroblasts transformed by the expression of the c-fms gene. FDC-P1 cells expressing c-fms were able to grow and differentiate in response to M-CSF. Their c-fms proteins were normally phosphorylated on serine and became phosphorylated on tyrosine residues contained in five tryptic peptides when the cells were exposed to M-CSF. A subset of these peptides was constitutively phosphorylated in BALB/c cells expressing c-fms, consistent with the production of M-CSF by these cells. All the peptides detected in vivo were also phosphorylated in vitro. These peptides were analyzed by susceptibility to proteases, comparison with synthetic peptides, and site-directed mutagenesis. The identities of four of the tryptic peptides were determined; they arise from three unique tyrosine phosphorylation sites. One major site of tyrosine phosphorylation at residue 697 accounted for two of the tryptic peptides. A second major site was identified at tyrosine residue 706. These two tyrosine phosphorylation sites are located within the tyrosine kinase insert region. Tyrosine 807, which has homology to the major autophosphorylation site of the p60v-src tyrosine kinase, is a minor autophosphorylation site. Possible functional roles for these phosphorylations of the c-fms protein include interactions with substrate proteins, catalytic activity, and ligand-induced degradation.
Collapse
|
93
|
Massoglia S, Gray A, Dull TJ, Munemitsu S, Kun HJ, Schlessinger J, Ullrich A. Epidermal growth factor receptor cytoplasmic domain mutations trigger ligand-independent transformation. Mol Cell Biol 1990; 10:3048-55. [PMID: 1971419 PMCID: PMC360669 DOI: 10.1128/mcb.10.6.3048-3055.1990] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transforming gene product of avian erythroblastosis virus, v-erbB, is derived from the epidermal growth factor (EGF) receptor but has lost its extracellular ligand-binding domain and was mutated in its cytoplasmic portion, which is thought to be responsible for biological signal generation. We have repaired the deletion of extracellular EGF-binding sequences and investigated the functional consequences of cytoplasmic erbB mutations. Within the resulting EGF receptors, the autophosphorylation activities of the cytoplasmic domains of v-erbB-H and v-erbB-ES4 were fully ligand dependent in intact cells. However, the mitogenic and transforming signaling activities of an EGF receptor carrying v-erbB-ES4 (but not v-erbB-H) cytoplasmic sequences remained ligand independent, whereas those of a receptor with a v-erbB-H cytoplasmic domain were regulated by EGF or transforming growth factor alpha. Thus, structural alterations in the cytoplasmic domain of growth factor receptor tyrosine kinases may induce constitutive signaling activity without autophosphorylation. These findings provide new insight into the mechanism of receptor-mediated signal transduction and suggest a novel alternative for subversion of cellular control mechanisms and proto-oncogene activation.
Collapse
Affiliation(s)
- S Massoglia
- Department of Developmental Biology, Genentech, Inc., South San Francisco, California 94080
| | | | | | | | | | | | | |
Collapse
|
94
|
Borzillo GV, Ashmun RA, Sherr CJ. Macrophage lineage switching of murine early pre-B lymphoid cells expressing transduced fms genes. Mol Cell Biol 1990; 10:2703-14. [PMID: 2160584 PMCID: PMC360630 DOI: 10.1128/mcb.10.6.2703-2714.1990] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
fms genes encoding either wild-type or constitutively activated colony-stimulating factor 1 receptors (CSF-1R) were introduced by retroviral infection into long-term mouse lymphoid cultures. Four early pre-B-cell lines transformed by the feline v-fms oncogene underwent spontaneous and irreversible differentiation to macrophages when transferred from RPMI 1640 to Iscove modified Dulbecco medium. Expression of wild-type human CSF-1R in early pre-B cells conferred no proliferative advantage unless human CSF-1 was added to the culture medium. A clonal, factor-dependent early pre-B-cell line (D1F9), selected for continuous growth on NIH 3T3 cell feeder layers producing human CSF-1, could be maintained in RPMI 1640 medium containing interleukin-7 (IL-7) but also differentiated to macrophages when grown in Iscove modified Dulbecco medium containing human CSF-1. The macrophages retained parental immunoglobulin gene rearrangements and proviral insertions, lost B-cell antigens, expressed butyrate esterase and MAC-1, were actively phagocytic, and no longer survived in IL-7. Unlike factor-independent v-fms transformants, the irreversible commitment of D1F9 cells to differentiate in the macrophage lineage could be suppressed by IL-7, depended on human (but not mouse) CSF-1, and was inhibited by an antibody to human CSF-1R. Signals mediated by transduced CSF-1R can therefore play a deterministic role in cell differentiation.
Collapse
Affiliation(s)
- G V Borzillo
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | |
Collapse
|
95
|
Tapley P, Kazlauskas A, Cooper JA, Rohrschneider LR. Macrophage colony-stimulating factor-induced tyrosine phosphorylation of c-fms proteins expressed in FDC-P1 and BALB/c 3T3 cells. Mol Cell Biol 1990; 10:2528-38. [PMID: 2140428 PMCID: PMC360610 DOI: 10.1128/mcb.10.6.2528-2538.1990] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The c-fms protein is a receptor for macrophage colony-stimulating factor (M-CSF) with intrinsic protein-tyrosine kinase activity. We investigated the tyrosine phosphorylation of murine c-fms proteins expressed from a retroviral vector in factor-dependent myeloid FDC-P1 cells and in BALB/c 3T3 fibroblasts transformed by the expression of the c-fms gene. FDC-P1 cells expressing c-fms were able to grow and differentiate in response to M-CSF. Their c-fms proteins were normally phosphorylated on serine and became phosphorylated on tyrosine residues contained in five tryptic peptides when the cells were exposed to M-CSF. A subset of these peptides was constitutively phosphorylated in BALB/c cells expressing c-fms, consistent with the production of M-CSF by these cells. All the peptides detected in vivo were also phosphorylated in vitro. These peptides were analyzed by susceptibility to proteases, comparison with synthetic peptides, and site-directed mutagenesis. The identities of four of the tryptic peptides were determined; they arise from three unique tyrosine phosphorylation sites. One major site of tyrosine phosphorylation at residue 697 accounted for two of the tryptic peptides. A second major site was identified at tyrosine residue 706. These two tyrosine phosphorylation sites are located within the tyrosine kinase insert region. Tyrosine 807, which has homology to the major autophosphorylation site of the p60v-src tyrosine kinase, is a minor autophosphorylation site. Possible functional roles for these phosphorylations of the c-fms protein include interactions with substrate proteins, catalytic activity, and ligand-induced degradation.
Collapse
Affiliation(s)
- P Tapley
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | | | |
Collapse
|
96
|
van der Geer P, Hunter T. Identification of tyrosine 706 in the kinase insert as the major colony-stimulating factor 1 (CSF-1)-stimulated autophosphorylation site in the CSF-1 receptor in a murine macrophage cell line. Mol Cell Biol 1990; 10:2991-3002. [PMID: 2160591 PMCID: PMC360663 DOI: 10.1128/mcb.10.6.2991-3002.1990] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The receptor for colony-stimulating factor 1 (CSF-1) is a ligand-activated protein-tyrosine kinase. It has been shown previously that the CSF-1 receptor is phosphorylated on serine in vivo and that phosphorylation on tyrosine can be induced by stimulation with CSF-1. We studied the phosphorylation of the CSF-1 receptor by using the BAC1.2F5 murine macrophage cell line, which naturally expresses CSF-1 receptors. Two-dimensional tryptic phosphopeptide mapping showed that the CSF-1 receptor is phosphorylated on several different serine residues in vivo. Stimulation with CSF-1 at 37 degrees C resulted in rapid phosphorylation on tyrosine at one major site and one or two minor sites. We identified the major site as Tyr-706. The identity of Tyr-706 was confirmed by mutagenesis. This residue is located within the kinase insert domain. There was no evidence that Tyr-973 (equivalent to Tyr-969 in the human CSF-1 receptor) was phosphorylated following CSF-1 stimulation. When cells were stimulated with CSF-1 at 4 degrees C, additional phosphotyrosine-containing phosphopeptides were detected and the level of phosphorylation of the individual phosphotyrosine-containing phosphopeptides was substantially increased. In addition, we show that CSF-1 receptors are capable of autophosphorylation at six to eight major sites in vitro.
Collapse
Affiliation(s)
- P van der Geer
- Molecular Biology and Virology Laboratory, Salk Institute, San Diego, California 92138-9216
| | | |
Collapse
|
97
|
Abstract
A chimeric receptor composed of the extracellular domain of the human T-cell antigen CD2 (T11) joined to the membrane-spanning segment and the intracellular tyrosine kinase domain of the human colony-stimulating factor 1 receptor (CSF-1R) was expressed in murine NIH 3T3 fibroblasts. Stimulation of these cells with monoclonal antibodies to CD2 induced phosphorylation of the chimeric glycoprotein on tyrosine, receptor downmodulation, and mitogenesis. In contrast, neither human CSF-1R nor the chimeric receptor was able to function in interleukin-2-dependent murine T cells. In fibroblasts, then, CSF-1 per se is not required for activation of the receptor kinase or for a biological response, whereas in T cells, CSF-1R may be unable to engage the downstream signal transduction machinery.
Collapse
|
98
|
Roussel MF, Transy C, Kato JY, Reinherz EL, Sherr CJ. Antibody-induced mitogenicity mediated by a chimeric CD2-c-fms receptor. Mol Cell Biol 1990; 10:2407-12. [PMID: 1691441 PMCID: PMC360589 DOI: 10.1128/mcb.10.5.2407-2412.1990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A chimeric receptor composed of the extracellular domain of the human T-cell antigen CD2 (T11) joined to the membrane-spanning segment and the intracellular tyrosine kinase domain of the human colony-stimulating factor 1 receptor (CSF-1R) was expressed in murine NIH 3T3 fibroblasts. Stimulation of these cells with monoclonal antibodies to CD2 induced phosphorylation of the chimeric glycoprotein on tyrosine, receptor downmodulation, and mitogenesis. In contrast, neither human CSF-1R nor the chimeric receptor was able to function in interleukin-2-dependent murine T cells. In fibroblasts, then, CSF-1 per se is not required for activation of the receptor kinase or for a biological response, whereas in T cells, CSF-1R may be unable to engage the downstream signal transduction machinery.
Collapse
Affiliation(s)
- M F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospitals, Memphis, Tennessee 38105
| | | | | | | | | |
Collapse
|
99
|
Affiliation(s)
- A Ullrich
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | |
Collapse
|
100
|
Taga T, Kishimoto T. Immune and hematopoietic cell regulation: cytokines and their receptors. Curr Opin Cell Biol 1990; 2:174-80. [PMID: 2163655 DOI: 10.1016/0955-0674(90)90003-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- T Taga
- Division of Immunology, Osaka University, Japan
| | | |
Collapse
|