51
|
Deek J, Chung PJ, Kayser J, Bausch AR, Safinya CR. Neurofilament sidearms modulate parallel and crossed-filament orientations inducing nematic to isotropic and re-entrant birefringent hydrogels. Nat Commun 2014; 4:2224. [PMID: 23892390 DOI: 10.1038/ncomms3224] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/01/2013] [Indexed: 12/31/2022] Open
Abstract
Neurofilaments are intermediate filaments assembled from the subunits neurofilament-low, neurofilament-medium and neurofilament-high. In axons, parallel neurofilaments form a nematic liquid-crystal hydrogel with network structure arising from interactions between the neurofilaments' C-terminal sidearms. Here we report, using small-angle X-ray-scattering, polarized-microscopy and rheometry, that with decreasing ionic strength, neurofilament-low-high, neurofilament-low-medium and neurofilament-low-medium-high hydrogels transition from the nematic hydrogel to an isotropic hydrogel (with random, crossed-filament orientation) and to an unexpected new re-entrant liquid-crystal hydrogel with parallel filaments--the bluish-opaque hydrogel--with notable mechanical and water retention properties reminiscent of crosslinked hydrogels. Significantly, the isotropic gel phase stability is sidearm-dependent: neurofilament-low-high hydrogels exhibit a wide ionic strength range, neurofilament-low-medium hydrogels a narrow ionic strength range, whereas neurofilament-low hydrogels lack the isotropic gel phase. This suggests a dominant regulatory role for neurofilament-high sidearms in filament reorientation plasticity, facilitating organelle transport in axons. Neurofilament-inspired biomimetic hydrogels should therefore exhibit remarkable structure-dependent moduli and slow and fast water-release properties.
Collapse
Affiliation(s)
- Joanna Deek
- Chemistry and Biochemistry Department, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
52
|
|
53
|
Zhang W, Kai K, Ueno NT, Qin L. A Brief Review of the Biophysical Hallmarks of Metastatic Cancer Cells. ACTA ACUST UNITED AC 2013; 1:59-66. [PMID: 25309822 DOI: 10.1166/ch.2013.1010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A hallmark of metastatic cancer cells is their invasion through the basal membrane and endothelial layer, which requires a highly elastic cytoskeleton and nucleus. Therefore, cellular deformability can serve as a universal biophysical marker for detecting a tumor's propensity for invasion, migration, and metastasis. In this review, we define the importance of the biophysical features of cancer cells in tumor metastasis and summarize the state-of-the-art technology for the study of cell biomechanics. This review will serve as a brief introduction to the interdisciplinary character of cancer cell biophysics for cancer biologists, physicists, and engineers.
Collapse
Affiliation(s)
- Weijia Zhang
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA ; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Kazuharu Kai
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Breast Cancer Translational Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Breast Cancer Translational Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lidong Qin
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA ; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
54
|
Binukumar BK, Shukla V, Amin ND, Reddy P, Skuntz S, Grant P, Pant HC. Topographic regulation of neuronal intermediate filaments by phosphorylation, role of peptidyl-prolyl isomerase 1: significance in neurodegeneration. Histochem Cell Biol 2013; 140:23-32. [PMID: 23793952 DOI: 10.1007/s00418-013-1108-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2013] [Indexed: 11/30/2022]
Abstract
The neuronal cytoskeleton is tightly regulated by phosphorylation and dephosphorylation reactions mediated by numerous associated kinases, phosphatases and their regulators. Defects in the relative kinase and phosphatase activities and/or deregulation of compartment-specific phosphorylation result in neurodegenerative disorders. The largest family of cytoskeletal proteins in mammalian cells is the superfamily of intermediate filaments (IFs). The neurofilament (NF) proteins are the major IFs. Aggregated forms of hyperphosphorylated tau and phosphorylated NFs are found in pathological cell body accumulations in the central nervous system of patients suffering from Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. The precise mechanisms for this compartment-specific phosphorylation of cytoskeletal proteins are not completely understood. In this review, we focus on the mechanisms of neurofilament phosphorylation in normal physiology and neurodegenerative diseases. We also address the recent breakthroughs in our understanding the role of different kinases and phosphatases involved in regulating the phosphorylation status of the NFs. In addition, special emphasis has been given to describe the role of phosphatases and Pin1 in phosphorylation of NFs.
Collapse
Affiliation(s)
- B K Binukumar
- Laboratory of Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
55
|
Moser JM, Bigini P, Schmitt-John T. The wobbler mouse, an ALS animal model. Mol Genet Genomics 2013; 288:207-29. [PMID: 23539154 PMCID: PMC3664746 DOI: 10.1007/s00438-013-0741-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking similarities to ALS. The cellular effects of the wobbler mutation, cellular transport defects, neurofilament aggregation, neuronal hyperexcitability and neuroinflammation closely resemble human ALS. Now, 57 years after the first report on the wobbler mouse we summarize the progress made in understanding the disease mechanism and testing various therapeutic approaches and discuss the relevance of these advances for human ALS. The identification of the causative mutation linking the wobbler mutation to a vesicle transport factor and the research focussed on the cellular basis and the therapeutic treatment of the wobbler motor neuron degeneration has shed new light on the molecular pathology of the disease and might contribute to the understanding the complexity of ALS.
Collapse
Affiliation(s)
- Jakob Maximilian Moser
- Molecular Biology and Genetics Department, Aarhus University, C. F. Møllers Alle 3, 8000 Aarhus C, Denmark
| | | | | |
Collapse
|
56
|
Ganesalingam J, An J, Bowser R, Andersen PM, Shaw CE. pNfH is a promising biomarker for ALS. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:146-9. [PMID: 23134506 DOI: 10.3109/21678421.2012.729596] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A diagnostic biomarker for ALS would permit early intervention with disease-modifying therapies while a biomarker for disease activity could accelerate the pace of drug discovery by facilitating shorter, and less costly, drug trials to be conducted with a smaller number of patients. Neurofilaments are the most abundant neuronal cytoskeletal protein. We set out to determine whether pNfH was a credible biomarker for ALS. pNfH levels were determined using an ELISA for 150 ALS subjects and 140 controls. We demonstrated a seven-fold elevation in the cerebrospinal fluid (CSF) levels of phosphorylated neurofilament heavy subunit (pNfH) in ALS (median = 2787 pg/ml, n = 150), compared to headache and other benign controls (394 pg/ml, n = 100, p = < 0.05). There was a 10-fold elevation of pNfH compared to ALS mimics (266 pg/ml, n = 20) and other neurodegenerative and inflammatory conditions (279 pg/ml for n = 20) which was also highly significant (p = < 0.05). pNfH achieved a diagnostic sensitivity of 90% and specificity of 87% in distinguishing ALS from all controls. We also detected an inverse correlation between CSF pNfH levels and disease duration (time from symptom onset to death, r(2 = )0.1247, p = 0.001). In conclusion, pNfH represents a promising candidate for inclusion in a panel of diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Jeban Ganesalingam
- King's Health Partners Centre for Neurodegeneration Research, Institute of Psychiatry, Kings College London, UK
| | | | | | | | | |
Collapse
|
57
|
Structures and interactions in 'bottlebrush' neurofilaments: the role of charged disordered proteins in forming hydrogel networks. Biochem Soc Trans 2013; 40:1027-31. [PMID: 22988859 DOI: 10.1042/bst20120101] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NFs (neurofilaments), the major cytoskeletal constituent of myelinated axons in vertebrates, consist of three different molecular-mass subunit proteins, NF-L (low), NF-M (medium) and NF-H (high), assembled to form mature filaments with protruding intrinsically disordered C-terminal side-arms. Liquid crystal gel networks of side-arm-mediated NF assemblies play a key role in the mechanical stability of neuronal processes. Disruptions of the NF network, due to NF overaccumulation or incorrect side-arm interactions, are a hallmark of motor neuron diseases including amyotrophic lateral sclerosis. Using synchrotron small-angle X-ray scattering and various microscopy techniques, we have investigated the role of the peptide charges in the subunit side-arms on the structure and interaction of NFs. Our findings, which delineate the distinct roles of NF-M and NF-H in regulating NF interactions, shed light on possible mechanisms of disruption of optimal mechanical network properties.
Collapse
|
58
|
Aung KH, Kurihara R, Nakashima S, Maekawa F, Nohara K, Kobayashi T, Tsukahara S. Inhibition of neurite outgrowth and alteration of cytoskeletal gene expression by sodium arsenite. Neurotoxicology 2013; 34:226-35. [DOI: 10.1016/j.neuro.2012.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 09/07/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
|
59
|
|
60
|
Holmgren A, Bouhy D, Timmerman V. Neurofilament phosphorylation and their proline-directed kinases in health and disease. J Peripher Nerv Syst 2012; 17:365-76. [DOI: 10.1111/j.1529-8027.2012.00434.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
61
|
Kyeong IG, Eum WS, Choi SY, Kang JH. Oxidative modification of neurofilament-L and neuronal cell death induced by the catechol neurotoxin, tetrahydropapaveroline. Toxicol Lett 2012; 217:59-66. [PMID: 23228886 DOI: 10.1016/j.toxlet.2012.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 11/20/2022]
Abstract
Tetrahydropapaveroline (THP), which is an endogenous neurotoxin, has been suspected to be associated with dopaminergic neurotoxicity of l-DOPA. In this study, we examined oxidative modification of neurofilament-L (NF-L) and neuronal cell death induced by THP. When disassembled NF-L was incubated with THP, protein aggregation was increased in a time- and THP dose-dependent manner. The formation of carbonyl compounds and dityrosine were observed in the THP-mediated NF-L aggregates. Radical scavengers reduced THP-mediated NF-L modification. These results suggest that the modification of NF-L by THP may be due to oxidative damage resulting from the generation of reactive oxygen species (ROS). When THP exposed NF-L was subjected to amino acid analysis, glutamate, proline and lysine residues were found to be particularly sensitive. We also investigated the effects of copper ions on THP-mediated NF-L modification. At a low concentration of THP, copper ions enhanced the modification of NF-L. Treatment of C6 astrocyte cells with THP led to a concentration-dependent reduction in cell viability. When these cells were treated with 100μM THP, the levels of ROS increased 3.5-fold compared with control cells. Furthermore, treatment of cells with THP increased NF-L aggregate formation, suggesting the involvement of NF-L modification in THP-induced cell damage.
Collapse
Affiliation(s)
- Inn Goo Kyeong
- Department of Genetic Engineering, Cheongju University, Cheongju 360-764, South Korea
| | | | | | | |
Collapse
|
62
|
Peripherin is a subunit of peripheral nerve neurofilaments: implications for differential vulnerability of CNS and peripheral nervous system axons. J Neurosci 2012; 32:8501-8. [PMID: 22723690 DOI: 10.1523/jneurosci.1081-12.2012] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peripherin, a neuronal intermediate filament protein implicated in neurodegenerative disease, coexists with the neurofilament triplet proteins [neurofilament light (NFL), medium (NFM), and heavy (NFH) chain] but has an unknown function. The earlier peak expression of peripherin than the triplet during brain development and its ability to form homopolymers, unlike the triplet, which are obligate heteropolymers, have supported a widely held view that peripherin and neurofilament triplets form separate filament systems. However, here, we demonstrate that, despite a postnatal decline in expression, peripherin is as abundant as the triplet in the adult PNS and exists in a relatively fixed stoichiometry with these subunits. Peripherin exhibits a distribution pattern identical to those of triplet proteins in sciatic axons and colocalizes with NFL on single neurofilaments by immunogold electron microscopy. Peripherin also coassembles into a single network of filaments containing NFL, NFM, and NFH with and without α-internexin in quadruple- or quintuple-transfected SW13vim(-) cells. Genetically deleting NFL in mice dramatically reduces peripherin content in sciatic axons. Moreover, peripherin mutations has been shown to disrupt the neurofilament network in transfected SW13vim(-) cells. These data show that peripherin and the neurofilament proteins are functionally interdependent. The results strongly support the view that, rather than forming an independent structure, peripherin is a subunit of neurofilaments in the adult PNS. Our findings provide a basis for its close relationship with neurofilaments in PNS diseases associated with neurofilament accumulation.
Collapse
|
63
|
Lu CH, Petzold A, Kalmar B, Dick J, Malaspina A, Greensmith L. Plasma neurofilament heavy chain levels correlate to markers of late stage disease progression and treatment response in SOD1(G93A) mice that model ALS. PLoS One 2012; 7:e40998. [PMID: 22815892 PMCID: PMC3397981 DOI: 10.1371/journal.pone.0040998] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/15/2012] [Indexed: 12/13/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder characterised by progressive degeneration of motor neurons leading to death, typically within 3–5 years of symptom onset. The diagnosis of ALS is largely reliant on clinical assessment and electrophysiological findings. Neither specific investigative tools nor reliable biomarkers are currently available to enable an early diagnosis or monitoring of disease progression, hindering the design of treatment trials. Methodology/Principal Findings In this study, using the well-established SOD1G93A mouse model of ALS and a new in-house ELISA method, we have validated that plasma neurofilament heavy chain protein (NfH) levels correlate with both functional markers of late stage disease progression and treatment response. We detected a significant increase in plasma levels of phosphorylated NfH during disease progression in SOD1G93A mice from 105 days onwards. Moreover, increased plasma NfH levels correlated with the decline in muscle force, motor unit survival and, more significantly, with the loss of spinal motor neurons in SOD1 mice during this critical period of decline. Importantly, mice treated with the disease modifying compound arimoclomol had lower plasma NfH levels, suggesting plasma NfH levels could be validated as an outcome measure for treatment trials. Conclusions/Significance These results show that plasma NfH levels closely reflect later stages of disease progression and therapeutic response in the SOD1G93A mouse model of ALS and may potentially be a valuable biomarker of later disease progression in ALS.
Collapse
Affiliation(s)
- Ching-Hua Lu
- Sobell Department of Motor Neuroscience and Movement Disorders, MRC Centre for Neuromuscular Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
- Trauma and Neuroscience Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Axel Petzold
- Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
- VU Medical Centre, Dept. of Neurology, Amsterdam, The Netherlands
| | - Bernadett Kalmar
- Sobell Department of Motor Neuroscience and Movement Disorders, MRC Centre for Neuromuscular Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
| | - James Dick
- Sobell Department of Motor Neuroscience and Movement Disorders, MRC Centre for Neuromuscular Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Andrea Malaspina
- Trauma and Neuroscience Centre, Blizard Institute, Barts and The School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- North-East London and Essex MND Care and Research Centre, London, United Kingdom
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, MRC Centre for Neuromuscular Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
64
|
Neurofilament Phosphorylation during Development and Disease: Which Came First, the Phosphorylation or the Accumulation? JOURNAL OF AMINO ACIDS 2012; 2012:382107. [PMID: 22570767 PMCID: PMC3337605 DOI: 10.1155/2012/382107] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/31/2012] [Indexed: 11/17/2022]
Abstract
Posttranslational modification of proteins is a ubiquitous cellular mechanism for regulating protein function. Some of the most heavily modified neuronal proteins are cytoskeletal proteins of long myelinated axons referred to as neurofilaments (NFs). NFs are type IV intermediate filaments (IFs) that can be composed of four subunits, neurofilament heavy (NF-H), neurofilament medium (NF-M), neurofilament light (NF-L), and α-internexin. Within wild type axons, NFs are responsible for mediating radial growth, a process that determines axonal diameter. NFs are phosphorylated on highly conserved lysine-serine-proline (KSP) repeats located along the C-termini of both NF-M and NF-H within myelinated axonal regions. Phosphorylation is thought to regulate aspects of NF transport and function. However, a key pathological hallmark of several neurodegenerative diseases is ectopic accumulation and phosphorylation of NFs. The goal of this review is to provide an overview of the posttranslational modifications that occur in both normal and diseased axons. We review evidence that challenges the role of KSP phosphorylation as essential for radial growth and suggests an alternative role for NF phosphorylation in myelinated axons. Furthermore, we demonstrate that regulation of NF phosphorylation dynamics may be essential to avoiding NF accumulations.
Collapse
|
65
|
Poitelon Y, Kozlov S, Devaux J, Vallat JM, Jamon M, Roubertoux P, Rabarimeriarijaona S, Baudot C, Hamadouche T, Stewart CL, Levy N, Delague V. Behavioral and molecular exploration of the AR-CMT2A mouse model Lmna (R298C/R298C). Neuromolecular Med 2012; 14:40-52. [PMID: 22331516 DOI: 10.1007/s12017-012-8168-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/18/2012] [Indexed: 01/03/2023]
Abstract
In 2002, we identified LMNA as the first gene responsible for an autosomal recessive axonal form of Charcot-Marie-Tooth disease, AR-CMT2A. All patients were found to be homozygous for the same mutation in the LMNA gene, p.Arg298Cys. In order to investigate the physiopathological mechanisms underlying AR-CMT2A, we have generated a knock-in mouse model for the Lmna p.Arg298Cys mutation. We have explored these mice through an exhaustive series of behavioral tests and histopathological analyses, but were not able to find any peripheral nerve phenotype, even at 18 months of age. Interestingly at the molecular level, however, we detect a downregulation of the Lmna gene in all tissues tested from the homozygous knock-in mouse Lmna (R298C/R298C) (skeletal muscle, heart, peripheral nerve, spinal cord and cerebral trunk). Importantly, we further reveal a significant upregulation of Pmp22, specifically in the sciatic nerves of Lmna (R298C/R298C) mice. These results indicate that, despite the absence of a perceptible phenotype, abnormalities exist in the peripheral nerves of Lmna (R298C/R298C) mice that are absent from other tissues. Although the mechanisms leading to deregulation of Pmp22 in Lmna (R298C/R298C) mice are still unclear, our results support a relation between Lmna and Pmp22 and constitute a first step toward understanding AR-CMT2A physiopathology.
Collapse
Affiliation(s)
- Yannick Poitelon
- UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Inserm, 13385 Marseille cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Gene products such as organelles, proteins and RNAs are actively transported to synaptic terminals for the remodeling of pre-existing neuronal connections and formation of new ones. Proteins described as molecular motors mediate this transport and utilize specialized cytoskeletal proteins that function as molecular tracks for the motor based transport of cargos. Molecular motors such as kinesins and dynein's move along microtubule tracks formed by tubulins whereas myosin motors utilize tracks formed by actin. Deficits in active transport of gene products have been implicated in a number of neurological disorders. We describe such disorders collectively as "transportopathies". Here we review current knowledge of critical components of active transport and their relevance to neurodegenerative diseases.
Collapse
|
67
|
Gonzalez LE, Kotler ML, Vattino LG, Conti E, Reisin RC, Mulatz KJ, Snutch TP, Uchitel OD. Amyotrophic lateral sclerosis-immunoglobulins selectively interact with neuromuscular junctions expressing P/Q-type calcium channels. J Neurochem 2011; 119:826-38. [PMID: 21883225 DOI: 10.1111/j.1471-4159.2011.07462.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a gradual loss of motoneurons. The majority of ALS cases are associated with a sporadic form whose etiology is unknown. Several pieces of evidence favor autoimmunity as a potential contributor to sporadic ALS pathology. To gain understanding concerning possible antigens interacting with IgGs from sporadic ALS patients (ALS-IgGs), we studied immunoreactivity against neuromuscular junction (NMJ), spinal cord and cerebellum of mice with and without the Ca(V) 2.1 pore-forming subunit of the P/Q-type voltage-gated calcium (Ca(2+)) channel. ALS-IgGs showed a strong reactivity against NMJs of wild-type diaphragms. ALS-IgGs also increased muscle miniature end-plate potential frequency, suggesting a functional role for ALS-IgGs on synaptic signaling. In support, in mice lacking the Ca(V) 2.1 subunit ALS-IgGs showed significantly reduced NMJ immunoreactivity and did not alter spontaneous acetylcholine release. This difference in reactivity was absent when comparing N-type Ca(2+) channel wild-type or null mice. These results are particularly relevant because motoneurons are known to be early pathogenic targets in ALS. Our findings add further evidence supporting autoimmunity as one of the possible mechanisms contributing to ALS pathology. They also suggest that serum autoantibodies in a subset of ALS patients would interact with NMJ proteins down-regulated when P/Q-type channels are absent.
Collapse
Affiliation(s)
- Laura E Gonzalez
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, IFIBYNE-CONICET, UBA, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Kang JH. Oxidative Modification of Neurofilament-L Induced by Endogenous Neurotoxin, Salsolinol. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.9.3421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
69
|
Liu Q, Xie F, Alvarado-Diaz A, Smith MA, Moreira PI, Zhu X, Perry G. Neurofilamentopathy in neurodegenerative diseases. Open Neurol J 2011; 5:58-62. [PMID: 21915226 PMCID: PMC3170930 DOI: 10.2174/1874205x01105010058] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 07/25/2011] [Accepted: 07/28/2011] [Indexed: 12/31/2022] Open
Abstract
Neurofilament protein alterations are found in many neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson, Alzheimer, and Charcot-Marie-Tooth. Abnormal modifications of neurofilament, such as mutation, oxidation and phosphorylation, are linked to the disease-related alteration. In this review, the most recent discovery and central arguments about functions, pathological modifications, and genetic mutations related to neurofilaments in neurodegenerative diseases is presented.
Collapse
Affiliation(s)
- Quan Liu
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease that results in increasing disability and that is uniformly fatal. Since its approval in the 1990s, riluzole remains the sole treatment for ALS offering modest survival benefit. While significant advances have been made in the symptomatic management of the disease, more effective drug therapy targeting disease progression is sorely needed. AREAS COVERED Advances in the understanding of pathogenic mechanisms involved in disease development and progression have provided multiple avenues for developing effective treatment strategies. This review highlights recent discoveries relating to these diverse mechanisms and their implications for the development of drug therapy. Previous human clinical trials that have targeted these pathways are mentioned and ongoing drug trials are discussed. EXPERT OPINION The search for effective drug therapy faces important challenges in the areas of basic science and animal research, translation of these results into human clinical trials, inherent bias in human studies and issues related to delays in clinical diagnosis. How these issues may be addressed and why ALS research constitutes fertile grounds for drug development not only for this devastating disease, but also for other more prevalent neurodegenerative diseases, is discussed in this review.
Collapse
Affiliation(s)
- Ali Aamer Habib
- The Neurological Institute of Columbia University, Eleanor and Lou Gehrig MDA/ALS Center, NY 10032, USA.
| | | |
Collapse
|
71
|
Riboldi G, Nizzardo M, Simone C, Falcone M, Bresolin N, Comi GP, Corti S. ALS genetic modifiers that increase survival of SOD1 mice and are suitable for therapeutic development. Prog Neurobiol 2011; 95:133-48. [PMID: 21816207 DOI: 10.1016/j.pneurobio.2011.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/19/2011] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a frequently fatal motor neuron disease without any cure. To find molecular therapeutic targets, several studies crossed transgenic ALS murine models with animals transgenic for some ALS target genes. We aimed to revise the new discoveries and new works in this field. We selected the 10 most promising genes, according to their capability when down-regulated or up-regulated in ALS animal models, for increasing life span and mitigating disease progression: XBP-1, NogoA and NogoB, dynein, heavy and medium neurofilament, NOX1 and NOX2, MLC-mIGF-1, NSE-VEGF, and MMP-9. Interestingly, some crucial modifier genes have been described as being involved in common pathways, the most significant of which are inflammation and cytoskeletal activities. The endoplasmic reticulum also seems to play an important role in ALS pathogenesis, as it is involved in different selected gene pathways. In addition, these genes have evident links to each other, introducing the hypothesis of a single unknown, common pathway involving all of these identified genes and others to be discovered.
Collapse
Affiliation(s)
- Giulietta Riboldi
- Department of Neurological Sciences, Dino Ferrari Centre, University of Milan, IRCCS Fondazione Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
72
|
Kim SK, Kim H, Yang YR, Suh PG, Chang JS. Phosphatidylinositol phosphates directly bind to neurofilament light chain (NF-L) for the regulation of NF-L self assembly. Exp Mol Med 2011; 43:153-60. [PMID: 21339697 DOI: 10.3858/emm.2011.43.3.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Phosphatidylinositol phosphates (PtdInsPs) are ubiquitous membrane phospholipids that play diverse roles in cell growth and differentiation. To clarify the regulation mechanism acting on neurofilament light chain (NF-L) self assembly, we examined the effects of various PtdInsPs on this process. We found that PtdInsPs, including PI(4,5)P((2)), directly bind to the positively charged Arg(54) of murine NF-L, and this binding promotes NF-L self assembly in vitro. Mutant NF-L (R53A/R54A) proteins lacking binding affinity to PtdInsPs did not have the same effect, but the mutant NF-L proteins showed greater self assembly than the wild-type in the absence of any PtdInsP. These results collectively suggest that Arg(54) plays a pivotal role in NF-L self assembly by binding with PtdInsPs.
Collapse
Affiliation(s)
- Sung-Kuk Kim
- Department of Life Science, College of Natural Science, Daejin University, Kyeonggido, Korea
| | | | | | | | | |
Collapse
|
73
|
Strategy for treating motor neuron diseases using a fusion protein of botulinum toxin binding domain and streptavidin for viral vector access: work in progress. Toxins (Basel) 2010; 2:2872-89. [PMID: 22069580 PMCID: PMC3153189 DOI: 10.3390/toxins2122872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 12/12/2022] Open
Abstract
Although advances in understanding of the pathogenesis of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) have suggested attractive treatment strategies, delivery of agents to motor neurons embedded within the spinal cord is problematic. We have designed a strategy based on the specificity of botulinum toxin, to direct entry of viral vectors carrying candidate therapeutic genes into motor neurons. We have engineered and expressed fusion proteins consisting of the binding domain of botulinum toxin type A fused to streptavidin (SAv). This fusion protein will direct biotinylated viral vectors carrying therapeutic genes into motor nerve terminals where they can enter the acidified endosomal compartments, be released and undergo retrograde transport, to deliver the genes to motor neurons. Both ends of the fusion proteins are shown to be functionally intact. The binding domain end binds to mammalian nerve terminals at neuromuscular junctions, ganglioside GT1b (a target of botulinum toxin), and a variety of neuronal cells including primary chick embryo motor neurons, N2A neuroblastoma cells, NG108-15 cells, but not to NG CR72 cells, which lack complex gangliosides. The streptavidin end binds to biotin, and to a biotinylated Alexa 488 fluorescent tag. Further studies are in progress to evaluate the delivery of genes to motor neurons in vivo, by the use of biotinylated viral vectors.
Collapse
|
74
|
Barmada SJ, Finkbeiner S. Pathogenic TARDBP mutations in amyotrophic lateral sclerosis and frontotemporal dementia: disease-associated pathways. Rev Neurosci 2010; 21:251-72. [PMID: 21086759 DOI: 10.1515/revneuro.2010.21.4.251] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are late-onset neurodegenerative disorders that are associated with mutations in the TARDBP gene. The product of this gene, TDP-43, has also been identified as the main component of the intracellular inclusions typical of most cases of ALS and FTD. Recent evidence suggests that TDP-43 is essential for proper development and involved in several fundamental cellular processes, including gene transcription, RNA processing, and the spatial regulation of mRNA translation. Pathogenic TARDBP mutations that impair TDP-43 function could therefore be related to neuronal degeneration in ALS and FTD. Conversely, cellular and animal studies have shown that pathogenic TARDBP mutations induce neuronal toxicity through mislocalization or elevated concentrations of TDP-43, consistent with a gain-of-function mechanism. In this review, we focus on the physiologic functions of TDP-43 within the central nervous system and discuss how these functions may be perturbed or pathologically altered by disease-associated mutations.
Collapse
Affiliation(s)
- Sami J Barmada
- Gladstone Institute of Neurological Disease, University of California, San Francisco 94158, USA
| | | |
Collapse
|
75
|
Kudo LC, Parfenova L, Vi N, Lau K, Pomakian J, Valdmanis P, Rouleau GA, Vinters HV, Wiedau-Pazos M, Karsten SL. Integrative gene-tissue microarray-based approach for identification of human disease biomarkers: application to amyotrophic lateral sclerosis. Hum Mol Genet 2010; 19:3233-53. [PMID: 20530642 DOI: 10.1093/hmg/ddq232] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Advances in genomics and proteomics permit rapid identification of disease-relevant genes and proteins. Challenges include biological differences between animal models and human diseases, high discordance between DNA and protein expression data and a lack of experimental models to study human complex diseases. To overcome some of these limitations, we developed an integrative approach using animal models, postmortem human material and a combination of high-throughput microarray methods to identify novel molecular markers of amyotrophic lateral sclerosis (ALS). We used laser capture microdissection coupled with microarrays to identify early transcriptome changes occurring in spinal cord motor neurons or surrounding glial cells. Two models of familial motor neuron disease, SOD1(G93A) and TAU(P301L), transgenic mice were used at the presymptomatic stage. Identified gene expression changes were predominantly model-specific. However, several genes were regulated in both models. The relevance of identified genes as clinical biomarkers was tested in the peripheral blood transcriptome of presymptomatic SOD1(G93A) animals using custom-designed ALS microarray. To confirm the relevance of identified genes in human sporadic ALS (SALS), selected corresponding protein products were examined by high-throughput immunoassays using tissue microarrays constructed from human postmortem spinal cord tissues. Genes that were identified by these experiments and located within a linkage region associated with familial ALS/frontotemporal dementia were sequenced in several families. This large-scale gene and protein expression study pointing to distinct molecular mechanisms of TAU- and SOD1-induced motor neuron degeneration identified several new SALS-relevant proteins (CNGA3, CRB1, OTUB2, MMP14, SLK, DDX58, RSPO2) and putative blood biomarkers, including Nefh, Prph and Mgll.
Collapse
Affiliation(s)
- Lili C Kudo
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
McLean J, Liu HN, Miletic D, Weng YC, Rogaeva E, Zinman L, Kriz J, Robertson J. Distinct biochemical signatures characterize peripherin isoform expression in both traumatic neuronal injury and motor neuron disease. J Neurochem 2010; 114:1177-92. [PMID: 20533992 DOI: 10.1111/j.1471-4159.2010.06846.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peripherin is a type III intermediate filament protein that is up-regulated during neuronal injury and is a major component of pathological inclusions found within degenerating motor neurons of patients with amyotrophic lateral sclerosis (ALS). The relationship between these inclusions and their protein constituents remains largely unknown. We have previously shown that peripherin expression is characterized by tissue-specific, intra-isoform associations that contribute to filament structure; changes to the normal isoform expression pattern is associated with malformed filaments and intracellular inclusions. Here, we profile peripherin isoform expression and ratio changes in traumatic neuronal injury, transgenic mouse models of motor neuron disease, and ALS. Extensive western blot analyses of Triton X-100 soluble and insoluble fractions of neuronal tissue from these conditions revealed significant changes in peripherin isoform content which could be differentiated by electrophoretic banding patterns to produce distinct peripherin biochemical signatures. Significantly, we found that the pattern of peripherin expression in ALS most closely approximates that of peripherin over-expressing mice, but differs with regard to inter-individual variations in isoform-specific expression. Overall, these results provide important insights into complex post-transcriptional processes that may underlie a continuum between peripherin-mediated neuronal repair and its role in the pathogenesis of motor neuron disease.
Collapse
Affiliation(s)
- Jesse McLean
- Department of Laboratory Medicine and Pathobiology, The University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Beck R, Deek J, Jones JB, Safinya CR. Gel-expanded to gel-condensed transition in neurofilament networks revealed by direct force measurements. NATURE MATERIALS 2010; 9:40-46. [PMID: 19915555 DOI: 10.1038/nmat2566] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 10/05/2009] [Indexed: 05/28/2023]
Abstract
Neurofilaments (NF)--the principal cytoskeletal constituent of myelinated axons in vertebrates--consist of three molecular-weight subunit proteins NF-L (low), NF-M (medium) and NF-H (high), assembled to form mature filaments with protruding unstructured C-terminus side arms. Liquid-crystal gel networks of side-arm-mediated neurofilament assemblies have a key role in the mechanical stability of neuronal processes. Disruptions of the neurofilament network, owing to neurofilament over-accumulation or incorrect side-arm interactions, are a hallmark of motor-neuron diseases including amyotrophic lateral sclerosis. Using synchrotron X-ray scattering, we report on a direct measurement of forces in reconstituted neurofilament gels under osmotic pressure (P). With increasing pressure near physiological salt and average phosphorylation conditions, NF-LMH, comprising the three subunits near in vivo composition, or NF-LH gels, undergo for P > P(c) approximately 10 kPa, an abrupt non-reversible gel-expanded to gel-condensed transition. The transition indicates side-arm-mediated attractions between neurofilaments consistent with an electrostatic model of interpenetrating chains. In contrast, NF-LM gels remain in a collapsed state for P < P(c) and transition to the gel-condensed state at P > P(c). These findings, which delineate the distinct roles of NF-M and NF-H in regulating neurofilament interactions, shed light on possible mechanisms for disruptions of optimal mechanical network properties.
Collapse
Affiliation(s)
- Roy Beck
- Materials Department, University of California Santa Barbara, California 93106, USA.
| | | | | | | |
Collapse
|
78
|
Vickers JC, King AE, Woodhouse A, Kirkcaldie MT, Staal JA, McCormack GH, Blizzard CA, Musgrove RE, Mitew S, Liu Y, Chuckowree JA, Bibari O, Dickson TC. Axonopathy and cytoskeletal disruption in degenerative diseases of the central nervous system. Brain Res Bull 2009; 80:217-23. [DOI: 10.1016/j.brainresbull.2009.08.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/03/2009] [Accepted: 08/05/2009] [Indexed: 12/11/2022]
|
79
|
Neurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons. J Neurosci 2009; 29:11316-29. [PMID: 19741138 DOI: 10.1523/jneurosci.1942-09.2009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ultrastructural view of the axonal cytoskeleton as an extensively cross-linked network of neurofilaments (NFs) and other cytoskeletal polymers contrasts with the dynamic view suggested by axonal transport studies on cytoskeletal elements. Here we reconcile these perspectives by showing that neurons form a large NF network along axons which is unequivocally stationary, metabolically stable, and maintained by NFs and nonfilamentous subunit assemblies undergoing slow transport by intermittent rapid movements and pauses. In mouse primary cortical neurons transfected with EGFP-NFL, formation of this stationary NF network requires a critical level of NFs, which explains its absence in NF-poor developing neurons studied previously. Most NFs at proximal axon regions were in a stationary structure coexisting with a smaller pool of moving EGFP-NFL assemblies that were mainly nonfilamentous. Distally along the same axon, EGFP-labeled NFL was much less abundant, and we detected only short filaments moving bidirectionally by slow transport (rapid movements and pauses) as previously described. In living mice, >25% of radiolabeled newly synthesized NFs remained in optic axons after slowly transported NFs had exited. Retained NF remained fixed over several months in a nonuniform distribution and exhibited exceptionally slow turnover (t(1/2) >2.5 months), implying that, at steady state, >90% of NFs in mature optic axons comprise the stationary cytoskeleton and <10% are undergoing slow transport. These findings reconcile in vitro and in vivo axonal transport observations, showing that slowly transported NFs or subunit oligomers are precursors to a highly stable stationary cytoskeletal network that supports mature axons.
Collapse
|
80
|
Chen PC, Qin LN, Li XM, Walters BJ, Wilson JA, Mei L, Wilson SM. The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions. J Neurosci 2009; 29:10909-10919. [PMID: 19726649 PMCID: PMC2766780 DOI: 10.1523/jneurosci.2635-09.2009] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/06/2009] [Accepted: 07/09/2009] [Indexed: 01/07/2023] Open
Abstract
Dysfunction of the ubiquitin proteasome system (UPS) has been implicated in the pathogenesis of many neurological diseases, including Alzheimer's, spinocerebellar ataxia, and several motor neuron diseases. Recent research indicates that changes in synaptic transmission may play a critical role in the progression of neurological disease; however, the mechanisms by which the UPS regulates synaptic structure and function have not been well characterized. In this report, we show that Usp14 is indispensable for synaptic development and function at neuromuscular junctions (NMJs). Usp14-deficient axJ mice display a resting tremor, a reduction in muscle mass, and notable hindlimb rigidity without any detectable loss of motor neurons. Instead, loss of Usp14 causes developmental defects at motor neuron endplates. Presynaptic defects include phosphorylated neurofilament accumulations, nerve terminal sprouting, and poor arborization of the motor nerve terminals, whereas postsynaptic acetylcholine receptors display immature plaque-like morphology. These structural changes in the NMJ correlated with ubiquitin loss in the spinal cord and sciatic nerve. Further studies demonstrated that the greatest loss of ubiquitin was found in synaptosomal fractions, suggesting that the endplate swellings may be caused by decreased protein turnover at the synapse. Transgenic restoration of Usp14 in the nervous system corrected the levels of monomeric ubiquitin in the motor neuron circuit and the defects that were observed in the motor endplates and muscles of the axJ mice. These data define a critical role for Usp14 at mammalian synapses and suggest a requirement for local ubiquitin recycling by the proteasome to control the development and function of NMJs.
Collapse
Affiliation(s)
- Ping-Chung Chen
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| | - Lu-Ning Qin
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Xiao-Ming Li
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Brandon J. Walters
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| | - Julie A. Wilson
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| | - Lin Mei
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Scott M. Wilson
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| |
Collapse
|
81
|
Tovar-y-Romo LB, Santa-Cruz LD, Tapia R. Experimental models for the study of neurodegeneration in amyotrophic lateral sclerosis. Mol Neurodegener 2009; 4:31. [PMID: 19619317 PMCID: PMC2720968 DOI: 10.1186/1750-1326-4-31] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 07/20/2009] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown cause, characterized by the selective and progressive death of both upper and lower motoneurons, leading to a progressive paralysis. Experimental animal models of the disease may provide knowledge of the pathophysiological mechanisms and allow the design and testing of therapeutic strategies, provided that they mimic as close as possible the symptoms and temporal progression of the human disease. The principal hypotheses proposed to explain the mechanisms of motoneuron degeneration have been studied mostly in models in vitro, such as primary cultures of fetal motoneurons, organotypic cultures of spinal cord sections from postnatal rodents and the motoneuron-like hybridoma cell line NSC-34. However, these models are flawed in the sense that they do not allow a direct correlation between motoneuron death and its physical consequences like paralysis. In vivo, the most widely used model is the transgenic mouse that bears a human mutant superoxide dismutase 1, the only known cause of ALS. The major disadvantage of this model is that it represents about 2%-3% of human ALS. In addition, there is a growing concern on the accuracy of these transgenic models and the extrapolations of the findings made in these animals to the clinics. Models of spontaneous motoneuron disease, like the wobbler and pmn mice, have been used aiming to understand the basic cellular mechanisms of motoneuron diseases, but these abnormalities are probably different from those occurring in ALS. Therefore, the design and testing of in vivo models of sporadic ALS, which accounts for >90% of the disease, is necessary. The main models of this type are based on the excitotoxic death of spinal motoneurons and might be useful even when there is no definitive demonstration that excitotoxicity is a cause of human ALS. Despite their difficulties, these models offer the best possibility to establish valid correlations between cellular alterations and motor behavior, although improvements are still necessary in order to produce a reliable and integrative model that accurately reproduces the cellular mechanisms of motoneuron degeneration in ALS.
Collapse
Affiliation(s)
- Luis B Tovar-y-Romo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510-México, D.F., México
| | - Luz Diana Santa-Cruz
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510-México, D.F., México
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510-México, D.F., México
| |
Collapse
|
82
|
Abstract
The causes of amyotrophic lateral sclerosis (ALS) are poorly understood. A small proportion, about 2%, is associated with a mutation in the superoxide dismutase (SOD1) gene, and mice expressing this mutant gene exhibit a progressive, ALS-like neurodegenerative disease. Studies of these animals, as well as of human post mortem tissue, reveal the presence of multiple pathological processes, including oxidative stress, glutamate excitotoxicity, neuroinflammation, mitochondrial degeneration, alterations in neurofilaments and neurotubules, mitochondrial damage, aggregation of proteins, abnormalities in growth factors, and apoptosis. We propose that alterations in the disposition of zinc ions may be important in the initiation and development of ALS. SOD1 binds zinc, and many of the mutant forms of this enzyme associated with ALS show altered zinc binding. Alterations in the expression of metallothioneins (MTs), which regulate cellular levels of zinc, have been reported in mutant SOD1 mice, and deletion of MTs in these animals accelerates disease progression. Zinc plays a key role in all the pathological processes associated with ALS. Our zinc hypothesis also may help explain evidence for environmental factors in some cases of ALS, such as in the Chamorro tribe in Guam and in the Gulf War.
Collapse
Affiliation(s)
- Andrew P Smith
- The Forbes Norris ALS Research Center, California Pacific Medical Center Research Institute, California 94115, USA
| | | |
Collapse
|
83
|
Liem RKH, Messing A. Dysfunctions of neuronal and glial intermediate filaments in disease. J Clin Invest 2009; 119:1814-24. [PMID: 19587456 DOI: 10.1172/jci38003] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Intermediate filaments (IFs) are abundant structures found in most eukaryotic cells, including those in the nervous system. In the CNS, the primary components of neuronal IFs are alpha-internexin and the neurofilament triplet proteins. In the peripheral nervous system, a fifth neuronal IF protein known as peripherin is also present. IFs in astrocytes are primarily composed of glial fibrillary acidic protein (GFAP), although vimentin is also expressed in immature astrocytes and some mature astrocytes. In this Review, we focus on the IFs of glial cells (primarily GFAP) and neurons as well as their relationship to different neurodegenerative diseases.
Collapse
Affiliation(s)
- Ronald K H Liem
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | | |
Collapse
|
84
|
Mitochondrial and axonal abnormalities precede disruption of the neurofilament network in a model of charcot-marie-tooth disease type 2E and are prevented by heat shock proteins in a mutant-specific fashion. J Neuropathol Exp Neurol 2009; 68:642-52. [PMID: 19458545 DOI: 10.1097/nen.0b013e3181a5deeb] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mutations in NEFL encoding the light neurofilament subunit (NFL) cause Charcot-Marie-Tooth disease type 2E (CMT2E), which affects both motor and sensory neurons. We expressed the disease-causing mutants NFL and NFL in motor neurons of dissociated spinal cord-dorsal root ganglia and demonstrated that they are incorporated into the preexisting neurofilament network but eventually disrupt neurofilaments without causing significant motor neuron death. Importantly, rounding of mitochondria and reduction in axonal diameter occurred before disruption of the neurofilament network, indicating that mitochondrial dysfunction contributes to the pathogenesis of CMT2E, as well as to CMT caused by mitofusin mutations. Heat shock proteins (HSPs) are involved in the formation of the neurofilament network and in protecting cells from misfolded mutant proteins. Cotransfection of HSPB1 with mutated NEFL maintained the neurofilament network, axonal diameter, and mitochondrial length in motor neurons expressing NFL, but not NFL. Conversely, HSPA1 cotransfection was effective in motor neurons expressing NFL, but not NFL. Thus, there are NFL mutant-specific differences in the ability of individual HSPs to prevent neurofilament abnormalities, reduction in axonal caliber, and disruption of mitochondrial morphology in motor neurons. These results suggest that HSP inducers have therapeutic potential for CMT2E but that their efficacy would depend on the profile of HSPs induced and the type of NEFL mutation.
Collapse
|
85
|
Perrot R, Eyer J. Neuronal intermediate filaments and neurodegenerative disorders. Brain Res Bull 2009; 80:282-95. [PMID: 19539727 DOI: 10.1016/j.brainresbull.2009.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/05/2009] [Accepted: 06/05/2009] [Indexed: 12/12/2022]
Abstract
Intermediate filaments represent the most abundant cytoskeletal element in mature neurons. Mutations and/or accumulations of neuronal intermediate filament proteins are frequently observed in several human neurodegenerative disorders. Although it is now admitted that disorganization of the neurofilament network may be directly involved in neurodegeneration, certain type of perikaryal intermediate filament aggregates confer protection in motor neuron disease. The use of various mouse models provided a better knowledge of the role played by the disorganization of intermediate filaments in the pathogenesis of neurodegenerative disorders, but the mechanisms leading to the formation of these aggregates remain elusive. Here, we will review some neurodegenerative diseases involving intermediate filaments abnormalities and possible mechanisms susceptible to provoke them.
Collapse
Affiliation(s)
- Rodolphe Perrot
- Department of Anatomy and Physiology of Laval University, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | | |
Collapse
|
86
|
Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 2009; 65 Suppl 1:S3-9. [PMID: 19191304 DOI: 10.1002/ana.21543] [Citation(s) in RCA: 504] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms involved in selective motor neuron degeneration in amyotrophic lateral sclerosis remain unknown more than 135 years after the disease was first described. Although most cases have no known cause, mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) have been implicated in a fraction of familial cases of the disease. Transgenic mouse models with mutations in the SOD1 gene and other ALS genes develop pathology reminiscent of the disorder, including progressive death of motor neurons, and have provided insight into the pathogenesis of the disease but have consistently failed to predict therapeutic efficacy in humans. However, emerging research has demonstrated that mutations and pathology associated with the TDP-43 gene and protein may be more common than SOD1 mutations in familial and sporadic ALS. Putative mechanisms of toxicity targeting motor neurons include oxidative damage, accumulation of intracellular aggregates, mitochondrial dysfunction, defects in axonal transport, growth factor deficiency, aberrant RNA metabolism, glial cell pathology, and glutamate excitotoxicity. Convergence of these pathways is likely to mediate disease onset and progression.
Collapse
Affiliation(s)
- Jeffrey D Rothstein
- Department of Neurology and Neuroscience, Brain Science Institute, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
87
|
Louis ED, Yi H, Erickson-Davis C, Vonsattel JPG, Faust PL. Structural study of Purkinje cell axonal torpedoes in essential tremor. Neurosci Lett 2009; 450:287-91. [PMID: 19047012 PMCID: PMC2662443 DOI: 10.1016/j.neulet.2008.11.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 11/17/2008] [Accepted: 11/17/2008] [Indexed: 11/21/2022]
Abstract
Essential tremor (ET) is one of the most common neurological diseases. A basic understanding of its neuropathology is now emerging. Aside from Purkinje cell loss, a prominent finding is an abundance of torpedoes (rounded swellings of Purkinje cell axons). Such swellings often result from the mis-accumulation of cell constituents. Identifying the basic nature of these accumulations is an important step in understanding the underlying disease process. Torpedoes, only recently identified in ET, have not yet been characterized ultrastructurally. Light and electron microscopy were used to characterize the structural constituents of torpedoes in ET. Formalin-fixed cerebellar cortical tissue from four prospectively collected ET brains was sectioned and immunostained with a monoclonal phosphorylated neurofilament antibody (SMI-31, Covance, Emeryville, CA). Using additional sections from three ET brains, torpedoes were assessed using electron microscopy. Immunoreactivity for phosphorylated neurofilament protein revealed clear labeling of torpedoes in each case. Torpedoes were strongly immunoreactive; in many instances, two or more torpedoes were noted in close proximity to one another. On electron microscopy, torpedoes were packed with randomly arranged 10-12nm neurofilaments. Mitochondria and smooth endoplasmic reticulum were abundant as well, particularly at the periphery of the torpedo. We demonstrated that the torpedoes in ET represent the mis-accumulation of disorganized neurofilaments and other organelles. It is not known where in the pathogenic cascade these accumulations occur (i.e., whether these accumulations are the primary event or a secondary/downstream event) and this deserves further study.
Collapse
Affiliation(s)
- Elan D Louis
- GH Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | | | | | | | | |
Collapse
|
88
|
Garcia ML, Rao MV, Fujimoto J, Garcia VB, Shah SB, Crum J, Gotow T, Uchiyama Y, Ellisman M, Calcutt NA, Cleveland DW. Phosphorylation of highly conserved neurofilament medium KSP repeats is not required for myelin-dependent radial axonal growth. J Neurosci 2009; 29:1277-84. [PMID: 19193875 PMCID: PMC2782950 DOI: 10.1523/jneurosci.3765-08.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Revised: 12/22/2008] [Accepted: 12/29/2008] [Indexed: 11/21/2022] Open
Abstract
Neurofilament medium (NF-M) is essential for the acquisition of normal axonal caliber in response to a myelin-dependent "outside-in" trigger for radial axonal growth. Removal of the tail domain and lysine-serine-proline (KSP) repeats of NF-M, but not neurofilament heavy, produced axons with impaired radial growth and reduced conduction velocities. These earlier findings supported myelin-dependent phosphorylation of NF-M KSP repeats as an essential component of axonal growth. As a direct test of whether phosphorylation of NF-M KSP repeats is the target for the myelin-derived signal, gene replacement has now been used to produce mice in which all serines of NF-M's KSP repeats have been replaced with phosphorylation-incompetent alanines. This substitution did not alter accumulation of the neurofilaments or their subunits. Axonal caliber and motor neuron conduction velocity of mice expressing KSP phospho-incompetent NF-M were also indistinguishable from wild-type mice. Thus, phosphorylation of NF-M KSP repeats is not an essential component for the acquisition of normal axonal caliber mediated by myelin-dependent outside-in signaling.
Collapse
Affiliation(s)
- Michael L. Garcia
- Department of Biological Sciences, Bond Life Sciences Center, University of Missouri–Columbia, Columbia, Missouri 65211
- Ludwig Institute for Cancer Research
| | - Mala V. Rao
- Nathan Kline Institute
- Department of Psychiatry, New York University School of Medicine, Orangeburg, New York 10962
| | | | - Virginia B. Garcia
- Department of Biological Sciences, Bond Life Sciences Center, University of Missouri–Columbia, Columbia, Missouri 65211
| | - Sameer B. Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742
| | - John Crum
- National Center for Microscopy and Image Research, and
| | - Takahiro Gotow
- Laboratory of Cell Biology, College of Nutrition, Koshien University, Hyogo 665-0006, Japan, and
| | - Yasuo Uchiyama
- Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mark Ellisman
- Department of Neurosciences
- National Center for Microscopy and Image Research, and
| | - Nigel A. Calcutt
- Department of Pathology, University of California, San Diego, La Jolla, California 92093
| | | |
Collapse
|
89
|
Age related and hypothyroidism related changes on the stoichiometry of neurofilament subunits in the developing rat brain. Int J Dev Neurosci 2009; 27:257-61. [DOI: 10.1016/j.ijdevneu.2008.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 12/23/2008] [Indexed: 11/19/2022] Open
|
90
|
Wang QS, Hou LY, Zhang CL, Zhao XL, Yu SF, Xie KQ. 2,5-hexanedione (HD) treatment alters calmodulin, Ca2+/calmodulin-dependent protein kinase II, and protein kinase C in rats' nerve tissues. Toxicol Appl Pharmacol 2008; 232:60-8. [DOI: 10.1016/j.taap.2008.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 04/30/2008] [Accepted: 05/19/2008] [Indexed: 11/29/2022]
|
91
|
Jeong MS, Kang JH. Acrolein, the toxic endogenous aldehyde, induces neurofilament-L aggregation. BMB Rep 2008; 41:635-9. [DOI: 10.5483/bmbrep.2008.41.9.635] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
92
|
Deficiency in ubiquitin ligase TRIM2 causes accumulation of neurofilament light chain and neurodegeneration. Proc Natl Acad Sci U S A 2008; 105:12016-21. [PMID: 18687884 DOI: 10.1073/pnas.0802261105] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
TRIM RING finger proteins have been shown to play an important role in cancerogenesis, in the pathogenesis of some human hereditary disorders, and in the defense against viral infection, but the function of the majority of TRIM proteins remains unknown. Here, we show that TRIM RING finger protein TRIM2, highly expressed in the nervous system, is an UbcH5a-dependent ubiquitin ligase. We further demonstrate that TRIM2 binds to neurofilament light subunit (NF-L) and regulates NF-L ubiquitination. Additionally, we show that mice deficient in TRIM2 have increased NF-L level in axons and NF-L-filled axonal swellings in cerebellum, retina, spinal cord, and cerebral cortex. The axonopathy is followed by progressive neurodegeneration accompanied by juvenile-onset tremor and ataxia. Our results demonstrate that TRIM2 is an ubiquitin ligase and point to a mechanism regulating NF-L metabolism through an ubiquitination pathway that, if deregulated, triggers neurodegeneration.
Collapse
|
93
|
Interplay between liquid crystalline and isotropic gels in self-assembled neurofilament networks. Biophys J 2008; 95:823-35. [PMID: 18583309 DOI: 10.1529/biophysj.107.127415] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurofilaments (NFs) are a major constituent of nerve cell axons that assemble from three subunit proteins of low (NF-L), medium (NF-M), and high (NF-H) molecular weight into a 10 nm diameter rod with radiating sidearms to form a bottle-brush-like structure. Here, we reassemble NFs in vitro from varying weight ratios of the subunit proteins, purified from bovine spinal cord, to form homopolymers of NF-L or filaments composed of NF-L and NF-M (NF-LM), NF-L and NF-H (NF-LH), or all three subunits (NF-LMH). At high protein concentrations, NFs align to form a nematic liquid crystalline gel with a well-defined spacing determined with synchrotron small angle x-ray scattering. Near physiological conditions (86 mM monovalent salt and pH 6.8), NF-LM networks with a high NF-M grafting density favor nematic ordering whereas filaments composed of NF-LH transition to an isotropic gel at low protein concentrations as a function of increasing mole fraction of NF-H subunits. The interfilament distance decreases with NF-M grafting density, opposite the trend seen with NF-LH networks. This suggests a competition between the more attractive NF-M sidearms, forming a compact aligned nematic gel, and the repulsive NF-H sidearms, favoring a more expansive isotropic gel, at 86 mM monovalent salt. These interactions are highly salt dependent and the nematic gel phase is stabilized with increasing monovalent salt.
Collapse
|
94
|
Liu YL, Guo YS, Xu L, Wu SY, Wu DX, Yang C, Li CY. Ultrastructural evidence of neurofilament involvement in immune-mediated motor neuron injury. Neurol Res 2008; 30:990-4. [PMID: 18662498 DOI: 10.1179/016164108x323780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurological disorder. A pathologic hallmark of ALS is accumulation of neurofilaments in proximal axons of affected motor neurones. As the neurofilaments involved in immune-mediated spinal cord ventral horn motor neuron degeneration and loss, we developed immune-mediated motor neuron injury animal model by inoculating Lewis rats with swine spinal cord homogenate and investigated the ultrastructural features of neurofilament accumulation using transmission electron microscopy. Our results showed that there was aberrant accumulation of neurofilaments in perikarya and processes of remaining motor neurons in recipient animals, which is similar to those observed in ALS patients. These findings suggest that immune-mediated motor neuron injury may share a common pathogenesis with ALS.
Collapse
Affiliation(s)
- Ya-Ling Liu
- Department of Neurology, Second Hospital of Hebei Medical University, 215 He-Ping West Road, Shijiazhuang, China
| | | | | | | | | | | | | |
Collapse
|
95
|
Perrot R, Berges R, Bocquet A, Eyer J. Review of the Multiple Aspects of Neurofilament Functions, and their Possible Contribution to Neurodegeneration. Mol Neurobiol 2008; 38:27-65. [DOI: 10.1007/s12035-008-8033-0] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 06/14/2008] [Indexed: 10/21/2022]
|
96
|
Tseng KW, Chau YP, Yang MF, Lu KS, Chien CL. Abnormal cellular translocation of alpha-internexin in spinal motor neurons of Dystonia musculorum mice. J Comp Neurol 2008; 507:1053-64. [PMID: 18092335 DOI: 10.1002/cne.21606] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dystonia musculorum (dt) is a mutant mouse with hereditary neuropathy where the dysfunction is mainly found in the dorsal root ganglia (DRG) neurons but not in the spinal motor neurons. However, the accumulation of intermediate filament (IF) proteins in the swelling axons of spinal motor neurons could be found in dt/dt mice. In order to understand the pathological role of neuronal IFs in the swelling axons of spinal motor neurons from dt/dt mice, we extensively examined the distribution of neuronal IF proteins. By immunofluorescence staining, our results indicated that alpha-internexin was a major component in the swelling axon and showed abnormal translocation in the nuclei of spinal motor neurons in dt/dt mice. This abnormal translocation of alpha-internexin in the nuclei of spinal motor neurons was also confirmed by Western blotting and immunoelectron microscopy. Instead of the 10-nm filamentous structure, a diffuse immunopositive pattern of alpha-internexin was observed in the nucleus of spinal motor neurons in dt/dt mutants. We further examined the cell death of spinal motor neurons by TUNEL assay, and no TUNEL-positive cells could be identified from spinal motor neurons in dt/dt mice. From these observations we suggest that abnormal accumulation of neuronal IFs in the swelling axons and abnormal translocation of alpha-internexin in the nuclei of the spinal motor neurons from dt/dt mice may not directly cause cell death of the spinal motor neurons.
Collapse
Affiliation(s)
- Kuang-Wen Tseng
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
97
|
Cozzolino M, Ferri A, Carrì MT. Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal 2008; 10:405-43. [PMID: 18370853 DOI: 10.1089/ars.2007.1760] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset progressive degeneration of motor neurons occurring both as a sporadic and a familial disease. The etiology of ALS remains unknown, but one fifth of instances are due to specific gene defects, the best characterized of which is point mutations in the gene coding for Cu/Zn superoxide dismutase (SOD1). Because sporadic and familial ALS affect the same neurons with similar pathology, it is hoped that understanding these gene defects will help in devising therapies effective in both forms. A wealth of evidence has been collected in rodents made transgenic for mutant SOD1, which represent the best available models for familial ALS. Mutant SOD1 likely induces selective vulnerability of motor neurons through a combination of several mechanisms, including protein misfolding, mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities and defective axonal transport, excitotoxicity, inadequate growth factor signaling, and inflammation. Damage within motor neurons is enhanced by noxious signals originating from nonneuronal neighboring cells, where mutant SOD1 induces an inflammatory response that accelerates disease progression. The clinical implication of these findings is that promising therapeutic approaches can be derived from multidrug treatments aimed at the simultaneous interception of damage in both motor neurons and nonmotor neuronal cells.
Collapse
|
98
|
Hull E, Spoja C, Cordova M, Cohlberg JA. Neurofilament protein aggregation in a cell line model system. Biochem Biophys Res Commun 2008; 366:73-9. [DOI: 10.1016/j.bbrc.2007.11.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
|
99
|
Chen-Plotkin AS, Geser F, Plotkin JB, Clark CM, Kwong LK, Yuan W, Grossman M, Van Deerlin VM, Trojanowski JQ, Lee VMY. Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration. Hum Mol Genet 2008; 17:1349-62. [PMID: 18223198 DOI: 10.1093/hmg/ddn023] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal lobar degeneration is a fatal neurodegenerative disease that results in progressive decline in behavior, executive function and sometimes language. Disease mechanisms remain poorly understood. Recently, however, the DNA- and RNA-binding protein TDP-43 has been identified as the major protein present in the hallmark inclusion bodies of frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U), suggesting a role for transcriptional dysregulation in FTLD-U pathophysiology. Using the Affymetrix U133A microarray platform, we profiled global gene expression in both histopathologically affected and unaffected areas of human FTLD-U brains. We then characterized differential gene expression with biological pathway analyses, cluster and principal component analyses, and subgroup analyses based on brain region and progranulin (GRN) gene status. Comparing 17 FTLD-U brains to 11 controls, we identified 414 upregulated and 210 downregulated genes in frontal cortex (P-value < 0.001). Moreover, cluster and principal component analyses revealed that samples with mutations or possibly pathogenic variations in the GRN gene (GRN+, 7/17) had an expression signature that was distinct from both normal controls and FTLD-U samples lacking GRN gene variations (GRN-, 10/17). Within the subgroup of GRN+ FTLD-U, we found >1300 dysregulated genes in frontal cortex (P-value < 0.001), many participating in pathways uniquely dysregulated in the GRN+ cases. Our findings demonstrate a distinct molecular phenotype for GRN+ FTLD-U, not readily apparent on clinical or histopathological examination, suggesting distinct pathophysiological mechanisms for GRN+ and GRN- subtypes of FTLD-U. In addition, these data from a large number of human brains provide a valuable resource for future testing of disease hypotheses.
Collapse
Affiliation(s)
- Alice S Chen-Plotkin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Kato S. Amyotrophic lateral sclerosis models and human neuropathology: similarities and differences. Acta Neuropathol 2008; 115:97-114. [PMID: 18026741 DOI: 10.1007/s00401-007-0308-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/27/2007] [Accepted: 09/29/2007] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily involves the motor neuron system. The author initially summarizes the principal features of human ALS neuropathology, and subsequently describes in detail ALS animal models mainly from the viewpoint of pathological similarities and differences. ALS animal models in this review include strains of rodents that are transgenic for superoxide dismutase 1 (SOD1), ALS2 knockout mice, and mice that are transgenic for cytoskeletal abnormalities. Although the neuropathological results obtained from human ALS autopsy cases are valuable and important, almost all of such cases represent only the terminal stage. This makes it difficult to clarify how and why ALS motor neurons are impaired at each clinical stage from disease onset to death, and as a consequence, human autopsy cases alone yield little insight into potential therapies for ALS. Although ALS animal models cannot replicate human ALS, in order to compensate for the shortcomings of studies using human ALS autopsy samples, researchers must inevitably rely on ALS animal models that can yield very important information for clarifying the pathogenesis of ALS in humans and for the establishment of reliable therapy. Of course, human ALS and all ALS animal models share one most important similarity in that both exhibit motor neuron degeneration/death. This important point of similarity has shed much light on the pathomechanisms of the motor neuron degeneration/death at the cellular and molecular levels that would not have been appreciated if only human ALS autopsy samples had been available. On the basis of the aspects covered in this review, it can be concluded that ALS animal models can yield very important information for clarifying the pathogenesis of ALS in humans and for the establishment of reliable therapy only in combination with detailed neuropathological data obtained from human ALS autopsy cases.
Collapse
|