51
|
Kim WR, Park EG, Lee YJ, Bae WH, Lee DH, Kim HS. Integration of TE Induces Cancer Specific Alternative Splicing Events. Int J Mol Sci 2022; 23:10918. [PMID: 36142830 PMCID: PMC9502224 DOI: 10.3390/ijms231810918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing of messenger RNA (mRNA) precursors contributes to genetic diversity by generating structurally and functionally distinct transcripts. In a disease state, alternative splicing promotes incidence and development of several cancer types through regulation of cancer-related biological processes. Transposable elements (TEs), having the genetic ability to jump to other regions of the genome, can bring about alternative splicing events in cancer. TEs can integrate into the genome, mostly in the intronic regions, and induce cancer-specific alternative splicing by adjusting various mechanisms, such as exonization, providing splicing donor/acceptor sites, alternative regulatory sequences or stop codons, and driving exon disruption or epigenetic regulation. Moreover, TEs can produce microRNAs (miRNAs) that control the proportion of transcripts by repressing translation or stimulating the degradation of transcripts at the post-transcriptional level. Notably, TE insertion creates a cancer-friendly environment by controlling the overall process of gene expression before and after transcription in cancer cells. This review emphasizes the correlative interaction between alternative splicing by TE integration and cancer-associated biological processes, suggesting a macroscopic mechanism controlling alternative splicing by TE insertion in cancer.
Collapse
Affiliation(s)
- Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
52
|
Yu G, Huang Q, Zhang X, Guo M, Wang J. Tissue Specificity Based Isoform Function Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3048-3059. [PMID: 34185647 DOI: 10.1109/tcbb.2021.3093167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alternative splicing enables a gene spliced into different isoforms and hence protein variants. Identifying individual functions of these isoforms help deciphering the functional diversity of proteins. Although much efforts have been made for automatic gene function prediction, few efforts have been moved toward computational isoform function prediction, mainly due to the unavailable (or scanty) functional annotations of isoforms. Existing efforts directly combine multiple RNA-seq datasets without account of the important tissue specificity of alternative splicing. To bridge this gap, we introduce a novel approach called TS-Isofun to predict the functions of isoforms by integrating multiple functional association networks with respect to tissue specificity. TS-Isofun first constructs tissue-specific isoform functional association networks using multiple RNA-seq datasets from tissue-wise. Next, TS-Isofun assigns weights to these networks and models the tissue specificity by selectively integrating them with adaptive weights. It then introduces a joint matrix factorization-based data fusion model to leverage the integrated network, gene-level data and functional annotations of genes to infer the functions of isoforms. To achieve coherent weight assignment and isoform function prediction, TS-Isofun jointly optimizes the weights of individual networks and the isoform function prediction in a unified objective function. Experimental results show that TS-Isofun significantly outperforms state-of-the-art methods and the account of tissue specificity contributes to more accurate isoform function prediction.
Collapse
|
53
|
Bhogadia M, Stone B, Del Villar Guerra R, Muskett FW, Ghosh S, Taladriz-Sender A, Burley GA, Eperon IC, Hudson AJ, Dominguez C. Biophysical characterisation of the Bcl-x pre-mRNA and binding specificity of the ellipticine derivative GQC-05: Implication for alternative splicing regulation. Front Mol Biosci 2022; 9:943105. [PMID: 36060245 PMCID: PMC9428248 DOI: 10.3389/fmolb.2022.943105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
The BCL2L1 gene expresses two isoforms of Bcl-x protein via the use of either of two alternative 5′ splice sites (5′ss) in exon 2. These proteins have antagonistic actions, Bcl-XL being anti-apoptotic and Bcl-XS pro-apoptotic. In a number of cancers the Bcl-XL isoform is over-expressed, resulting in cancer cell survival and growth, so switching splicing to the Xs isoform could have therapeutic benefits. We have previously proposed that a putative G-quadruplex (G4) exists downstream of the XS 5′ss and shown that the ellipticine derivative GQC-05, a previously identified DNA G4-specific ligand, induces an increase in the XS/XL ratio both in vitro and in cells. Here, we demonstrate that this G4 forms in vitro and that the structure is stabilised in the presence of GQC-05. We also show that GQC-05 binds RNA non-specifically in buffer conditions, but selectively to the Bcl-x G4 in the presence of nuclear extract, highlighting the limitations of biophysical measurements taken outside of a functional environment. We also demonstrate that GQC-05 is able to shift the equilibrium between competing G4 and duplex structures towards the G4 conformation, leading to an increase in accessibility of the XS 5′ss, supporting our previous model on the mechanism of action of GQC-05.
Collapse
Affiliation(s)
- Mohammed Bhogadia
- The Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Beth Stone
- The Leicester Institute of Structural and Chemical Biology, Department of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Rafael Del Villar Guerra
- The Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Frederick W. Muskett
- The Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Sudipta Ghosh
- The Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Andrea Taladriz-Sender
- Department of Pure Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Glenn A. Burley
- Department of Pure Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Ian C. Eperon
- The Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
- *Correspondence: Ian C. Eperon, ; Andrew J. Hudson, ; Cyril Dominguez,
| | - Andrew J. Hudson
- The Leicester Institute of Structural and Chemical Biology, Department of Chemistry, University of Leicester, Leicester, United Kingdom
- *Correspondence: Ian C. Eperon, ; Andrew J. Hudson, ; Cyril Dominguez,
| | - Cyril Dominguez
- The Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
- *Correspondence: Ian C. Eperon, ; Andrew J. Hudson, ; Cyril Dominguez,
| |
Collapse
|
54
|
RNA splicing: a dual-edged sword for hepatocellular carcinoma. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:173. [PMID: 35972700 DOI: 10.1007/s12032-022-01726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/30/2022] [Indexed: 10/15/2022]
Abstract
RNA splicing is the fundamental process that brings diversity at the transcriptome and proteome levels. The spliceosome complex regulates minor and major processes of RNA splicing. Aberrant regulation is often associated with different diseases, including diabetes, stroke, hypertension, and cancer. In the majority of cancers, dysregulated alternative RNA splicing (ARS) events directly affect tumor progression, invasiveness, and often lead to poor survival of the patients. Alike the rest of the gastrointestinal malignancies, in hepatocellular carcinoma (HCC), which alone contributes to ~ 75% of the liver cancers, a large number of ARS events have been observed, including intron retention, exon skipping, presence of alternative 3'-splice site (3'SS), and alternative 5'-splice site (5'SS). These events are reported in spliceosome and non-spliceosome complexes genes. Molecules such as MCL1, Bcl-X, and BCL2 in different isoforms can behave as anti-apoptotic or pro-apoptotic, making the spliceosome complex a dual-edged sword. The anti-apoptotic isoforms of such molecules bring in resistance to chemotherapy or cornerstone drugs. However, in contrast, multiple malignant tumors, including HCC that target the pro-apoptotic favoring isoforms/variants favor apoptotic induction and make chemotherapy effective. Herein, we discuss different splicing events, aberrations, and antisense oligonucleotides (ASOs) in modulating RNA splicing in HCC tumorigenesis with a possible therapeutic outcome.
Collapse
|
55
|
Xi JY, Zhang RY, Chen K, Yao L, Li MQ, Jiang R, Li XY, Fan L. Advances and perspectives of proteolysis targeting chimeras (PROTACs) in drug discovery. Bioorg Chem 2022; 125:105848. [DOI: 10.1016/j.bioorg.2022.105848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
|
56
|
Sora V, Papaleo E. Structural Details of BH3 Motifs and BH3-Mediated Interactions: an Updated Perspective. Front Mol Biosci 2022; 9:864874. [PMID: 35685242 PMCID: PMC9171138 DOI: 10.3389/fmolb.2022.864874] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Apoptosis is a mechanism of programmed cell death crucial in organism development, maintenance of tissue homeostasis, and several pathogenic processes. The B cell lymphoma 2 (BCL2) protein family lies at the core of the apoptotic process, and the delicate balance between its pro- and anti-apoptotic members ultimately decides the cell fate. BCL2 proteins can bind with each other and several other biological partners through the BCL2 homology domain 3 (BH3), which has been also classified as a possible Short Linear Motif and whose distinctive features remain elusive even after decades of studies. Here, we aim to provide an updated overview of the structural features characterizing BH3s and BH3-mediated interactions (with a focus on human proteins), elaborating on the plasticity of BCL2 proteins and the motif properties. We also discussed the implication of these findings for the discovery of interactors of the BH3-binding groove of BCL2 proteins and the design of mimetics for therapeutic purposes.
Collapse
Affiliation(s)
- Valentina Sora
- Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Elena Papaleo, ,
| |
Collapse
|
57
|
Sela Y, Li J, Maheswaran S, Norgard R, Yuan S, Hubbi M, Doepner M, Xu JP, Ho E, Measaros C, Sheehan C, Croley G, Muir A, Blair IA, Shalem O, Dang CV, Stanger BZ. Bcl-xL Enforces a Slow-Cycling State Necessary for Survival in the Nutrient-Deprived Microenvironment of Pancreatic Cancer. Cancer Res 2022; 82:1890-1908. [PMID: 35315913 PMCID: PMC9117449 DOI: 10.1158/0008-5472.can-22-0431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/24/2022]
Abstract
Solid tumors possess heterogeneous metabolic microenvironments where oxygen and nutrient availability are plentiful (fertile regions) or scarce (arid regions). While cancer cells residing in fertile regions proliferate rapidly, most cancer cells in vivo reside in arid regions and exhibit a slow-cycling state that renders them chemoresistant. Here, we developed an in vitro system enabling systematic comparison between these populations via transcriptome analysis, metabolomic profiling, and whole-genome CRISPR screening. Metabolic deprivation led to pronounced transcriptional and metabolic reprogramming, resulting in decreased anabolic activities and distinct vulnerabilities. Reductions in anabolic, energy-consuming activities, particularly cell proliferation, were not simply byproducts of the metabolic challenge, but rather essential adaptations. Mechanistically, Bcl-xL played a central role in the adaptation to nutrient and oxygen deprivation. In this setting, Bcl-xL protected quiescent cells from the lethal effects of cell-cycle entry in the absence of adequate nutrients. Moreover, inhibition of Bcl-xL combined with traditional chemotherapy had a synergistic antitumor effect that targeted cycling cells. Bcl-xL expression was strongly associated with poor patient survival despite being confined to the slow-cycling fraction of human pancreatic cancer cells. These findings provide a rationale for combining traditional cancer therapies that target rapidly cycling cells with those that target quiescent, chemoresistant cells associated with nutrient and oxygen deprivation. SIGNIFICANCE The majority of pancreatic cancer cells inhabit nutrient- and oxygen-poor tumor regions and require Bcl-xL for their survival, providing a compelling antitumor metabolic strategy.
Collapse
Affiliation(s)
- Yogev Sela
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Jinyang Li
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Shivahamy Maheswaran
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Robert Norgard
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Salina Yuan
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Maimon Hubbi
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Miriam Doepner
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Jimmy P. Xu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Elaine Ho
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Clementina Measaros
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Colin Sheehan
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Grace Croley
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Ian A. Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chi V. Dang
- Systems and Computational Biology Center and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, 19104, USA
- Ludwig Institute for Cancer Research, New York, 10016, USA
| | - Ben Z. Stanger
- Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| |
Collapse
|
58
|
Zhang J, Zhang G, Zhang W, Bai L, Wang L, Li T, Yan L, Xu Y, Chen D, Gao W, Gao C, Chen C, Ren M, Jiao Y, Qin H, Sun Y, Zhi L, Qi Y, Zhao J, Liu Q, Liu H, Wang Y. Loss of RBMS1 promotes anti-tumor immunity through enabling PD-L1 checkpoint blockade in triple-negative breast cancer. Cell Death Differ 2022; 29:2247-2261. [PMID: 35538152 PMCID: PMC9613699 DOI: 10.1038/s41418-022-01012-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
Immunotherapy has been widely utilized in multiple tumors, however, its efficacy in the treatment of triple-negative breast cancers (TNBC) is still being challenged. Meanwhile, functions and mechanisms of RNA binding proteins in regulating immunotherapy for TNBC remain largely elusive. Here we reported that the RNA binding protein RBMS1 is prevalent among immune-cold TNBC. Through a systematic shRNA-mediated screen, we found depletion of RBMS1 significantly reduced the level of programmed death ligand 1 (PD-L1) in TNBC. Clinically, RBMS1 was increased in breast cancer and its level was positively correlated to that of PD-L1. RBMS1 ablation stimulated cytotoxic T cell mediated anti-tumor immunity. Mechanistically, RBMS1 regulated the mRNA stability of B4GALT1, a newly identified glycosyltransferase of PD-L1. Depletion of RBMS1 destabilized the mRNA of B4GALT1, inhibited the glycosylation of PD-L1 and promoted the ubiquitination and subsequent degradation of PD-L1. Importantly, combination of RBMS1 depletion with CTLA4 immune checkpoint blockade or CAR-T treatment enhanced anti-tumor T-cell immunity both in vitro and in vivo. Together, our findings provided a new immunotherapeutic strategy against TNBC by targeting the immunosuppressive RBMS1.
Collapse
Affiliation(s)
- Jinrui Zhang
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Ge Zhang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Lu Bai
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Luning Wang
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Tiantian Li
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Li Yan
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, 518035, China
| | - Yang Xu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518035, China
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Wenting Gao
- Institute of Genome Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian, 116044, China
| | - Chuanzhou Gao
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Chaoqun Chen
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Menglin Ren
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Yuexia Jiao
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yu Sun
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Lili Zhi
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Yangfan Qi
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Quentin Liu
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Han Liu
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Yang Wang
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
59
|
Glutamine Maintains Satellite Glial Cells Growth and Survival in Culture. Neurochem Res 2022; 47:3635-3646. [PMID: 35522367 DOI: 10.1007/s11064-022-03614-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Satellite glial cells (SGCs) tightly surround neurons and modulate sensory transmission in dorsal root ganglion (DRG). At present, the biological property of primary SGCs in culture deserves further investigation. To reveal the key factor for SGCs growth and survival, we examined the effects of different culture supplementations containing Dulbecco's Modified Eagle Medium (DMEM)/F12, DMEM high glucose (HG) or Neurobasal-A (NB). CCK-8 proliferation assay showed an increased proliferation of SGCs in DMEM/F12 and DMEM/HG, but not in NB medium. Bax, AnnexinV, and propidium iodide (PI) staining results showed that NB medium caused cell death and apoptosis. We showed that glutamine was over 2.5 mM in DMEM/F12 and DMEM/HG, whereas it was absence in NB medium. Interestingly, exogenous glutamine application significantly reversed the poor proliferation and cell death of SGCs in NB medium. These findings demonstrated that DMEM/F12 medium was optimal to get high-purity SGCs. Glutamine was the key molecule to maintain SGCs growth and survival in culture. Here, we provided a novel approach to get high-purity SGCs by changing the key component of culture medium. Our study shed a new light on understanding the biological property and modulation of glial cells of primary sensory ganglia.
Collapse
|
60
|
Montero J, Haq R. Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics. Cancer Discov 2022; 12:1217-1232. [PMID: 35491624 PMCID: PMC9306285 DOI: 10.1158/2159-8290.cd-21-1334] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 01/07/2023]
Abstract
A hallmark of cancer is cell death evasion, underlying suboptimal responses to chemotherapy, targeted agents, and immunotherapies. The approval of the antiapoptotic BCL2 antagonist venetoclax has finally validated the potential of targeting apoptotic pathways in patients with cancer. Nevertheless, pharmacologic modulators of cell death have shown markedly varied responses in preclinical and clinical studies. Here, we review emerging concepts in the use of this class of therapies. Building on these observations, we propose that treatment-induced changes in apoptotic dependency, rather than pretreatment dependencies, will need to be recognized and targeted to realize the precise deployment of these new pharmacologic agents. SIGNIFICANCE Targeting antiapoptotic family members has proven efficacious and tolerable in some cancers, but responses are infrequent, particularly for patients with solid tumors. Biomarkers to aid patient selection have been lacking. Precision functional approaches that overcome adaptive resistance to these compounds could drive durable responses to chemotherapy, targeted therapy, and immunotherapies.
Collapse
Affiliation(s)
- Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| |
Collapse
|
61
|
Stanley RF, Abdel-Wahab O. Dysregulation and therapeutic targeting of RNA splicing in cancer. NATURE CANCER 2022; 3:536-546. [PMID: 35624337 PMCID: PMC9551392 DOI: 10.1038/s43018-022-00384-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/22/2022] [Indexed: 05/15/2023]
Abstract
High-throughput sequencing and functional characterization of the cancer transcriptome have uncovered cancer-specific dysregulation of RNA splicing across a variety of cancers. Alterations in the cancer genome and dysregulation of RNA splicing factors lead to missplicing, splicing alteration-dependent gene expression and, in some cases, generation of novel splicing-derived proteins. Here, we review recent advances in our understanding of aberrant splicing in cancer pathogenesis and present strategies to harness cancer-specific aberrant splicing for therapeutic intent.
Collapse
Affiliation(s)
- Robert F Stanley
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
62
|
Chen Y, Yang M, Meng F, Zhang Y, Wang M, Guo X, Yang J, Zhang H, Zhang H, Sun J, Wang W. SRSF3 Promotes Angiogenesis in Colorectal Cancer by Splicing SRF. Front Oncol 2022; 12:810610. [PMID: 35198444 PMCID: PMC8859257 DOI: 10.3389/fonc.2022.810610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
SRSF3, an important member of the serine/arginine-rich protein (SRp) family, is highly expressed in various tumors and plays an important role in tumor cell proliferation, migration and invasion. However, it is still unclear whether SRSF3 is involved in tumor angiogenesis. In this study, we first revealed that SRSF3 regulated the expression of numerous genes related to angiogenesis, including proangiogenic SRF. Then, we confirmed that SRSF3 was highly expressed in colorectal cancer (CRC) and was positively correlated with SRF. Mechanistic studies revealed that SRSF3 directly bound to the “CAUC” motif in exon 6 of SRF and induced the exclusion of introns. Knockdown of SRSF3 significantly reduced the secretion of VEGF from CRC cells. Conditioned medium from SRSF3-knockdown CRC cells significantly inhibited the migration, invasion and tube formation of human umbilical vein endothelial cells (HUVECs). In addition, SRF silencing inhibited angiogenesis, while SRF overexpression reversed the antiangiogenic effects of SRSF3 knockdown on tube formation. These findings indicate that SRSF3 is involved in the splicing of SRF and thereby regulates the angiogenesis of CRC, which offers novel insight into antiangiogenic therapy in CRC.
Collapse
Affiliation(s)
- Yinshuang Chen
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Man Yang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fanyi Meng
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yawen Zhang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Mengmeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xuqin Guo
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jie Yang
- Institute of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Hongjian Zhang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Haiyang Zhang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jing Sun
- Institute of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
63
|
The Clinical Role of SRSF1 Expression in Cancer: A Review of the Current Literature. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background: SFRS1 is a member of the splicing factor protein family. Through a specific sequence of alteration, SRSF1 can move from the cytoplasm to the nucleus where it can work autonomously as a splicing activator, or as a silencer when interacting with other regulators. Alternative splicing (AS) is a fundamental biological process that ensures protein diversity. In fact, different proteins, produced by alternative splicing, can gain different and even antagonistic biological functions. Methods: Our review is based on English articles published in the MEDLINE/PubMed medical library between 2000 and 2021. We retrieved articles that were specifically related to SRSF1 and cancers, and we excluded other reviews and meta-analyses. We included in vitro studies, animal studies and clinical studies, evaluated using the Medical Education Research Study Quality Instrument (MERSQI) and the Newcastle–Ottawa Scale-Education (NOSE). Result: SRSF1 is related to various genes and plays a role in cell cycle, ubiquitin-mediated proteolysis, nucleotide excision repair, p53 pathway, apoptosis, DNA replication and RNA degradation. In most cases, SRSF1 carries out its cancer-related function via abnormal alternative splicing (AS). However, according to the most recent literature, SRSF1 may also be involved in mRNA translation and cancer chemoresistance or radio-sensitivity. Conclusion: Our results showed that SRSF1 plays a key clinical role in tumorigenesis and tumor progression in several types of cancer (such as Prostate, Lung, Breast, Colon, Glioblastoma), through various mechanisms of action and different cellular pathways. This review could be a starting point for several studies regarding the biology of and therapies for cancer.
Collapse
|
64
|
Roles and Regulation of BCL-xL in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23042193. [PMID: 35216310 PMCID: PMC8876520 DOI: 10.3390/ijms23042193] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Members of the Bcl-2 family are proteins that play an essential role in the regulation of apoptosis, a crucial process in development and normal physiology in multicellular organisms. The essential mechanism of this family of proteins is given by the role of pro-survival proteins, which inhibit apoptosis by their direct binding with their counterpart, the effector proteins of apoptosis. This family of proteins was named after the typical member Bcl-2, which was named for its discovery and abnormal expression in B-cell lymphomas. Subsequently, the structure of one of its members BCL-xL was described, which allowed one to understand much of the molecular mechanism of this family. Due to its role of BCL-xL in the regulation of cell survival and proliferation, it has been of great interest in its study. Due to this, it is important to research its role regarding the development and progression of human malignancies, especially in hematologic malignancies. Due to its variation in expression in cancer, it has been suggested that BCL-xL can or cannot play a role in cancer depending on the cellular or tissue context. This review discusses recent advances in its transcriptional regulation of BCL-xL, as well as the advances regarding the activities of BCL-xL in hematological malignancies, its possible role as a biomarker, and its possible clinical relevance in these malignancies.
Collapse
|
65
|
Heydarnezhad Asl M, Pasban Khelejani F, Bahojb Mahdavi SZ, Emrahi L, Jebelli A, Mokhtarzadeh A. The various regulatory functions of long noncoding RNAs in apoptosis, cell cycle, and cellular senescence. J Cell Biochem 2022; 123:995-1024. [PMID: 35106829 DOI: 10.1002/jcb.30221] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a group of noncoding cellular RNAs involved in significant biological phenomena such as differentiation, cell development, genomic imprinting, adjusting the enzymatic activity, regulating chromosome conformation, apoptosis, cell cycle, and cellular senescence. The misregulation of lncRNAs interrupting normal biological processes has been implicated in tumor formation and metastasis, resulting in cancer. Apoptosis and cell cycle, two main biological phenomena, are highly conserved and intimately coupled mechanisms. Hence, some cell cycle regulators can influence both programmed cell death and cell division. Apoptosis eliminates defective and unwanted cells, and the cell cycle enables cells to replicate themselves. The improper regulation of apoptosis and cell cycle contributes to numerous disorders such as neurodegenerative and autoimmune diseases, viral infection, anemia, and mainly cancer. Cellular senescence is a tumor-suppressing response initiated by environmental and internal stress factors. This phenomenon has recently attained more attention due to its therapeutic implications in the field of senotherapy. In this review, the regulatory roles of lncRNAs on apoptosis, cell cycle, and senescence will be discussed. First, the role of lncRNAs in mitochondrial dynamics and apoptosis is addressed. Next, the interaction between lncRNAs and caspases, pro/antiapoptotic proteins, and also EGFR/PI3K/PTEN/AKT/mTORC1 signaling pathway will be investigated. Furthermore, the effect of lncRNAs in the cell cycle is surveyed through interaction with cyclins, cdks, p21, and wnt/β-catenin/c-myc pathway. Finally, the function of essential lncRNAs in cellular senescence is mentioned.
Collapse
Affiliation(s)
| | - Faezeh Pasban Khelejani
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | | | - Leila Emrahi
- Department of Medical Genetics, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
66
|
Jeon HD, Han YH, Mun JG, Yoon DH, Lee YG, Kee JY, Hong SH. Dehydroevodiamine inhibits lung metastasis by suppressing survival and metastatic abilities of colorectal cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153809. [PMID: 34782203 DOI: 10.1016/j.phymed.2021.153809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Despite the rising 5-year survival rate of colorectal cancer (CRC) patients, the survival rate decreases as the stage progress, and a low survival rate is highly associated with metastasis. PURPOSE The purpose of our study is to investigate the effect of dehydroevodiamine (DHE) on the lung metastasis of CRC and the proliferation of CRC cells. STUDY DESIGN Cell death was confirmed after DHE treatment on several CRC cell lines. The mechanism of cell cytotoxicity was found using flow cytometry. After that, the expression of the proteins or mRNAs related to the cell cytotoxicity was confirmed. Also, anti-metastatic ability of DHE in CRC cells was measured by checking the expression of Epithelial to Mesenchymal Transition (EMT) markers. Lung metastasis mouse model was established, and DHE was administered orally for 14 days. RESULTS DHE suppressed the viability of HCT116, CT26, SW480, and LoVo cells. DHE treatment led to G2/M arrest via a reduction of cyclin B1/CDK1 and caspase-dependent apoptosis. It also induced autophagy by regulating LC3-II and beclin-1 expression. Additionally, migration and invasion of CRC cells were decreased by DHE through regulation of the expression of EMT markers. Oral administration of DHE could inhibit the lung metastasis of CT26 cells in an in vivo model. CONCLUSION Our study demonstrated that DHE has a potential therapeutic effect on colorectal cancer metastasis.
Collapse
Affiliation(s)
- Hee Dong Jeon
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Yo-Han Han
- Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA 30901, United States.
| | - Jeong-Geon Mun
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, South Korea.
| | - Dae Hwan Yoon
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, South Korea
| | - Yeong Gyeong Lee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, South Korea.
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, South Korea.
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, South Korea.
| |
Collapse
|
67
|
Fuentes-Fayos AC, Pérez-Gómez JM, G-García ME, Jiménez-Vacas JM, Blanco-Acevedo C, Sánchez-Sánchez R, Solivera J, Breunig JJ, Gahete MD, Castaño JP, Luque RM. SF3B1 inhibition disrupts malignancy and prolongs survival in glioblastoma patients through BCL2L1 splicing and mTOR/ß-catenin pathways imbalances. J Exp Clin Cancer Res 2022; 41:39. [PMID: 35086552 PMCID: PMC8793262 DOI: 10.1186/s13046-022-02241-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glioblastoma is one of the most devastating cancer worldwide based on its locally aggressive behavior and because it cannot be cured by current therapies. Defects in alternative splicing process are frequent in cancer. Recently, we demonstrated that dysregulation of the spliceosome is directly associated with glioma development, progression, and aggressiveness. METHODS Different human cohorts and a dataset from different glioma mouse models were analyzed to determine the mutation frequency as well as the gene and protein expression levels between tumor and control samples of the splicing-factor-3B-subunit-1 (SF3B1), an essential and druggable spliceosome component. SF3B1 expression was also explored at the single-cell level across all cell subpopulations and transcriptomic programs. The association of SF3B1 expression with relevant clinical data (e.g., overall survival) in different human cohorts was also analyzed. Different functional (proliferation/migration/tumorspheres and colonies formation/VEGF secretion/apoptosis) and mechanistic (gene expression/signaling pathways) assays were performed in three different glioblastomas cell models (human primary cultures and cell lines) in response to SF3B1 blockade (using pladienolide B treatment). Moreover, tumor progression and formation were monitored in response to SF3B1 blockade in two preclinical xenograft glioblastoma mouse models. RESULTS Our data provide novel evidence demonstrating that the splicing-factor-3B-subunit-1 (SF3B1, an essential and druggable spliceosome component) is low-frequency mutated in human gliomas (~ 1 %) but widely overexpressed in glioblastoma compared with control samples from the different human cohorts and mouse models included in the present study, wherein SF3B1 levels are associated with key molecular and clinical features (e.g., overall survival, poor prognosis and/or drug resistance). Remarkably, in vitro and in vivo blockade of SF3B1 activity with pladienolide B drastically altered multiple glioblastoma pathophysiological processes (i.e., reduction in proliferation, migration, tumorspheres formation, VEGF secretion, tumor initiation and increased apoptosis) likely by suppressing AKT/mTOR/ß-catenin pathways, and an imbalance of BCL2L1 splicing. CONCLUSIONS Together, we highlight SF3B1 as a potential diagnostic and prognostic biomarker and an efficient pharmacological target in glioblastoma, offering a clinically relevant opportunity worth to be explored in humans.
Collapse
Affiliation(s)
- Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Miguel E G-García
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Cristóbal Blanco-Acevedo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- Pathology Service, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Juan Solivera
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Joshua J Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain.
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain.
| |
Collapse
|
68
|
Bcl-2 Family Members and the Mitochondrial Import Machineries: The Roads to Death. Biomolecules 2022; 12:biom12020162. [PMID: 35204663 PMCID: PMC8961529 DOI: 10.3390/biom12020162] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
The localization of Bcl-2 family members at the mitochondrial outer membrane (MOM) is a crucial step in the implementation of apoptosis. We review evidence showing the role of the components of the mitochondrial import machineries (translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM)) in the mitochondrial localization of Bcl-2 family members and how these machineries regulate the function of pro- and anti-apoptotic proteins in resting cells and in cells committed into apoptosis.
Collapse
|
69
|
Yang J, Hu S, Bian Y, Yao J, Wang D, Liu X, Guo Z, Zhang S, Peng L. Targeting Cell Death: Pyroptosis, Ferroptosis, Apoptosis and Necroptosis in Osteoarthritis. Front Cell Dev Biol 2022; 9:789948. [PMID: 35118075 PMCID: PMC8804296 DOI: 10.3389/fcell.2021.789948] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
New research has shown that the development of osteoarthritis (OA) is regulated by different mechanisms of cell death and types of cytokines. Therefore, elucidating the mechanism of action among various cytokines, cell death processes and OA is important towards better understanding the pathogenesis and progression of the disease. This paper reviews the pathogenesis of OA in relation to different types of cytokine-triggered cell death. We describe the cell morphological features and molecular mechanisms of pyroptosis, apoptosis, necroptosis, and ferroptosis, and summarize the current research findings defining the molecular mechanisms of action between different cell death types and OA.
Collapse
Affiliation(s)
- Jian Yang
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Biomaterials and Medical Device Engineering Technology Research Center, Hainan Medical University, Haikou, China
| | - Shasha Hu
- Department of Pathology, Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Yangyang Bian
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Biomaterials and Medical Device Engineering Technology Research Center, Hainan Medical University, Haikou, China
| | - Jiangling Yao
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Biomaterials and Medical Device Engineering Technology Research Center, Hainan Medical University, Haikou, China
| | - Dong Wang
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Xiaoqian Liu
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Zhengdong Guo
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
| | - Siyuan Zhang
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Lei Peng
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Biomaterials and Medical Device Engineering Technology Research Center, Hainan Medical University, Haikou, China
- *Correspondence: Lei Peng,
| |
Collapse
|
70
|
Song Y, Qin G, Du L, Hu H, Han Y. In vitro and in vivo assessment of biocompatibility of AZ31 alloy as biliary stents: a preclinical approach. Arch Med Sci 2022; 18:195-205. [PMID: 35154540 PMCID: PMC8826861 DOI: 10.5114/aoms.2020.92675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/15/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Biomaterial technology due to its lack of or minimal side effects in tissues has great potential. Traditionally biomaterials used were cobalt-chromium, stainless steel and nitinol alloys. Biomaterials such as magnesium (Mg) and zinc (Zn) have good biocompatibility and consequently can be a potential material for medical implants. To date, the effects of AZ31 alloy stent on cell apoptosis are still unclear. The current investigation was designed to determine the effect of AZ31 alloy stent on necrosis and apoptosis of common bile duct (CBD) epithelial cells. MATERIAL AND METHODS We experimented with application of different concentrations of AZ31 alloy stent to primary mouse extrahepatic bile epithelial cells (MEBECs) and estimated the effect on apoptosis and necrotic cells. Apoptosis and pro-apoptosis expression were estimated through real-time PCR. For in vivo protocol, we used rabbits, implanted the AZ31 bile stent, and estimated its effect on the CBD. AZ31 (40%) concentration showed an effect on the apoptotic and necrotic cells. RESULTS Real-time PCR revealed that AZ31 (40%) concentration increased the apoptotic genes such as NF-κB, caspase-3, Bax and Bax/Bcl-2 ratio as compared to the control group. In the in vivo experiment, AZ31 alloy stents were implanted into the CBD and showed an effect on the alteration the hematological, hepatic and non-hepatic parameters. CONCLUSIONS To conclude, it can be stated that AZ31 induces apoptosis via alteration in genes including nuclear factor kappa-B (NF-κB), caspase-3, Bax and Bax/Bcl-2 ratio and improved the hematological, hepatic and non-hepatic parameters.
Collapse
Affiliation(s)
- Yong Song
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Gaoping Qin
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Lixue Du
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Haitian Hu
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Yong Han
- Material Science and Engineering, Xi’an Jiaotong University, Beilin District, Xi’an, Shaanxi, China
| |
Collapse
|
71
|
Luan J, Hu B, Wang S, Liu H, Lu S, Li W, Sun X, Shi J, Wang J. Selectivity mechanism of BCL-XL/2 inhibition through in silico investigation. Phys Chem Chem Phys 2022; 24:17105-17115. [DOI: 10.1039/d2cp01755e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BCL-XL protein is among the most important members of the anti-apoptotic subfamily of BCL-2 protein family, as currently a promising new target for anti-tumor drug research, even though BCL-XL/2 proteins...
Collapse
|
72
|
Tanriver G, Monard G, Catak S. Impact of Deamidation on the Structure and Function of Antiapoptotic Bcl-x L. J Chem Inf Model 2021; 62:102-115. [PMID: 34942070 DOI: 10.1021/acs.jcim.1c00808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bcl-xL is an antiapoptotic mitochondrial trans-membrane protein, which is known to play a crucial role in the survival of tumor cells. The deamidation of Bcl-xL is a pivotal switch that regulates its biological function. The potential impact of deamidation on the structure and dynamics of Bcl-xL is directly linked to the intrinsically disordered region (IDR), which is the main site for post-translational modifications (PTMs). In this study, we explored deamidation-induced conformational changes in Bcl-xL to gain insight into its loss of function by performing microsecond-long molecular dynamics (MD) simulations. MD simulation outcomes showed that the IDR motion and interaction patterns have changed notably upon deamidation. Principal component analysis (PCA) demonstrates significant differences between wild-type and deamidated Bcl-xL and suggests that deamidation affects the structure and dynamics of Bcl-xL. The combination of clustering analysis, H-bond analysis, and PCA revealed changes in conformation, interaction, and dynamics upon deamidation. Differences in contact patterns and essential dynamics that lead to a narrowing in the binding groove (BG) are clear indications of deamidation-induced allosteric effects. In line with previous studies, we show that the IDR plays a very important role in the loss of apoptotic functions of Bcl-xL while providing a unique perspective on the underlying mechanism of Bcl-xL deamidation-induced cell death.
Collapse
Affiliation(s)
- Gamze Tanriver
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey.,Université de Lorraine, LPCT UMR 7019 CNRS, Boulevard des Aiguillettes B.P. 70239, 54506 Vandœuvre-les-Nancy, France
| | - Gerald Monard
- Université de Lorraine, LPCT UMR 7019 CNRS, Boulevard des Aiguillettes B.P. 70239, 54506 Vandœuvre-les-Nancy, France
| | - Saron Catak
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| |
Collapse
|
73
|
Zhang Y, Liu D, Li F, Zhao Z, Liu X, Gao D, Zhang Y, Li H. Identification of biomarkers for acute leukemia via machine learning-based stemness index. Gene 2021; 804:145903. [PMID: 34411647 DOI: 10.1016/j.gene.2021.145903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/20/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022]
Abstract
Traditional methods to understand leukemia stem cell (LSC)'s biological characteristics include constructing LSC-like cells and mouse models by transgenic or knock-in methods. However, there are some potential pitfalls in using this method, such as retroviral insertion mutagenesis, non-physiological level gene expression, non-physiological expansion, and difficulty to construct. The mRNAsi index for each sample of the Cancer Genome Atlas (TCGA) could avoid these potential pitfalls by machine learning. In this work, we aimed to construct a network of LSC genes utilizing the mRNAsi. First, mRNAsi value was analyzed with expressions distributions, survival analysis, age, and gender in acute myeloid leukemia (AML) samples. Then, we used the weighted gene co-expression network analysis (WGCNA) to construct modules of stemness genes. The correlation of the LSC genes transcription and interplay among LSC proteins was analyzed. We performed functional and pathway enrichment analysis to annotate stemness genes. Survival analysis further identified prognostic biomarkers by clinical data of TCGA and the Gene Expression Omnibus (GEO) database. We found that the result of mRNAsi overall survival is not significant, which may be due to the heterogeneity of AML in the stage of myeloid differentiation, French-American-British (FAB) classification systems. Enrichment analysis indicated that the stemness genes were biologically clustered as a group and mainly associated with cell cycle and mitosis. Moreover, 10 key genes (SNRNP40, RFC4, RFC5, CDC6, HSPE1, PA2G4, SNAP23P, DARS2, MIS18A, and HPRT1) were screened by survival analysis with the data from TCGA and GEO. Among them, RFC4 and RFC5 were the distinguished biomarkers for their double-validated prognostic value in both databases. Additionally, the expression of RFC4 and RFC5 had the same trend as mRNAsi score in FAB subtypes. In conclusion, our result demonstrated that mRNAsi based LSC-related genes were found to have strong interactions as a cluster. These genes, especially RFC4 and RFC5, could be the therapeutic targets for inhibiting the stemness characteristics of AML. This work is also a comprehensive pipeline for future cancer stem cell studies.
Collapse
Affiliation(s)
- Yitong Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Dongzhe Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Xueyuan AVE 1098, Shenzhen 518000, China
| | - Fenglan Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Zihui Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Xiqing Liu
- The State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Dixiang Gao
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yutong Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
74
|
Calderon-Aparicio A, Wang BD. Prostate cancer: Alternatively spliced mRNA transcripts in tumor progression and their uses as therapeutic targets. Int J Biochem Cell Biol 2021; 141:106096. [PMID: 34653618 PMCID: PMC8639776 DOI: 10.1016/j.biocel.2021.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Prostate cancer is the most frequently diagnosed cancer and second leading cause of cancer deaths among American men. Current therapies show early antitumor responses, but ultimately lead to treatment resistance, relapse and poorer survival in patients. Alternative RNA splicing, a cell mechanism increasing the proteome diversity by producing multiple transcripts from a single gene, has been associated with prostate cancer development/progression. Reports showed that many aberrant mRNA splice variants are upregulated in prostate cancer, promoting malignancy through enhanced proliferation, metastasis, tumor growth, anti-apoptosis, and/or treatment resistance. Here, we discuss the oncogenic properties of aberrant splicing mechanisms underlying prostate cancer pathogenesis, as well as the uses of the splicing variants as potential diagnostics and treatment targets. Finally, we discuss the pharmacologic and molecular approaches for targeting aberrant splicing mechanisms as effective therapies to correct the splicing errors and overcome the drug resistance, ultimately improving the clinical outcome of prostate cancer patients.
Collapse
Affiliation(s)
- Ali Calderon-Aparicio
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA.
| |
Collapse
|
75
|
Liang J, Hong Z, Sun B, Guo Z, Wang C, Zhu J. The Alternatively Spliced Isoforms of Key Molecules in the cGAS-STING Signaling Pathway. Front Immunol 2021; 12:771744. [PMID: 34868032 PMCID: PMC8636596 DOI: 10.3389/fimmu.2021.771744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023] Open
Abstract
Alternative splicing of pre-mRNA increases transcriptome and proteome diversity by generating distinct isoforms that encode functionally diverse proteins, thus affecting many biological processes, including innate immunity. cGAS-STING signaling pathway, whose key molecules also undergo alternative splicing, plays a crucial role in regulating innate immunity. Protein isoforms of key components in the cGAS-STING-TBK1-IRF3 axis have been detected in a variety of species. A chain of evidence showed that these protein isoforms exhibit distinct functions compared to their normal counterparts. The mentioned isoforms act as positive or negative modulators in interferon response via distinct mechanisms. Particularly, we highlight that alternative splicing serves a vital function for the host to avoid the overactivation of the cGAS-STING signaling pathway and that viruses can utilize alternative splicing to resist antiviral response by the host. These findings could provide insights for potential alternative splicing-targeting therapeutic applications.
Collapse
Affiliation(s)
- Jiaqian Liang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ze Hong
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Boyue Sun
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Zhaoxi Guo
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Juanjuan Zhu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
76
|
Over Fifty Years of Life, Death, and Cannibalism: A Historical Recollection of Apoptosis and Autophagy. Int J Mol Sci 2021; 22:ijms222212466. [PMID: 34830349 PMCID: PMC8618802 DOI: 10.3390/ijms222212466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/18/2023] Open
Abstract
Research in biomedical sciences has changed dramatically over the past fifty years. There is no doubt that the discovery of apoptosis and autophagy as two highly synchronized and regulated mechanisms in cellular homeostasis are among the most important discoveries in these decades. Along with the advancement in molecular biology, identifying the genetic players in apoptosis and autophagy has shed light on our understanding of their function in physiological and pathological conditions. In this review, we first describe the history of key discoveries in apoptosis with a molecular insight and continue with apoptosis pathways and their regulation. We touch upon the role of apoptosis in human health and its malfunction in several diseases. We discuss the path to the morphological and molecular discovery of autophagy. Moreover, we dive deep into the precise regulation of autophagy and recent findings from basic research to clinical applications of autophagy modulation in human health and illnesses and the available therapies for many diseases caused by impaired autophagy. We conclude with the exciting crosstalk between apoptosis and autophagy, from the early discoveries to recent findings.
Collapse
|
77
|
Zhang W, Sun Y, Bai L, Zhi L, Yang Y, Zhao Q, Chen C, Qi Y, Gao W, He W, Wang L, Chen D, Fan S, Chen H, Piao HL, Qiao Q, Xu Z, Zhang J, Zhao J, Zhang S, Yin Y, Peng C, Li X, Liu Q, Liu H, Wang Y. RBMS1 regulates lung cancer ferroptosis through translational control of SLC7A11. J Clin Invest 2021; 131:152067. [PMID: 34609966 DOI: 10.1172/jci152067] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
Ferroptosis, an iron-dependent nonapoptotic cell death, is a highly regulated tumor suppressing process. However, functions and mechanisms of RNA-binding proteins in regulation of evasion of ferroptosis during lung cancer progression are still largely unknown. Here, we report that the RNA-binding protein RBMS1 participates in lung cancer development via mediating ferroptosis evasion. Through an shRNA-mediated systematic screen, we discovered that RBMS1 is a key ferroptosis regulator. Clinically, RBMS1 was elevated in lung cancer and its high expression was associated with reduced patient survival. Conversely, depletion of RBMS1 inhibited lung cancer progression both in vivo and in vitro. Mechanistically, RBMS1 interacted with the translation initiation factor eIF3d directly to bridge the 3'- and 5'-UTR of SLC7A11. RBMS1 ablation inhibited the translation of SLC7A11, reduced SLC7A11-mediated cystine uptake, and promoted ferroptosis. In a drug screen that targeted RBMS1, we further uncovered that nortriptyline hydrochloride decreased the level of RBMS1, thereby promoting ferroptosis. Importantly, RBMS1 depletion or inhibition by nortriptyline hydrochloride sensitized radioresistant lung cancer cells to radiotherapy. Our findings established RBMS1 as a translational regulator of ferroptosis and a prognostic factor with therapeutic potential and clinical value.
Collapse
Affiliation(s)
- Wenjing Zhang
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yu Sun
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Lu Bai
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Lili Zhi
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yun Yang
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Qingzhi Zhao
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chaoqun Chen
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yangfan Qi
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wenting Gao
- Institute of Genome Engineered Animal Models for Human Diseases
| | - Wenxia He
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Luning Wang
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital, and
| | - Shujun Fan
- Department of Pathology, Dalian Medical University, Dalian, China
| | - Huan Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sirui Zhang
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Quentin Liu
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Han Liu
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yang Wang
- Institute of Cancer Stem Cells and Second Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
78
|
Lee EF, Fairlie WD. Discovery, development and application of drugs targeting BCL-2 pro-survival proteins in cancer. Biochem Soc Trans 2021; 49:2381-2395. [PMID: 34515749 PMCID: PMC8589430 DOI: 10.1042/bst20210749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
The discovery of a new class of small molecule compounds that target the BCL-2 family of anti-apoptotic proteins is one of the great success stories of basic science leading to translational outcomes in the last 30 years. The eponymous BCL-2 protein was identified over 30 years ago due to its association with cancer. However, it was the unveiling of the biochemistry and structural biology behind it and its close relatives' mechanism(s)-of-action that provided the inspiration for what are now known as 'BH3-mimetics', the first clinically approved drugs designed to specifically inhibit protein-protein interactions. Herein, we chart the history of how these drugs were discovered, their evolution and application in cancer treatment.
Collapse
Affiliation(s)
- Erinna F. Lee
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
| | - W. Douglas Fairlie
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
79
|
Gao J, Gao A, Liu W, Chen L. Golgi stress response: A regulatory mechanism of Golgi function. Biofactors 2021; 47:964-974. [PMID: 34500494 DOI: 10.1002/biof.1780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023]
Abstract
The organelle of eukaryotes is a finely regulated system. Once disturbed, it activates the specific autoregulatory systems, namely, organelle autoregulation. Among which, the Golgi stress response accounts for one. When the abundance and capacity of the Golgi apparatus are insufficient compared with cellular demand, the Golgi stress response is activated to enhance the function of the Golgi apparatus. Although the molecular mechanism of the Golgi stress response has not been well characterized yet, it seems to be an important part of the mammalian stress response. In this review, we discuss the current status of research on the six pathways of the mammalian Golgi stress response (the TFE3, heat shock protein 47, CREB3, E26 transformation specific, proteoglycan, and mucin pathways), which regulate the general function of the Golgi apparatus, anti-apoptosis, pro-apoptosis, proteoglycan glycosylation, and mucin glycosylation, respectively.
Collapse
Affiliation(s)
- Jiayin Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Anbo Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
80
|
Huang XT, Li JH, Zhu XX, Huang CS, Gao ZX, Xu QC, Zhao W, Yin XY. HNRNPC impedes m 6A-dependent anti-metastatic alternative splicing events in pancreatic ductal adenocarcinoma. Cancer Lett 2021; 518:196-206. [PMID: 34271104 DOI: 10.1016/j.canlet.2021.07.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with poor prognosis due to early metastasis. The aberrant N6-methyladenosine (m6A) RNA modification has emerged as an important mechanism in cancer progression and metastasis, but its role in PDAC remained largely unknown. Here, we demonstrated that an m6A regulator, heterogeneous nuclear ribonucleoprotein C (HNRNPC), modulated alternative splicing events to promote PDAC metastasis. In clinical PDAC tissues, high expression of HNRNPC was correlated with metastasis, resulting in poor prognosis in PDAC patients. Knockdown of HNRNPC significantly reduced PDAC cell invasion in vitro and metastasis in vivo. In contrast, overexpression of HNRNPC provoked malignant phenotypes of PDAC cells. Mechanistically, HNRNPC antagonized the anti-metastatic isoform of TAF8 (TAF8L) but increased the pro-metastatic alternative splicing isoform of TAF8 (TAF8S). Mutation of the m6A-site of TAF8 attenuated the interaction between HNRNPC and TAF8 transcript, leading to the decrease of TAF8S. Furthermore, experimental manipulation of the anti-metastasis splicing isoform TAF8L revealed that splice isoform switching of TAF8 is crucial for PDAC metastasis. In conclusion, our findings demonstrate the essentiality of HNRNPC-mediated alternative splicing events that impinges on metastatic PDAC.
Collapse
Affiliation(s)
- Xi-Tai Huang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Jian-Hui Li
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Xiao-Xu Zhu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Chen-Song Huang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zhuo-Xing Gao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Qiong-Cong Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Wei Zhao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
81
|
Yadav S, Pant D, Samaiya A, Kalra N, Gupta S, Shukla S. ERK1/2-EGR1-SRSF10 Axis Mediated Alternative Splicing Plays a Critical Role in Head and Neck Cancer. Front Cell Dev Biol 2021; 9:713661. [PMID: 34616729 PMCID: PMC8489685 DOI: 10.3389/fcell.2021.713661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
Aberrant alternative splicing is recognized to promote cancer pathogenesis, but the underlying mechanism is yet to be clear. Here, in this study, we report the frequent upregulation of SRSF10 (serine and arginine-rich splicing factor 10), a member of an expanded family of SR splicing factors, in the head and neck cancer (HNC) patients sample in comparison to paired normal tissues. We observed that SRSF10 plays a crucial role in HNC tumorigenesis by affecting the pro-death, pro-survical splice variants of BCL2L1 (BCL2 Like 1: BCLx: Apoptosis Regulator) and the two splice variants of PKM (Pyruvate kinase M), PKM1 normal isoform to PKM2 cancer-specific isoform. SRSF10 is a unique splicing factor with a similar domain organization to that of SR proteins but functions differently as it acts as a sequence-specific splicing activator in its phosphorylated form. Although a body of research studied the role of SRSF10 in the splicing process, the regulatory mechanisms underlying SRSF10 upregulation in the tumor are not very clear. In this study, we aim to dissect the pathway that regulates the SRSF10 upregulation in HNC. Our results uncover the role of transcription factor EGR1 (Early Growth Response1) in elevating the SRSF10 expression; EGR1 binds to the promoter of SRSF10 and promotes TET1 binding leading to the CpG demethylation (hydroxymethylation) in the adjacent position of the EGR1 binding motif, which thereby instigate SRSF10 expression in HNC. Interestingly we also observed that the EGR1 level is in the sink with the ERK1/2 pathway, and therefore, inhibition of the ERK1/2 pathway leads to the decreased EGR1 and SRSF10 expression level. Together, this is the first report to the best of our knowledge where we characterize the ERK 1/2-EGR1-SRSF10 axis regulating the cancer-specific splicing, which plays a critical role in HNC and could be a therapeutic target for better management of HNC patients.
Collapse
Affiliation(s)
- Sandhya Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Deepak Pant
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | | | | | - Sanjay Gupta
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
82
|
Auwul MR, Zhang C, Rahman MR, Shahjaman M, Alyami SA, Moni MA. Network-based transcriptomic analysis identifies the genetic effect of COVID-19 to chronic kidney disease patients: A bioinformatics approach. Saudi J Biol Sci 2021; 28:5647-5656. [PMID: 34127904 PMCID: PMC8190333 DOI: 10.1016/j.sjbs.2021.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has emerged as global health threats. Chronic kidney disease (CKD) patients are immune-compromised and may have a high risk of infection by the SARS-CoV-2. We aimed to detect common transcriptomic signatures and pathways between COVID-19 and CKD by systems biology analysis. We analyzed transcriptomic data obtained from peripheral blood mononuclear cells (PBMC) infected with SARS-CoV-2 and PBMC of CKD patients. We identified 49 differentially expressed genes (DEGs) which were common between COVID-19 and CKD. The gene ontology and pathways analysis showed the DEGs were associated with "platelet degranulation", "regulation of wound healing", "platelet activation", "focal adhesion", "regulation of actin cytoskeleton" and "PI3K-Akt signalling pathway". The protein-protein interaction (PPI) network encoded by the common DEGs showed ten hub proteins (EPHB2, PRKAR2B, CAV1, ARHGEF12, HSP90B1, ITGA2B, BCL2L1, E2F1, TUBB1, and C3). Besides, we identified significant transcription factors and microRNAs that may regulate the common DEGs. We investigated protein-drug interaction analysis and identified potential drugs namely, aspirin, estradiol, rapamycin, and nebivolol. The identified common gene signature and pathways between COVID-19 and CKD may be therapeutic targets in COVID-19 patients with CKD comorbidity.
Collapse
Affiliation(s)
- Md. Rabiul Auwul
- School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China
| | - Chongqi Zhang
- School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China
| | - Md Rezanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
- Department of Biochemistry and Biotechnology, School of Biomedical Science, Khwaja Yunus Ali University, Enayetpur, Sirajganj 6751, Bangladesh
| | - Md. Shahjaman
- Department of Statistics, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Salem A. Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Saudi Arabia
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Australia
- The Garvan Institute of Medical Research, Healthy Ageing Theme, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
83
|
BH3 Mimetics in Hematologic Malignancies. Int J Mol Sci 2021; 22:ijms221810157. [PMID: 34576319 PMCID: PMC8466478 DOI: 10.3390/ijms221810157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/28/2022] Open
Abstract
Hematologic malignancies (HM) comprise diverse cancers of lymphoid and myeloid origin, including lymphomas (approx. 40%), chronic lymphocytic leukemia (CLL, approx. 15%), multiple myeloma (MM, approx. 15%), acute myeloid leukemia (AML, approx. 10%), and many other diseases. Despite considerable improvement in treatment options and survival parameters in the new millennium, many patients with HM still develop chemotherapy-refractory diseases and require re-treatment. Because frontline therapies for the majority of HM (except for CLL) are still largely based on classical cytostatics, the relapses are often associated with defects in DNA damage response (DDR) pathways and anti-apoptotic blocks exemplified, respectively, by mutations or deletion of the TP53 tumor suppressor, and overexpression of anti-apoptotic proteins of the B-cell lymphoma 2 (BCL2) family. BCL2 homology 3 (BH3) mimetics represent a novel class of pro-apoptotic anti-cancer agents with a unique mode of action—direct targeting of mitochondria independently of TP53 gene aberrations. Consequently, BH3 mimetics can effectively eliminate even non-dividing malignant cells with adverse molecular cytogenetic alterations. Venetoclax, the nanomolar inhibitor of BCL2 anti-apoptotic protein has been approved for the therapy of CLL and AML. Numerous venetoclax-based combinatorial treatment regimens, next-generation BCL2 inhibitors, and myeloid cell leukemia 1 (MCL1) protein inhibitors, which are another class of BH3 mimetics with promising preclinical results, are currently being tested in several clinical trials in patients with diverse HM. These pivotal trials will soon answer critical questions and concerns about these innovative agents regarding not only their anti-tumor efficacy but also potential side effects, recommended dosages, and the optimal length of therapy as well as identification of reliable biomarkers of sensitivity or resistance. Effective harnessing of the full therapeutic potential of BH3 mimetics is a critical mission as it may directly translate into better management of the aggressive forms of HM and could lead to significantly improved survival parameters and quality of life in patients with urgent medical needs.
Collapse
|
84
|
Ita MI, Wang JH, Fanning N, Kaar G, Lim C, Redmond HP. Plasma circulating cell free messenger RNA as a potential biomarker of melanoma. Acta Oncol 2021; 60:1201-1209. [PMID: 34086522 DOI: 10.1080/0284186x.2021.1928749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Blood borne cell free nucleic acids are increasingly emerging as significant non-invasive adjuncts to current methods of disease status evaluation in cancer patients. In this study, we sought to examine whether significant differences exist in the plasma transcriptomic profile of advanced melanoma patients with a high disease burden compared to patients with a low disease burden or therapeutic response. METHODS Pathway focussed gene expression analysis was performed using cDNA derived from the plasma circulating cell free messenger ribonucleic acid (ccfmRNA) samples of twenty-two patients with advanced melanoma. Patients were assessed with paired blood sample collection and CT scan assessments at baseline and at 3 months follow up. RESULTS We identified several genes which were significantly over-expressed in patients with a low disease burden or therapeutic response; BCL2L1, CXCL9, IDO1, IL13, MIF, MYD88 and TLR4 (p ≤ 0.001, versus high disease burden). There was an increase in the magnitude of fold change (2^ (-dd CT)) of BCL2L1 (p = 0.031), CCL4 (p = 0.001), CCL5 (p = 0.043), CXCL9 (p = 0.012), GZMB (p = 0.023) and TNFSF10 (p = 0.039) genes in patients with therapeutic response at 3 months follow up assessment relative to baseline assessment. Moreover, in stage IV melanoma patients with brain metastases, CCL18, CCR1, CCR4, CD274, CSF2, EGF, and PTGS2 genes were significantly over-expressed (p < 0.001, versus patients without melanoma brain metastasis). CONCLUSION Significant differences were observed in the plasma transcriptomic profile between the various melanoma patient groups, and we postulate that these differences may be exploited to identify novel therapeutic targets or biomarkers relevant to melanoma.
Collapse
Affiliation(s)
- Michael Itak Ita
- Department of Academic Surgery, University College Cork, Cork, Ireland
- Department of Neurosurgery, University College Cork, Cork, Ireland
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork, Ireland
| | - Noel Fanning
- Department of Radiology, University College Cork, Cork, Ireland
| | - George Kaar
- Department of Neurosurgery, University College Cork, Cork, Ireland
| | - Chris Lim
- Department of Neurosurgery, University College Cork, Cork, Ireland
| | | |
Collapse
|
85
|
Jalali A, Mahmoudi S, Larki Harchegani A, Mohammadiasl J, Ahmadzadeh A. Evaluation of Nrf2, Keap1 and Apoptotic Pathway Genes Expression in Acute Myeloid Leukemia Patients. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:398-407. [PMID: 34400968 PMCID: PMC8170770 DOI: 10.22037/ijpr.2019.14907.12738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to evaluate the expression Nrf2 (Nuclear factor-erythroid 2-p45 derived factor 2) and Keap1 (Kelch-like ECH-associated protein 1) genes and Bcl-2 (B-cell lymphoma 2), Bcl-XL (B-cell lymphoma-extra large), Bax (Bcl2-associated X protein) apoptotic pathway genes in acute myeloid leukemia patients. In this case-control study, the expression of genes encoding Nrf2, Keap1, Bcl2, Bcl- XL and Bax in 40 acute myeloid leukemia (AML) patients were compared with 40 normal individuals in the Iranian population. We evaluated the mRNA expression of genes by using the real-time quantitative polymerase chain reaction. The expression of Nrf2, Bcl2 and Bcl- XL genes in new AML patients were increased (p < 0.05). The patients treated with chemotherapy had a significantly more than four times higher expression level of Nrf2 than new case patients (P < 0.05), while there was a decrease in the expression level of Bcl2 and Bcl-XL, which was not statistically significant. In other hands in relapsed patients, the expressions of Nrf2, Bcl2 and Bcl- XL were higher level than new case patients (p < 0.05) but this was less than patients treated with chemotherapy (p > 0.05). The high levels of mentioned genes may be associated with poor treatment response, chemoresistance and disease recurrence. Because of hyperactivation and overexpression of Nrf2 in leukemia, suggest that Nrf2 inhibitors could be used as a pharmacological target in combination with classical chemotherapeutic agents to increase the efficacy of anticancer therapy.
Collapse
Affiliation(s)
- Amir Jalali
- Department of Toxicology, School of Pharmacy and Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Operating Room, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Mahmoudi
- Department of Toxicology, School of Pharmacy and Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Larki Harchegani
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Javad Mohammadiasl
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Ahmadzadeh
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
86
|
Bcl-xL Is Required by Primary Hippocampal Neurons during Development to Support Local Energy Metabolism at Neurites. BIOLOGY 2021; 10:biology10080772. [PMID: 34440004 PMCID: PMC8389656 DOI: 10.3390/biology10080772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022]
Abstract
B-cell lymphoma-extra large (Bcl-xL) is a mitochondrial protein known to inhibit mitochondria-dependent intrinsic apoptotic pathways. An increasing number of studies have demonstrated that Bcl-xL is critical in regulating neuronal energy metabolism and has a protective role in pathologies associated with an energy deficit. However, it is less known how Bcl-xL regulates physiological processes of the brain. In this study, we hypothesize that Bcl-xL is required for neurite branching and maturation during neuronal development by improving local energy metabolism. We found that the absence of Bcl-xL in rat primary hippocampal neurons resulted in mitochondrial dysfunction. Specifically, the ATP/ADP ratio was significantly decreased in the neurites of Bcl-xL depleted neurons. We further found that neurons transduced with Bcl-xL shRNA or neurons treated with ABT-263, a pharmacological inhibitor of Bcl-xL, showed impaired mitochondrial motility. Neurons lacking Bcl-xL had significantly decreased anterograde and retrograde movement of mitochondria and an increased stationary mitochondrial population when Bcl-xL was depleted by either means. These mitochondrial defects, including loss of ATP, impaired normal neurite development. Neurons lacking Bcl-xL showed significantly decreased neurite arborization, growth and complexity. Bcl-xL depleted neurons also showed impaired synapse formation. These neurons showed increased intracellular calcium concentration and were more susceptible to excitotoxic challenge. Bcl-xL may support positioning of mitochondria at metabolically demanding regions of neurites like branching points. Our findings suggest a role for Bcl-xL in physiological regulation of neuronal growth and development.
Collapse
|
87
|
Blake D, Lynch KW. The three as: Alternative splicing, alternative polyadenylation and their impact on apoptosis in immune function. Immunol Rev 2021; 304:30-50. [PMID: 34368964 DOI: 10.1111/imr.13018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
The latest advances in next-generation sequencing studies and transcriptomic profiling over the past decade have highlighted a surprising frequency of genes regulated by RNA processing mechanisms in the immune system. In particular, two control steps in mRNA maturation, namely alternative splicing and alternative polyadenylation, are now recognized to occur in the vast majority of human genes. Both have the potential to alter the identity of the encoded protein, as well as control protein abundance or even protein localization or association with other factors. In this review, we will provide a summary of the general mechanisms by which alternative splicing (AS) and alternative polyadenylation (APA) occur, their regulation within cells of the immune system, and their impact on immunobiology. In particular, we will focus on how control of apoptosis by AS and APA is used to tune cell fate during an immune response.
Collapse
Affiliation(s)
- Davia Blake
- Immunology Graduate Group and the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen W Lynch
- Immunology Graduate Group and the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
88
|
Abstract
FAK, a nonreceptor tyrosine kinase, has been recognized as a novel target class for the development of targeted anticancer agents. Overexpression of FAK is a common occurrence in several solid tumors, in which the kinase has been implicated in promoting metastases. Consequently, designing and developing potent FAK inhibitors is becoming an attractive goal, and FAK inhibitors are being recognized as a promising tool in our armamentarium for treating diverse cancers. This review comprehensively summarizes the different classes of synthetically derived compounds that have been reported as potent FAK inhibitors in the last three decades. Finally, the future of FAK-targeting smart drugs that are designed to slow down the emergence of drug resistance is discussed.
Collapse
|
89
|
Chen W, Li J. Alternative splicing of BCL-X and implications for treating hematological malignancies. Oncol Lett 2021; 22:670. [PMID: 34345295 PMCID: PMC8323006 DOI: 10.3892/ol.2021.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
BCL-X is a member of the BCL-2 family. It regulates apoptosis and plays a critical role in hematological malignancies. It is well-known that >90% of human genes undergo alternative splicing. A total of 10 distinct splicing transcripts of the BCL-X gene have been identified, including transcript variants 1–9 and ABALON. Different transcripts from the same gene have different functions. The present review discusses the progress in understanding the different alternative splicing transcripts of BCL-X, including their characteristics, functions and expression patterns. The potential use of BCL-X in targeted therapies for hematological malignancies is also discussed.
Collapse
Affiliation(s)
- Wanling Chen
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, Fujian 361023, P.R. China
| | - Jinggang Li
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
90
|
Chin HS, Fu NY. Physiological Functions of Mcl-1: Insights From Genetic Mouse Models. Front Cell Dev Biol 2021; 9:704547. [PMID: 34336857 PMCID: PMC8322662 DOI: 10.3389/fcell.2021.704547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 01/27/2023] Open
Abstract
The ability to regulate the survival and death of a cell is paramount throughout the lifespan of a multicellular organism. Apoptosis, a main physiological form of programmed cell death, is regulated by the Bcl-2 family proteins that are either pro-apoptotic or pro-survival. The in vivo functions of distinct Bcl-2 family members are largely unmasked by genetically engineered murine models. Mcl-1 is one of the two Bcl-2 like pro-survival genes whose germline deletion causes embryonic lethality in mice. Its requisite for the survival of a broad range of cell types has been further unraveled by using conditional and inducible deletion murine model systems in different tissues or cell lineages and at distinct developmental stages. Moreover, genetic mouse cancer models have also demonstrated that Mcl-1 is essential for the survival of multiple tumor types. The MCL-1 locus is commonly amplified across various cancer types in humans. Small molecule inhibitors with high affinity and specificity to human MCL-1 have been developed and explored for the treatment of certain cancers. To facilitate the pre-clinical studies of MCL-1 in cancer and other diseases, transgenic mouse models over-expressing human MCL-1 as well as humanized MCL-1 mouse models have been recently engineered. This review discusses the current advances in understanding the physiological roles of Mcl-1 based on studies using genetic murine models and its critical implications in pathology and treatment of human diseases.
Collapse
Affiliation(s)
- Hui San Chin
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Nai Yang Fu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.,Department of Physiology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
91
|
Wang X, Li C, Jia Z, Xu T, Wang Y, Sun M, Han S, Wang X, Qiu L. Regulation of apoptosis by Pacific oyster Crassostrea gigas reveals acclimation strategy to CO 2 driven acidification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112235. [PMID: 33873079 DOI: 10.1016/j.ecoenv.2021.112235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Ocean acidification (OA) has posed formidable threats to marine calcifiers. In response to elevated CO2 levels, marine calcifiers have developed multiple strategies to survive, such as taking advantage of apoptosis, but its regulation mechanism remains largely unknown. Here, we used the Pacific oyster Crassostrea gigas as model to understand the apoptotic responses and regulation mechanism at short- (7 d) to long-term (56 d) CO2 exposure (pH = 7.50). The apoptosis of hemocytes was significantly induced after short-term treatment (7-21 d) but was suppressed under long-term CO2 exposure (42-56 d). Similarly, caspase-3 and caspase-9 were also increased post short-term exposure and fell back to normal levels after long-term exposure. These data together indicated diverse regulation mechanisms of apoptosis through different exposure periods. Through analysis of the B-cell lymphoma 2 (Bcl-2) family mitochondrial apoptosis regulators, we showed that only CgBcl-XL's expression kept at high levels after 42- and 56-day CO2 exposure. CgBcl-XL shared sequence, and structural similarity with its mammalian counterpart, and knockdown of CgBcl-XL in hemocytes via RNA interference promoted apoptosis. The protein level of CgBcl-XL was significantly increased after long-term CO2 exposure (28-56 d), and its distribution in hemocytes became more concentrated and dense. Therefore, CgBcl-XL serves as an essential anti-apoptotic protein for tipping the balance of cell apoptosis, which may play a key role in survival under long-term CO2 exposure. These results reveal a potential adaptation strategy of oysters towards OA and the variable environment changes through the modulation of apoptosis.
Collapse
Affiliation(s)
- Xiudan Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Changmei Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhihao Jia
- Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Tongxiao Xu
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yilin Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mingzhu Sun
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuhui Han
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xia Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Limei Qiu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
92
|
Huang JQ, Li HF, Zhu J, Song JW, Zhang XB, Gong P, Liu QY, Zhou CH, Wang L, Gong LY. SRPK1/AKT axis promotes oxaliplatin-induced anti-apoptosis via NF-κB activation in colon cancer. J Transl Med 2021; 19:280. [PMID: 34193174 PMCID: PMC8243872 DOI: 10.1186/s12967-021-02954-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/19/2021] [Indexed: 12/28/2022] Open
Abstract
Background Colorectal cancer is the third most common diagnosis. Oxaliplatin is used as first-line treatment of colon cancer. However, oxaliplatin resistance greatly reduces its therapeutic effect. SRPK1 involves in pre-mRNA splicing and tumorigenesis. How SRPK1 mediates drug resistance in colon cancer is unknown. Methods The expression of SRPK1 was analyzed in the TCGA and the CPTAC pan-cancer samples and detected in colon cancer cell lines and tissues by IHC and western blot. The MTT and TUNEL assay were used to verify the anti-apoptosis ability of colon cancer cell. The activation of NF-κB was determined by luciferase assay and qRT-PCR. AKT, IKK, IκB and their phosphorylation level were verified by western blot. Results We found that SRPK1 expression was the second highest in TCGA and the CPTAC pan-cancer samples. The mRNA and protein levels of SRPK1 were increased in tissues from patients with colon cancer. SRPK1 was associated with clinical stage and TNM classifications in 148 cases of colon cancer patients. High SRPK1 levels correlated with poor prognosis (p < 0.001). SRPK1 overexpression enhanced the anti-apoptosis ability of colon cancer cells, whereas SRPK1 silencing had the opposite effect under oxaliplatin treatment. Mechanistically, SRPK1 enhances IKK kinase and IκB phosphorylation to promote NF-κB nuclear translocation to confer oxaliplatin resistance. Conclusions Our findings suggest that SRPK1 participates in colon cancer progression and enhances the anti-apoptosis capacity to induce drug resistance in colon cancer cells via NF-κB pathway activation, and thus might be a potential pharmaceutically target for colon cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02954-8.
Collapse
Affiliation(s)
- Jing-Qiang Huang
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - He-Feng Li
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jing Zhu
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jun-Wei Song
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Health Science Center, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Xian-Bin Zhang
- Department of General Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong, 518060, P. R. China
| | - Peng Gong
- Department of General Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong, 518060, P. R. China
| | - Qiu-Yu Liu
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, P. R. China
| | - Chun-Hui Zhou
- Department of Pathology, Guangzhou Health Science College, Guangzhou, Guangdong, 510520, P. R. China
| | - Liang Wang
- Department of Cell Biology and Medical Genetics, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.
| | - Li-Yun Gong
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China.
| |
Collapse
|
93
|
Handschuh L, Wojciechowski P, Kazmierczak M, Lewandowski K. Transcript-Level Dysregulation of BCL2 Family Genes in Acute Myeloblastic Leukemia. Cancers (Basel) 2021; 13:cancers13133175. [PMID: 34202143 PMCID: PMC8267690 DOI: 10.3390/cancers13133175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022] Open
Abstract
The expression of apoptosis-related BCL2 family genes, fine-tuned in normal cells, is dysregulated in many neoplasms. In acute myeloid leukemia (AML), this problem has not been studied comprehensively. To address this issue, RNA-seq data were used to analyze the expression of 26 BCL2 family members in 27 AML FAB M1 and M2 patients, divided into subgroups differently responding to chemotherapy. A correlation analysis, analysis of variance, and Kaplan-Meier analysis were applied to associate the expression of particular genes with other gene expression, clinical features, and the presence of mutations detected by exome sequencing. The expression of BCL2 family genes was dysregulated in AML, as compared to healthy controls. An upregulation of anti-apoptotic and downregulation of pro-apoptotic genes was observed, though only a decrease in BMF, BNIP1, and HRK was statistically significant. In a group of patients resistant to chemotherapy, overexpression of BCL2L1 was manifested. In agreement with the literature data, our results reveal that BCL2L1 is one of the key players in apoptosis regulation in different types of tumors. An exome sequencing data analysis indicates that BCL2 family genes are not mutated in AML, but their expression is correlated with the mutational status of other genes, including those recurrently mutated in AML and splicing-related. High levels of some BCL2 family members, in particular BIK and BCL2L13, were associated with poor outcome.
Collapse
Affiliation(s)
- Luiza Handschuh
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Correspondence: ; Tel.: +48-618-528-503
| | - Pawel Wojciechowski
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Maciej Kazmierczak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (M.K.); (K.L.)
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (M.K.); (K.L.)
| |
Collapse
|
94
|
Dou Z, Zhao D, Chen X, Xu C, Jin X, Zhang X, Wang Y, Xie X, Li Q, Di C, Zhang H. Aberrant Bcl-x splicing in cancer: from molecular mechanism to therapeutic modulation. J Exp Clin Cancer Res 2021; 40:194. [PMID: 34118966 PMCID: PMC8196531 DOI: 10.1186/s13046-021-02001-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022] Open
Abstract
Bcl-x pre-mRNA splicing serves as a typical example to study the impact of alternative splicing in the modulation of cell death. Dysregulation of Bcl-x apoptotic isoforms caused by precarious equilibrium splicing is implicated in genesis and development of multiple human diseases, especially cancers. Exploring the mechanism of Bcl-x splicing and regulation has provided insight into the development of drugs that could contribute to sensitivity of cancer cells to death. On this basis, we review the multiple splicing patterns and structural characteristics of Bcl-x. Additionally, we outline the cis-regulatory elements, trans-acting factors as well as epigenetic modifications involved in the splicing regulation of Bcl-x. Furthermore, this review highlights aberrant splicing of Bcl-x involved in apoptosis evade, autophagy, metastasis, and therapy resistance of various cancer cells. Last, emphasis is given to the clinical role of targeting Bcl-x splicing correction in human cancer based on the splice-switching oligonucleotides, small molecular modulators and BH3 mimetics. Thus, it is highlighting significance of aberrant splicing isoforms of Bcl-x as targets for cancer therapy.
Collapse
Affiliation(s)
- Zhihui Dou
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Dapeng Zhao
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaohua Chen
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Caipeng Xu
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaodong Jin
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xuetian Zhang
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yupei Wang
- Medical Genetics Center of Gansu Maternal and Child Health Care Center, Lanzhou, 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qiang Li
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
| | - Cuixia Di
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| |
Collapse
|
95
|
Li W, Ma Y, He L, Li H, Chu Y, Jiang Z, Zhao X, Nie Y, Wang X, Wang H. Protease-activated receptor 2 stabilizes Bcl-xL and regulates EGFR-targeted therapy response in colorectal cancer. Cancer Lett 2021; 517:14-23. [PMID: 34098062 DOI: 10.1016/j.canlet.2021.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
The Bcl-2 homolog Bcl-xL is emerging as a key factor in tumorigenesis due to its prominent pro-survival and cell death-independent functions. However, the regulation of Bcl-xL by microenvironment and its implication in cancer therapy of colorectal carcinoma (CRC) are unclear. Here, we demonstrated that Bcl-xL expression was positively associated with protease-activated receptor 2 (PAR2) in CRC. Activation of PAR2 stabilized Bcl-xL protein in a proteasome-dependent manner, whereas E3 ligase RING finger protein 152 (RNF152) accelerated the ubiquitination and degradation of Bcl-xL. RNF152 silencing by specific siRNAs rescued the expression of Bcl-xL in PAR2-deficient cells. Moreover, RNF152 physically interacted with Bcl-xL, which was disturbed by PAR2 activation. Further studies with serial mutation of Bcl-xL revealed that phosphorylation of Bcl-xL at S145 reduced its binding affinity for RNF152 and stabilized Bcl-xL. Importantly, inhibition of PAR2 signaling by its gene silencing or specific chemical inhibitors increased apoptosis induced by different EGFR-targeted therapies. In patient-derived xenograft model, inhibition of PAR2 increased the response of CRC to different EGFR-targeted therapies. These results indicate that PAR2 stabilizes Bcl-xL by altering RNF152 signaling and that PAR2 inhibition sensitizes CRC to EGFR-targeted therapies in vivo.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Longmei He
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongwei Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Chu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Zheng Jiang
- Department of Colorectal Cancer Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinhua Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Xishan Wang
- Department of Colorectal Cancer Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
96
|
Wu Q, Zhang Y, An H, Sun W, Wang R, Liu M, Zhang K. The landscape and biological relevance of aberrant alternative splicing events in esophageal squamous cell carcinoma. Oncogene 2021; 40:4184-4197. [PMID: 34079089 DOI: 10.1038/s41388-021-01849-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 01/25/2023]
Abstract
Aberrant alternative splicing events (AASEs) are key biological processes for tumorigenesis and the rationale for designing splice-switching oligonucleotides (SSOs). However, the landscape of AASEs in esophageal squamous cell carcinoma (ESCC) remains unclear, which undermines the development of SSOs for ESCC. Here, we profiled AASEs based on 125 pairs of RNA-seq libraries. We identified 14,710 AASEs in ESCC, most of which (92.67%) affected coding genes. The first exon of transcripts was frequently changed in ESCC. We constructed a regulatory network where 74 RNA-binding proteins regulated 2142 AASEs. This network was enriched in apoptotic pathways and various adhesion/junction-related processes. Somatic mutations in ESCC regulating ASEs were mainly through trans-regulatory mode and were enriched in intron regions. Isoform switches of apoptotic genes and binding genes both tended to induce "noncoding transcripts" and "domain loss," disrupting the apoptotic and Hippo signaling pathways. All ESCC samples were grouped into three clusters with different AASEs patterns and the second cluster was identified as "cold tumor," with a low abundance of immune cells, activated immune pathways, and immunomodulators. Our work comprehensively profiled the landscape of AASEs in ESCC, revealed novel AASEs related to tumorigenesis and immune microenvironment, and suggested promising directions for designing SSOs for ESCC.
Collapse
Affiliation(s)
- Quanyou Wu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Zhang
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Haiyin An
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Wei Sun
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Ruozheng Wang
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.,Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, 830011, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Meng Liu
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China. .,Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, 830011, Xinjiang, China. .,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
97
|
Quinlan RBA, Brennan PE. Chemogenomics for drug discovery: clinical molecules from open access chemical probes. RSC Chem Biol 2021; 2:759-795. [PMID: 34458810 PMCID: PMC8341094 DOI: 10.1039/d1cb00016k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years chemical probes have proved valuable tools for the validation of disease-modifying targets, facilitating investigation of target function, safety, and translation. Whilst probes and drugs often differ in their properties, there is a belief that chemical probes are useful for translational studies and can accelerate the drug discovery process by providing a starting point for small molecule drugs. This review seeks to describe clinical candidates that have been inspired by, or derived from, chemical probes, and the process behind their development. By focusing primarily on examples of probes developed by the Structural Genomics Consortium, we examine a variety of epigenetic modulators along with other classes of probe.
Collapse
Affiliation(s)
- Robert B A Quinlan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
| | - Paul E Brennan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
- Alzheimer's Research (UK) Oxford Drug Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford OX3 7FZ UK
| |
Collapse
|
98
|
The potential of proliferative and apoptotic parameters in clinical flow cytometry of myeloid malignancies. Blood Adv 2021; 5:2040-2052. [PMID: 33847740 DOI: 10.1182/bloodadvances.2020004094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Standardization of the detection and quantification of leukocyte differentiation markers by the EuroFlow Consortium has led to a major step forward in the integration of flow cytometry into classification of leukemia and lymphoma. In our opinion, this now enables introduction of markers for more dynamic parameters, such as proliferative and (anti)apoptotic markers, which have proven their value in the field of histopathology in the diagnostic process of solid tumors and lymphoma. Although use of proliferative and (anti)apoptotic markers as objective parameters in the diagnostic process of myeloid malignancies was studied in the past decades, this did not result in the incorporation of these biomarkers into clinical diagnosis. This review addresses the potential of these markers for implementation in the current, state-of-the-art multiparameter analysis of myeloid malignancies. The reviewed studies clearly recognize the importance of proliferation and apoptotic mechanisms in the pathogenesis of bone marrow (BM) malignancies. The literature is, however, contradictory on the role of these processes in myelodysplastic syndrome (MDS), MDS/myeloproliferative neoplasms, and acute myeloid leukemia. Furthermore, several studies underline the need for the analysis of the proliferative and apoptotic rates in subsets of hematopoietic BM cell lineages and argue that these results can have diagnostic and prognostic value in patients with myeloid malignancies. Recent developments in multiparameter flow cytometry now allow quantification of proliferative and (anti)apoptotic indicators in myeloid cells during their different maturation stages of separate hematopoietic cell lineages. This will lead to a better understanding of the biology and pathogenesis of these malignancies.
Collapse
|
99
|
Halperin RF, Hegde A, Lang JD, Raupach EA, Legendre C, Liang WS, LoRusso PM, Sekulic A, Sosman JA, Trent JM, Rangasamy S, Pirrotte P, Schork NJ. Improved methods for RNAseq-based alternative splicing analysis. Sci Rep 2021; 11:10740. [PMID: 34031440 PMCID: PMC8144374 DOI: 10.1038/s41598-021-89938-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/13/2021] [Indexed: 01/04/2023] Open
Abstract
The robust detection of disease-associated splice events from RNAseq data is challenging due to the potential confounding effect of gene expression levels and the often limited number of patients with relevant RNAseq data. Here we present a novel statistical approach to splicing outlier detection and differential splicing analysis. Our approach tests for differences in the percentages of sequence reads representing local splice events. We describe a software package called Bisbee which can predict the protein-level effect of splice alterations, a key feature lacking in many other splicing analysis resources. We leverage Bisbee's prediction of protein level effects as a benchmark of its capabilities using matched sets of RNAseq and mass spectrometry data from normal tissues. Bisbee exhibits improved sensitivity and specificity over existing approaches and can be used to identify tissue-specific splice variants whose protein-level expression can be confirmed by mass spectrometry. We also applied Bisbee to assess evidence for a pathogenic splicing variant contributing to a rare disease and to identify tumor-specific splice isoforms associated with an oncogenic mutation. Bisbee was able to rediscover previously validated results in both of these cases and also identify common tumor-associated splice isoforms replicated in two independent melanoma datasets.
Collapse
Affiliation(s)
- Rebecca F Halperin
- Quantitative Medicine and Systems Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA.
| | - Apurva Hegde
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jessica D Lang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Elizabeth A Raupach
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Christophe Legendre
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Winnie S Liang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | | | | | - Jeffrey M Trent
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Nicholas J Schork
- Quantitative Medicine and Systems Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
100
|
Razavi ZS, Asgarpour K, Mahjoubin-Tehran M, Rasouli S, Khan H, Shahrzad MK, Hamblin MR, Mirzaei H. Angiogenesis-related non-coding RNAs and gastrointestinal cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:220-241. [PMID: 34095461 PMCID: PMC8141508 DOI: 10.1016/j.omto.2021.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) cancers are among the main reasons for cancer death globally. The deadliest types of GI cancer include colon, stomach, and liver cancers. Multiple lines of evidence have shown that angiogenesis has a key role in the growth and metastasis of all GI tumors. Abnormal angiogenesis also has a critical role in many non-malignant diseases. Therefore, angiogenesis is considered to be an important target for improved cancer treatment. Despite much research, the mechanisms governing angiogenesis are not completely understood. Recently, it has been shown that angiogenesis-related non-coding RNAs (ncRNAs) could affect the development of angiogenesis in cancer cells and tumors. The broad family of ncRNAs, which include long non-coding RNAs, microRNAs, and circular RNAs, are related to the development, promotion, and metastasis of GI cancers, especially in angiogenesis. This review discusses the role of ncRNAs in mediating angiogenesis in various types of GI cancers and looks forward to the introduction of mimetics and antagonists as possible therapeutic agents.
Collapse
Affiliation(s)
| | - Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Rasouli
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|