51
|
Ding Y, Zhang B, Payne JL, Song C, Ge Z, Gowda C, Iyer S, Dhanyamraju PK, Dorsam G, Reeves ME, Desai D, Huang S, Payne KJ, Yue F, Dovat S. Ikaros tumor suppressor function includes induction of active enhancers and super-enhancers along with pioneering activity. Leukemia 2019; 33:2720-2731. [PMID: 31073152 PMCID: PMC6842075 DOI: 10.1038/s41375-019-0474-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/15/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
Ikaros encodes a transcription factor that functions as a tumor suppressor in T-cell acute lymphoblastic leukemia (T-ALL). The mechanisms through which Ikaros regulates gene expression and cellular proliferation in T-ALL are unknown. Re-introduction of Ikaros into Ikaros-null T-ALL cells resulted in cessation of cellular proliferation and induction of T-cell differentiation. We performed dynamic, global, epigenomic and gene expression analyses to determine the mechanisms of Ikaros tumor suppressor activity. Our results identified novel Ikaros functions in the epigenetic regulation of gene expression: Ikaros directly regulates de novo formation and depletion of enhancers, de novo formation of active enhancers and activation of poised enhancers; Ikaros directly induces the formation of super-enhancers; and Ikaros demonstrates pioneering activity by directly regulating chromatin accessibility. Dynamic analyses demonstrate the long-lasting effects of Ikaros DNA binding on enhancer activation, de novo formation of enhancers and super-enhancers, and chromatin accessibility. Our results establish that Ikaros’ tumor suppressor function occurs via global regulation of the enhancer and super-enhancer landscape and through pioneering activity. Expression analysis identified a large number of novel signaling pathways that are directly regulated by Ikaros and Ikaros-induced enhancers, and that are responsible for the cessation of proliferation and induction of T-cell differentiation in T-ALL cells.
Collapse
Affiliation(s)
- Yali Ding
- Depatment of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Bo Zhang
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jonathon L Payne
- Depatment of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA.,Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Chunhua Song
- Depatment of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital Southeast University, Institute of Hematology Southeast University, 210009, Nanjing, China
| | - Chandrika Gowda
- Depatment of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Soumya Iyer
- Depatment of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Pavan K Dhanyamraju
- Depatment of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Glenn Dorsam
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Mark E Reeves
- Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Dhimant Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Suming Huang
- Depatment of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Kimberly J Payne
- Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Sinisa Dovat
- Depatment of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA. .,Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
52
|
Tomar AK, Agarwal R, Kundu B. Most Variable Genes and Transcription Factors in Acute Lymphoblastic Leukemia Patients. Interdiscip Sci 2019; 11:668-678. [PMID: 30972690 DOI: 10.1007/s12539-019-00325-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/21/2019] [Accepted: 02/26/2019] [Indexed: 12/28/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a hematologic tumor caused by cell cycle aberrations due to accumulating genetic disturbances in the expression of transcription factors (TFs), signaling oncogenes and tumor suppressors. Though survival rate in childhood ALL patients is increased up to 80% with recent medical advances, treatment of adults and childhood relapse cases still remains challenging. Here, we have performed bioinformatics analysis of 207 ALL patients' mRNA expression data retrieved from the ICGC data portal with an objective to mark out the decisive genes and pathways responsible for ALL pathogenesis and aggression. For analysis, 3361 most variable genes, including 276 transcription factors (out of 16,807 genes) were sorted based on the coefficient of variance. Silhouette width analysis classified 207 ALL patients into 6 subtypes and heat map analysis suggests a need of large and multicenter dataset for non-overlapping subtype classification. Overall, 265 GO terms and 32 KEGG pathways were enriched. The lists were dominated by cancer-associated entries and highlight crucial genes and pathways that can be targeted for designing more specific ALL therapeutics. Differential gene expression analysis identified upregulation of two important genes, JCHAIN and CRLF2 in dead patients' cohort suggesting their possible involvement in different clinical outcomes in ALL patients undergoing the same treatment.
Collapse
Affiliation(s)
- Anil Kumar Tomar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Rahul Agarwal
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
53
|
Wu TH, Bolt AM, Chou H, Plourde D, De Jay N, Guilbert C, Young YK, Kleinman CL, Mann KK. Tungsten Blocks Murine B Lymphocyte Differentiation and Proliferation Through Downregulation of IL-7 Receptor/Pax5 Signaling. Toxicol Sci 2019; 170:45-56. [DOI: 10.1093/toxsci/kfz080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ting Hua Wu
- Lady Davis Institute for Medical Research
- Department of Experimental Medicine
| | - Alicia M Bolt
- Lady Davis Institute for Medical Research
- Department of Oncology
| | - Hsiang Chou
- Lady Davis Institute for Medical Research
- Department of Experimental Medicine
| | | | - Nicolas De Jay
- Lady Davis Institute for Medical Research
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | | | | | - Claudia L Kleinman
- Lady Davis Institute for Medical Research
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Koren K Mann
- Lady Davis Institute for Medical Research
- Department of Experimental Medicine
- Department of Oncology
| |
Collapse
|
54
|
Zhou N, Gutierrez-Uzquiza A, Zheng XY, Chang R, Vogl DT, Garfall AL, Bernabei L, Saraf A, Florens L, Washburn MP, Illendula A, Bushweller JH, Busino L. RUNX proteins desensitize multiple myeloma to lenalidomide via protecting IKZFs from degradation. Leukemia 2019; 33:2006-2021. [PMID: 30760870 PMCID: PMC6687534 DOI: 10.1038/s41375-019-0403-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/14/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
Ikaros family zinc finger protein 1 and 3 (IKZF1 and IKZF3) are transcription factors that promote multiple myeloma (MM) proliferation. The immunomodulatory imide drug (IMiD) lenalidomide promotes myeloma cell death via Cereblon (CRBN)-dependent ubiquitylation and proteasome-dependent degradation of IKZF1 and IKZF3. Although IMiDs have been used as first-line drugs for MM, the overall survival of refractory MM patients remains poor and demands the identification of novel agents to potentiate the therapeutic effect of IMiDs. Using an unbiased screen based on mass spectrometry, we identified the Runt-related transcription factor 1 and 3 (RUNX1 and RUNX3) as interactors of IKZF1 and IKZF3. Interaction with RUNX1 and RUNX3 inhibits CRBN-dependent binding, ubiquitylation, and degradation of IKZF1 and IKZF3 upon lenalidomide treatment. Inhibition of RUNXs, via genetic ablation or a small molecule (AI-10-104), results in sensitization of myeloma cell lines and primary tumors to lenalidomide. Thus, RUNX inhibition represents a valuable therapeutic opportunity to potentiate IMiDs therapy for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alvaro Gutierrez-Uzquiza
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiang Yu Zheng
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renxu Chang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dan T Vogl
- Division of Hematology Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alfred L Garfall
- Division of Hematology Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Bernabei
- Division of Hematology Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anita Saraf
- The Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Laurence Florens
- The Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Michael P Washburn
- The Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Anuradha Illendula
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Luca Busino
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
55
|
Chen Q, Shi Y, Chen Y, Ji T, Li Y, Yu L. Multiple functions of Ikaros in hematological malignancies, solid tumor and autoimmune diseases. Gene 2019; 684:47-52. [DOI: 10.1016/j.gene.2018.10.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
|
56
|
Lyon de Ana C, Arakcheeva K, Agnihotri P, Derosia N, Winandy S. Lack of Ikaros Deregulates Inflammatory Gene Programs in T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 202:1112-1123. [PMID: 30635395 DOI: 10.4049/jimmunol.1801270] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022]
Abstract
CD4 Th cells are organizers of the immune response, directing other immune cells to initiate and maintain effective humoral and cellular immunity. CD4 T cells differentiate into distinct Th effector or regulatory subsets in response to signals delivered to them during the course of infection. Ikaros is a transcription factor that is expressed in blood cells from the level of the hematopoietic stem cell. It is required for normal thymic T cell development and serves as a tumor suppressor, as lack of Ikaros in developing lymphoid cells results in leukemia. To study the role of Ikaros in CD4 T cell differentiation and function, an Ikaros conditional knockout mouse was developed such that Ikaros expression was deleted specifically in mature T cells, thus avoiding defects observed in germline Ikaros mutant mice. Using this model system, we have shown that in the absence of Ikaros, CD4 T cells are able to attain Th1, Th2, and Th17, but not inducible regulatory T, cell fates. However, they show enhanced expression of a cohort of proinflammatory cytokines, resulting in differentiation of Th17 cells with a phenotype that has been associated with autoimmunity and pathological inflammation. In addition, we define Ikaros as a repressor of the gene program associated with the response to type I IFNs, another key pathway whose deregulation is linked to autoimmunity. Taken together, these data definitively define Ikaros as a critical regulator at the center of the inflammatory response in T cells and highlight a potential role in suppressing autoimmunity.
Collapse
Affiliation(s)
- Carolina Lyon de Ana
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| | - Ksenia Arakcheeva
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| | - Parul Agnihotri
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| | - Nicole Derosia
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| | - Susan Winandy
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
57
|
Emmanuel AO, Arnovitz S, Haghi L, Mathur PS, Mondal S, Quandt J, Okoreeh MK, Maienschein-Cline M, Khazaie K, Dose M, Gounari F. TCF-1 and HEB cooperate to establish the epigenetic and transcription profiles of CD4 +CD8 + thymocytes. Nat Immunol 2018; 19:1366-1378. [PMID: 30420627 PMCID: PMC6867931 DOI: 10.1038/s41590-018-0254-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/11/2018] [Indexed: 01/29/2023]
Abstract
Thymocyte development requires a complex orchestration of multiple transcription factors. Ablating either TCF-1 or HEB in CD4+CD8+ thymocytes elicits similar developmental outcomes including increased proliferation, decreased survival, and fewer late Tcra rearrangements. Here, we provide a mechanistic explanation for these similarities by showing that TCF-1 and HEB share ~7,000 DNA-binding sites genome wide and promote chromatin accessibility. The binding of both TCF-1 and HEB was required at these shared sites for epigenetic and transcriptional gene regulation. Binding of TCF-1 and HEB to their conserved motifs in the enhancer regions of genes associated with T cell differentiation promoted their expression. Binding to sites lacking conserved motifs in the promoter regions of cell-cycle-associated genes limited proliferation. TCF-1 displaced nucleosomes, allowing for chromatin accessibility. Importantly, TCF-1 inhibited Notch signaling and consequently protected HEB from Notch-mediated proteasomal degradation. Thus, TCF-1 shifts nucleosomes and safeguards HEB, thereby enabling their cooperation in establishing the epigenetic and transcription profiles of CD4+CD8+ thymocytes.
Collapse
Affiliation(s)
| | | | - Leila Haghi
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Priya S Mathur
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Soumi Mondal
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jasmin Quandt
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | - Khashayarsha Khazaie
- Department of Immunology, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Marei Dose
- Department of Medicine, University of Chicago, Chicago, IL, USA.
| | - Fotini Gounari
- Department of Medicine, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
58
|
Meyer SE, Muench DE, Rogers AM, Newkold TJ, Orr E, O'Brien E, Perentesis JP, Doench JG, Lal A, Morris PJ, Thomas CJ, Lieberman J, McGlinn E, Aronow BJ, Salomonis N, Grimes HL. miR-196b target screen reveals mechanisms maintaining leukemia stemness with therapeutic potential. J Exp Med 2018; 215:2115-2136. [PMID: 29997117 PMCID: PMC6080909 DOI: 10.1084/jem.20171312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 04/30/2018] [Accepted: 06/26/2018] [Indexed: 01/02/2023] Open
Abstract
We have shown that antagomiR inhibition of miRNA miR-21 and miR-196b activity is sufficient to ablate MLL-AF9 leukemia stem cells (LSC) in vivo. Here, we used an shRNA screening approach to mimic miRNA activity on experimentally verified miR-196b targets to identify functionally important and therapeutically relevant pathways downstream of oncogenic miRNA in MLL-r AML. We found Cdkn1b (p27Kip1) is a direct miR-196b target whose repression enhanced an embryonic stem cell-like signature associated with decreased leukemia latency and increased numbers of leukemia stem cells in vivo. Conversely, elevation of p27Kip1 significantly reduced MLL-r leukemia self-renewal, promoted monocytic differentiation of leukemic blasts, and induced cell death. Antagonism of miR-196b activity or pharmacologic inhibition of the Cks1-Skp2-containing SCF E3-ubiquitin ligase complex increased p27Kip1 and inhibited human AML growth. This work illustrates that understanding oncogenic miRNA target pathways can identify actionable targets in leukemia.
Collapse
MESH Headings
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cell Survival/genetics
- Chromosomes, Human, Pair 11/genetics
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Cyclin-Dependent Kinases/metabolism
- Cyclins/metabolism
- Embryonic Stem Cells/metabolism
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Oncogenes
- RNA, Small Interfering/metabolism
Collapse
Affiliation(s)
- Sara E Meyer
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - David E Muench
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Andrew M Rogers
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Tess J Newkold
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Emily Orr
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Eric O'Brien
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - John P Perentesis
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Patrick J Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Edwina McGlinn
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
59
|
Oh KS, Gottschalk RA, Lounsbury NW, Sun J, Dorrington MG, Baek S, Sun G, Wang Z, Krauss KS, Milner JD, Dutta B, Hager GL, Sung MH, Fraser IDC. Dual Roles for Ikaros in Regulation of Macrophage Chromatin State and Inflammatory Gene Expression. THE JOURNAL OF IMMUNOLOGY 2018; 201:757-771. [PMID: 29898962 DOI: 10.4049/jimmunol.1800158] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022]
Abstract
Macrophage activation by bacterial LPS leads to induction of a complex inflammatory gene program dependent on numerous transcription factor families. The transcription factor Ikaros has been shown to play a critical role in lymphoid cell development and differentiation; however, its function in myeloid cells and innate immune responses is less appreciated. Using comprehensive genomic analysis of Ikaros-dependent transcription, DNA binding, and chromatin accessibility, we describe unexpected dual repressor and activator functions for Ikaros in the LPS response of murine macrophages. Consistent with the described function of Ikaros as transcriptional repressor, Ikzf1-/- macrophages showed enhanced induction for select responses. In contrast, we observed a dramatic defect in expression of many delayed LPS response genes, and chromatin immunoprecipitation sequencing analyses support a key role for Ikaros in sustained NF-κB chromatin binding. Decreased Ikaros expression in Ikzf1+/- mice and human cells dampens these Ikaros-enhanced inflammatory responses, highlighting the importance of quantitative control of Ikaros protein level for its activator function. In the absence of Ikaros, a constitutively open chromatin state was coincident with dysregulation of LPS-induced chromatin remodeling, gene expression, and cytokine responses. Together, our data suggest a central role for Ikaros in coordinating the complex macrophage transcriptional program in response to pathogen challenge.
Collapse
Affiliation(s)
- Kyu-Seon Oh
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Rachel A Gottschalk
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nicolas W Lounsbury
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jing Sun
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Michael G Dorrington
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Guangping Sun
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ze Wang
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kathleen S Krauss
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Bhaskar Dutta
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Iain D C Fraser
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
60
|
Boutboul D, Kuehn HS, Van de Wyngaert Z, Niemela JE, Callebaut I, Stoddard J, Lenoir C, Barlogis V, Farnarier C, Vely F, Yoshida N, Kojima S, Kanegane H, Hoshino A, Hauck F, Lhermitte L, Asnafi V, Roehrs P, Chen S, Verbsky JW, Calvo KR, Husami A, Zhang K, Roberts J, Amrol D, Sleaseman J, Hsu AP, Holland SM, Marsh R, Fischer A, Fleisher TA, Picard C, Latour S, Rosenzweig SD. Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J Clin Invest 2018; 128:3071-3087. [PMID: 29889099 DOI: 10.1172/jci98164] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/17/2018] [Indexed: 01/20/2023] Open
Abstract
Ikaros/IKZF1 is an essential transcription factor expressed throughout hematopoiesis. IKZF1 is implicated in lymphocyte and myeloid differentiation and negative regulation of cell proliferation. In humans, somatic mutations in IKZF1 have been linked to the development of B cell acute lymphoblastic leukemia (ALL) in children and adults. Recently, heterozygous germline IKZF1 mutations have been identified in patients with a B cell immune deficiency mimicking common variable immunodeficiency. These mutations demonstrated incomplete penetrance and led to haploinsufficiency. Herein, we report 7 unrelated patients with a novel early-onset combined immunodeficiency associated with de novo germline IKZF1 heterozygous mutations affecting amino acid N159 located in the DNA-binding domain of IKZF1. Different bacterial and viral infections were diagnosed, but Pneumocystis jirovecii pneumonia was reported in all patients. One patient developed a T cell ALL. This immunodeficiency was characterized by innate and adaptive immune defects, including low numbers of B cells, neutrophils, eosinophils, and myeloid dendritic cells, as well as T cell and monocyte dysfunctions. Notably, most T cells exhibited a naive phenotype and were unable to evolve into effector memory cells. Functional studies indicated these mutations act as dominant negative. This defect expands the clinical spectrum of human IKZF1-associated diseases from somatic to germline, from haploinsufficient to dominant negative.
Collapse
Affiliation(s)
- David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Paris, France
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Zoé Van de Wyngaert
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Julie E Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Isabelle Callebaut
- Centre National de la Recherche Scientifique UMR 7590, Sorbonne Universities, University Pierre et Marie Curie-Paris 6-MNHN-IRD-IUC, Paris, France
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Paris, France
| | - Vincent Barlogis
- Department of Paediatric Haematology-Oncology, La Timone Hospital, Marseille, France
| | - Catherine Farnarier
- Assistance Publique - Hôpitaux de Marseille (APHM) Hôpital Timone Enfants, Service d'Immunologie - Marseille Immunopôle, Marseille, France
| | - Frédéric Vely
- Aix Marseille University, APHM, CNRS, Inserm, Centre d'Immunologie de Marseille-Luminy (CIML), Hôpital Timone Enfants, Service d'Immunologie - Marseille Immunopôle, Marseille, France
| | - Nao Yoshida
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Hoshino
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fabian Hauck
- Department of Pediatric Immunology and Rheumatology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Ludovic Lhermitte
- University Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Inserm 1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (APHP), Necker-Enfants Malades Hospital, Paris, France
| | - Vahid Asnafi
- University Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades (INEM), Inserm 1151 and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (APHP), Necker-Enfants Malades Hospital, Paris, France
| | - Philip Roehrs
- Levine Children's Hospital, Carolinas Healthcare System, Charlotte, North Carolina, USA
| | - Shaoying Chen
- Department of Pediatrics, Division of Rheumatology, Medical College of Wisconsin, Madison, Wisconsin, USA
| | - James W Verbsky
- Department of Pediatrics, Division of Rheumatology, Medical College of Wisconsin, Madison, Wisconsin, USA
| | - Katherine R Calvo
- Hematology section, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Ammar Husami
- Division of Human Genetics and Division of Immune Deficiency and Bone Marrow Transplant, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Kejian Zhang
- Division of Human Genetics and Division of Immune Deficiency and Bone Marrow Transplant, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Joseph Roberts
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - David Amrol
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - John Sleaseman
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Amy P Hsu
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Rebecca Marsh
- Division of Human Genetics and Division of Immune Deficiency and Bone Marrow Transplant, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, APHP, Paris, France.,Collège de France, Paris, France
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Paris, France.,Centre d'Etude des Déficits Immunitaires, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm UMR 1163, Paris, France
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| |
Collapse
|
61
|
Li Y, Liu Y, Liu C, Liu F, Dou D, Zheng W, Liu W, Liu F. Role of a non-canonical splice variant of the Helios gene in the differentiation of acute lymphoblastic leukemic T cells. Oncol Lett 2018; 15:6957-6966. [PMID: 29725423 DOI: 10.3892/ol.2018.8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/21/2018] [Indexed: 11/05/2022] Open
Abstract
T-cell acute lymphoblastic leukemia is a hematopoietic malignant disease, which arises from a genetic defect in the T-cell maturation signaling pathway. As a result, it is necessary to identify the molecules that impact T-cell development and control lymphoid-lineage malignancy. The present study utilized Jurkat T lymphoblastic cells as a well-established approach for the investigation into the function of the non-canonical alternative splice variant of Helios for the in vitro study of T-cell differentiation and leukemogenesis. In the present study, the Jurkat T-cell lines with stable overexpression of the wild-type (Helios-1) or the non-canonical short isoform (Helios-Δ326-1431), were established. RNA microarray, reverse transcription-quantitative polymerase chain reaction and flow cytometry were used to assess changes in the gene expression profiles and to monitor the cell surface markers during T-cell differentiation. Multiple genes associated with T-cell differentiation and leukemogenesis were identified as being either activated or suppressed. In addition, the results indicated that the stable overexpression of the Helios isoforms stimulated the differentiation pathway of the T-lineage lymphoblastic cells. Therefore, these results suggest that full-length Helios-1 has a tumor suppressor-like and immunomodulatory role, in contrast to the oncogenic function of the non-canonical short isoform Helios-Δ326-1431.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Yanhua Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Can Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Fengyong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Daolei Dou
- Department of Experimental Facility, State Key Laboratory of Medical Chemical Biology, Tianjin 300071, P.R. China
| | - Wenjie Zheng
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300308, P.R. China
| | - Wei Liu
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300308, P.R. China
| | - Feifei Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
62
|
Abstract
Transcription factor IKZF1 (IKAROS) acts as a critical regulator of lymphoid differentiation and is frequently deleted or mutated in B-cell precursor acute lymphoblastic leukemia. IKZF1 gene defects are associated with inferior treatment outcome in both childhood and adult B-cell precursor acute lymphoblastic leukemia and occur in more than 70% of BCR-ABL1-positive and BCR-ABL1-like cases of acute lymphoblastic leukemia. Over the past few years, much has been learned about the tumor suppressive function of IKZF1 during leukemia development and the molecular pathways that relate to its impact on treatment outcome. In this review, we provide a concise overview on the role of IKZF1 during normal lymphopoiesis and the pathways that contribute to leukemia pathogenesis as a consequence of altered IKZF1 function. Furthermore, we discuss different mechanisms by which IKZF1 alterations impose therapy resistance on leukemic cells, including enhanced cell adhesion and modulation of glucocorticoid response.
Collapse
Affiliation(s)
- René Marke
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud University Medical Center, Nijmegen, the Netherlands .,Department of Pathology, Radboud University Medical Center; Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| |
Collapse
|
63
|
Vshyukova V, Valochnik A, Meleshko A. Expression of aberrantly spliced oncogenic Ikaros isoforms coupled with clonal IKZF1 deletions and chimeric oncogenes in acute lymphoblastic leukemia. Blood Cells Mol Dis 2018; 71:29-38. [PMID: 29496375 DOI: 10.1016/j.bcmd.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Volha Vshyukova
- Belarusian Research Center for Pediatric Oncology, Haematology and Immunology, 223053, Frunzenskaya str., 43, Minsk Region, Belarus.
| | - Alena Valochnik
- Belarusian Research Center for Pediatric Oncology, Haematology and Immunology, 223053, Frunzenskaya str., 43, Minsk Region, Belarus
| | - Alexander Meleshko
- Belarusian Research Center for Pediatric Oncology, Haematology and Immunology, 223053, Frunzenskaya str., 43, Minsk Region, Belarus
| |
Collapse
|
64
|
Ueta M, Hamuro J, Nishigaki H, Nakamura N, Shinomiya K, Mizushima K, Hitomi Y, Tamagawa-Mineoka R, Yokoi N, Naito Y, Tokunaga K, Katoh N, Sotozono C, Kinoshita S. Mucocutaneous inflammation in the Ikaros Family Zinc Finger 1-keratin 5-specific transgenic mice. Allergy 2018; 73:395-404. [PMID: 28914974 DOI: 10.1111/all.13308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Our genomewide association study documented an association between cold medicine-related Stevens-Johnson syndrome/toxic epidermal necrolysis (CM-SJS/TEN) and Ikaros Family Zinc Finger 1 (IKZF1). Few studies examined biological and pathological functions of IKZF1 in mucosal immunity. We hypothesized that IKZF1 contributes to the mucocutaneous inflammation. METHODS Human skin and conjunctival tissues were obtained for immunohistological studies. Primary human conjunctival epithelial cells (PHCjECs) and adult human epidermal keratinocytes (HEKa) also used for gene expression analysis. We also generated K5-Ikzf1-EGFP transgenic mice (Ikzf1 Tg) by introducing the Ik1 isoform into cells expressing keratin 5, which is expressed in epithelial tissues such as the epidermis and conjunctiva, and then examined them histologically and investigated gene expression of the epidermis. Moreover, Ikzf1 Tg were induced allergic contact dermatitis. RESULTS We found that human epidermis and conjunctival epithelium expressed IKZF1, and in PHCjECs and HEKa, the expression of IKZF1 mRNA was upregulated by stimulation with polyI:C, a TLR3 ligand. In Ikzf1 Tg, we observed dermatitis and mucosal inflammation including the ocular surface. In contact dermatitis model, inflammatory infiltrates in the skin of Ikzf1 Tg were significantly increased compared with wild type. Microarray analysis showed that Lcn2, Adh7, Epgn, Ifi202b, Cdo1, Gpr37, Duoxa1, Tnfrsf4, and Enpp5 genes were significantly upregulated in the epidermis of Ikzf1 Tg compared with wild type. CONCLUSION Our findings support the hypothesis that Ikaros might participate in mucocutaneous inflammation.
Collapse
Affiliation(s)
- M. Ueta
- Department of Frontier Medical Science and Technology for Ophthalmology; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - J. Hamuro
- Department of Ophthalmology; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - H. Nishigaki
- Department of Frontier Medical Science and Technology for Ophthalmology; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - N. Nakamura
- Department of Dermatology; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - K. Shinomiya
- Department of Ophthalmology; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - K. Mizushima
- Department of Molecular Gastroenterology and Hepatology; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Y. Hitomi
- Department of Human Genetics; Graduate School of Medicine; University of Tokyo; Tokyo Japan
| | - R. Tamagawa-Mineoka
- Department of Dermatology; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - N. Yokoi
- Department of Ophthalmology; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Y. Naito
- Department of Molecular Gastroenterology and Hepatology; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - K. Tokunaga
- Department of Human Genetics; Graduate School of Medicine; University of Tokyo; Tokyo Japan
| | - N. Katoh
- Department of Dermatology; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - C. Sotozono
- Department of Ophthalmology; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - S. Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology; Kyoto Prefectural University of Medicine; Kyoto Japan
| |
Collapse
|
65
|
Bellavia D, Checquolo S, Palermo R, Screpanti I. The Notch3 Receptor and Its Intracellular Signaling-Dependent Oncogenic Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:205-222. [PMID: 30030828 DOI: 10.1007/978-3-319-89512-3_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During evolution, gene duplication of the Notch receptor suggests a progressive functional diversification. The Notch3 receptor displays a number of structural differences with respect to Notch1 and Notch2, most of which have been reported in the transmembrane and in the intracellular regions, mainly localized in the negative regulatory region (NRR) and trans-activation domain (TAD). Targeted deletion of Notch3 does not result in embryonic lethality, which is in line with its highly restricted tissue expression pattern. Importantly, deregulated Notch3 expression and/or activation, often results in disrupted cell differentiation and/or pathological development, most notably in oncogenesis in different cell contexts. Mechanistically this is due to Notch3-related genetic alterations or epigenetic or posttranslational control mechanisms. In this chapter we discuss the possible relationships between the structural differences and the pathological role of Notch3 in the control of mouse and human cancers. In future, targeting the unique features of Notch3-oncogenic mechanisms could be exploited to develop anticancer therapeutics.
Collapse
Affiliation(s)
- Diana Bellavia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocco Palermo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
66
|
Hansen MC, Nederby L, Kjeldsen E, Petersen MA, Ommen HB, Hokland P. Case report: Exome sequencing identifies T-ALL with myeloid features as a IKZF1-struck early precursor T-cell malignancy. Leuk Res Rep 2017; 9:1-4. [PMID: 29204341 PMCID: PMC5705803 DOI: 10.1016/j.lrr.2017.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/26/2017] [Accepted: 11/13/2017] [Indexed: 01/15/2023] Open
Affiliation(s)
- Marcus C Hansen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Line Nederby
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Eigil Kjeldsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Hans B Ommen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Hokland
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
67
|
Ma M, Gallagher AR, Somlo S. Ciliary Mechanisms of Cyst Formation in Polycystic Kidney Disease. Cold Spring Harb Perspect Biol 2017; 9:a028209. [PMID: 28320755 PMCID: PMC5666631 DOI: 10.1101/cshperspect.a028209] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is a disease of defective tissue homeostasis resulting in active remodeling of nephrons and bile ducts to form fluid-filled sacs called cysts. The causal genes PKD1 and PKD2 encode transmembrane proteins polycystin 1 (PC1) and polycystin 2 (PC2), respectively. Together, the polycystins localize to the solitary primary cilium that protrudes from the apical surface of most kidney tubule cells and is thought to function as a privileged compartment that the cell uses for signal integration of sensory inputs. It has been proposed that PC1 and PC2 form a receptor-channel complex that detects external stimuli and transmit a local calcium-mediated signal, which may control a multitude of cellular processes by an as-yet unknown mechanism. Genetic studies using mouse models of cilia and polycystin dysfunction have shown that polycystins regulate an unknown cilia-dependent signal that is normally part of the homeostatic maintenance of nephron structure. ADPKD ensues when this pathway is dysregulated by absence of polycystins from intact cilia, but disruption of cilia also disrupts this signaling mechanism and ameliorates ADPKD even in the absence of polycystins. Understanding the role of cilia and ciliary signaling in ADPKD is challenging, but success will provide saltatory advances in our understanding of how tubule structure is maintained in healthy kidneys and how disruption of polycystin or cilia function leads to the pathological tissue remodeling process underlying ADPKD.
Collapse
Affiliation(s)
- Ming Ma
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| | - Anna-Rachel Gallagher
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| | - Stefan Somlo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| |
Collapse
|
68
|
Cornec-Le Gall E, Torres VE, Harris PC. Genetic Complexity of Autosomal Dominant Polycystic Kidney and Liver Diseases. J Am Soc Nephrol 2017; 29:13-23. [PMID: 29038287 DOI: 10.1681/asn.2017050483] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Data indicate significant phenotypic and genotypic overlap, plus a common pathogenesis, between two groups of inherited disorders, autosomal dominant polycystic kidney diseases (ADPKD), a significant cause of ESRD, and autosomal dominant polycystic liver diseases (ADPLD), which result in significant PLD with minimal PKD. Eight genes have been associated with ADPKD (PKD1 and PKD2), ADPLD (PRKCSH, SEC63, LRP5, ALG8, and SEC61B), or both (GANAB). Although genetics is only infrequently used for diagnosing these diseases and prognosing the associated outcomes, its value is beginning to be appreciated, and the genomics revolution promises more reliable and less expensive molecular diagnostic tools for these diseases. We therefore propose categorization of patients with a phenotypic and genotypic descriptor that will clarify etiology, provide prognostic information, and better describe atypical cases. In genetically defined cases, the designation would include the disease and gene names, with allelic (truncating/nontruncating) information included for PKD1 Recent data have shown that biallelic disease including at least one weak ADPKD allele is a significant cause of symptomatic, very early onset ADPKD. Including a genic (and allelic) descriptor with the disease name will provide outcome clues, guide treatment, and aid prevalence estimates.
Collapse
Affiliation(s)
- Emilie Cornec-Le Gall
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota; and.,Department of Nephrology, University Hospital, European University of Brittany, and National Institute of Health and Medical Sciences, INSERM U1078, Brest, France
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota; and
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
69
|
Abstract
In this review from Georgopoulos, the role of the IKAROS gene family in lymphocyte differentiation is discussed in light of recent studies on the lineage-specific transcriptional and epigenetic networks through which IKAROS proteins operate. Lymphocyte differentiation is set to produce myriad immune effector cells with the ability to respond to multitudinous foreign substances. The uniqueness of this developmental system lies in not only the great diversity of cellular functions that it can generate but also the ability of its differentiation intermediates and mature effector cells to expand upon demand, thereby providing lifelong immunity. Surprisingly, the goals of this developmental system are met by a relatively small group of DNA-binding transcription factors that work in concert to control the timing and magnitude of gene expression and fulfill the demands for cellular specialization, expansion, and maintenance. The cellular and molecular mechanisms through which these lineage-promoting transcription factors operate have been a focus of basic research in immunology. The mechanisms of development discerned in this effort are guiding clinical research on disorders with an immune cell base. Here, I focus on IKAROS, one of the earliest regulators of lymphoid lineage identity and a guardian of lymphocyte homeostasis.
Collapse
Affiliation(s)
- Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
70
|
Shao C, Yang J, Kong Y, Cheng C, Lu W, Guan H, Wang H. Overexpression of dominant-negative Ikaros 6 isoform is associated with resistance to TKIs in patients with Philadelphia chromosome positive acute lymphoblastic leukemia. Exp Ther Med 2017; 14:3874-3879. [PMID: 29042995 DOI: 10.3892/etm.2017.4941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/02/2017] [Indexed: 11/06/2022] Open
Abstract
The clinical significance of the dominant-negative Ikaros 6 (DN-IK6) in the treatment of patients with Philadelphia-positive acute lymphoblastic leukemia (Ph+-ALL) with tyrosine kinase inhibitors (TKIs) remains elusive. In the present study, it was demonstrated that DN-IK6 was overexpressed in B-cell (B)-ALL cases compared with T cell-ALL cases at the mRNA and protein levels. Furthermore, nucleotide sequencing revealed that DN-IK6 was due to the deletion of IKAROS family zinc finger 1 exons 4-7. The outcome of patients with Ph+-B-ALL with DN-IK6, and treated with TKIs and hyper-cyclophosphamide/vincristine/doxorubicin/dexamethasone regimen were restrospectively evaluated in a 2 year follow-up. The results demonstrated that those with the DN isoform exhibited significantly lower incidences of remission, shorter median cumulative incidence of relapse times (P<0.05) and shorter median overall survival times (P<0.05) compared with those without the DN isoform. In conclusion, the results of the present study demonstrated that DN-IK6 is overexpressed in the majority of patients with Ph+-ALL, and is significantly associated with resistance to TKI therapy.
Collapse
Affiliation(s)
- Changfeng Shao
- Department of Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jie Yang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yirong Kong
- Department of The Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Cong Cheng
- Department of Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wei Lu
- Department of Hematology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hongzai Guan
- Department of Hematology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Haiyan Wang
- Department of Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
71
|
Gowda C, Soliman M, Kapadia M, Ding Y, Payne K, Dovat S. Casein Kinase II (CK2), Glycogen Synthase Kinase-3 (GSK-3) and Ikaros mediated regulation of leukemia. Adv Biol Regul 2017. [PMID: 28623166 DOI: 10.1016/j.jbior.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Signaling networks that regulate cellular proliferation often involve complex interactions between several signaling pathways. In this manuscript we review the crosstalk between the Casein Kinase II (CK2) and Glycogen Synthase Kinase-3 (GSK-3) pathways that plays a critical role in the regulation of cellular proliferation in leukemia. Both CK2 and GSK-3 are potential targets for anti-leukemia treatment. Previously published data suggest that CK2 and GSK-3 act synergistically to promote the phosphatidylinositol-3 kinase (PI3K) pathway via phosphorylation of PTEN. More recent data demonstrate another mechanism through which CK2 promotes the PI3K pathway - via transcriptional regulation of PI3K pathway genes by the newly-discovered CK2-Ikaros axis. Together, these data suggest that the CK2 and GSK-3 pathways regulate AKT/PI3K signaling in leukemia via two complementary mechanisms: a) direct phosphorylation of PTEN and b) transcriptional regulation of PI3K-promoting genes. Functional interactions between CK2, Ikaros and GSK3 define a novel signaling network that regulates proliferation of leukemia cells. This regulatory network involves both direct posttranslational modifications (by CK and GSK-3) and transcriptional regulation (via CK2-mediated phosphorylation of Ikaros). This information provides a basis for the development of targeted therapy for leukemia.
Collapse
Affiliation(s)
- Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Mario Soliman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Malika Kapadia
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Kimberly Payne
- Department of Anatomy, Loma Linda University, Loma Linda, CA, USA.
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
72
|
Kim J, Lu C, Srinivasan S, Awe S, Brehm A, Fuller MT. Blocking promiscuous activation at cryptic promoters directs cell type-specific gene expression. Science 2017; 356:717-721. [PMID: 28522526 PMCID: PMC5572561 DOI: 10.1126/science.aal3096] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/13/2017] [Indexed: 12/18/2022]
Abstract
To selectively express cell type-specific transcripts during development, it is critical to maintain genes required for other lineages in a silent state. Here, we show in the Drosophila male germline stem cell lineage that a spermatocyte-specific zinc finger protein, Kumgang (Kmg), working with the chromatin remodeler dMi-2 prevents transcription of genes normally expressed only in somatic lineages. By blocking transcription from normally cryptic promoters, Kmg restricts activation by Aly, a component of the testis-meiotic arrest complex, to transcripts for male germ cell differentiation. Our results suggest that as new regions of the genome become open for transcription during terminal differentiation, blocking the action of a promiscuous activator on cryptic promoters is a critical mechanism for specifying precise gene activation.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Chenggang Lu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Shrividhya Srinivasan
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Stephan Awe
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - Alexander Brehm
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| |
Collapse
|
73
|
Regulation of PI3K signaling in T-cell acute lymphoblastic leukemia: a novel PTEN/Ikaros/miR-26b mechanism reveals a critical targetable role for PIK3CD. Leukemia 2017; 31:2355-2364. [PMID: 28280276 PMCID: PMC5986278 DOI: 10.1038/leu.2017.80] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 01/07/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic
malignancy, and T-ALL patients are prone to early disease relapse and suffer
from poor outcomes. The PTEN, PI3K/AKT, and Notch pathways are frequently
altered in T-ALL. PTEN is a tumor suppressor that inactivates the PI3K pathway.
We profiled miRNAs in Pten-deficient mouse T-ALL and identified
miR-26b as a potentially dysregulated gene. We validated decreased expression
levels of miR-26b in mouse and human T-ALL cells. In addition, expression of
exogenous miR-26b reduced proliferation and promoted apoptosis of T-ALL cells
in vitro, and hindered progression of T-ALL in
vivo. Furthermore, miR-26b inhibited the PI3K/AKT pathway by
directly targeting PIK3CD, the gene encoding PI3Kδ, in
human T-ALL cell lines. ShRNA for PIK3CD and CAL-101, a PIK3CD
inhibitor, reduced the growth and increased apoptosis of T-ALL cells. Finally,
we showed that PTEN induced miR-26b expression by regulating the differential
expression of Ikaros isoforms that are transcriptional regulators of miR-26b.
These results suggest that miR-26b functions as a tumor suppressor in the
development of T-ALL. Further characterization of targets and regulators of
miR-26b may be promising for the development of novel therapies.
Collapse
|
74
|
Guntermann C, Piaia A, Hamel ML, Theil D, Rubic-Schneider T, Del Rio-Espinola A, Dong L, Billich A, Kaupmann K, Dawson J, Hoegenauer K, Orain D, Hintermann S, Stringer R, Patel DD, Doelemeyer A, Deurinck M, Schümann J. Retinoic-acid-orphan-receptor-C inhibition suppresses Th17 cells and induces thymic aberrations. JCI Insight 2017; 2:e91127. [PMID: 28289717 DOI: 10.1172/jci.insight.91127] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Retinoic-acid-orphan-receptor-C (RORC) is a master regulator of Th17 cells, which are pathogenic in several autoimmune diseases. Genetic Rorc deficiency in mice, while preventing autoimmunity, causes early lethality due to metastatic thymic T cell lymphomas. We sought to determine whether pharmacological RORC inhibition could be an effective and safe therapy for autoimmune diseases by evaluating its effects on Th17 cell functions and intrathymic T cell development. RORC inhibitors effectively inhibited Th17 differentiation and IL-17A production, and delayed-type hypersensitivity reactions. In vitro, RORC inhibitors induced apoptosis, as well as Bcl2l1 and BCL2L1 mRNA downregulation, in mouse and nonhuman primate thymocytes, respectively. Chronic, 13-week RORC inhibitor treatment in rats caused progressive thymic alterations in all analyzed rats similar to those in Rorc-deficient mice prior to T cell lymphoma development. One rat developed thymic cortical hyperplasia with preneoplastic features, including increased mitosis and reduced IKAROS expression, albeit without skewed T cell clonality. In summary, pharmacological inhibition of RORC not only blocks Th17 cell development and related cytokine production, but also recapitulates thymic aberrations seen in Rorc-deficient mice. While RORC inhibition may offer an effective therapeutic principle for Th17-mediated diseases, T cell lymphoma with chronic therapy remains an apparent risk.
Collapse
Affiliation(s)
| | - Alessandro Piaia
- Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Diethilde Theil
- Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Tina Rubic-Schneider
- Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Linda Dong
- Preclinical Safety, Novartis Institutes for BioMedical Research, East Hanover, New Jersey, USA
| | - Andreas Billich
- Autoimmunity, Transplantation, and Inflammation Disease Area
| | | | - Janet Dawson
- Autoimmunity, Transplantation, and Inflammation Disease Area
| | | | | | | | - Rowan Stringer
- Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Arno Doelemeyer
- Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mark Deurinck
- Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jens Schümann
- Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
75
|
Comeaux EQ, Mullighan CG. TP53 Mutations in Hypodiploid Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026286. [PMID: 28003275 DOI: 10.1101/cshperspect.a026286] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is an aggressive neoplasm of B- or T-lymphoid progenitors and is the commonest childhood tumor. ALL comprises multiple subtypes characterized by distinct genetic alterations, with stereotyped patterns of aneuploidy present in many cases. Although alterations of TP53 are common in many tumors, they are infrequent in ALL, with the exception of two ALL subtypes associated with poor outcome: relapsed disease and ALL with hypodiploidy. TP53 alterations are present in almost all cases of ALL with low hypodiploidy and are associated with alterations of the lymphoid transcription factor IKZF2 and the tumor-suppressor gene loci CDKN2A and CDKN2B. Remarkably, more than half of TP53 mutations in low-hypodiploid ALL in children are present in nontumor cells, indicating that low-hypodiploid ALL is a manifestation of Li-Fraumeni syndrome. These findings have profound implications for our understanding of the genetic pathogenesis of hypodiploid ALL, suggesting that alteration of TP53 function may promote the distinctive aneuploidy characteristic of hypodiploid ALL. Moreover, the identification of hypodiploidy mandates offering testing for TP53 mutational status to patients and their relatives, with appropriate counseling and disease surveillance.
Collapse
Affiliation(s)
- Evan Q Comeaux
- Departments of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Charles G Mullighan
- Departments of Pathology and the Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
76
|
Jin HY, Oda H, Chen P, Yang C, Zhou X, Kang SG, Valentine E, Kefauver JM, Liao L, Zhang Y, Gonzalez-Martin A, Shepherd J, Morgan GJ, Mondala TS, Head SR, Kim PH, Xiao N, Fu G, Liu WH, Han J, Williamson JR, Xiao C. Differential Sensitivity of Target Genes to Translational Repression by miR-17~92. PLoS Genet 2017; 13:e1006623. [PMID: 28241004 PMCID: PMC5348049 DOI: 10.1371/journal.pgen.1006623] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/13/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are thought to exert their functions by modulating the expression of hundreds of target genes and each to a small degree, but it remains unclear how small changes in hundreds of target genes are translated into the specific function of a miRNA. Here, we conducted an integrated analysis of transcriptome and translatome of primary B cells from mutant mice expressing miR-17~92 at three different levels to address this issue. We found that target genes exhibit differential sensitivity to miRNA suppression and that only a small fraction of target genes are actually suppressed by a given concentration of miRNA under physiological conditions. Transgenic expression and deletion of the same miRNA gene regulate largely distinct sets of target genes. miR-17~92 controls target gene expression mainly through translational repression and 5’UTR plays an important role in regulating target gene sensitivity to miRNA suppression. These findings provide molecular insights into a model in which miRNAs exert their specific functions through a small number of key target genes. MicroRNAs (miRNAs) are small RNAs encoded by our genome. Each miRNA binds hundreds of target mRNAs and performs specific functions. It is thought that miRNAs exert their function by reducing the expression of all these target genes and each to a small degree. However, these target genes often have very diverse functions. It has been unclear how small changes in hundreds of target genes with diverse functions are translated into the specific function of a miRNA. Here we take advantage of recent technical advances to globally examine the mRNA and protein levels of 868 target genes regulated by miR-17~92, the first oncogenic miRNA, in mutant mice with transgenic overexpression or deletion of this miRNA gene. We show that miR-17~92 regulates target gene expression mainly at the protein level, with little effect on mRNA. Surprisingly, only a small fraction of target genes respond to miR-17~92 expression changes. Further studies show that the sensitivity of target genes to miR-17~92 is determined by a non-coding region of target mRNA. Our findings demonstrate that not every target gene is equal, and suggest that the function of a miRNA is mediated by a small number of key target genes.
Collapse
Affiliation(s)
- Hyun Yong Jin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Hiroyo Oda
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pengda Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chao Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaojuan Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Seung Goo Kang
- Division of Biomedical Convergence/Institute of Bioscience & Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Elizabeth Valentine
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jennifer M. Kefauver
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Alicia Gonzalez-Martin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jovan Shepherd
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Gareth J. Morgan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tony S. Mondala
- Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, California, United States of America
| | - Steven R. Head
- Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience/Institute of Bioscience & Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - James R. Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
77
|
Witkowski MT, Hu Y, Roberts KG, Boer JM, McKenzie MD, Liu GJ, Le Grice OD, Tremblay CS, Ghisi M, Willson TA, Horstmann MA, Aifantis I, Cimmino L, Frietze S, den Boer ML, Mullighan CG, Smyth GK, Dickins RA. Conserved IKAROS-regulated genes associated with B-progenitor acute lymphoblastic leukemia outcome. J Exp Med 2017; 214:773-791. [PMID: 28190000 PMCID: PMC5339666 DOI: 10.1084/jem.20160048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 10/05/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Genetic alterations disrupting the transcription factor IKZF1 (encoding IKAROS) are associated with poor outcome in B lineage acute lymphoblastic leukemia (B-ALL) and occur in >70% of the high-risk BCR-ABL1+ (Ph+) and Ph-like disease subtypes. To examine IKAROS function in this context, we have developed novel mouse models allowing reversible RNAi-based control of Ikaros expression in established B-ALL in vivo. Notably, leukemias driven by combined BCR-ABL1 expression and Ikaros suppression rapidly regress when endogenous Ikaros is restored, causing sustained disease remission or ablation. Comparison of transcriptional profiles accompanying dynamic Ikaros perturbation in murine B-ALL in vivo with two independent human B-ALL cohorts identified nine evolutionarily conserved IKAROS-repressed genes. Notably, high expression of six of these genes is associated with inferior event-free survival in both patient cohorts. Among them are EMP1, which was recently implicated in B-ALL proliferation and prednisolone resistance, and the novel target CTNND1, encoding P120-catenin. We demonstrate that elevated Ctnnd1 expression contributes to maintenance of murine B-ALL cells with compromised Ikaros function. These results suggest that IKZF1 alterations in B-ALL leads to induction of multiple genes associated with proliferation and treatment resistance, identifying potential new therapeutic targets for high-risk disease.
Collapse
Affiliation(s)
- Matthew T Witkowski
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Yifang Hu
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Judith M Boer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, 3015 CN Rotterdam, Netherlands
| | - Mark D McKenzie
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Grace J Liu
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Oliver D Le Grice
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
| | - Cedric S Tremblay
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Margherita Ghisi
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Tracy A Willson
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
| | - Martin A Horstmann
- Research Institute Children's Cancer Center, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, 20246 Hamburg, Germany
| | - Iannis Aifantis
- Department of Pathology, NYU School of Medicine, New York, NY 10016
| | - Luisa Cimmino
- Department of Pathology, NYU School of Medicine, New York, NY 10016
| | - Seth Frietze
- Department of Medical Laboratory and Radiation Science, University of Vermont, Burlington, VT 05405
| | - Monique L den Boer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, 3015 CN Rotterdam, Netherlands.,Dutch Childhood Oncology Group, 2545 The Hague, Netherlands
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Gordon K Smyth
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Mathematics and Statistics, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Ross A Dickins
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia .,Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
78
|
Schjerven H, Ayongaba EF, Aghajanirefah A, McLaughlin J, Cheng D, Geng H, Boyd JR, Eggesbø LM, Lindeman I, Heath JL, Park E, Witte ON, Smale ST, Frietze S, Müschen M. Genetic analysis of Ikaros target genes and tumor suppressor function in BCR-ABL1 + pre-B ALL. J Exp Med 2017; 214:793-814. [PMID: 28190001 PMCID: PMC5339667 DOI: 10.1084/jem.20160049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 10/03/2016] [Accepted: 01/12/2017] [Indexed: 01/19/2023] Open
Abstract
Schjerven et al. compare mouse and human models of pre–B ALL to define conserved target genes and pathways of the tumor suppressor Ikaros, revealing CTNND1 and the early hematopoietic cell-surface receptors SPN (CD43) and CD34 as novel Ikaros targets that each confer oncogenic growth advantage. Inactivation of the tumor suppressor gene encoding the transcriptional regulator Ikaros (IKZF1) is a hallmark of BCR-ABL1+ precursor B cell acute lymphoblastic leukemia (pre–B ALL). However, the mechanisms by which Ikaros functions as a tumor suppressor in pre–B ALL remain poorly understood. Here, we analyzed a mouse model of BCR-ABL1+ pre–B ALL together with a new model of inducible expression of wild-type Ikaros in IKZF1 mutant human BCR-ABL1+ pre–B ALL. We performed integrated genome-wide chromatin and expression analyses and identified Ikaros target genes in mouse and human BCR-ABL1+ pre–B ALL, revealing novel conserved gene pathways associated with Ikaros tumor suppressor function. Notably, genetic depletion of different Ikaros targets, including CTNND1 and the early hematopoietic cell surface marker CD34, resulted in reduced leukemic growth. Our results suggest that Ikaros mediates tumor suppressor function by enforcing proper developmental stage–specific expression of multiple genes through chromatin compaction at its target genes.
Collapse
Affiliation(s)
- Hilde Schjerven
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Etapong F Ayongaba
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143.,Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Ali Aghajanirefah
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Jami McLaughlin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405
| | - Linn M Eggesbø
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143.,Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Ida Lindeman
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143.,Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Jessica L Heath
- Department of Pediatrics, University of Vermont, Burlington, VT 05405.,Department of Biochemistry, University of Vermont, Burlington, VT 05405
| | - Eugene Park
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Owen N Witte
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095.,Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095.,Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Seth Frietze
- Department of Medical Laboratory and Radiation Science, University of Vermont, Burlington, VT 05405
| | - Markus Müschen
- Department of Systems Biology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Pasadena, CA 91016
| |
Collapse
|
79
|
Apigenin: Selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancer. PLoS One 2017; 12:e0170197. [PMID: 28152014 PMCID: PMC5289423 DOI: 10.1371/journal.pone.0170197] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/02/2017] [Indexed: 11/19/2022] Open
Abstract
Pancreatic cancer (PC) evades immune destruction by favoring the development of regulatory T cells (Tregs) that inhibit effector T cells. The transcription factor Ikaros is critical for lymphocyte development, especially T cells. We have previously shown that downregulation of Ikaros occurs as a result of its protein degradation by the ubiquitin-proteasome system in our Panc02 tumor-bearing (TB) mouse model. Mechanistically, we observed a deregulation in the balance between Casein Kinase II (CK2) and protein phosphatase 1 (PP1), which suggested that increased CK2 activity is responsible for regulating Ikaros’ stability in our model. We also showed that this loss of Ikaros expression is associated with a significant decrease in CD4+ and CD8+ T cell percentages but increased CD4+CD25+ Tregs in TB mice. In this study, we evaluated the effects of the dietary flavonoid apigenin (API), on Ikaros expression and T cell immune responses. Treatment of splenocytes from naïve mice with (API) stabilized Ikaros expression and prevented Ikaros downregulation in the presence of murine Panc02 cells in vitro, similar to the proteasome inhibitor MG132. In vivo treatment of TB mice with apigenin (TB-API) improved survival, reduced tumor weights and prevented splenomegaly. API treatment also restored protein expression of some Ikaros isoforms, which may be attributed to its moderate inhibition of CK2 activity from splenocytes of TB-API mice. This partial restoration of Ikaros expression was accompanied by a significant increase in CD4+ and CD8+ T cell percentages and a reduction in Treg percentages in TB-API mice. In addition, CD8+ T cells from TB-API mice produced more IFN-γ and their splenocytes were better able to prime allogeneic CD8+ T cell responses compared to TB mice. These results provide further evidence that Ikaros is regulated by CK2 in our pancreatic cancer model. More importantly, our findings suggest that API may be a possible therapeutic agent for stabilizing Ikaros expression and function to maintain T cell homeostasis in murine PC.
Collapse
|
80
|
Churchman ML, Mullighan CG. Ikaros: Exploiting and targeting the hematopoietic stem cell niche in B-progenitor acute lymphoblastic leukemia. Exp Hematol 2017; 46:1-8. [PMID: 27865806 PMCID: PMC5241204 DOI: 10.1016/j.exphem.2016.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 01/23/2023]
Abstract
Genetic alterations of IKZF1 encoding the lymphoid transcription factor IKAROS are a hallmark of high-risk B-progenitor acute lymphoblastic leukemia (ALL), such as BCR-ABL1-positive (Ph+) and Ph-like ALL, and are associated with poor outcome even in the era of contemporary chemotherapy incorporating tyrosine kinase inhibitors. Recent experimental mouse modeling of B-progenitor ALL has shown that IKZF1 alterations have multiple effects, including arresting differentiation, skewing lineage of leukemia from myeloid to lymphoid, and, in Ph+ leukemia, conferring resistance to tyrosine kinase inhibitor (TKI) therapy without abrogating ABL1 inhibition. These effects are in part mediated by acquisition of an aberrant hematopoietic stem cell-like program accompanied by induction of cell surface expression of stem cell and adhesion molecules that mediate extravascular invasion and residence in the niche and activation of integrin signaling pathways. These effects can be exploited therapeutically using several approaches. IKZF1 alterations also result in upregulation of RXRA that encodes part of the heterodimeric retinoic acid X receptor. Rexinoids, a synthetic class of retinoids that bind specifically to retinoid "X" receptors such as bexarotene potently reverse aberrant adhesion and niche mislocalization in vivo and induce differentiation and cell cycle arrest. Focal adhesion kinase inhibitors block the downstream integrin-mediated signaling, reverse adhesion, and niche mislocalization. Both agents act synergistically with TKIs to prolong survival of Ph+ ALL in mouse and human xenograft model, with long-term remission induced by focal adhesion kinase inhibitors. Therefore, these findings provide important new conceptual insights into the mechanisms by which IKZF1 alterations result in drug resistance and indicate that therapeutic strategies directed against the pathways deregulated by mutation, rather than attempting to restore IKZF1 expression directly, represent promising therapeutic approaches in this disease.
Collapse
Affiliation(s)
- Michelle L Churchman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
81
|
Yoshida N, Sakaguchi H, Muramatsu H, Okuno Y, Song C, Dovat S, Shimada A, Ozeki M, Ohnishi H, Teramoto T, Fukao T, Kondo N, Takahashi Y, Matsumoto K, Kato K, Kojima S. Germline IKAROS mutation associated with primary immunodeficiency that progressed to T-cell acute lymphoblastic leukemia. Leukemia 2017; 31:1221-1223. [PMID: 28096536 DOI: 10.1038/leu.2017.25] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- N Yoshida
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - H Sakaguchi
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - H Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Y Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - C Song
- Division of Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - S Dovat
- Division of Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - A Shimada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - M Ozeki
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - H Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - T Teramoto
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - T Fukao
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - N Kondo
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Y Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K Matsumoto
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - K Kato
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - S Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
82
|
Scheijen B, Boer JM, Marke R, Tijchon E, van Ingen Schenau D, Waanders E, van Emst L, van der Meer LT, Pieters R, Escherich G, Horstmann MA, Sonneveld E, Venn N, Sutton R, Dalla-Pozza L, Kuiper RP, Hoogerbrugge PM, den Boer ML, van Leeuwen FN. Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients. Haematologica 2016; 102:541-551. [PMID: 27979924 PMCID: PMC5394950 DOI: 10.3324/haematol.2016.153023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/14/2016] [Indexed: 12/16/2022] Open
Abstract
Deletions and mutations affecting lymphoid transcription factor IKZF1 (IKAROS) are associated with an increased relapse risk and poor outcome in B-cell precursor acute lymphoblastic leukemia. However, additional genetic events may either enhance or negate the effects of IKZF1 deletions on prognosis. In a large discovery cohort of 533 childhood B-cell precursor acute lymphoblastic leukemia patients, we observed that single-copy losses of BTG1 were significantly enriched in IKZF1-deleted B-cell precursor acute lymphoblastic leukemia (P=0.007). While BTG1 deletions alone had no impact on prognosis, the combined presence of BTG1 and IKZF1 deletions was associated with a significantly lower 5-year event-free survival (P=0.0003) and a higher 5-year cumulative incidence of relapse (P=0.005), when compared with IKZF1-deleted cases without BTG1 aberrations. In contrast, other copy number losses commonly observed in B-cell precursor acute lymphoblastic leukemia, such as CDKN2A/B, PAX5, EBF1 or RB1, did not affect the outcome of IKZF1-deleted acute lymphoblastic leukemia patients. To establish whether the combined loss of IKZF1 and BTG1 function cooperate in leukemogenesis, Btg1-deficient mice were crossed onto an Ikzf1 heterozygous background. We observed that loss of Btg1 increased the tumor incidence of Ikzf1+/− mice in a dose-dependent manner. Moreover, murine B cells deficient for Btg1 and Ikzf1+/− displayed increased resistance to glucocorticoids, but not to other chemotherapeutic drugs. Together, our results identify BTG1 as a tumor suppressor in leukemia that, when deleted, strongly enhances the risk of relapse in IKZF1-deleted B-cell precursor acute lymphoblastic leukemia, and augments the glucocorticoid resistance phenotype mediated by the loss of IKZF1 function.
Collapse
Affiliation(s)
- Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | - Judith M Boer
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - René Marke
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | - Esther Tijchon
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | | | - Esmé Waanders
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Liesbeth van Emst
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Gabriele Escherich
- Research Institute Children's Cancer Center and Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin A Horstmann
- Research Institute Children's Cancer Center and Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Nicola Venn
- Australian and New Zealand Children's Oncology Group, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Rosemary Sutton
- Australian and New Zealand Children's Oncology Group, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | | | - Roland P Kuiper
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Monique L den Boer
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| |
Collapse
|
83
|
Targeting High Dynamin-2 (DNM2) Expression by Restoring Ikaros Function in Acute Lymphoblastic Leukemia. Sci Rep 2016; 6:38004. [PMID: 27885263 PMCID: PMC5122860 DOI: 10.1038/srep38004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/02/2016] [Indexed: 11/15/2022] Open
Abstract
Dynamin-2 (DNM2) is a GTPase essential for intracellular vesicle formation and trafficking, cytokinesis and receptor endocytosis. Mutations in DNM2 are common in early T-cell precursor acute lymphoblastic leukemia. However, DNM2 expression in other types of ALL are not reported. We studied DNM2 mRNA level in adults with B- and T-cell ALL. We found DNM2 is more highly expressed compared with normals in both forms of ALL. High DNM2 expression is associated with some clinical and laboratory features, inferior outcomes and with leukaemia cell proliferation. We also found Ikaros directly binds the DNM2 promoter and suppresses DNM2 expression. Consequently IKZF1 deletion is associated with high DNM2 expression. Conversely, casein kinase-2 (CK2)-inhibitor increases Ikaros function thereby inhibiting DNM2 expression. Inhibiting DNM2 suppresses proliferation of leukemia cells and synergizes with CK2 inhibition. Our data indicate high DNM2 expression is associated with Ikaros dysregulation and may be important in the development of B-ALL.
Collapse
|
84
|
Fan Y, Lu D. The Ikaros family of zinc-finger proteins. Acta Pharm Sin B 2016; 6:513-521. [PMID: 27818917 PMCID: PMC5071621 DOI: 10.1016/j.apsb.2016.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022] Open
Abstract
Ikaros represents a zinc-finger protein family important for lymphocyte development and certain other physiological processes. The number of family members is large, with alternative splicing producing various additional isoforms from each of the five homologous genes in the family. The functional forms of Ikaros proteins could be even more diverse due to protein–protein interactions readily established between family members. Emerging evidence suggests that targeting Ikaros proteins is feasible and effective in therapeutic applications, although the exact roles of Ikaros proteins remain elusive within the intricate regulatory networks in which they are involved. In this review we collect existing knowledge as to the functions, regulatory pathways, and molecular mechanisms of this family of proteins in an attempt to gain a better understanding through the comparison of activities and interactions among family members.
Collapse
|
85
|
Mitchell JL, Yankee TM. Variations in mRNA and protein levels of Ikaros family members in pediatric T cell acute lymphoblastic leukemia. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:363. [PMID: 27826566 DOI: 10.21037/atm.2016.09.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pediatric T cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous disease in which the cells share phenotypic characteristics with normal human thymocytes. The Ikaros family of transcription factors includes five members that are required for normal T cell development and are implicated in leukemogenesis. The goal of this work was to correlate the pattern of expression of Ikaros family members with the phenotype of the T-ALL cells. METHODS We obtained twenty-four samples from pediatric T-ALL patients and used multi-parameter flow cytometry to characterize each sample, comparing the phenotype of the leukemic cells with normal human thymocytes. Then, we defined the expression levels of each Ikaros family member to determine whether the mRNA levels or splicing or protein levels were similar to the normal patterns seen during human T cell development. RESULTS Multi-parameter analysis of the phenotype of T-ALL cells revealed that each patient's cells were unique and could not be readily correlated with stages of T cell development. Similarly, the pattern of Ikaros expression varied among patients. In most patients, Ikaros mRNA was the dominant family member expressed, but some patients' cells contained mostly Helios, Aiolos, or Eos mRNA. Despite that most patients had elevated mRNA levels of Ikaros family members and unique patterns of mRNA splicing, most patients had significantly reduced protein levels of Ikaros and Aiolos. CONCLUSIONS Our analysis of the cell phenotype and Ikaros expression levels in T-ALL cells revealed the extent of heterogeneity among patients. While it is rarely possible to trace leukemic cells to their developmental origin, we found distinct patterns of Ikaros family mRNA levels in groups of patients. Further, mRNA and protein levels of Ikaros and Aiolos did not correlate, indicating that mRNA and protein levels are regulated via distinct mechanisms.
Collapse
Affiliation(s)
- Julie L Mitchell
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA;; US Military HIV Research Program, Silver Spring, MD 20910, USA
| | - Thomas M Yankee
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
86
|
Zhao S, Liu W, Li Y, Liu P, Li S, Dou D, Wang Y, Yang R, Xiang R, Liu F. Alternative Splice Variants Modulates Dominant-Negative Function of Helios in T-Cell Leukemia. PLoS One 2016; 11:e0163328. [PMID: 27681508 PMCID: PMC5040427 DOI: 10.1371/journal.pone.0163328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022] Open
Abstract
The molecular defects which lead to multistep incidences of human T-cell leukemia have yet to be identified. The DNA-binding protein Helios (known as IKZF2), a member of the Ikaros family of Krüppel-like zinc-finger proteins, functions pivotally in T-cell differentiation and activation. In this study, we identify three novel short Helios splice variants which are T-cell leukemic specific, and demonstrate their dominant-negative function. We then test the cellular localization of distinct Helios isoforms, as well as their capability to form heterodimer with Ikaros, and the association with complexes comprising histone deacetylase (HDAC). In addition, the ectopic expression of T-cell leukemic Helios isoforms interferes with T-cell proliferation and apoptosis. The gene expression profiling and pathway analysis indicated the enrichment of signaling pathways essential for gene expression, translation, cell cycle checkpoint, and response to DNA damage stimulus. These data indicate the molecular function of Helios to be involved in the leukemogenesis and phenotype of T-cell leukemia, and also reveal Helios deregulation as a novel marker for T-cell leukemia.
Collapse
Affiliation(s)
- Shaorong Zhao
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Wei Liu
- Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300308, China
| | - Yinghui Li
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Pengjiang Liu
- Department of Hematology, First-Central Hospital, Tianjin 300060, China
| | - Shufang Li
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Daolei Dou
- State Key Laboratory of Medical Chemical Biology, Tianjin 300070, China
| | - Yue Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin 300071, China
- * E-mail: (FL); (RX)
| | - Feifei Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
- * E-mail: (FL); (RX)
| |
Collapse
|
87
|
Mitchell JL, Seng A, Yankee TM. Expression patterns of Ikaros family members during positive selection and lineage commitment of human thymocytes. Immunology 2016; 149:400-412. [PMID: 27502439 DOI: 10.1111/imm.12657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/19/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022] Open
Abstract
The Ikaros family of transcription factors is essential for normal T-cell development, but their expression pattern in human thymocytes remains poorly defined. Our goal is to determine how protein levels of Ikaros, Helios and Aiolos change as human thymocytes progress through the positive selection and lineage commitment stages. To accomplish this goal, we used multi-parameter flow cytometry to define the populations in which positive selection and lineage commitment are most likely to occur. After human thymocytes express CD3 and receive positive selection signals, the cells down-regulate expression of CD4 to become transitional single-positive (TSP) CD8+ thymocytes. At this stage, there was a transient increase in the Ikaros, Helios and Aiolos protein levels. After the TSP CD8+ developmental stage, some thymocytes re-express CD4 and become CD3hi double-positive thymocytes before down-regulating CD8 to become mature single-positive CD4+ thymocytes. Except for regulatory T cells, Helios protein levels declined and Aiolos protein levels transiently increased during CD4+ T-cell maturation. For thymocytes progressing toward the CD8+ T-cell lineage, TSP CD8+ thymocytes increase their expression of CD3 and maintain high levels of Aiolos protein as the cells complete their maturation. In summary, we defined the TSP CD8+ developmental stage in human T-cell development and propose that this stage is where CD4/CD8 lineage commitment occurs. Ikaros, Helios and Aiolos each undergo a transient increase in protein levels at the TSP stage before diverging in their expression patterns at later stages.
Collapse
Affiliation(s)
- Julie L Mitchell
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Amara Seng
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Thomas M Yankee
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
88
|
Gowda C, Song C, Kapadia M, Payne JL, Hu T, Ding Y, Dovat S. Regulation of cellular proliferation in acute lymphoblastic leukemia by Casein Kinase II (CK2) and Ikaros. Adv Biol Regul 2016; 63:71-80. [PMID: 27666503 DOI: 10.1016/j.jbior.2016.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/23/2022]
Abstract
The IKZF1 gene encodes the Ikaros protein, a zinc finger transcriptional factor that acts as a master regulator of hematopoiesis and a tumor suppressor in leukemia. Impaired activity of Ikaros is associated with the development of high-risk acute lymphoblastic leukemia (ALL) with a poor prognosis. The molecular mechanisms that regulate Ikaros' function as a tumor suppressor and regulator of cellular proliferation are not well understood. We demonstrated that Ikaros is a substrate for Casein Kinase II (CK2), an oncogenic kinase that is overexpressed in ALL. Phosphorylation of Ikaros by CK2 impairs Ikaros' DNA-binding ability, as well as Ikaros' ability to regulate gene expression and function as a tumor suppressor in leukemia. Targeting CK2 with specific inhibitors restores Ikaros' function as a transcriptional regulator and tumor suppressor resulting in a therapeutic, anti-leukemia effect in a preclinical model of ALL. Here, we review the genes and pathways that are regulated by Ikaros and the molecular mechanisms through which Ikaros and CK2 regulate cellular proliferation in leukemia.
Collapse
Affiliation(s)
- Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Malika Kapadia
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Jonathon L Payne
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; Loma Linda University, Loma Linda, CA, USA
| | - Tommy Hu
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
89
|
The molecular mechanism of thalidomide analogs in hematologic malignancies. J Mol Med (Berl) 2016; 94:1327-1334. [DOI: 10.1007/s00109-016-1450-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/11/2016] [Accepted: 07/19/2016] [Indexed: 01/07/2023]
|
90
|
Advances in B-lymphoblastic leukemia: cytogenetic and genomic lesions. Ann Diagn Pathol 2016; 23:43-50. [DOI: 10.1016/j.anndiagpath.2016.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 12/11/2022]
|
91
|
Song C, Pan X, Ge Z, Gowda C, Ding Y, Li H, Li Z, Yochum G, Muschen M, Li Q, Payne KJ, Dovat S. Epigenetic regulation of gene expression by Ikaros, HDAC1 and Casein Kinase II in leukemia. Leukemia 2016; 30:1436-40. [PMID: 26639180 PMCID: PMC4889471 DOI: 10.1038/leu.2015.331] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- C Song
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, USA
| | - X Pan
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, USA
| | - Z Ge
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, USA
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - C Gowda
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, USA
| | - Y Ding
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, USA
| | - H Li
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, USA
| | - Z Li
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, USA
- Jilin Province Animal Embryo Engineering Key Laboratory, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - G Yochum
- Department of Biochemistry and Molecular Biology, Pennsylvania State University Medical College, Hershey, PA, USA
| | - M Muschen
- University of California San Francisco, San Francisco, CA, USA
| | - Q Li
- Department of Statistics, Pennsylvania State University, University Park, State College, PA, USA
| | - K J Payne
- Department of Pathology and Human Anatomy and Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - S Dovat
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA, USA
| |
Collapse
|
92
|
Yokota T, Kanakura Y. Genetic abnormalities associated with acute lymphoblastic leukemia. Cancer Sci 2016; 107:721-5. [PMID: 26991355 PMCID: PMC4968601 DOI: 10.1111/cas.12927] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/27/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) occurs with high frequency in childhood and is associated with high mortality in adults. Recent technical advances in next‐generation sequencing have shed light on genetic abnormalities in hematopoietic stem/progenitor cells as the precursor to ALL pathogenesis. Based on these genetic abnormalities, ALL is now being reclassified into newly identified subtypes. Philadelphia chromosome‐like B‐lineage ALL is one of the new high‐risk subtypes characterized by genetic alterations that activate various signaling pathways, including those involving cytokine receptors, tyrosine kinases, and epigenetic modifiers. Philadelphia chromosome‐like ALL is essentially heterogeneous; however, deletion mutations in the IKZF1 gene encoding the transcription factor IKAROS underlie many cases as a key factor inducing aggressive phenotypes and poor treatment responses. Whole‐genome sequencing studies of ALL patients and ethnically matched controls also identified inherited genetic variations in lymphoid neoplasm‐related genes, which are likely to increase ALL susceptibility. These findings are directly relevant to clinical hematology, and further studies on this aspect could contribute to accurate diagnosis, effective monitoring of residual disease, and patient‐oriented therapies.
Collapse
Affiliation(s)
- Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
93
|
Cho SJ, Kang H, Kim MY, Lee JE, Kim SJ, Nam SY, Kim JY, Kim HS, Pyo S, Yang KH. Site-Specific Phosphorylation of Ikaros Induced by Low-Dose Ionizing Radiation Regulates Cell Cycle Progression of B Lymphoblast Through CK2 and AKT Activation. Int J Radiat Oncol Biol Phys 2016; 94:1207-18. [DOI: 10.1016/j.ijrobp.2016.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/30/2015] [Accepted: 01/06/2016] [Indexed: 11/17/2022]
|
94
|
Kuehn HS, Boisson B, Cunningham-Rundles C, Reichenbach J, Stray-Pedersen A, Gelfand EW, Maffucci P, Pierce KR, Abbott JK, Voelkerding KV, South ST, Augustine NH, Bush JS, Dolen WK, Wray BB, Itan Y, Cobat A, Sorte HS, Ganesan S, Prader S, Martins TB, Lawrence MG, Orange JS, Calvo KR, Niemela JE, Casanova JL, Fleisher TA, Hill HR, Kumánovics A, Conley ME, Rosenzweig SD. Loss of B Cells in Patients with Heterozygous Mutations in IKAROS. N Engl J Med 2016; 374:1032-1043. [PMID: 26981933 PMCID: PMC4836293 DOI: 10.1056/nejmoa1512234] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is characterized by late-onset hypogammaglobulinemia in the absence of predisposing factors. The genetic cause is unknown in the majority of cases, and less than 10% of patients have a family history of the disease. Most patients have normal numbers of B cells but lack plasma cells. METHODS We used whole-exome sequencing and array-based comparative genomic hybridization to evaluate a subset of patients with CVID and low B-cell numbers. Mutant proteins were analyzed for DNA binding with the use of an electrophoretic mobility-shift assay (EMSA) and confocal microscopy. Flow cytometry was used to analyze peripheral-blood lymphocytes and bone marrow aspirates. RESULTS Six different heterozygous mutations in IKZF1, the gene encoding the transcription factor IKAROS, were identified in 29 persons from six families. In two families, the mutation was a de novo event in the proband. All the mutations, four amino acid substitutions, an intragenic deletion, and a 4.7-Mb multigene deletion involved the DNA-binding domain of IKAROS. The proteins bearing missense mutations failed to bind target DNA sequences on EMSA and confocal microscopy; however, they did not inhibit the binding of wild-type IKAROS. Studies in family members showed progressive loss of B cells and serum immunoglobulins. Bone marrow aspirates in two patients had markedly decreased early B-cell precursors, but plasma cells were present. Acute lymphoblastic leukemia developed in 2 of the 29 patients. CONCLUSIONS Heterozygous mutations in the transcription factor IKAROS caused an autosomal dominant form of CVID that is associated with a striking decrease in B-cell numbers. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- H S Kuehn
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - B Boisson
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - C Cunningham-Rundles
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J Reichenbach
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - A Stray-Pedersen
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - E W Gelfand
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - P Maffucci
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - K R Pierce
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J K Abbott
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - K V Voelkerding
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - S T South
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - N H Augustine
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J S Bush
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - W K Dolen
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - B B Wray
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - Y Itan
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - A Cobat
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - H S Sorte
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - S Ganesan
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - S Prader
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - T B Martins
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - M G Lawrence
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J S Orange
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - K R Calvo
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J E Niemela
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J-L Casanova
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - T A Fleisher
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - H R Hill
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - A Kumánovics
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - M E Conley
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - S D Rosenzweig
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| |
Collapse
|
95
|
DeVilbiss AW, Tanimura N, McIver SC, Katsumura KR, Johnson KD, Bresnick EH. Navigating Transcriptional Coregulator Ensembles to Establish Genetic Networks: A GATA Factor Perspective. Curr Top Dev Biol 2016; 118:205-44. [PMID: 27137658 DOI: 10.1016/bs.ctdb.2016.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complex developmental programs require orchestration of intrinsic and extrinsic signals to control cell proliferation, differentiation, and survival. Master regulatory transcription factors are vital components of the machinery that transduce these stimuli into cellular responses. This is exemplified by the GATA family of transcription factors that establish cell type-specific genetic networks and control the development and homeostasis of systems including blood, vascular, adipose, and cardiac. Dysregulated GATA factor activity/expression underlies anemia, immunodeficiency, myelodysplastic syndrome, and leukemia. Parameters governing the capacity of a GATA factor expressed in multiple cell types to generate cell type-specific transcriptomes include selective coregulator usage and target gene-specific chromatin states. As knowledge of GATA-1 mechanisms in erythroid cells constitutes a solid foundation, we will focus predominantly on GATA-1, while highlighting principles that can be extrapolated to other master regulators. GATA-1 interacts with ubiquitous and lineage-restricted transcription factors, chromatin modifying/remodeling enzymes, and other coregulators to activate or repress transcription and to maintain preexisting transcriptional states. Major unresolved issues include: how does a GATA factor selectively utilize diverse coregulators; do distinct epigenetic landscapes and nuclear microenvironments of target genes dictate coregulator requirements; and do gene cohorts controlled by a common coregulator ensemble function in common pathways. This review will consider these issues in the context of GATA factor-regulated hematopoiesis and from a broader perspective.
Collapse
Affiliation(s)
- A W DeVilbiss
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - N Tanimura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - S C McIver
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K R Katsumura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K D Johnson
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - E H Bresnick
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States.
| |
Collapse
|
96
|
Francis OL, Milford TAM, Beldiman C, Payne KJ. Fine-tuning patient-derived xenograft models for precision medicine approaches in leukemia. J Investig Med 2016; 64:740-4. [PMID: 26912005 DOI: 10.1136/jim-2016-000076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2016] [Indexed: 12/23/2022]
Abstract
Many leukemias are characterized by well-known mutations that drive oncogenesis. Mice engineered with these mutations provide a foundation for understanding leukemogenesis and identifying therapies. However, data from whole genome studies provide evidence that malignancies are characterized by multiple genetic alterations that vary between patients, as well as inherited genetic variation that can also contribute to oncogenesis. Improved outcomes will require precision medicine approaches-targeted therapies tailored to malignancies in each patient. Preclinical models that reflect the range of mutations and the genetic background present in patient populations are required to develop and test the combinations of therapies that will be used to provide precision medicine therapeutic strategies. Patient-derived xenografts (PDX) produced by transplanting leukemia cells from patients into immune deficient mice provide preclinical models where disease mechanisms and therapeutic efficacy can be studied in vivo in context of the genetic variability present in patient tumors. PDX models are possible because many elements in the bone marrow microenvironment show cross-species activity between mice and humans. However, several cytokines likely to impact leukemia cells are species-specific with limited activity on transplanted human leukemia cells. In this review we discuss the importance of PDX models for developing precision medicine approaches to leukemia treatment. We illustrate how PDX models can be optimized to overcome a lack of cross-species cytokine activity by reviewing a recent strategy developed for use with a high-risk form of B-cell acute lymphoblastic leukemia (B-ALL) that is characterized by overexpression of CRLF2, a receptor component for the cytokine, TSLP.
Collapse
Affiliation(s)
- Olivia L Francis
- Department of Pathology and Human Anatomy, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Terry-Ann M Milford
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Cornelia Beldiman
- Department of Pathology and Human Anatomy, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Kimberly J Payne
- Department of Pathology and Human Anatomy, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
97
|
Abstract
In this issue of Blood, Song et al show that tumor suppressor activity of Ikaros is achieved though repression of cell cycle and phosphatidylinositol-3 (PI3) kinase pathway genes and can be reactivated through pharmacologic inhibition of casein kinase 2 (CK2) to eradicate disease in high-risk B-cell acute lymphoblastic leukemia (B-ALL).
Collapse
|
98
|
Wang H, Song C, Ding Y, Pan X, Ge Z, Tan BH, Gowda C, Sachdev M, Muthusami S, Ouyang H, Lai L, Francis OL, Morris CL, Abdel-Azim H, Dorsam G, Xiang M, Payne KJ, Dovat S. Transcriptional Regulation of JARID1B/KDM5B Histone Demethylase by Ikaros, Histone Deacetylase 1 (HDAC1), and Casein Kinase 2 (CK2) in B-cell Acute Lymphoblastic Leukemia. J Biol Chem 2015; 291:4004-18. [PMID: 26655717 DOI: 10.1074/jbc.m115.679332] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 12/26/2022] Open
Abstract
Impaired function of the Ikaros (IKZF1) protein is associated with the development of high-risk B-cell precursor acute lymphoblastic leukemia (B-ALL). The mechanisms of Ikaros tumor suppressor activity in leukemia are unknown. Ikaros binds to the upstream regulatory elements of its target genes and regulates their transcription via chromatin remodeling. Here, we report that Ikaros represses transcription of the histone H3K4 demethylase, JARID1B (KDM5B). Transcriptional repression of JARID1B is associated with increased global levels of H3K4 trimethylation. Ikaros-mediated repression of JARID1B is dependent on the activity of the histone deacetylase, HDAC1, which binds to the upstream regulatory element of JARID1B in complex with Ikaros. In leukemia, JARID1B is overexpressed, and its inhibition results in cellular growth arrest. Ikaros-mediated repression of JARID1B in leukemia is impaired by pro-oncogenic casein kinase 2 (CK2). Inhibition of CK2 results in increased binding of the Ikaros-HDAC1 complex to the promoter of JARID1B, with increased formation of trimethylated histone H3 lysine 27 and decreased histone H3 Lys-9 acetylation. In cases of high-risk B-ALL that carry deletion of one Ikaros (IKZF1) allele, targeted inhibition of CK2 restores Ikaros binding to the JARID1B promoter and repression of JARID1B. In summary, the presented data suggest a mechanism through which Ikaros and HDAC1 regulate the epigenetic signature in leukemia: via regulation of JARID1B transcription. The presented data identify JARID1B as a novel therapeutic target in B-ALL and provide a rationale for the use of CK2 inhibitors in the treatment of high-risk B-ALL.
Collapse
Affiliation(s)
- Haijun Wang
- From the Department of Pathology, Xinxiang Medical University, Xinxiang 453003, Henan, China, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Chunhua Song
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Yali Ding
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Xiaokang Pan
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Zheng Ge
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Bi-Hua Tan
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Chandrika Gowda
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Mansi Sachdev
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Sunil Muthusami
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Hongsheng Ouyang
- From the Department of Pathology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Liangxue Lai
- From the Department of Pathology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | | | | | - Hisham Abdel-Azim
- the Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California 90027
| | - Glenn Dorsam
- North Dakota State University, Fargo, North Dakota 58108, and
| | - Meixian Xiang
- the College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
| | | | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033,
| |
Collapse
|
99
|
Song C, Gowda C, Pan X, Ding Y, Tong Y, Tan BH, Wang H, Muthusami S, Ge Z, Sachdev M, Amin SG, Desai D, Gowda K, Gowda R, Robertson GP, Schjerven H, Muschen M, Payne KJ, Dovat S. Targeting casein kinase II restores Ikaros tumor suppressor activity and demonstrates therapeutic efficacy in high-risk leukemia. Blood 2015; 126:1813-22. [PMID: 26219304 PMCID: PMC4600018 DOI: 10.1182/blood-2015-06-651505] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/16/2015] [Indexed: 12/13/2022] Open
Abstract
Ikaros (IKZF1) is a tumor suppressor that binds DNA and regulates expression of its target genes. The mechanism of Ikaros activity as a tumor suppressor and the regulation of Ikaros function in leukemia are unknown. Here, we demonstrate that Ikaros controls cellular proliferation by repressing expression of genes that promote cell cycle progression and the phosphatidylinositol-3 kinase (PI3K) pathway. We show that Ikaros function is impaired by the pro-oncogenic casein kinase II (CK2), and that CK2 is overexpressed in leukemia. CK2 inhibition restores Ikaros function as transcriptional repressor of cell cycle and PI3K pathway genes, resulting in an antileukemia effect. In high-risk leukemia where one IKZF1 allele has been deleted, CK2 inhibition restores the transcriptional repressor function of the remaining wild-type IKZF1 allele. CK2 inhibition demonstrated a potent therapeutic effect in a panel of patient-derived primary high-risk B-cell acute lymphoblastic leukemia xenografts as indicated by prolonged survival and a reduction of leukemia burden. We demonstrate the efficacy of a novel therapeutic approach for high-risk leukemia: restoration of Ikaros tumor suppressor activity via inhibition of CK2. These results provide a rationale for the use of CK2 inhibitors in clinical trials for high-risk leukemia, including cases with deletion of one IKZF1 allele.
Collapse
Affiliation(s)
- Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Xiaokang Pan
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Yongqing Tong
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Bi-Hua Tan
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Haijun Wang
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Sunil Muthusami
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Zheng Ge
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Mansi Sachdev
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Shantu G Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Dhimant Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Krishne Gowda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Raghavendra Gowda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Gavin P Robertson
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Hilde Schjerven
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA; and
| | - Markus Muschen
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA; and
| | - Kimberly J Payne
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| |
Collapse
|
100
|
Lindqvist CM, Nordlund J, Ekman D, Johansson A, Moghadam BT, Raine A, Övernäs E, Dahlberg J, Wahlberg P, Henriksson N, Abrahamsson J, Frost BM, Grandér D, Heyman M, Larsson R, Palle J, Söderhäll S, Forestier E, Lönnerholm G, Syvänen AC, Berglund EC. The mutational landscape in pediatric acute lymphoblastic leukemia deciphered by whole genome sequencing. Hum Mutat 2015; 36:118-28. [PMID: 25355294 PMCID: PMC4309499 DOI: 10.1002/humu.22719] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/22/2014] [Indexed: 12/15/2022]
Abstract
Genomic characterization of pediatric acute lymphoblastic leukemia (ALL) has identified distinct patterns of genes and pathways altered in patients with well-defined genetic aberrations. To extend the spectrum of known somatic variants in ALL, we performed whole genome and transcriptome sequencing of three B-cell precursor patients, of which one carried the t(12;21)ETV6-RUNX1 translocation and two lacked a known primary genetic aberration, and one T-ALL patient. We found that each patient had a unique genome, with a combination of well-known and previously undetected genomic aberrations. By targeted sequencing in 168 patients, we identified KMT2D and KIF1B as novel putative driver genes. We also identified a putative regulatory non-coding variant that coincided with overexpression of the growth factor MDK. Our results contribute to an increased understanding of the biological mechanisms that lead to ALL and suggest that regulatory variants may be more important for cancer development than recognized to date. The heterogeneity of the genetic aberrations in ALL renders whole genome sequencing particularly well suited for analysis of somatic variants in both research and diagnostic applications.
Collapse
Affiliation(s)
- Carl Mårten Lindqvist
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|