51
|
Millard JT, Katz JL, Goda J, Frederick ED, Pierce SE, Speed TJ, Thamattoor DM. DNA interstrand cross-linking by a mycotoxic diepoxide. Biochimie 2004; 86:419-23. [PMID: 15358058 DOI: 10.1016/j.biochi.2004.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 03/25/2004] [Indexed: 11/19/2022]
Abstract
The diepoxide mycotoxin (2R, 3R, 8R, 9R)-4,6-decadiyne-2,3:8,9-diepoxy-1,10-diol (repandiol) was both isolated from the mushroom Hydnum repandum and synthesized de novo. Repandiol was found to form interstrand cross-links within a restriction fragment of DNA, linking deoxyguanosines on opposite strands primarily within the 5'-GNC and 5'-GNNC sequences preferred by diepoxyoctane. However, repandiol was a significantly less efficient cross-linker than either of the diepoxyalkanes (diepoxyoctane and diepoxybutane) to which it was compared.
Collapse
Affiliation(s)
- J T Millard
- Department of Chemistry, Colby College, 5757 Mayflower Hill Drive, Maine Waterville, ME 04901, USA.
| | | | | | | | | | | | | |
Collapse
|
52
|
Fred C, Kautiainen A, Athanassiadis I, Törnqvist M. Hemoglobin Adduct Levels in Rat and Mouse Treated with 1,2:3,4-Diepoxybutane. Chem Res Toxicol 2004; 17:785-94. [PMID: 15206899 DOI: 10.1021/tx034214g] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For cancer risk assessment of 1,3-butadiene from rodent cancer test data, the in vivo doses of formed 1,2:3,4-diepoxybutane (DEB) should be known. In vivo doses of DEB were measured through a specific reaction product with hemoglobin (Hb), a ring-closed adduct, N,N-(2,3-dihydroxy-1,4-butadiyl)valine (Pyr-Val), to N-terminal valines. An analytical method based on tryptic digestion of Hb and quantification of Pyr-modified heptapeptides by LC-MS/MS has been further developed and applied in vivo to DEB-treated rats. Furthermore, N-(2,3,4-trihydroxybutyl)valine adducts (THB-Val) to the N-terminal valine in Hb were measured in rats and mice treated with DEB and in a complementary experiment with 1,2-epoxy-3,4-butanediol (EBdiol), using a modified Edman degradation method and GC-MS/MS. In vitro reactions of hemolysate with DEB and EBdiol were used to measure reaction rates for adduct formation needed for calculation of doses and rates elimination in vivo. The results showed that the level of the Pyr-Val adduct per administered dose of DEB was approximately the same in rats as had earlier been observed in mice [Kautiainen et al. (2000) Rapid Commun. Mass Spectrom. 14, 1848-1853]. Levels of the THB-Val adduct after DEB treatment were 3-4 times higher in rat than in mouse, probably reflecting an enhanced hydrolysis of DEB to EBdiol catalyzed by epoxide hydrolase. After EBdiol treatment, the THB-Val adduct levels were about the same in rat and mouse. Calculations from in vitro data show that the Pyr-Val adduct is a relevant monitor for the in vivo dose of DEB and that THB-Val primarily reflects doses to EBdiol. The calculated rates of formation of adducts and rates of elimination agree with expectations. Procedures for quantification of Hb adducts as modified peptides as well as preparation and characterization of peptide standards have been evaluated.
Collapse
Affiliation(s)
- Charlotta Fred
- Department of Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
53
|
Fred C, Haglund J, Alsberg T, Rydberg P, Minten J, Törnqvist M. Characterization of alkyl-cobalamins formed on trapping of epoxide metabolites of 1,3-butadiene. J Sep Sci 2004; 27:607-12. [PMID: 15335048 DOI: 10.1002/jssc.200301689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Analytical methods facilitating studies of electrophilically reactive and genotoxic compounds in vitro and in vivo are needed. The strong nucleophile, cob(I)alamin, formed by reduction of Vitamin B12 [cob(III)alamin], may be used for trapping and analysis of 1,2-epoxides and other electrophiles. In the present study, cob(I)alamin is evaluated as an analytical tool for 1,2-epoxide metabolites (oxiranes) of 1,3-butadiene. Products of reaction of cob(I)alamin with 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB), and 1,2-epoxy-3,4-butanediol (EBdiol) have been analyzed by reversed phase high performance liquid chromatography (HPLC) coupled on-line to electrospray ionization mass spectrometry (ESI-MS) and ultraviolet diode array detection (UV-DAD). It was shown that a specific alkyl-CbI complex is formed for each metabolite and that it was possible to discriminate between the products by HPLC-UV and by LC-MS. Quantification of DEB with the method by use of another 1,2-epoxide as an internal standard was successfully performed. The possibility of using cob(I)alamin for trapping and analysis of the three oxirane metabolites of 1,3-butadiene will facilitate quantitative comparisons of species in vitro with regard to metabolism of 1,3-butadiene.
Collapse
Affiliation(s)
- Charlotta Fred
- Department of Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
54
|
Kostoryz EL, Wetmore LA, Brockmann WG, Yourtee DM, Eick JD. Genotoxicity assessment of oxirane-based dental monomers in mammalian cells. ACTA ACUST UNITED AC 2004; 68:660-7. [PMID: 14986321 DOI: 10.1002/jbm.a.20077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The potential use of oxirane (epoxy) monomers in dental composite development raises the concern to test their genetic safety. Oxiranes can interact with DNA resulting in DNA damage, mutations, and possibly carcinogenesis. Our objective was to evaluate DNA damage and cell-cycle disruption in mammalian cells after exposure to epoxy monomers. The experimental oxiranes were Araldite trade mark GY 281, Cyracure trade mark UVR 6105 and 1,3-dioxane-2,2'-1,3-dioxane-5',4'-bicyclo[4.1.0] heptane (DECHE-TOSU). L929 fibroblast cells were incubated with the monomer for 7 and 24 h at 37 degrees C/5% CO(2). After incubation, cells were subjected to DNA damage alkaline unwinding assay and flow cytometry cell-cycle analysis. Lack of DNA damage and cell-cycle effects were observed with DECHE-TOSU. Exposure to subtoxic doses of Araldite trade mark GY 281 or Cyracure trade mark UVR 6105 caused DNA damage and cell cycle disruption. A significant (p < 0.01) effect for Araldite trade mark GY 281 was observed with cell populations in G1 and G2/M when compared to DMSO solvent control. Similar comparisons revealed significant differences in G2/M cell cycle population after 24-h exposure to 100 microM Cyracure trade mark UVR 6105. For comparison, BISGMA was evaluated to produce DNA damage but without cell-cycle effects suggesting DNA repair mechanisms were effective. Our findings with DECHE-TOSU, Araldite trade mark GY 281 and Cyracure trade mark UVR 6105 indicated cell-cycle disruption followed DNA damage.
Collapse
Affiliation(s)
- Elisabet L Kostoryz
- University of Missouri-Kansas City, Schools of Dentistry and Pharmacy, School of Pharmacy, 2411 Holmes Street, Kansas City, Missouri 64108, USA.
| | | | | | | | | |
Collapse
|
55
|
Suh I, Zhang R, Molina LT, Molina MJ. Oxidation mechanism of aromatic peroxy and bicyclic radicals from OH-toluene reactions. J Am Chem Soc 2003; 125:12655-65. [PMID: 14531710 DOI: 10.1021/ja0350280] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Theoretical calculations have been performed to investigate mechanistic features of OH-initiated oxidation reactions of toluene. Aromatic peroxy radicals arising from initial OH and subsequent O(2) additions to the toluene ring are shown to cyclize to form bicyclic radicals rather than undergoing reaction with NO under atmospheric conditions. Isomerization of bicyclic radicals to more stable epoxide radicals possesses significantly higher barriers and, hence, has slower rates than O(2) addition to form bicyclic peroxy radicals. At each OH attachment site, only one isomeric pathway via the bicyclic peroxy radical is accessible to lead to ring cleavage. The study provides thermochemical and kinetic data for quantitative assessment of the photochemical production potential of ozone and formation of toxic products and secondary organic aerosol from toluene oxidation.
Collapse
Affiliation(s)
- Inseon Suh
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
56
|
Harder A, Escher BI, Schwarzenbach RP. Applicability and limitation of OSARs for the toxicity of electrophilic chemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2003; 37:4955-4961. [PMID: 14620823 DOI: 10.1021/es0341992] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The appropriate selection and application of quantitative structure-activity relationships (QSARs) for the prediction of toxicity is based on the prior assignment of a chemical to its mode of toxic action. This classification is often derived from structural characteristics with the underlying assumption that chemically similar compounds have similar mechanisms of action, which is often but not necessarily the case. Instead of using structural characteristics for classification toward a mode of toxic action, we used Escherichia coli based bioanalytical assays to classify electrophilic chemicals. Analyzing a series of reactive organochlorines, epoxides, and compounds with an activated double bond, three subclasses of reactive toxicity were distinguished: "glutathione depletion-related toxicity", "DNA damage", and "unspecific reactivity". For both subsets of specifically reacting compounds a direct correlation between effects and chemical reactivity was found. Reaction rate constants with either glutathione or 2'-deoxyguanosine, which was used as a model for complex DNA, served well to set up preliminary QSARs for either glutathione depletion-related toxicity or toxicity based on DNA damage in the model organism E. coli. The applicability of QSARs for electrophilic chemicals based on mechanistically relevant reaction rate constants is a priori limited to a small subset of compounds with strictly identical mechanism of toxic action and similar metabolic rates. In contrast, the proposed bioanalytical assays not only allowed the experimental identification of molecular mechanisms underlying the observable toxicity but also their toxicity values are applicable to quantitatively predict toxic effects in higher organisms by linear correlation models, independent of the assigned mode of toxic action.
Collapse
Affiliation(s)
- Angela Harder
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), PO Box 611, CH-8600 Duebendorf, Switzerland
| | | | | |
Collapse
|
57
|
Ríos-Blanco MN, Ranasinghe A, Lee MS, Faller T, Filser JG, Swenberg JA. Molecular dosimetry of N7-(2-hydroxypropyl)guanine in tissues of F344 rats after inhalation exposure to propylene oxide. Carcinogenesis 2003; 24:1233-8. [PMID: 12807731 DOI: 10.1093/carcin/bgg087] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Propylene oxide (PO) is a high-volume chemical intermediate that causes a low incidence of nasal tumors in rodents exposed to high concentrations (> or =300 p.p.m.). PO reacts with DNA forming mainly N7-(2-hydroxypropyl)guanine (7-HPG). The exposure-dependent accumulation of 7-HPG in nasal respiratory epithelium (NRE), lung and liver was determined in male F344 rats exposed to PO (0, 5, 25, 50, 300 or 500 p.p.m.) by the inhalation route for 3 or 20 days (6 h/day; 5 days/week). These exposures ranged from low concentrations, such as those potentially occurring in the workplace, to high concentrations that proved to be carcinogenic in rodents. Analysis of 7-HPG in DNA by gas chromatography-high-resolution mass spectrometry (GC-HRMS) showed a linear response in 7-HPG for all three tissues after 3 days of exposure, and for NRE and lung after 20 days of exposure. A slightly sublinear response in 7-HPG was observed in liver after 20 days of exposure. For both exposure periods, the NRE had the highest concentration of 7-HPG, followed by lung and liver. The amount of 7-HPG in NRE was seven and 17 times higher than in lung and liver, respectively, for the 3 day exposures. For the 20 day exposures, the concentration of 7-HPG in NRE was six and 13 times higher than that in lung and liver, respectively, over the concentration range studied. These results demonstrate a much higher extent of DNA alkylation in the target tissue for carcinogenesis, than in non-target tissues. As PO-induced tumor formation was highly sublinear, occurring only at high vapor concentrations, whereas 7-HPG adducts were shown to be linearly dependent on airborne concentration, these results suggest that 7-HPG is not sufficient for PO nasal carcinogenesis and that other factors such as increased cell proliferation may be important in determining the tumor exposure response.
Collapse
Affiliation(s)
- Melva N Ríos-Blanco
- Curriculum in Toxicology, Campus Box 7431, Rosenau Hall 253c, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
58
|
Chiappe C, De Rubertis A, Piegari G, Amato G, Gervasi PG. Stereochemical aspects in the 4-vinylcyclohexene biotransformation with rat liver microsomes and purified cytochrome P450s: diepoxide formation and hydrolysis. Chem Res Toxicol 2003; 16:56-65. [PMID: 12693031 DOI: 10.1021/tx025573z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The stereochemical course of the biotransformation of 1,2-monoepoxides of 4-vinylcyclohexene (2 and 3) by liver microsomes from control and induced rats and by purified P4502B1 and P4502E1 has been determined. The epoxidation of monoexpodies cis-4-vinylcyclohexene 1,2-epoxide (2) and trans-4-vinylcyclohexene 1,2-epoxide (3) gives the corresponding eight isomeric diepoxides cis-4-vinylcyclohexene diepoxide (9) and trans-4-vinylcyclohexene diepoxide (10). The stereoselectivity of this process is affected by P450 induction. Phenobarbital is able to enhance the yield of epoxidation to give preferentially diepoxide (1R, 2S, 4R, 7R)-trans-10b. This enantiomer is also formed as nearly the sole product by P450-catalyzed epoxidation of (1R,2S,4R)-trans-3b, the monoepoxide that, as a consequence of the selective formation from 4-vinylcyclohexene and/or reduced elimination by epoxide hydrolase, tends to accumulate in rat. Also, the P4502B1 but not 2E1, in a reconstituted system, is able to perform the epoxidation of (1R,2S,4R)-trans-3b to produce selectively the same diepoxide. Diepoxides cis-9 and trans-10 are biotransformed by mEH catalyzed hydrolysis. Although the hydrolysis of diepoxides 9 is characterized by a lower substrate enantioselection, the reaction of diepoxides 10 occurs with a good substrate enantioselectivity favoring the hydrolysis of the epoxides (1R,2S,4R,7S)-trans-10b and (1S,2R,4S,7S)-trans-10a. Diepoxide (1R,2S,4R,7R)-trans-10b is therefore the isomer primarily formed by P450-catalyzed oxidation of monoepoxide trans-3, and it is also the compound showing the lower propensity to undergo mEH-catalyzed hydrolysis. On the basis of this result, the ovotoxicity of 4-vinylcyclohexene is expected to be due to the stereoisomer diepoxide (1R,2S,4R,7R)-trans-10b, whose biological reactivity, via cross-linking, may be strongly different to the other isomer diepoxides, being dependent by its specific conformation.
Collapse
Affiliation(s)
- Cinzia Chiappe
- Dipartimento di Chimica Bioorganica e Biofarmacia, Università di Pisa, via Bonanno 33, 56126 Pisa, Italy.
| | | | | | | | | |
Collapse
|
59
|
Kolman A, Chovanec M, Osterman-Golkar S. Genotoxic effects of ethylene oxide, propylene oxide and epichlorohydrin in humans: update review (1990-2001). Mutat Res 2002; 512:173-94. [PMID: 12464351 DOI: 10.1016/s1383-5742(02)00067-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ethylene oxide (EtO), propylene oxide (PO) and epichlorohydrin (ECH) are important industrial chemicals widely used as intermediates for various synthetic products. EtO and PO are also environmental pollutants. In this review we summarize data published during the period 1990-2001 concerning both the genotoxic and carcinogenic effects of these epoxides in humans. The use of DNA and hemoglobin adducts as biomarkers of exposure and the role of polymorphism, as well as confounding factors, are discussed. We have also included recent in vitro data comprising genotoxic effects induced by EtO, PO and ECH in mammalian cells. The uncertainties regarding cancer risk estimation still persist, in spite of the large database collected.
Collapse
Affiliation(s)
- Ada Kolman
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91, Stockholm, Sweden.
| | | | | |
Collapse
|
60
|
Schweikl H, Schmalz G, Weinmann W. Mutagenic activity of structurally related oxiranes and siloranes in Salmonella typhimurium. Mutat Res 2002; 521:19-27. [PMID: 12438000 DOI: 10.1016/s1383-5718(02)00207-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ring-opening molecules like oxiranes (epoxides) maybe suitable for the development of non-shrinking dental composite materials. Since oxiranes are reactive molecules, they can cause adverse biological effects in living organisms. The introduction of siloranes, a merger of silane and oxirane, may solve this problem. Here, new oxiranes and siloranes were analyzed for the induction of mutations in Salmonella typhimurium (TA97a, TA98, TA100, and TA102), and a reactive oxirane molecule served as a reference. This chemical, epoxy cyclohexyl methyl-epoxy cyclohexane carboxylate (Est-Ep) tested positive in S. typhimurium TA100. The numbers of mutants were about 3-10-fold higher than controls in the presence of a metabolically active S9 fraction isolated from rat liver. Only a weak mutagenic effect was observed after direct testing (without S9). Di(cyclohexene-epoxidemethyl)ether (Eth-Ep) also caused a slight increase of mutant numbers in TA100 both in the presence and absence of S9. In contrast, no effects were detected with the large oxirane molecules, 2,2-bis(4,1-phenylenoxy-3,1-propanediyl-3-oxatricyclo [3.2.1.0(2,4)]octylcarboxy) propylidene (Nor-BP-Ep) and 2,2-bis(4,1-phenylenoxy-3,1-propanediyl-3,4-epoxycyclo-hexylcarboxylic-acid) propylidene (Est-BP-Ep). As to the siloranes, 1,4-bis(2,3-epoxypropyloxypropyl-dimethylsilyl)-benzene (Phen-Glyc) was a direct mutagen in S. typhimurium TA100 and TA102. This weak but dose-related increase of revertants was even enhanced by S9. Other siloranes, like di-3,4-epoxy cyclohexylmethyl-dimethyl-silane (DiMe-Sil), methyl-bis[2-(7-oxabicyclo[4.1.0]hept-3-yl)phenyl silane (Ph-Sil), and 1,3,5,7-tetrakis(ethyl cyclohexane epoxy)-1,3,5,7-tetramethyl-cyclotetrasiloxane (TET-Sil) tested negative in all S. typhimurium strains. All compounds will be further analyzed for the formation of chromosomal aberrations in mammalian cell cultures.
Collapse
Affiliation(s)
- Helmut Schweikl
- Department of Operative Dentistry and Periodontology, University of Regensburg, D-93042 Regensburg, Germany.
| | | | | |
Collapse
|
61
|
Reisen F, Arey J. Reactions of hydroxyl radicals and ozone with acenaphthene and acenaphthylene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2002; 36:4302-4311. [PMID: 12387402 DOI: 10.1021/es025761b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Acenaphthene and acenaphthylene are polycyclic aromatic hydrocarbons (PAHs) emitted into the atmosphere from a variety of incomplete combustion sources such as diesel exhaust. Both PAHs are present in the gas phase under typical atmospheric conditions and therefore can undergo atmospheric gas-phase reactions with the hydroxyl (OH) radical and for acenaphthylene with ozone. Using a relative rate method, rate constants have been measured at 296 +/- 2 K for the OH radical reactions with acenaphthene and acenaphthylene of (in units of 10(-11) cm3 molecule(-1) s(-1)) 8.0 +/- 0.4 and 12.4 +/- 0.7, respectively, and for the O3 reaction with acenaphthylene of (1.6 +/- 0.1) x 10(-16) cm3 molecule(-1) s(-1). The products of the gas-phase reactions of acenaphthene and acenaphthylene and their fully deuterated analogues have been investigated using in situ atmospheric pressure ionization tandem mass spectrometry (API-MS) and gas chromatography-mass spectrometry (GC-MS). The major products identified from the OH radical-initiated reaction of acenaphthene and acenaphthylene were a 10 carbon ring-opened product and a dialdehyde, respectively. The major product observed from the API-MS analysis of the O3 reaction with acenaphthylene was a secondary ozonide, which was not observed by GC-MS.
Collapse
Affiliation(s)
- Fabienne Reisen
- Air Pollution Research Center, Interdepartmental Program in Environmental Toxicology, Riverside, California 92521, USA
| | | |
Collapse
|
62
|
Ríos-Blanco MN, Ranasinghe A, Upton P, Lee MS, Filser JG, Swenberg JA. Exposure-dependent accumulation of N-(2-hydroxypropyl)valine in hemoglobin of F344 rats exposed to propylene oxide by the inhalation route. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 778:383-91. [PMID: 12376143 DOI: 10.1016/s1570-0232(02)00115-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The detection of hemoglobin adducts by mass spectrometry is a very sensitive and specific measurement of the extent of covalent binding of electrophilic chemicals. The exposure-dependent accumulation of N-(2-hydroxypropyl)valine (N-HPVal) in globin of rats exposed to propylene oxide (PO) (0, 5, 25, 50, 300 or 500 ppm) by the inhalation route was measured to assess the utility of Hb adducts as biomarkers of exposure. Analysis of N-HPVal by gas-chromatography tandem mass spectrometry showed a linear exposure-dependent response for adduct accumulation in globin of rats exposed to PO for 3 days (6 h/day). After 20 days of exposure (6 h/day; 5 days/week), the exposure-response curve was slightly sub-linear. DNA adducts had been measured in several organs of the same animals in a companion study. The dose-response for accumulation of DNA adducts was similar to that obtained for Hb adducts. However, the number of DNA adducts varied by 17-fold between different tissues. The highest number of DNA adducts was found in respiratory nasal tissue, followed by lung and then liver. These data demonstrate that hemoglobin adducts provide a sensitive dosimeter for systemic exposure, but cannot be used to predict the extent of DNA binding in individual tissues. Furthermore, the exposure-response curve for both hemoglobin and DNA adduct accumulation does not reflect the tumor incidence curve for PO, providing evidence that the assessment of risk to cancer is more complex than simple biomarker measurements. When the present rat data were compared with recent N-HPVal measurements in humans, similar binding was found.
Collapse
Affiliation(s)
- Melva N Ríos-Blanco
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7400, USA
| | | | | | | | | | | |
Collapse
|
63
|
Boogaard PJ. Use of haemoglobin adducts in exposure monitoring and risk assessment. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 778:309-22. [PMID: 12376137 DOI: 10.1016/s0378-4347(01)00445-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many industrial bulk chemicals are oxiranes or alkenes that are easily metabolised to oxiranes in mammalian systems. Many oxiranes may react with DNA and are therefore mutagenic in vitro. Some oxiranes have been shown to be carcinogenic in rodents in vivo as well. Despite the very limited evidence of the carcinogenicity of oxiranes in humans, they should be considered potential human carcinogens. As a consequence, exposure to these compounds should be minimised and controlled. Twenty-five years ago, Ehrenberg and co-workers suggested that exposure to oxiranes might be determined through the measurement of the adducts they form with haemoglobin (Hb). Ten years later, a modification of the Edman degradation was developed at Stockholm University that allowed determination of adducts with the N-terminal valine of Hb by GC-MS. In our laboratory, this methodology was modified and adapted for analysis on an industrial scale. Since 1987, exposure of operators in our facilities to ethylene oxide (EO) has been routinely monitored by determination of N-(2-hydroxyethyl)valine in Hb. Biological monitoring programmes for propylene oxide (PO) and 1,3-butadiene (BD) were developed later. In this review, the methodology and its results are discussed as a tool in human risk assessment of industrial chemicals. Two major advantages of Hb adduct determinations in risk assessment are (1) the qualitative information on the structure of reactive intermediates that may be obtained through the mass spectrometry, which may provide insight in the molecular toxicology of compounds such as BD, and (2) the possibility of reliable determination of exposure over periods of several months with limited number of samples for compounds such as ethylene oxide (EO), propylene oxide (PO) and BD which form stable adducts with Hb. Since good correlations between the airborne concentrations of these chemicals with their respective adducts have been established, Hb adducts can also be used to quantitate airborne exposure which is of paramount importance as exposure assessment is usually one of the weaker parameters in risk assessment.
Collapse
Affiliation(s)
- Peter J Boogaard
- Health Services, Shell International BV, PO Box 162, 2501 AN The Hague, The Netherlands.
| |
Collapse
|
64
|
Boulard Y, Fazakerley GV, Sowers LC. The solution structure of an oligonucleotide duplex containing a 2'-deoxyadenosine-3-(2-hydroxyethyl)- 2'-deoxyuridine base pair determined by NMR and molecular dynamics studies. Nucleic Acids Res 2002; 30:1371-8. [PMID: 11884635 PMCID: PMC101359 DOI: 10.1093/nar/30.6.1371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2001] [Revised: 01/25/2002] [Accepted: 01/25/2002] [Indexed: 11/13/2022] Open
Abstract
Determination of the solution structure of the duplex d(GCAAGTC(HE)AAAACG)*d(CGTTTTAGACTTGC) containing a 3-(2-hydroxyethyl)-2'-deoxyuridine*deoxyadenine (HE*A) base pair is reported. The three-dimensional solution structure, determined starting from 512 models via restrained molecular mechanics using inter-proton distances and torsion angles, converged to two final families of structures. For both families the HE and the opposite A residues are intrahelical and in the anti conformation. The hydroxyethyl chain lies close to the helix axis and for one family the hydroxyl group is above the HE*A plane and in the other case it is below. These two models were used to start molecular dynamic calculations with explicit solvent to explore the hydrogen bonding possibilities of the HE*A base pair. The dynamics calculations converge finally to one model structure in which two hydrogen bonds are formed. The first is formed all the time and is between HEO4 and the amino group of A, and the second, an intermittent one, is between the hydroxyl group and the N1 of A. When this second hydrogen bond is not formed a weak interaction CH...N is possible between HEC7H2 and N1A21. All the best structures show an increase in the C1'-C1' distance relative to a Watson-Crick base pair.
Collapse
Affiliation(s)
- Yves Boulard
- CEA, Service de Biochimie et de Génétique Moléculaire, Bâtiment 142, Département de Biologie Joliot Curie, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | |
Collapse
|
65
|
Anttinen-Klemetti T, Vaaranrinta R, Peltonen K. Dose-dependent excretion of unconjugated 3-butene-1,2-diol measured in urine with a gc/ms after 1,3-butadiene exposure. Toxicol Mech Methods 2002; 12:211-20. [PMID: 20021174 DOI: 10.1080/15376520208951157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1,3-Butadiene is clearly carcinogenic, and it has a complex pathway of metabolic transformation, as it forms several reactive intermediates. We have previously shown that butadiene diolepoxide is a key metabolite in DNA and hemoglobin adduct formation. Here we report the analysis of 3-buten-1,2-diol-the precursor of butadiene diolepoxide-in urine samples from rats exposed to butadiene by means of inhalation. Urine samples were extracted with isopropanol, and extracts were analyzed using a gas chromatograph and mass spectrometer. Selected ion monitoring was performed by using ion 57 m/z; a retention time allowed reliable analysis. The analysis showed a linear excretion of 3-buten-1,2-diol during the 5 days of 6-h exposures and 18-h recovery times between exposures. The daily correlation coefficient (r) values varied from 0.9945 to 0.9999. A 6-h exposure of rats to 1000 ppm 1,3-butadiene resulted in a mean urinary concentration of 3-buten-1,2-diol of approximately 38 mg/L. Urine samples were also collected during the recovery times, and the extracts were analyzed. The linearity of the excretion during the recovery times showed r values ranging from 0.6932 to 0.9813; 0.5 mg/L of 3-butene-1,2-diol was detected in urine samples excreted after exposure to 1000 ppm 1,3-butadiene. The data demonstrated that butadiene monoepoxide was converted into 3-buten-1,2-diol which, to some extent, was excreted in urine in a nonconjugated form. The excretion of 3-buten-1,2-diol was prompt, with about 98% of the compound being excreted during exposure. We acknowledge Mr. Yrjö Peltonen for his very skillful assistance in maintaining a stable BD atmosphere during animal exposure, and we thank Ms. Marja Pihlaja for the animal care.
Collapse
|
66
|
Chovanec M, Cedervall B, Kolman A. DNA damage induced by gamma-radiation in combination with ethylene oxide or propylene oxide in human fibroblasts. Chem Biol Interact 2001; 137:259-68. [PMID: 11566293 DOI: 10.1016/s0009-2797(01)00258-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To estimate the effects of interaction of gamma-rays and an epoxide, cell survival and induction of DNA double-strand breaks (DSBs) following combined exposure to ionizing radiation and ethylene oxide (EtO) or propylene oxide (PO) were studied in human fibroblasts. Two treatment protocols were applied: (a) the cells were pre-exposed to different doses of gamma-rays and then treated with epoxide, and (b) the cells were pretreated with epoxide and then exposed to different doses of gamma-rays. Here we show that order of the treatment did not play a role in cell survival and that the effect of combined exposure on cell killing was additive for both epoxides. As to DNA DSBs induction, however, a difference dependent upon the order of the treatment was observed. While EtO or PO treatment followed by gamma-rays exposure led to an increased number of DSBs at higher gamma-ray doses (2-3 Gy), no significant increase of DSBs was detected after the opposite order of the treatment (gamma-ray exposure followed by EtO or PO treatment).
Collapse
Affiliation(s)
- M Chovanec
- Department of Molecular Genetics, Cancer Research Institute, Vlárska 7, 833 91 37, Bratislava, Slovakia
| | | | | |
Collapse
|
67
|
Millard JT, Wilkes EE. Diepoxybutane and diepoxyoctane interstrand cross-linking of the 5S DNA nucleosomal core particle. Biochemistry 2001; 40:10677-85. [PMID: 11524013 DOI: 10.1021/bi0109663] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diepoxyalkanes form interstrand cross-links in DNA oligomers preferentially at 5'-GNC sites. We have examined cross-linking by 1,2,3,4-diepoxybutane (DEB) and 1,2,7,8-diepoxyoctane (DEO) within a fragment of the 5S RNA gene of Xenopus borealis in both the free and nucleosomal states. Sites and efficiencies of interstrand cross-linking were probed through denaturing polyacrylamide gel electrophoresis and quantitative phosphorimagery. Both agents targeted 5'-GNC sites for cross-linking in the restriction fragment in its free state, and DEO also targeted 5'-GNNC sites. Monoalkylation occurred at all deoxyguanosines. The sites for both monoalkylation and interstrand cross-linking were similar in nucleosomal and free DNA, and cross-linked DNA was cleanly incorporated into the core particle structure. These findings suggest that the 5S core particle is able to tolerate any structural abnormalities induced by diepoxide cross-linking.
Collapse
Affiliation(s)
- J T Millard
- Department of Chemistry, Colby College, Waterville, Maine 04901, USA.
| | | |
Collapse
|
68
|
Watson WP, Cottrell L, Zhang D, Golding BT. Metabolism and molecular toxicology of isoprene. Chem Biol Interact 2001; 135-136:223-38. [PMID: 11397393 DOI: 10.1016/s0009-2797(01)00192-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isoprene (2-methylbuta-1,3-diene) is a large-scale petrochemical used principally in the manufacture of synthetic rubbers. It is also produced by plants and trees and is the major endogenous hydrocarbon formed by mammals, probably from mevalonic acid. Isoprene is metabolised by mammals in processes that involve epoxidation by cytochrome P450-dependent monooxygenases to the isomeric mono-epoxides, (1-methylethenyl)-oxirane and 2-ethenyl-2-methyloxirane. Further metabolism of the mono-epoxides to mutagenic isoprene di-epoxides, (2, 2')-2-methylbioxiranes, can also occur. The oxidations to the mono- and di-epoxides occur enantioselectively and diastereoselectively. The mono-epoxides are hydrolysed enantioselectively to vicinal diols under catalysis by epoxide hydrolase. 2-Ethenyl-2-methyloxirane is also readily hydrolysed non-enzymatically. Because of the stereochemical possibilities for metabolites, the metabolism of isoprene is complex. The metabolism of isoprene by liver microsomes in vitro from a range of species including rat, mouse and human shows significant differences between species, strains and gender in respect of the diastereoselectivity and enantioselectivity of the metabolic oxidation and hydrolysis reactions. The impact of the extra methyl in isoprene on di-epoxide reactivity also appears to be critically important for the resulting biological effects. Isoprene di-epoxides may exhibit a lower cross-linking potential in vivo compared to butadiene di-epoxides. Differences in metabolism and reactivity of metabolites may be factors contributing to the significant differences in toxicological response to isoprene observed between species.
Collapse
Affiliation(s)
- W P Watson
- Syngenta, Alderley Park, Macclesfield SK10 4TJ, UK.
| | | | | | | |
Collapse
|
69
|
Lorenti Garcia C, Darroudi F, Tates AD, Natarajan AT. Induction and persistence of micronuclei, sister-chromatid exchanges and chromosomal aberrations in splenocytes and bone-marrow cells of rats exposed to ethylene oxide. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2001; 492:59-67. [PMID: 11377244 DOI: 10.1016/s1383-5718(01)00149-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Studies on the induction and persistence of ethylene oxide (EO) induced chromosomal alterations in rat bone-marrow cells and splenocytes following in vivo exposure were carried out. Rats were exposed to ethylene oxide either chronically by inhalation (50-200ppm, 4 weeks, 5 days/week, 6h/day) or acutely by intraperitoneal injection (i.p.) at dose levels of 50-100ppm.Spontaneous- and induced-frequencies of micronuclei (MN), sister-chromatid exchanges (SCEs) and chromosomal aberrations were determined in rat bone-marrow cells, and in splenocytes following in vitro mitogen stimulation. Unstable chromosomal aberrations were studied in whole genome using standard Giemsa staining technique and fluorescence in situ hybridisation using probe for chromosome #2 was employed to detect chromosome translocations. Following chronic exposure, the cytogenetic analyses were carried out at days 5 and 21 in rat splenocytes, to study the induction and persistence of sister-chromatid exchanges. Following chronic exposure, ethylene oxide was effective in inducing SCEs, and markedly cells with high frequency SCEs were observed and they in-part persisted until day 21 post-exposure. However, no significant effect was observed in rat splenocytes for induction of MN and chromosomal aberrations. Following acute exposure, both SCEs and MN were increased significantly in rat bone-marrow cells as well as splenocytes.In conclusion, this study indicates that ethylene oxide at the concentrations employed by intraperitoneal injection or inhalation in adult rats is mutagenic and can induce both SCEs and MN.
Collapse
Affiliation(s)
- C Lorenti Garcia
- MGC, Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Centre, Wassenaarseweg 72, 2333 AL, Leiden, The Netherlands
| | | | | | | |
Collapse
|
70
|
Faller TH, Csanády GA, Kreuzer PE, Baur CM, Filser JG. Kinetics of propylene oxide metabolism in microsomes and cytosol of different organs from mouse, rat, and humans. Toxicol Appl Pharmacol 2001; 172:62-74. [PMID: 11264024 DOI: 10.1006/taap.2001.9135] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kinetics of the metabolic inactivation of 1,2-epoxypropane (propylene oxide; PO) catalyzed by glutathione S-transferase (GST) and by epoxide hydrolase (EH) were investigated at 37 degrees C in cytosol and microsomes of liver and lung of B6C3F1 mice, F344 rats, and humans and of respiratory and olfactory nasal mucosa of F344 rats. In all of these tissues, GST and EH activities were detected. GST activity for PO was found in cytosolic fractions exclusively. EH activity for PO could be determined only in microsomes, with the exception of human livers where some cytosolic activity also occurred, representing 1-3% of the corresponding GST activity. For GST, the ratio of the maximum metabolic rate (V(max)) to the apparent Michaelis constant (K(m)) could be quantified for all tissues. In liver and lung, these ratios ranged from 12 (human liver) to 106 microl/min/mg protein (mouse lung). Corresponding values for EH ranged from 4.4 (mouse liver) to 46 (human lung). The lowest V(max) value for EH was found in mouse lung (7.1 nmol/min/mg protein); the highest was found in human liver (80 nmol/min/mg protein). K(m) values for EH-mediated PO hydrolysis in liver and lung ranged from 0.83 (human lung) to 3.7 mmol/L (mouse liver). With respect to liver and lung, the highest V(max)/K(m) ratios were obtained for GST in mouse and for EH in human tissues. GST activities were higher in lung than in liver of mouse and human and were alike in both rat tissues. Species-specific EH activities in lung were similar to those in liver. In rat nasal mucosa, GST and EH activities were much higher than in rat liver.
Collapse
Affiliation(s)
- T H Faller
- GSF-Institut für Toxikologie, Neuherberg, Germany
| | | | | | | | | |
Collapse
|
71
|
Koskinen M, Plná K. Specific DNA adducts induced by some mono-substituted epoxides in vitro and in vivo. Chem Biol Interact 2000; 129:209-29. [PMID: 11137062 DOI: 10.1016/s0009-2797(00)00206-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkyl epoxides are important intermediates in the chemical industry. They are also formed in vivo during the detoxification of alkenes. Alkyl epoxides have shown genotoxicity in many toxicology assays which has been associated with their covalent binding to DNA. Here aspects of the formation and properties of DNA adducts, induced by some industrially important alkenes and mono-substituted epoxides are discussed. These include propylene oxide, epichlorohydrin, allyl glycidyl ether and the epoxy metabolites of styrene and butadiene. The major DNA adducts formed by epoxides are 7-substituted guanines, 1- and 3-substituted adenines and 3-substituted cytosines. In addition, styrene oxide and butadiene monoepoxide are able to modify exocyclic sites in the DNA bases, the sites being in the case of styrene oxide N(2)- and O(6)-positions of guanine, N(6)-adenine as well as N(4)-and O(2)-cytosine. In vivo the main adduct is the 7-substituted guanines. The 1-substituted adenines have also shown marked levels, and these adducts should also be targets in biomonitoring of human exposures. Due to its low mutagenicity, 7-substituted guanines are considered as a surrogate marker for other mutagenic lesions, e.g. those of 1-adenine or 3-uracil adducts.
Collapse
Affiliation(s)
- M Koskinen
- Department of Biosciences at Novum, Center for Nutrition and Toxicology, Karolinska Institute, S-141 57, Huddinge, Sweden.
| | | |
Collapse
|
72
|
Hindsø Landin H, Tareke E, Rydberg P, Olsson U, Törnqvist M. Heating of food and haemoglobin adducts from carcinogens: possible precursor role of glycidol. Food Chem Toxicol 2000; 38:963-9. [PMID: 11038232 DOI: 10.1016/s0278-6915(00)00093-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies of adducts from reactive compounds to haemoglobin (Hb) by gas chromatography-tandem mass spectrometry according to the N-alkyl Edman method reveals the occurrence of N-(2,3-dihydroxypropyl)valine (diHOPrVal) at levels of 1-2 pmol/g Hb, in persons without known exposure. The hypothesis that this background originates from glycidol or related compounds during heating of food was tested in experiments with rats. Animals fed fried animal feed for 30 or 72 days showed an increase of the diHOPrVal level by about 50% compared with controls. Several arguments, such as the formation of reactive oxiranes by heat-induced dehydration of glycol configurations in glycerol and sugars, support the idea that glycidol (or e.g. glycidyl esters) are precursors of the adduct. In Hb samples, reduced for stabilisation of aldehyde adducts, relatively high levels of adducts determined as diHOPrVal were found, although without significant relation to frying of the feed. There is thus no indication that reduction in vivo of, for example, the Schiff base from glyceraldehyde, is a pathway for formation of the diHOPrVal. The background level of diHOPrVal in humans Hb is low, and the cancer risk associated with exposure to the specific alkylator-probably glycidol-formed in cooking, is therefore presumably low. The result implies, however, that low-molecular mass mutagenic oxiranes formed during the heating of food should be studied further.
Collapse
Affiliation(s)
- H Hindsø Landin
- Dept of Molecular Genome Research, Stockholm University, SE 10691, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
73
|
Pérez HL, Osterman-Golkar S. Biotransformation of the double bond in allyl glycidyl ether to an epoxide ring. Evidence from hemoglobin adducts in mice. Chem Biol Interact 2000; 125:17-28. [PMID: 10724363 DOI: 10.1016/s0009-2797(99)00158-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Allyl glycidyl ether (AGE) is used industrially in the production of various epoxy resins. The compound is mutagenic and evidence for carcinogenicity in mice and rats has been reported. A previous study in mice showed that AGE reacts directly, without metabolic activation, with N-terminal valine in hemoglobin to form adducts (AGEVal). Metabolism of AGE may lead to formation of diglycidyl ether (I) through epoxidation of the double bond or 1-allyloxy-2,3-dihydroxypropane (II) through hydrolysis of the epoxide ring. 2,3-Dihydroxypropyl glycidyl ether (III) may be formed either by hydrolysis of I or epoxidation of II. The main aim of the present study was to investigate if AGE is metabolized to the reactive epoxides I or III by analysis of adducts with hemoglobin. Nine male mice (C3H/Hej) were administered AGE dissolved in tricaprylin, 4 mg/mouse, by intraperitoneal (i.p.) injection. Eleven male mice were administered 4 mg/mouse of AGE dissolved in acetone, by skin application. Adducts of I or III with N-terminal valine, N-(2-hydroxy-3-(2,3-dihydroxy)propyloxy)propylvaline (diOHPrGEVal), were demonstrated in mice administered AGE by i.p. injection. The levels were in the range 1600-5600 pmol/g globin. The level of diOHPrGEVal in mice administered AGE by skin application (n = 5) was below the detection limit of the analytical method, 20 pmol/g globin. The level of AGEVal, analyzed in mice administered AGE by skin application (n = 6), was about 20 pmol/g globin (median value), as compared with 1600 pmol/g globin previously found in mice administered AGE by i.p. injection. Neither AGEVal nor diOHPrGEVal were detected in control animals. Both adducts were analyzed using a modified Edman method for derivatization and using gas chromatography/tandem mass spectrometry for detection. The hydroxyl groups of the Edman derivative of diOHPrGEVal were protected by acetylation.
Collapse
Affiliation(s)
- H L Pérez
- Department of Molecular Genome Research, Stockholm University, Sweden.
| | | |
Collapse
|
74
|
Tates AD, van Dam FJ, Natarajan AT, van Teylingen CM, de Zwart FA, Zwinderman AH, van Sittert NJ, Nilsen A, Nilsen OG, Zahlsen K, Magnusson AL, Törnqvist M. Measurement of HPRT mutations in splenic lymphocytes and haemoglobin adducts in erythrocytes of Lewis rats exposed to ethylene oxide. Mutat Res 1999; 431:397-415. [PMID: 10636004 DOI: 10.1016/s0027-5107(99)00182-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Young adult male Lewis rats were exposed to ethylene oxide (EO) via single intraperitoneal (i.p.) injections (10-80 mg kg-1) or drinking water (4 weeks at concentrations of 2, 5, and 10 mM) or inhalation (50, 100 or 200 ppm for 4 weeks, 5 days week-1, 6 h day-1) to measure induction of HPRT mutations in lymphocytes from spleen by means of a cloning assay. N-ethyl-N-nitrosourea (ENU) and N-(2-hydroxyethyl)-N-nitrosourea (HOENU) were used as positive controls. Levels of N-(2-hydroxyethyl)valine (HOEtVal) adducts in haemoglobin (expressed in nmol g-1 globin) were measured to determine blood doses of EO (mmol kg-1 h, mM h). Blood doses were used as a common denominator for comparison of mutagenic effects of EO administered via the three routes. The mean HPRT mutant frequency (MF) of the historical control was 4.3 x 10(-6). Maximal mean MFs for ENU (100 mg kg-1) and HOENU (75 mg kg-1) were 243 x 10(-6) and 93 x 10(-6), respectively. In two independent experiments, EO injections led to a statistically significant dose-dependent induction of mutations, with a maximal increase in MF by 2.3-fold over the background. Administration of EO via drinking water gave statistically significant increases of MFs in two independent experiments. Effects were, at most, 2.5-fold above the concurrent control. Finally, inhalation exposure also caused a statistically significant maximal increase in MF by 1.4-fold over the background. Plotting of mutagenicity data (i.e., selected data pertaining to expression times where maximal mutagenic effects were found) for the three exposure routes against blood dose as common denominator indicated that, at equal blood doses, acute i.p. exposure led to higher observed MFs than drinking water treatment, which was more mutagenic than exposure via inhalation. In the injection experiments, there was evidence for a saturation of detoxification processes at the highest doses. This was not seen after subchronic administration of EO. The resulting HPRT mutagenicity data suggest that EO is a relatively weak mutagen in T-lymphocytes of rats following exposure(s) by i.p. injection, in drinking water or by inhalation.
Collapse
Affiliation(s)
- A D Tates
- Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Centre, Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Feldman RG, Ratner MH. The pathogenesis of neurodegenerative disease: neurotoxic mechanisms of action and genetics. Curr Opin Neurol 1999; 12:725-31. [PMID: 10676756 DOI: 10.1097/00019052-199912000-00012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The role of environmental and occupational exposures to neurotoxicants in the pathogenesis of neurodegenerative disease has not been fully elucidated. Recent published research on whether genetic polymorphisms contribute to individual susceptibility to develop neurodegenerative diseases such as Parkinson's disease have been equivocal at best. This review relates putative mechanisms of neurotoxicant-induced cell damage to polymorphisms in the genes that encode for the enzymes involved in the metabolism of neurotoxicants. The effects that genetically induced alterations in enzyme functioning have on neurotoxicant metabolism and how this relates to the risk of neurotoxic effects among exposed individuals are reviewed. A pragmatic approach to future research in the area of neurodegenerative disease is developed on the basis of the interrelationship between known routes of neurotoxicant metabolism and human genetics.
Collapse
Affiliation(s)
- R G Feldman
- Department of Neurology, School of Medicine, Boston University, 02118-2526, USA.
| | | |
Collapse
|
76
|
Somorovská M, Szabová E, Vodicka P, Tulinská J, Barancoková M, Fábry R, Lísková A, Riegerová Z, Petrovská H, Kubová J, Rausová K, Dusinská M, Collins A. Biomonitoring of genotoxic risk in workers in a rubber factory: comparison of the Comet assay with cytogenetic methods and immunology. Mutat Res 1999; 445:181-92. [PMID: 10575429 DOI: 10.1016/s1383-5718(99)00125-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Several substances used in rubber processing are known to be genotoxic. Workers in a rubber tyre factory, exposed to a broad spectrum of contaminants such as benzo[a]pyrene, benzo-fluoranthene, naphthalene, acetonaphthene, alkenes and 1,3-butadiene have been regularly examined for several years: chromosomal aberrations in lymphocytes, mutagenicity of urine (by use of the Ames test) and various parameters of blood and urine were assessed. An elevated level of mercapturic acid derivatives was found in the urine of employees, which is indicative of environmental exposure to toxicants with alkylating activity. We have now extended this study by examining genotoxicity with the modified Comet assay in parallel with chromosomal aberrations and micronucleus formation as well as immunological endpoints. Twenty-nine exposed workers from this factory were compared with 22 non-exposed administrative staff working in the same factory, as well as with 22 laboratory workers. The absolute numbers of peripheral leukocytes were significantly higher in the exposed group than in either of the control groups (p < 0.001). The erythrocyte mean cell volume was significantly higher in exposed workers in comparison with laboratory controls (p < 0.05). Percentages of lymphocytes, polymorphonuclear leukocytes, monocytes and eosinophils were not altered. The proliferative response of T- and B-cells to mitogen treatment when calculated per number of lymphocytes and adjusted for smoking, age and years of exposure did not differ between exposed and control groups. Endogenous strand breaks (including alkali-labile sites) and altered bases (formamidopyrimidine glycosylase- and endonuclease III-sensitive sites) were measured by the Comet assay in lymphocyte DNA. Exposed workers had significantly elevated levels of DNA breaks compared with office workers (p < 0.00001) or with laboratory controls (p < 0.00001). Micronuclei occurred at significantly higher frequencies in the exposed group than in controls (p < 0.00001), though the frequencies were all within the normal range. Significant correlations were seen between individual values of strand breaks, micronuclei and chromatid/chromosome breaks and certain immunological parameters.
Collapse
Affiliation(s)
- M Somorovská
- Department of Molecular and Genetic Toxicology, Institute of Preventive and Clinical Medicine, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Picada JN, Khromov-Borisov NN, Henriques JA. Deletogenic activity of 1,2:7,8-diepoxyoctane in the Salmonella typhimurium tester strain TA102. Mutat Res 1999; 437:165-73. [PMID: 10556620 DOI: 10.1016/s1383-5742(99)00082-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
1,2:7,8-Diepoxyoctane (DEO), whose deletogenic activity was first demonstrated in ad-3 system of Neurospora crassa and then in different species, has been tested in Salmonella typhimurium tester strain TA102 (hisG428(Ochre)). It was confirmed that it is a direct acting mutagen and was found that its activity is stimulated with the S9 mix. Obtained His(+) revertants were screened on their response to the histidine analog, N-(2-thiazolyl)-DL-alanine (ThiAla). Thirty-two percent of spontaneous and 52% of DEO-induced revertants were resistant to the analog while no resistance was observed among those induced with 4-nitroquinoline-N-oxide (4NQO). Resistance to ThiAla was interpreted as due to small deletions surrounding the target TAA codon in hisG428(Ochre). Thus, at least two simple test-systems, ad-3 of N. crassa and hisG428(Ochre) of S. typhimurium, gave compatible results and might be useful in searching of deletogens.
Collapse
Affiliation(s)
- J N Picada
- Departamento de Biofsica, GENOTOX-Laboratório de Genotoxicidade/Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Bloco IV, Prdio 43.421, Caixa Postal 15.005, Campus do Vale/UFRGS, CEP 91501-970, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
78
|
Lindstrom AB, Yeowell-O'Connell K, Waidyanatha S, McDonald TA, Rappaport SM. Investigation of benzene oxide in bone marrow and other tissues of F344 rats following metabolism of benzene in vitro and in vivo. Chem Biol Interact 1999; 122:41-58. [PMID: 10475614 DOI: 10.1016/s0009-2797(99)00104-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study examines the initial activation of benzene, exploring key aspects of its metabolism by measurement of benzene oxide (BO) and BO-protein adducts in vitro and in vivo. To assess the potential influence of various factors on the production of BO, microsomes were prepared from tissues that were either targets of benzene toxicity, i.e. the bone marrow and Zymbal glands, or not targets, i.e. liver and kidneys, of control and acetone-treated F344 rats. No BO or phenol was detected in microsomal preparations of bone marrow or Zymbal glands (less than 0.007 nmol BO/mg protein and 0.7 nmol phenol/mg protein). On the other hand, BO and phenol were readily detected in preparations of liver and kidney microsomes and acetone pretreatment resulted in a 2-fold (kidney) increase or 3.7-fold (liver) increase in production of these metabolites. Initial rates of BO production in the liver isolates were 30 (control) to 50 (acetone-treated) times higher than in the corresponding kidney tissues. The estimated half-life of BO in bone marrow homogenates was 6.0 min and the second-order reaction rate constant was estimated to be 1.35 x 10(-3) l (g bone marrow)(-1) (h)(-1). These kinetic constants were used with measurements of BO-bone marrow adducts in F344 rats, receiving a single gavage dosage of 50-400 mg benzene (kg body weight)(-1) (McDonald, T.M., et al. (1994), Cancer Res. 54, 4907-4914), to predict the bone marrow dose of BO. Among the rats receiving 400 mg (kg body weight) (-1), a BO dose of 1.13 x 10(3) nM BO-h was estimated for the bone marrow, or roughly 40% of the corresponding blood dose predicted from BO-albumin adducts. Together these data suggest that, although BO is not produced at detectable levels in the bone marrow or Zymbal glands of F344 rats, BO is rapidly distributed via the bloodstream to these tissues where it may play a role in toxicity.
Collapse
Affiliation(s)
- A B Lindstrom
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina at Chapel Hill, 27599-7400, USA
| | | | | | | | | |
Collapse
|
79
|
Mlejnek P, Kolman A. Effects of three epoxides--ethylene oxide, propylene oxide and epichlorohydrin--on cell cycle progression and cell death in human diploid fibroblasts. Chem Biol Interact 1999; 117:219-39. [PMID: 10190577 DOI: 10.1016/s0009-2797(98)00109-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ethylene oxide (EtO), propylene oxide (PO), and epichlorohydrin (ECH) strongly influenced the G1/S progression in human diploid fibroblasts, VH-10. However, these epoxides did not affect substantially the G2/M progression. It was found that G1 arrest is induced by these epoxides 6-18 h after the treatment at doses above 5, 3, and 0.5 mMh for EtO, PO, and ECH, respectively. An inhibitory effect on DNA synthesis was also demonstrated at the same doses within the same time interval. On the contrary, the epoxides transiently stimulated DNA synthesis 3-18 h after the treatment with the lower doses (below 5, 3, and 0.5 mMh for EtO, PO, and ECH, respectively). This effect was manifested both as an elevated rate of DNA synthesis and as an increase in the number of cells in S-phase. Among the three studied epoxides EtO was the most effective one: the increases of the rate of DNA synthesis and of cells in S-phase were 35 and 55%, respectively. All the epoxides tested induced significant decrease of intracellular level of reduced glutathione (GSH) shortly after cell exposure. While low and moderate doses induced a transient decrease in GSH level the high doses induced its irreversible depletion. The extensive GSH depletion was related to cell death. Morphological examination of cell nuclei indicated that epoxide-treated cells die via necrosis. This conclusion is supported by the lack of such features of the apoptosis as chromatin condensation and the occurrence of so called 'apoptotic bodies'. The absence of nucleosomal fragmentation of DNA and an increase of the permeability of the plasma membrane after the epoxide treatment also indicated a necrotic form of cell death. ECH is about ten times more toxic than the two other epoxides, and it causes almost 100% necrosis at dose of 3.0 mMh.
Collapse
Affiliation(s)
- P Mlejnek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno.
| | | |
Collapse
|
80
|
Landin HH, Segerbäck D, Damberg C, Osterman-Golkar S. Adducts with haemoglobin and with DNA in epichlorohydrin-exposed rats. Chem Biol Interact 1999; 117:49-64. [PMID: 10190544 DOI: 10.1016/s0009-2797(98)00099-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epichlorohydrin (1-chloro-2,3-epoxypropane; ECH) is an important industrial chemical and a carcinogen in experimental animals. The main aims of the present study were to characterize the adduct formation in female Wistar rats and to identify adducts that could potentially be used in human biomonitoring studies. The total binding of radioactivity to haemoglobin in rats administered 0, 0. 11, 0.22, 0.43, or 0.97 mmol [3H]ECH/kg body weight by i.p. injection, and sacrificed 24 h after treatment, was linearly related to a dose up to 0.43 mmol/kg body weight. The binding at the highest dose was higher than predicted by extrapolation from lower doses, indicating saturation of a metabolic process for elimination of ECH. Ion-exchange chromatography of a globin hydrolysate showed one major radioactivity peak corresponding to S-(3-chloro-2-hydroxypropyl)cysteine. The half-life of this adduct was estimated as about 4 days by analysis of globin from rats administered 0.43 mmol/kg body weight and sacrificed after 1, 2 and 9 days. Crosslinking of the adduct, presumably with glutathione, appeared to be the predominant secondary reaction. Hydrolysis of N-(3-chloro-2-hydroxypropyl)valine, the primary reaction product of ECH with N-terminal valine, would give N-(2,3-dihydroxypropyl)valine. A sensitive gas chromatography/mass spectrometry method for the dihydroxypropyl adduct was used to follow its formation and removal after administration of nonlabelled ECH (0.11 mmol/kg body weight). The level of this adduct reached a maximum of about 20 pmol/g globin after a few weeks, corresponding to about 0.1% of the initial binding of ECH to globin. N-7-(3-Chloro-2-hydroxypropyl)guanine was detected in rats administered 0.97 mmol [3H]ECH/kg body weight and sacrificed 6 h after treatment. The adduct levels in haemoglobin and DNA were compared with previously reported adduct levels in male Fischer 344 rats exposed to propylene oxide. Despite its higher chemical reactivity, the capacity of ECH to alkylate macromolecules in vivo was found to be somewhat lower than that of propylene oxide.
Collapse
Affiliation(s)
- H H Landin
- Department of Molecular Genome Research, Stockholm University, Sweden.
| | | | | | | |
Collapse
|
81
|
Pauwels W, Veulemans H. Comparison of ethylene, propylene and styrene 7,8-oxide in vitro adduct formation on N-terminal valine in human haemoglobin and on N-7-guanine in human DNA. Mutat Res 1998; 418:21-33. [PMID: 9748485 DOI: 10.1016/s1383-5718(98)00106-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epoxides react at various nucleophilic sites in macromolecules such as haemoglobin and DNA. To study the reaction rate constants of ethylene oxide (EO), propylene oxide (PO) and styrene 7,8-oxide (SO) towards two of these positions, i.e., the N-terminal valine in haemoglobin and N-7-guanine in DNA was the central aim of this investigation. These two reactive sites are the most studied haemoglobin and DNA adducts, respectively. Further attention, therefore, was also paid to the applicability in vivo of the in vitro determined reaction constants. The determination of the second-order rate constants between EO and PO and N-terminal valine in Hb [2.7 l (mol Hb h)-1 and 1.0 l (mol Hb h)-1, respectively] were consistent with the literature values. The constants for the reaction with N-7-guanine [16x10(-3) l (mol DNA nucleotide h)-1 and 7. 7x10(-3) l (mol DNA nucleotide h)-1, respectively] were lower than previously published values, probably due to differences in the methodology used. The use of the in vitro obtained values to model the in vivo situation lead to a consistent picture for EO and PO. In contrast, for SO the in vitro ratio between the adduct formation on N-terminal valine [1.5 l (mol Hb h)-1] and N-7-guanine [0.71x10(-3) l (mol DNA nucleotide h)-1] was about two orders of magnitude greater than for the in vivo situation. This was probably due to a lower than expected reactivity of SO towards N-terminal valine in vivo. Further research is needed to elucidate whether the use of SO in vitro, contrasting with the in vivo experiments in which SO was metabolically formed from styrene, could entail an explanation for this discrepancy. Concerning the methodological part, the use of dipeptide standards to replace the alkylated globins as standard lead to an improvement of the method. Especially the commercial availability of the standards, their stability and accurately known adduct content will make them to the standards of choice in the future.
Collapse
Affiliation(s)
- W Pauwels
- Laboratory for Occupational Hygiene and Toxicology, Katholieke Universiteit Leuven, Kapucijnenvoer 35/6, 3000, Leuven, Belgium
| | | |
Collapse
|
82
|
Vogel EW, Nivard MJ. Genotoxic effects of inhaled ethylene oxide, propylene oxide and butylene oxide on germ cells: sensitivity of genetic endpoints in relation to dose and repair status. Mutat Res 1998; 405:259-71. [PMID: 9748619 DOI: 10.1016/s0027-5107(98)00143-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report here results on forward mutation induction (recessive lethal mutations, RL) in Drosophila spermatozoa and spermatids by the three 1,2-alkyl-epoxides ethylene oxide (EO), propylene oxide (PO) and butylene oxide (BO), at doses ranging from 47 to 24,000 ppm h for EO, 375 to 48,000 ppm h for PO, and 24,000 to 91,200 ppm h for BO. The results indicate for EO mutation induction at doses 500-fold below the LD50. In crosses of mutagenized NER+ males with NER+ females, the 500-fold increase in EO dose from 47 ppm h to 24,000 ppm h resulted in no more than a 17-fold enhanced mutant frequency in spermatozoa. This flat dose-response relationship is primarily the result of efficient repair of EO-induced DNA adducts in the fertilized egg, as was evident from the up to 40-fold or 240-fold increased mutant frequencies above NER- or NER+ background levels, respectively, in crosses with NER- females. With decreasing dose, MNER-/MNER+ ratios decreased from 9 to 14 at high doses down to approximately 1 at the two lowest doses, indicating that a small fraction of premutagenic lesions induced by EO cannot be repaired by the NER system of Drosophila. Linear extrapolation from high to low EO exposure led to an underestimation of the mutation frequency actually observed at low doses. The pattern of EO-induced ring chromosome loss (CL) differed in two respects from that observed for forward mutations: (a) an increase in CL frequencies was observed only at the two highest EO exposure levels, and (b) inactivation of the NER pathway by the mus201 mutant had no measurable effect on the occurrence of CL. The absence of a potentiating effect of mus201 on EO-induced clastogenicity suggests the formation of clastogenic DNA lesions not causing point mutations, and which are not repaired by NER. Consistent with an inversed correlation of reactivities towards N7-guanine and chain length of 1,2-alkyl-epoxides, the relative mutagenic efficiencies of EO:PO:BO are 100:7.2:1.8 for the NER+ groups, and 100:20:0.7 in the absence of NER. Although in Drosophila germ cells EO is also more effective as a clastogen than PO, the difference (EO:PO=100:58) is much smaller than for recessive mutations. These results provide another argument that DNA lesions generating base substitutions as opposed to those causing clastogenic damage may not be the same for these agents.
Collapse
Affiliation(s)
- E W Vogel
- Medical Genetics Centre South-West Netherlands (MGC), Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Centre, Wassenaarseweg 72, 2300 RA, Leiden, Netherlands
| | | |
Collapse
|
83
|
Schweikl H, Schmalz G, Rackebrandt K. The mutagenic activity of unpolymerized resin monomers in Salmonella typhimurium and V79 cells. Mutat Res 1998; 415:119-30. [PMID: 9711268 DOI: 10.1016/s1383-5718(98)00067-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dimethacrylate derivatives are used as monomers to polymerize dental composite materials and for a great variety of other industrial resins. Occupational exposure is likely in various ways because of the many areas of methacrylate application. Here, the mutagenicity of the monomers, bisphenol A-diglycidyl dimethacrylate (Bis-GMA), urethane dimethacrylate (UDMA), triethylene glycol dimethacrylate (TEGDMA), Bisphenol A (BPA), glycidyl methacrylate (GMA), methyl methacrylate (MMA), and 2-hydroxyethyl methacrylate (HEMA) was studied in a bacterial (Ames test) and a mammalian gene mutation assay (V79/HPRT assay). Mutagenicity was determined in different Salmonella typhimurium strains (TA97a, TA98, TA100, TA102) and in V79 cells in the presence and in the absence of a metabolically active microsomal fraction from rat liver (S9). No mutagenic effects were observed with Bis-GMA and UDMA, methyl methacrylate, 2-hydroxyethyl methacrylate and bisphenol A. Glycidyl methacrylate (GMA) was mutagenic in a dose-dependent manner in three Salmonella tester strains. The number of mutants was increased by a factor of 2 to 3 with strains TA97a and TA102 in the absence of S9. Moreover, the numbers of mutants induced in S. typhimurium TA100 were about 8-fold higher than in solvent controls. GMA also induced an increase of mutants in V79 cells in the absence of S9. However, GMA was inactivated by microsomal enzymes. Triethylenglycol dimethacrylate (TEGDMA) was not mutagenic in any S. typhimurium. In contrast, the compound induced a dose-dependent rise in mutant frequencies in V79 cell cultures. It is concluded that TEGDMA acted through a clastogenic mechanism which is not detected by Ames tester strains.
Collapse
Affiliation(s)
- H Schweikl
- Department of Operative Dentistry and Periodontology, University of Regensburg, Germany.
| | | | | |
Collapse
|
84
|
Vogel EW, Barbin A, Nivard MJ, Stack HF, Waters MD, Lohman PH. Heritable and cancer risks of exposures to anticancer drugs: inter-species comparisons of covalent deoxyribonucleic acid-binding agents. Mutat Res 1998; 400:509-40. [PMID: 9685708 DOI: 10.1016/s0027-5107(98)00060-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the past years, several methodologies were developed for potency ranking of genotoxic carcinogens and germ cell mutagens. In this paper, we analyzed six sub-classes of covalent deoxyribonucleic acid (DNA) binding antineoplastic drugs comprising a total of 37 chemicals and, in addition, four alkyl-epoxides, using four approaches for the ranking of genotoxic agents on a potency scale: the EPA/IARC genetic activity profile (GAP) database, the ICPEMC agent score system, and the analysis of qualitative and quantitative structure-activity and activity-activity relationships (SARs, AARs) between types of DNA modifications and genotoxic endpoints. Considerations of SARs and AARs focused entirely on in vivo data for mutagenicity in male germ cells (mouse, Drosophila), carcinogenicity (TD50s) and acute toxicity (LD50s) in rodents, whereas the former two approaches combined the entire database on in vivo and in vitro mutagenicity tests. The analysis shows that the understanding and prediction of rank positions of individual genotoxic agents requires information on their mechanism of action. Based on SARs and AARs, the covalent DNA binding antineoplastic drugs can be divided into three categories. Category 1 comprises mono-functional alkylating agents that primarily react with N7 and N3 moieties of purines in DNA. Efficient DNA repair is the major protective mechanism for their low and often not measurable genotoxic effects in repair-competent germ cells, and the need of high exposure doses for tumor induction in rodents. Due to cell type related differences in the efficiency of DNA repair, a strong target cell specificity in various species regarding the potency of these agents for adverse effects is found. Three of the four evaluation systems rank category 1 agents lower than those of the other two categories. Category 2 type mutagens produce O-alkyl adducts in DNA in addition to N-alkyl adducts. In general, certain O-alkyl DNA adducts appear to be slowly repaired, or even not at all, which make this kind of agents potent carcinogens and germ cell mutagens. Especially the inefficient repair of O-alkyl-pyrimidines causes the high mutational response of cells to these agents. Agents of this category give high potency scores in all four expert systems. The major determinant for the high rank positions on any scale of genotoxic of category 3 agents is their ability to induce primarily structural chromosomal changes. These agents are able to cross-link DNA. Their high intrinsic genotoxic potency appears to be related to the number of DNA cross-links per target dose unit they can induce. A confounding factor among category 3 agents is that often the genotoxic endpoints occur close to or at toxic levels, and that the width of the mutagenic dose range, i.e., the dose area between the lowest observed effect level and the LD50, is smaller (usually no more than 1 logarithmic unit) than for chemicals of the other two categories. For all three categories of genotoxic agents, strong correlations are observed between their carcinogenic potency, acute toxicity and germ cell specificity.
Collapse
Affiliation(s)
- E W Vogel
- Leiden University Medical Centre, Dept. Radiation Genetics and Chemical Mutagenesis, MGC, Wassenaarseweg 72, 2300 RA Leiden, Netherlands.
| | | | | | | | | | | |
Collapse
|
85
|
Millard JT, Spencer RJ, Hopkins PB. Effect of nucleosome structure on DNA interstrand cross-linking reactions. Biochemistry 1998; 37:5211-9. [PMID: 9548752 DOI: 10.1021/bi972862r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antitumor agents of the nitrogen mustard family and mitomycin C form interstrand cross-links in duplex DNA. To provide information about the cellular mechanism by which these compounds exert their cytotoxic effects, we examined cross-linking of a nucleosomal core particle formed on a fragment of the 5S RNA gene of Xenopus borealis. For the mustards mechlorethamine, chlorambucil, and melphalan, both sites of monoalkylation and interstrand cross-linking were similar in nucleosomal and free DNA. Some small (two- to three- fold) differences in intensity of cross-linking at some sites were apparent. However, these differences did not appear to correlate with rotational or translational positioning. For mitomycin C, cross-linking was inhibited five- to ten-fold at the nucleosomal dyad and showed attenuation of inhibition toward the ends. Furthermore, rotational positioning also appeared to be a factor, with sites facing inward in the nucleosome less accessible for mitomycin cross-linking. None of these agents demonstrated the 10-base pair periodicity exhibited by hydroxyl radical cleavage of nucleosomal DNA.
Collapse
Affiliation(s)
- J T Millard
- Department of Chemistry, Colby College, Waterville, Maine 04901, USA.
| | | | | |
Collapse
|
86
|
Lindstrom AB, Yeowell-O'Connell K, Waidyanatha S, McDonald TA, Golding BT, Rappaport SM. Formation of hemoglobin and albumin adducts of benzene oxide in mouse, rat, and human blood. Chem Res Toxicol 1998; 11:302-10. [PMID: 9548800 DOI: 10.1021/tx9701788] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Little is known about the formation and disposition of benzene oxide (BO), the initial metabolite arising from oxidation of benzene by cytochrome P450. In this study, reactions of BO with hemoglobin (Hb) and albumin (Alb) were investigated in blood from B6C3F1 mice, F344 rats, and humans in vitro. The estimated half-lives of BO in blood were 6.6 min (mice), 7.9 min (rats), and 7.2 min (humans). The following second-order rate constants were estimated for reactions between BO and cysteinyl residues of Hb and Alb [in units of L (g of Hb- or Alb-h)-1]: mouse Hb = 1.16 x 10(-)4, rat Hb = 15.4 x 10(-)4, human Hb = 0.177 x 10(-)4, mouse Alb = 2.68 x 10(-)4, rat Alb = 4.96 x 10(-)4, and human Alb = 5.19 x 10(-)4. These rate constants were used with BO-adduct measurements to assess the systemic doses of BO arising from benzene in vivo in published animal and human studies. Among rats receiving a single gavage dose of 400 mg of benzene/kg of body weight, the BO dose of 2.62 x 10(3) nM BO-h, predicted from Alb adducts, was quite similar to the reported AUC0-infinity = 1.09 x 10(3) nM BO-h of BO in blood. Interestingly, assays of Hb adducts in the same rats predicted a much higher dose of 14.7 x 10(3) nM BO-h, suggesting possible in situ generation of adducts within the erythrocyte. Doses of BO predicted from Alb adducts were similar in workers exposed to benzene [13.3 nM BO-h (mg of benzene/kg of body weight)-1] and in rats following a single gavage dose of benzene [8. 42 nM BO-h (mg of benzene/kg of body weight)-1]. Additional experiments indicated that crude isolates of Hb and Alb had significantly higher levels of BO adducts than dialyzed proteins, suggesting that conjugates of low-molecular-weight species were abundant in these isolates.
Collapse
Affiliation(s)
- A B Lindstrom
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, USA
| | | | | | | | | | | |
Collapse
|
87
|
Abstract
Ethylene oxide (EO) is a direct-acting mutagen and animal carcinogen used as an industrial intermediate and sterilant with a high potential for human exposure. Understanding the exposure-dose relationship for EO in rodents is critical for developing human EO exposure-dose models. The study reported here examined the dosimetry of EO in male B6C3F1 mice by direct determination of blood EO concentrations. Steady-state blood EO concentrations were measured during a single 4-h nose-only inhalation exposure (0, 50, 100, 200, 300, or 400 ppm EO). In addition, glutathione (GSH) concentrations were measured in liver, lung, kidney, and testis to assess the role of the GSH depletion in the saturable metabolism previously observed in mice (Brown et al., Toxicol. Appl. Pharmacol. 136, 8-19, 1996). Blood EO concentrations were found to increase linearly with exposure concentration up to 200 ppm. Markedly sublinear blood dosimetry was observed at exposure concentrations exceeding 200 ppm. An EO exposure concentration-dependent reduction in tissue GSH levels was observed, with both liver and lung GSH levels significantly depressed at EO exposure concentrations of 100 ppm or greater. Our results also indicate that depletion of GSH is likely responsible for nonlinear dosimetry of EO in mice and that GSH depletion corresponds with reports of dose-rate effects in mice exposed to EO.
Collapse
Affiliation(s)
- C D Brown
- Chemical Industry Institute of Toxicology, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
88
|
Awara WM, El-Gohary M, El-Nabi SH, Fadel WA. In vivo and in vitro evaluation of the mutagenic potential of carbamazepine: does melatonin have anti-mutagenic activity? Toxicology 1998; 125:45-52. [PMID: 9585099 DOI: 10.1016/s0300-483x(97)00160-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mutagenic potential of carbamazepine (CBZ) therapy has been evaluated both in vivo and in vitro. Analysis of chromosome aberrations (CA), sister chromatid exchanges (SCEs), mitotic and proliferation indices (PRI) were performed. The in vivo study was carried out on 30 patients with idiopathic epilepsy end undergoing treatment with CBZ for different periods starting from 6 months up to 15 years. Plasma CBZ levels were also determined for each patient. The results showed that the total CA and SCEs were significantly increased in CBZ-treated patients. There was no significant correlation between CA and either duration of treatment or the plasma CBZ levels for each patient. The mitotic and proliferation indices were found to be slightly but non-significantly decreased compared to control values. On the other hand, in vitro analysis showed a significant dose-dependent increase in CA and SCEs in human lymphocyte cultures treated with CBZ (4-12 microg/ml). The mitotic and proliferation indices were also found to be decreased but only significantly in case of high doses of CBZ (12 microg/ml). Pretreatment of human lymphocytes with melatonin (0.5 mM) exhibited a significant decrease in the frequencies of CBZ-induced CA and SCEs as compared with non-treated cultures. The depressed mitotic and proliferation indices were also found to be improved in cultures pretreated with melatonin. In conclusion, these observations suggest that CBZ monotherapy may lead to chromosome damaging effects (genotoxic) and the use of melatonin as anti-mutagenic agent for human protection against CBZ-induced chromosome damage should be considered.
Collapse
Affiliation(s)
- W M Awara
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Tanta, Egypt
| | | | | | | |
Collapse
|
89
|
Haglund J, Ehrenberg L, Törnqvist M. Studies of transalkylation of phosphotriesters in DNA: reaction conditions and requirements on nucleophiles for determination of DNA adducts. Chem Biol Interact 1997; 108:119-33. [PMID: 9463525 DOI: 10.1016/s0009-2797(97)00102-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive compounds form adducts at several sites in DNA. One of these sites, the phosphate groups, forms phosphotriesters (PTE) which are both chemically stable and little repaired. A measurement of PTE in DNA could therefore be advantageous for the determination of doses in vivo of mutagens/cancer initiators. In this paper, the possibilities of utilizing the weakly alkylating properties of PTE for the transfer of adducts to strong nucleophiles have been investigated. Model compounds, thymidine 3'-[thymidine 5'-(methyl phosphate)], TpMeT, and thymidine 3'-[thymidine 5'-(2-hydroxyethyl phosphate)], TpHOEtT, were incubated with thiosulfate, a relatively strong nucleophile and the formation of dealkylated model PTE, thymidine 3'-(thymidine 5'-phosphate), TpT, was followed by HPLC. Transalkylation to thiosulfate or aniline of methyl PTE in DNA alkylated by [3H]N-methyl-N-nitrosourea was demonstrated. The methyl groups transferred, forming methyl thiosulfate and N-methylaniline, respectively, were determined by HPLC. These experiments demonstrate that it is possible to transfer alkyls from DNA phosphate to nucleophiles. Kinetic aspects of the transalkylation and requirement on nucleophiles for a practically useful method for determination of DNA adducts are discussed. Constants of reaction rates are presented.
Collapse
Affiliation(s)
- J Haglund
- Department of Genetic and Cellular Toxicology, Stockholm University, Sweden
| | | | | |
Collapse
|
90
|
Hindsq Landin H, Grummt T, Laurent C, Tates A. Monitoring of occupational exposure to epichlorohydrin by genetic effects and hemoglobin adducts. Mutat Res 1997; 381:217-26. [PMID: 9434878 DOI: 10.1016/s0027-5107(97)00171-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present work is focused on the determination of in vivo doses and studies of genetic effects in workers exposed to epichlorohydrin (ECH). The studied endpoints were hemoglobin (Hb) adducts, frequencies of hprt mutants, micronuclei in cytochalasin B blocked binucleated lymphocytes, sister chromatid exchanges (SCE) and high frequency cells (HFC). Blood samples were collected from office clerks and ECH exposed factory workers at an industrial plant in Germany. The workers were exposed to 0.11-0.23 ppm ECH in the air 45 h per week and to 0.2-2.6 ppm for 3 h per week. Some Swedish non-exposed subjects were also used for Hb adduct measurements. The genetic data, HFC and SCE, showed a significant difference between exposed and unexposed donors. In contrast to earlier studies on SCE, no impact of smoking was observed. Effects on micronuclei were on the borderline of significance, whereas there was no effect for HPRT mutants. The average Hb adduct level was higher in exposed than in non-exposed donors, although the difference was only significant when the exposed group was compared to Swedish controls. Smoking gave significantly increased adduct levels. The absence of significant correlations between individual data for Hb adducts and genetic effects, may be explained by the different periods of time covered by the responses in these endpoints. Whereas Hb adducts reflect the exposure during up to 4 months (i.e. the life span of human erythrocytes), the SCE, and particularly the HFC, seem to accumulate for years in a long-lived fraction of T-lymphocytes without DNA repair. Thus, the adduct data does not reflect the exposure backwards in time unless it can be shown that exposure conditions have remained unchanged. The origin of the background adduct levels in non-smoking control persons is at present not known.
Collapse
|
91
|
Yeowell-O'Connell K, Pauwels W, Severi M, Jin Z, Walker MR, Rappaport SM, Veulemans H. Comparison of styrene-7,8-oxide adducts formed via reaction with cysteine, N-terminal valine and carboxylic acid residues in human, mouse and rat hemoglobin. Chem Biol Interact 1997; 106:67-85. [PMID: 9305409 DOI: 10.1016/s0009-2797(97)00059-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The reactive metabolite of styrene, styrene-7,8-oxide (SO), reacts with a variety of nucleophilic sites in hemoglobin (Hb) to form SO-Hb adducts. Following the in vitro incubation of SO with blood from humans, NMRI mice and Sprague-Dawley rats, the second-order reaction rate constants were determined for the reaction of SO with cysteine (through both the alpha- and beta-carbons of SO), N-terminal valine (through the beta-carbon of SO), and carboxylic acid (presumably through both the alpha- and beta-carbons of SO) residues in Hb. The rate constants for cysteine adducts vary dramatically between species [2.04, 10.7, 133 L (mol Hb)-1 h-1 (alpha binding) for humans, mice and rats, respectively] and [0.078, 2.16, 20.4 L (mol Hb)-1 h-1 (beta binding), respectively]. The considerably higher rate of reaction with cysteine in rat Hb probably reflects the presence of an additional cysteine residue at position beta 125. Although the rate constants for valine adducts (1.82, 0.80, 0.29 L (mol Hb)-1 h-1, respectively) and COOH adducts (3.55, 1.94, 2.37 L (mol Hb)-1 h-1, respectively) are much more consistent, the inter-species differences are statistically significant for the reaction of SO with the N-terminal valine of Hb. Following the i.p. administration of styrene to mice and styrene and SO to rats, the levels of adducts at each of these sites were used in conjunction with the calculated rate constants to predict the integrated blood doses of SO. While the SO doses predicted from cysteine and valine adducts were very similar, that based upon COOH-binding was significantly different, presumably due to the instability of SO-COOH adducts. This research affirms the use of both cysteine and valine adducts, but not carboxylic acid adducts, as biomarkers of exposure to styrene and SO.
Collapse
Affiliation(s)
- K Yeowell-O'Connell
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill 27599-7400, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Pérez HL, Lähdetie J, Landin H, Kilpeläinen I, Koivisto P, Peltonen K, Osterman-Golkar S. Haemoglobin adducts of epoxybutanediol from exposure to 1,3-butadiene or butadiene epoxides. Chem Biol Interact 1997; 105:181-98. [PMID: 9291996 DOI: 10.1016/s0009-2797(97)00049-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epoxybutanediol is one of the reactive metabolites of butadiene. It is formed via hydrolysis followed by oxidation of the primary metabolite of butadiene, epoxybutene, or via hydrolysis of diepoxybutane, a secondary metabolite of butadiene. Groups of male Sprague Dawley rats were treated by intraperitoneal injection of epoxybutene, epoxybutanediol or diepoxybutane. N-(2,3,4-Trihydroxybutyl)valine adducts in haemoglobin, formed from epoxybutanediol in its reaction with N-terminal valine, were measured using the N-alkyl Edman method followed by acetylation of the Edman derivatives and analysis by gas chromatography mass spectrometry. The same adducts were also measured in male Wistar rats exposed to butadiene by inhalation and in a few workers with occupational exposure to butadiene. Haemoglobin binding indexes, HBI, (pmol adduct/g per mumol of alkylating agent, or, for butadiene, per ppm x h), were calculated. The HBI for epoxybutanediol (about 10) is comparable to that of ethylene oxide in the rat demonstrating a similar capacity of the two compounds to alkylate nucleophilic sites in vivo. The HBI of diepoxybutane (about 8) for epoxybutanediol adduct formation is approximately the same as that of epoxybutanediol itself. Epoxybutanediol adduct formation was nonlinearly related to exposure in butadiene exposed rats. The epoxybutanediol-haemoglobin adduct levels were substantially higher than those of epoxybutene in both butadiene-exposed rats and humans suggesting an important role of epoxybutanediol in the toxicity of butadiene. Adducts of epoxybutanediol are probably useful for biomonitoring of human exposure to butadiene.
Collapse
Affiliation(s)
- H L Pérez
- Department of Radiobiology, Stockholm University, Sweden
| | | | | | | | | | | | | |
Collapse
|
93
|
Leclercq L, Laurent C, De Pauw E. High-performance liquid chromatography/electrospray mass spectrometry for the analysis of modified bases in DNA: 7-(2-hydroxyethyl)guanine, the major ethylene oxide-DNA adduct. Anal Chem 1997; 69:1952-5. [PMID: 9164163 DOI: 10.1021/ac9607673] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A method was developed for the analysis of 7-(2-hydroxyethyl)guanine (7HEG), the major DNA adduct formed after exposure to ethylene oxide (EO). The method is based on DNA neutral thermal hydrolysis, adduct micro-concentration, and final characterization and quantification by HPLC coupled to single-ion monitoring electrospray mass spectrometry (HPLC/SIR-ESMS). The method was found to be selective, sensitive, and easy to handle with no need for enzymatic digestion or previous sample derivatization. Detection limit was found to be close to 1 fmol of adduct injected (10(-10) M), thus allowing the detection of approximately three modified bases on 10(8) intact nucleotides in blood sample analysis. Quantification results are shown for 7HEG after calf thymus DNA and blood exposure to various doses of EO, in both cases obtaining clear dose-response relationships.
Collapse
Affiliation(s)
- L Leclercq
- Laboratoire d'Oncologie, Radiologie et Mutagenèse Expérimentales (ORME), CHU B23, Liege, Belgium
| | | | | |
Collapse
|
94
|
Allen JR, Ensign SA. Characterization of three protein components required for functional reconstitution of the epoxide carboxylase multienzyme complex from Xanthobacter strain Py2. J Bacteriol 1997; 179:3110-5. [PMID: 9150202 PMCID: PMC179085 DOI: 10.1128/jb.179.10.3110-3115.1997] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Epoxide carboxylase from Xanthobacter strain Py2 catalyzes the reductant- and NAD+-dependent carboxylation of aliphatic epoxides to beta-keto acids. Epoxide carboxylase from Xanthobacter strain Py2 has been resolved from cell extracts by anion-exchange chromatography into three protein components, designated I, II, and III, that are obligately required for functional reconstitution of epoxide carboxylase activity. Component II has been purified to homogeneity on the basis of its ability to complement components I and III in restoring epoxide carboxylase activity. Purified component II had a specific activity for epoxide carboxylation of 41.8 mU x min(-1) x mg(-1) when components I and III were present at saturating levels. The biochemical properties of component II reveal that it is the flavin-containing NADPH:disulfide oxidoreductase that was recently shown by other means to be associated with epoxide degradation activity in Xanthobacter strain Py2 (J. Swaving, J. A. M. de Bont, A. Westphal, and A. Dekok, J. Bacteriol. 178:6644-6646, 1996). The rate of epoxide carboxylation was dependent on the relative concentrations of the three carboxylase components. At fixed concentrations of two of the components, epoxide carboxylation rates were saturated in a hyperbolic fashion by increasing the concentration of the third variable component. Methylepoxypropane has been characterized as a time-dependent, irreversible inactivator of epoxide carboxylase activity that is proposed to be a mechanism-based inactivator of the enzyme. The addition of component I, but not that of component II or III, to methylepoxypropane-inactivated cell extracts restored epoxide carboxylase activity, suggesting that component I contains the epoxide binding and activation sites.
Collapse
Affiliation(s)
- J R Allen
- Department of Chemistry and Biochemistry, Utah State University, Logan 84322-0300, USA
| | | |
Collapse
|
95
|
Abstract
Epichlorohydrin (ECH) is one of the more commercially important aliphatic epoxides used extensively as an industrial intermediate, a laboratory reagent, and as an insecticide. It is a volatile, colourless liquid with an ethereal odour. It behaves as an alkylating agent. Reports have shown it to cause the respiratory and dermal toxicity in animals and humans. It has also been reported to be carcinogenic in experimental models. Thus, the wide-spread use of this aliphatic epoxide is of great concern in human health problem. The purpose of this paper is to critically review and update the mutagenic and clastogenic effects of ECH based on available literature.
Collapse
Affiliation(s)
- A K Giri
- Indian Institute of Chemical Biology, Calcutta, India
| |
Collapse
|
96
|
Pérez HL, Plná K, Osterman-Golkar S. Dosimetry of glycidyl ethers in mice by quantification of haemoglobin adducts. Chem Biol Interact 1997; 103:1-16. [PMID: 9051120 DOI: 10.1016/s0009-2797(96)03744-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycidyl ethers are used in epoxy resins. Epoxy resins are widely used in adhesives and coatings, as well as in electronics and structural composites, thus there is a potential of human exposure to glycidyl ethers. The aim of the present investigation was to explore the utility of haemoglobin adducts for biomonitoring of these types of compounds. Adducts to N-terminal valine were analysed by a modified Edman method with gas chromatographymass spectrometry (or tandem mass spectrometry) for adduct detection and quantification. Groups of three male mice (C3H/Hej) were administered 4 mg/mouse of allyl, butyl, phenyl or cresyl glycidyl ether (AGE, BGE, PGE or CGE) by i.p. injection. Blood samples were collected 24 h after treatment and assayed for haemoglobin adducts using the N-alkyl Edman method. Additional groups of AGE-treated mice were used to study dose response and adduct stability. The experiments with AGE indicate a linear dose response for adduct formation in the dose range studied (0, 2 and 4 mg/mouse). As expected for stable haemoglobin adducts, about 50% of the initial adduct level remained 21 days after exposure.
Collapse
Affiliation(s)
- H L Pérez
- Department of Radiobiology, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | | | | |
Collapse
|
97
|
Vogel EW, Nivard MJ. The response of germ cells to ethylene oxide, propylene oxide, propylene imine and methyl methanesulfonate is a matter of cell stage-related DNA repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1997; 29:124-135. [PMID: 9118964 DOI: 10.1002/(sici)1098-2280(1997)29:2<124::aid-em3>3.0.co;2-e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We describe the consequences of a defect for nucleotide excision repair (NER) in oocytes for alkylation-induced mutagenesis in different germ-cell stages of Drosophila males. Mutant frequencies induced in NER+ condition (cross NER+female female x NER+male) were compared with those fixed in a NER- background (cross NER-female female x NER+male), using the X-linked recessive lethal assay (SLRL) for the measurement of forward mutations in 700 loci. In successive male germ-cell stages exposed to a low dose of 2.4 mM x h methyl methanesulfonate, efficient repair of premutational damage in spermatogonia and by the maternal repair system after fertilization was observed. Ethylene oxide (EO) and propylene oxide (PO) did not induce high mutant frequencies in postmeiotic germ cells when mutagenized males were mated with NER+ females: a 32-fold increase in dose from 750 ppm x h to 24,000 ppm x h EO (approximately LD50) led to no more than a 3-fold enhancement in mutant frequency. However, up to a 17-fold increase in mutant frequencies were obtained with NER- females. In matings with NER+ females, PO was about 10 times less mutagenic than EO. Suppression of the maternal NER system caused a hypermutability, which, on the average, was 2.4-fold lower than for EO. This indicates that the 2-hydroxyethyl adduct generated by EO is more efficiently repaired than the 2-hydroxypropyl adduct caused by PO. The low SLRL frequencies (0.2-0.9%) estimated for propylene imine (PI) in NER+ genotypes showed no relation to dose in the range from 1,500 to 48,000 ppm x h. In the absence of NER, mutant frequencies were increased up to 29-fold, and a dose-dependent increase in mutations was observed for PI over the entire dose range. This study shows mutation induction by EO in postmeiotic Drosophila germ cells at exposure doses that are 800-fold below those applied previously in the mouse specific-locus test on spermatogonia [with negative response; Russell et al. (1984): Mutat Res 129:381-388] and 11-fold below the EO dose for which increased dominant-lethal responses and heritable translocations were documented in mice spermatozoa and spermatids [Generoso et al. (1990): Environ Mol Mutagen 16:126-131].
Collapse
Affiliation(s)
- E W Vogel
- Department of Radiation Genetics and Chemical Mutagenesis, Leiden University, The Netherlands.
| | | |
Collapse
|
98
|
Kolman A, Spivak I, Näslund M, Dusinská M, Cedervall B. Propylene oxide and epichlorohydrin induce DNA strand breaks in human diploid fibroblasts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1997; 30:40-46. [PMID: 9258328 DOI: 10.1002/(sici)1098-2280(1997)30:1<40::aid-em6>3.0.co;2-g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The induction of DNA strand breaks in human diploid fibroblasts (VH-10) was demonstrated after in vitro exposure with two carcinogenic epoxides, propylene oxide (PO) and epichlorohydrin (ECH). Alkaline DNA unwinding (ADU), pulsed field gel electropharosis (PFGE), and the comet assay were used to measure DNA single. (SSBs) and double-strand breaks (DSBs). A dose-dependent increase of DNA strand breaks, measured by ADU, was observed in the dose range 2.5-20 mMh of PO and 0.25-2 mMh of ECH. The dose-response of ECH was about five times higher compared with that of PO (211 vs. 41 SSBs. 100 Mbp-1.mMh-1). The induction rates of DSBs, measured by PFGE, were found to be 18 times higher for ECH compared to PO (4.8 and 0.27 DSBs.100 Mbp-1.mMh-1 for ECH and PO, respectively). Using these two methods, the SSBs/ DSBs ratio was estimated to be 148 for PO and 44 for ECH. The data obtained by the comet assay also demonstrated a dose-dependent ability of PO and ECH to induce DNA damage. It was found that ECH was about six times more effective as an inducer of DNA strand breaks compared to PO (200 and 32x100 Mbp-1.mMh-1 for ECH and PO, respectively). The SSBs/DSBs ratios calculated using comet assay and PFGE data were 125 for ECH and 41 for PO. In addition, ECH is about 10 times more toxic than PO with respect to survival. These properties of ECH can at least in part be explained by its higher chemical reactivity connected with a higher rate of DNA alkylation.
Collapse
Affiliation(s)
- A Kolman
- Department of Radiobiology, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|
99
|
Couch R, Ehrenberg L, Magnusson AL, Nilsson R, de la Rosa ME, Törnqvist M. In vivo dosimetry of ethylene oxide and propylene oxide in the cynomolgus monkey. Mutat Res 1996; 357:17-23. [PMID: 8876676 DOI: 10.1016/0027-5107(96)00066-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In mammals, including the cynomolgus monkey, a striking difference between the potencies of ethylene oxide (EO)* and propylene oxide (PO) with respect to induction of certain clastogenic effects has previously been observed. In order to clarify to what extent such differences can be ascribed to a difference in detoxification rate, cynomolgus monkeys were administered an equimolar mixture of the two epoxides at two dose levels, and the blood doses were determined by measurement of the degree of alkylation of N-terminal valines in hemoglobin (Hb). For the highest exposure a saturation in the detoxification of PO was evident from a marked increase in adduct level. At the lower exposure, the dose in blood resulting from exposure to PO was about one fourth of that from EO. Although playing a great role, differences in detoxification rate, therefore, cannot fully account for the much lower clastogenic potency of PO, which has been found in earlier studies. Furthermore, the determination of doses in blood gives data on relationship between in vivo dose and exposure dose (accounting for detoxification), with relevance for risk estimation.
Collapse
Affiliation(s)
- R Couch
- Experimental and Applied Division, Coulston Foundation, White Sands Research Center, Alamogordo, NM 88310, USA
| | | | | | | | | | | |
Collapse
|
100
|
Rydberg P, Magnusson AL, Zorcec V, Granath F, Törnqvist M. Adducts to N-terminal valines in hemoglobin from butadiene metabolites. Chem Biol Interact 1996; 101:193-205. [PMID: 8870688 DOI: 10.1016/0009-2797(96)03724-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In order to identify a hemoglobin adduct useful for monitoring of doses of butadiene metabolites, particularly the strongly genotoxic, bifunctional diepoxybutane (DEB), the reaction of DEB with valinamide, a relevant model of globin N-termini, was studied. A preliminary kinetic analysis showed that the primary reaction product of DEB with valine-N gives, as was expected, rise to a ring-closed pyrrolidine-structured compound, N,N-(2,3-dihydroxybuta-1,4-diyl)valine (PYRV), in a reaction which is fast when compared to hydrolysis of the second oxirane ring with formation of N-(2,3,4-trihydroxybutyl)valine (THBV). The ring closure is also fast when compared to the rate of formation of a cross-linked divaline product. PYRV can therefore be used as a specific marker of in vivo doses of DEB whereas THBV may be applied for the dosimetry of the metabolite (1,2-dihydroxyethyl)oxirane. The latter is formed by half-hydrolysis of DEB or oxygenation of 1,2-dihydroxy-3-butene. The N-alkyl Edman method, used for specific cleavage and gas chromatographic/mass spectrometric (GC/MS) determination of adducts to N-terminal valine in hemoglobin, could be used for measurement of THBV, as shown in alkylation experiments with blood. However, the adduct specific for DEB, PYRV, requires-due to its tertiary amine structure-other techniques. The reaction products were identified by GC/MS, PYRV by 13C and 1H NMR, and THBV because of its formation by reduction of the Schiff bases of threose and erythrose with hemoglobin.
Collapse
Affiliation(s)
- P Rydberg
- Department of Environmental Chemistry, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|