51
|
Fu L, Cheng YC. Characterization of novel human hepatoma cell lines with stable hepatitis B virus secretion for evaluating new compounds against lamivudine- and penciclovir-resistant virus. Antimicrob Agents Chemother 2000; 44:3402-7. [PMID: 11083647 PMCID: PMC90212 DOI: 10.1128/aac.44.12.3402-3407.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
L-Nucleoside analogs are new therapeutic agents for treatment of chronic hepatitis B. However, their clinical application was limited by the emergence of viral resistance. It is important to develop a new system to evaluate drug cross-resistance and to test new agents that may overcome resistant virus. In this report, three cell lines HepG2-WT10, HepG2-SM1, and HepG2-DM2 are presented; these cell lines were established by transfection of HepG2 cells with unique fully functional 1.1x hepatitis B virus (HBV) genomes: wild-type HBV-adr and its L526M and L526MM550V variants, respectively. We have demonstrated that these genomes have different susceptibilities to lamivudine [L(-)SddC] and penciclovir (PCV). By examining HBV RNA transcription, antigen expression, progeny DNA replication, and viral susceptibilities to L(-)SddC, PCV, and other nucleoside analogs, it is concluded that the cell lines are able to stably produce L(-)SddC- and PCV-sensitive and -resistant HBV virions. In addition, the relative susceptibilities of the wild-type and mutant HBV produced from the stably transfected cell lines to several anti-HBV nucleoside analogs were also examined and found to be about the same as those found by using a transient infection system. PMEA [9-(2-phosphonylmethoxytehyl)-adenine] and QYL685 are able to suppress L(-)SddC- and PCV-resistant HBV. In conclusion, this cell culture system is a novel and useful tool for evaluating anti-HBV compounds and biologics.
Collapse
Affiliation(s)
- L Fu
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
52
|
Abstract
Hepatitis B virus (HBV) was identified as a cause of viral hepatitis more than 30 years ago and hepatitis B vaccines have been available for almost 20 years, but HBV infection continues to be a global health problem, responsible for about 1.2 million deaths annually. By the end of this year, almost 400 million people--about 5% of the world's population and more than ten times the number infected with human immunodeficiency virus (HIV)--will be infected with HBV. Chemotherapy remains the only treatment option for controlling chronic HBV infection once acquired, but none of the many different chemotherapeutic strategies used in the past has proven consistently successful. Prospects for successful treatment of HBV have improved dramatically during the past decade due to the development of new, well tolerated and efficacious anti-HBV drugs, and to advances in our understanding of HBV replication and pathogenesis. The newer anti-HBV drugs are capable of reducing viral loads very rapidly, but the initial response is invariably followed by very much slower elimination of residual virus. As more effective anti-HBV drugs become available, the emergence of drug resistance during the slower phase of HBV elimination will probably become the most significant obstacle in the way of eventual control of HBV infection. Experience with HIV indicates that combination chemotherapy may suppress or eliminate drug resistance and methods for pre-clinical and clinical assessment of anti-HBV drug combinations are being developed. Basic research into mechanisms of drug action and interaction should assist in the design and optimisation of combination chemotherapy for HBV infection, for which additional new anti-HBV drugs will undoubtedly be required in future.
Collapse
Affiliation(s)
- T Shaw
- Victorian Infectious Diseases Reference Laboratory, North Melbourne, Australia.
| | | |
Collapse
|
53
|
Dandri M, Burda MR, Will H, Petersen J. Increased hepatocyte turnover and inhibition of woodchuck hepatitis B virus replication by adefovir in vitro do not lead to reduction of the closed circular DNA. Hepatology 2000; 32:139-46. [PMID: 10869302 DOI: 10.1053/jhep.2000.8701] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this study was to evaluate the inhibitory effect of the nucleotide analogue adefovir on woodchuck hepatitis B virus (WHV) replication and, in particular, to determine whether the pool of covalently closed circular DNA (cccDNA) could be reduced by adefovir treatment in primary cultures of woodchuck hepatocytes isolated from a chronic carrier. Strong reduction of WHV-DNA synthesis (90%) and secretion (up to 98%) was observed with all 3 doses of adefovir used (1, 10, and 100 micromol/L), whereas in the absence of the drug, high amounts of viral particles were continuously secreted in the culture medium until the end of the study (27 days). Secretion of envelope proteins and viral RNA levels remained constant both in the adefovir-treated and -untreated cultures for the entire course of the study. Intracellular core protein levels declined by approximately 50% in all the cultures, independent of adefovir treatment. There was no indication of cccDNA loss in the adefovir-treated hepatocyte cultures even when cell turnover was induced for 14 days by the addition of epidermal growth factor (EGF) to the culture medium. Our data show that adefovir has a very strong inhibitory effect on WHV-DNA synthesis in chronically infected primary hepatocyte cultures and indicate that cccDNA is a very stable molecule that appears to be efficiently transmitted to the dividing hepatocytes.
Collapse
Affiliation(s)
- M Dandri
- Heinrich Pette Institute for Experimental Virology and Immunology, University of Hamburg, Hamburg, Germany
| | | | | | | |
Collapse
|
54
|
Max B, Sherer R. Management of the adverse effects of antiretroviral therapy and medication adherence. Clin Infect Dis 2000; 30 Suppl 2:S96-116. [PMID: 10860894 DOI: 10.1086/313859] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A commonly cited cause of poor adherence to highly active antiretroviral therapy (HAART) is adverse drug reactions. Short-term adverse effects are potential threats to successful introduction and maintenance of HAART. The long-term toxicities of HAART are still emerging and being defined, as evidenced by the recently described metabolic disorders (i.e., the syndrome of maldistribution, hyperlipemia, glucose intolerance and insulin resistance). With 14 licensed agents in 2000, other agents in common use, and numerous combinations of >/=3 drugs, awareness and recognition of adverse effects are increasingly important for clinicians and patients. The common adverse drug reactions encountered with HAART, including new agents and their impact on patient adherence, are reviewed. Current strategies to anticipate and mitigate adverse effects are summarized.
Collapse
Affiliation(s)
- B Max
- CORE Center for Prevention, Care, and Research of Infectious Disease, Division of Infectious Disease, Chicago, IL 60612, USA.
| | | |
Collapse
|
55
|
Ying C, De Clercq E, Nicholson W, Furman P, Neyts J. Inhibition of the replication of the DNA polymerase M550V mutation variant of human hepatitis B virus by adefovir, tenofovir, L-FMAU, DAPD, penciclovir and lobucavir. J Viral Hepat 2000; 7:161-5. [PMID: 10760047 DOI: 10.1046/j.1365-2893.2000.00210.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Several nucleoside analogues (penciclovir, lobucavir, dioxalane guanine [DXG], 1-beta-2,6-diaminopurine dioxalane [DAPD], L-FMAU, lamivudine) and acyclic nucleoside phosphonate analogues (adefovir, tenofovir) that are in clinical use, in clinical trials or under preclinical development for the treatment of hepatitis B virus (HBV) infections, were evaluated for their inhibitory effect on the replication of a la- mivudine-resistant HBV variant containing the methionine --> valine substitution (M550V) in the polymerase nucleoside-binding domain. The antiviral activity was determined in the tetracycline-responsive HepAD38 and HepAD79 cells, which are stably transfected with either a cDNA copy of the wild-type pregenomic RNA or with cDNA containing the M550V mutation. As expected, lamivudine was much less ( approximately 200-fold) effective at inhibiting replication of the M550V mutant virus than the wild-type virus. In contrast, adefovir, tenofovir, lobucavir, L-FMAU, DXG and DAPD proved almost equally effective against both viruses. A second objective of this study was to directly compare the antiviral potency of the anti-HBV agents in HepG2 2.2.15 cells (which are routinely used for anti-HBV drug-screening purposes) with that in HepAD38 cells. HepAD38 cells produce much larger quantities of HBV than HepG2 2.2.15 cells, and thus allow drug screening in a multiwell plate format. All compounds were found to be almost equally effective at inhibiting HBV replication in HepAD38 cells (as in HepG2 2.2.15 cells), except for penciclovir, which was clearly less effective in HepAD38 cells.
Collapse
Affiliation(s)
- C Ying
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
56
|
Colledge D, Civitico G, Locarnini S, Shaw T. In vitro antihepadnaviral activities of combinations of penciclovir, lamivudine, and adefovir. Antimicrob Agents Chemother 2000; 44:551-60. [PMID: 10681317 PMCID: PMC89725 DOI: 10.1128/aac.44.3.551-560.2000] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/1999] [Accepted: 12/07/1999] [Indexed: 12/19/2022] Open
Abstract
Penciclovir (9-[2-hydroxy-1-(hydroxymethyl)-ethoxymethyl]guanine [PCV]), lamivudine ([-]-beta-L-2',3'-dideoxy-3'-thiacytidine [3TC]), and adefovir (9-[2-phosphonylmethoxyethyl]-adenine [PMEA]) are potent inhibitors of hepatitis B virus (HBV) replication. Lamivudine has recently received approval for clinical use against chronic human HBV infection, and both PCV and PMEA have undergone clinical trials against HBV in their respective prodrug forms (famciclovir and adefovir dipivoxil [bis-(POM)-PMEA]). Since multidrug combinations are likely to be used to control HBV infection, investigation of potential interactions between PCV, 3TC, and PMEA is important. Primary duck hepatocyte cultures which were either acutely or congenitally infected with the duck hepatitis B virus (DHBV) were used to investigate in vitro interactions between PCV, 3TC, and PMEA. Here we show that the anti-DHBV effects of all the combinations containing PCV, 3TC, and PMEA are greater than that of each of the individual components and that their combined activities are approximately additive or synergistic. These results may underestimate the potential in vivo usefulness of PMEA-containing combinations, since there is evidence that PMEA has immunomodulatory activity and, at least in the duck model of chronic HBV infection, is capable of inhibiting DHBV replication in cells other than hepatocytes, the latter being unaffected by treatment with either PCV or 3TC. Further investigation of the antiviral activities of these drug combinations is therefore required, particularly since each of the component drugs is already in clinical use.
Collapse
Affiliation(s)
- D Colledge
- Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria, 3051, Australia
| | | | | | | |
Collapse
|
57
|
Abstract
Approximately 5% of the world's human population have an increased risk for developing liver cancer and cirrhosis as a direct consequence of chronic infection with the hepatitis B virus (HBV). Antiviral chemotherapy remains the only option for controlling infection in these individuals, for whom the current licensed hepatitis B vaccines provide no benefit. Interferon (IFN)-alpha has proven benefit in a well-defined group of those with hepatitis B but has made little impact on the global burden of chronic liver disease. The development of more effective chemotherapy for treatment of chronic hepatitis B infection has proven to be extremely challenging, the result of both virus- and host-dependent factors, which will be reviewed in this article. Past attempts to treat chronic hepatitis B infection using nucleoside analogues were disappointing, but more recently, several nucleoside (or nucleotide) analogues have been identified that are potent and selective inhibitors of HBV replication. These agents fall into two broad categories: (1) nucleoside/nucleotides that have modified sugar residues in either cyclic or acyclic configurations and (2) stereoisomers of nucleosides in the "unnatural" L-configuration. Of the analogues that have been used clinically, representatives of the first category are purine derivatives, e.g., adefovir dipivoxil and famciclovir, whereas representatives of the second category are pyrimidine derivatives, such as lamivudine.
Collapse
Affiliation(s)
- J Torresi
- Victorian Infectious Diseases Reference Laboratory, North Melbourne, Australia
| | | |
Collapse
|
58
|
Ying C, De Clercq E, Neyts J. Lamivudine, adefovir and tenofovir exhibit long-lasting anti-hepatitis B virus activity in cell culture. J Viral Hepat 2000; 7:79-83. [PMID: 10718947 DOI: 10.1046/j.1365-2893.2000.00192.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
In this work, we investigated the anti-hepatitis B virus (HBV) activity of lamivudine, adefovir, tenofovir, penciclovir and lobucavir after short-term (i.e. 24 or 48 h) or continuous (9 days) exposure of the HBV-containing cell line, HepG2 2.2.15, to these drugs. Lamivudine maintained significant anti-HBV activity when added for only 24 or 48 h to the cell cultures compared to when the drug was present for the whole period (9 days) on the cells, i.e. 50% effective concentration (EC50) values for the inhibition of HBV DNA synthesis were 0.07 +/- 0.02 microgram ml-1 after 24 h of incubation, 0.02 +/- 0.01 microgram ml(-1) after 48 h of incubation and 0.0016 +/- 0.001 microgram ml(-1) after 9 days of incubation. Similarly, the nucleoside phosphonate analogues, adefovir and tenofovir, retained significant anti-HBV activity when added for only a short period of time to the cells. The EC50 values were 12 +/- 1 microgram ml(-1) (24 h) and 1.0 +/- 0.2 microgram ml(-1) (48 h) vs 0.003 +/- 0.001 microgram ml(-1) (9 days) for adefovir, and 6.5 +/- 1.1 microgram ml(-1) (24 h) and 0.8 +/- 0.1 microgram ml(-1) (48 h) vs 0.03 +/- 0.02 microgram ml(-1) (9 days) for tenofovir. In contrast, penciclovir and lobucavir lost most of their anti-viral activity when present on the cells for 48 h or less.
Collapse
Affiliation(s)
- C Ying
- Laboratory of Virology, Department of Microbiology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | |
Collapse
|
59
|
Gilson RJ, Chopra KB, Newell AM, Murray-Lyon IM, Nelson MR, Rice SJ, Tedder RS, Toole J, Jaffe HS, Weller IV. A placebo-controlled phase I/II study of adefovir dipivoxil in patients with chronic hepatitis B virus infection. J Viral Hepat 1999; 6:387-95. [PMID: 10607255 DOI: 10.1046/j.1365-2893.1999.00182.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Adefovir dipivoxil (bis-POM PMEA) is an adenine nucleotide analogue with activity against retroviruses and herpesviruses, and in vitro activity against hepatitis B virus (HBV). This study was conducted to evaluate its safety and antiviral activity in patients with chronic HBV infection. Twenty patients (13 co-infected with human immunodeficiency virus, HIV) were randomized in a phase I/II, double-blind, placebo-controlled study. Patients who had been hepatitis B surface antigen (HBsAg)/hepatitis B e antigen (HBeAg) positive for > or = 6 months, with elevated hepatic transaminases and serum HBV DNA > or = 50 pg ml-1, were randomized to adefovir dipivoxil 125 mg (n = 15) or placebo (n = 5) as a single, daily, oral dose for 28 days. Antiviral activity was assessed by changes in serum HBV DNA (using the Digene Hybrid Capture assay) and HBeAg/hepatitis B e antibody (HBeAb) status. HBV DNA levels fell rapidly by > 1 log10 in all active drug recipients (median fall 1.8 log10 pg ml-1) but increased by 0.01 log10 pg ml-1 in controls (P = 0.002). Reductions were sustained during treatment. HBV DNA returned to baseline over 1-6 weeks following discontinuation of active drug. HBeAg became transiently undetectable in one patient on treatment and, in another, sustained seroconversion to HBeAb occurred 12 weeks after treatment ended. Liver transaminase elevations > 300 U l-1 were observed in three patients during therapy (leading to protocol-specified treatment discontinuation or dose reduction) and in four patients during follow-up. On-treatment transaminase elevations were associated with HIV status, occurring in three of six HIV-uninfected patients compared with none of nine who were HIV infected. In addition, a slower return to baseline of serum HBV DNA levels was observed in the non-HIV-infected patients. Treatment for chronic hepatitis B as a once-daily oral dose was well tolerated and associated with significant and sustained reductions in serum HBV DNA levels during treatment. Transaminase elevations, which may be related to the therapeutic effect, were observed during and after treatment. Further studies are warranted to investigate the safety, and optimum dose and duration, of adefovir dipivoxil treatment for chronic hepatitis B.
Collapse
Affiliation(s)
- R J Gilson
- Department of Sexually Transmitted Diseases, Windeyer Institute of Medical Sciences, Royal Free and University College Medical School, University College London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Hatse S, Naesens L, De Clercq E, Balzarini J. N6-cyclopropyl-PMEDAP: a novel derivative of 9-(2-phosphonylmethoxyethyl)-2,6-diaminopurine (PMEDAP) with distinct metabolic, antiproliferative, and differentiation-inducing properties. Biochem Pharmacol 1999; 58:311-23. [PMID: 10423173 DOI: 10.1016/s0006-2952(99)00091-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
N6-Cyclopropyl-PMEDAP (cPr-PMEDAP) is a novel derivative of the acyclic nucleoside phosphonate 9-(2-phosphonylmethoxyethyl)-2,6-diaminopurine (PMEDAP). Its cytostatic activity was found to be 8- to 20-fold more pronounced than that of PMEDAP and equivalent to that of the guanine derivative 9-(2-phosphonylmethoxyethyl)guanine (PMEG) against a variety of tumor cell lines. Unlike PMEDAP, but like PMEG, cPr-PMEDAP was equally cytostatic to wild-type and 9-(2-phosphonylmethoxyethyl)adenine/PMEDAP-resistant variants of the human erythroleukemia K562 and the murine leukemia L1210 cell lines. Also, cPr-PMEDAP and PMEG proved to be equipotent inducers of K562 and rat choriocarcinoma RCHO cell differentiation, whereas the differentiation-inducing activity of PMEDAP was 5- to 25-fold less pronounced. Furthermore, compared to PMEDAP, cPr-PMEDAP and PMEG were 10- to 25-fold more potent in inhibiting the progression of K562 cells through the S phase of the cell cycle, resulting in a marked accumulation of the four 2'-deoxyribonucleoside 5'-triphosphate pools. The biological effects of cPr-PMEDAP, but not PMEDAP, were reversed by the adenylate deaminase inhibitor 2'-deoxycoformycin (dCF). Formation of the deaminated derivative of cPr-PMEDAP (i.e. PMEG) was demonstrated in crude extracts from K562 and L1210 cells and in metabolism studies with radiolabeled cPr-PMEDAP and PMEG. This is the very first example of an acyclic nucleoside phosphonate analogue that is susceptible to deamination. However, cPr-PMEDAP was not recognized as a substrate by purified adenosine deaminase or by adenylate deaminase. These findings might point to an as yet unidentified cellular enzyme, sensitive to dCF but different from the common adenosine and AMP deaminases. Our data demonstrate the superior antiproliferative and differentiation-inducing effects of cPr-PMEDAP on tumor cells, as compared to the parent compound PMEDAP, based on the unique metabolic properties of this novel compound.
Collapse
Affiliation(s)
- S Hatse
- Laboratory of Virology and Experimental Chemotherapy, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium
| | | | | | | |
Collapse
|
61
|
Abstract
Primarily resulting as a spin-off of the search for effective anti-HSV or anti-HIV agents, several compounds have been identified as effective and promising candidate anti-HBV drugs, i.e. famciclovir (penciclovir), BMS-200475, lamivudine (3TC), (-)FTC, L(-)Fd4C, L-FMAU, DAPD (DXG), bis(POM)-PMEA and bis(POC)-PMPA. They all inhibit HBV replication in Hep G2 2.2.15 at concentrations that are well below the cytotoxicity threshold. All these nucleoside analogues require three phosphorylation steps to be active, in their triphosphate form, as inhibitors of the HBV DNA polymerase, except for PMEA (adefovir) and PMPA (tenofovir), which need only two phosphorylation steps, to PMEApp and PMPApp, respectively, to interact as chain terminators with the HBV DNA polymerase reaction. Several of these compounds (for example, famciclovir, lamivudine and adefovir) have proven to be efficacious in the duck and/or woodchuck hepatitis models, and, accordingly, famciclovir, lamivudine and adefovir have also proven to be effective (i.e. in reducing HBV DNA levels) in patients with chronic HBV infection. Yet, famciclovir and lamivudine may lead to the emergence of resistance mutations (i.e. L528M and M552V/I) in the HBV DNA polymerase upon long-term treatment. These penciclovir- and lamivudine-resistant HBV mutants still retain susceptibility to adefovir, which, in turn, has so far not been found to engender resistance mutations in HBV. As has become obvious from the experience with the treatment of HIV infections, future HBV chemotherapy may reside in combination drug therapy so as to achieve the highest possible virus reduction, thereby minimizing the likelihood of drug resistance development.
Collapse
MESH Headings
- Acute Disease
- Animals
- Anti-HIV Agents/chemistry
- Anti-HIV Agents/pharmacology
- Antiviral Agents/chemistry
- Antiviral Agents/pharmacology
- Cell Line/virology
- Clinical Trials as Topic/methods
- DNA, Viral/drug effects
- Disease Models, Animal
- Drug Resistance, Microbial
- Ducks
- Hepadnaviridae Infections/drug therapy
- Hepatitis B Virus, Duck
- Hepatitis B Virus, Woodchuck
- Hepatitis B virus/drug effects
- Hepatitis B virus/genetics
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/virology
- Hepatitis, Viral, Animal/drug therapy
- Hepatitis, Viral, Animal/virology
- Humans
- Marmota
- Structure-Activity Relationship
- Virus Replication/drug effects
Collapse
Affiliation(s)
- E De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium.
| |
Collapse
|
62
|
Holý A, Günter J, Dvoráková H, Masojídková M, Andrei G, Snoeck R, Balzarini J, De Clercq E. Structure-antiviral activity relationship in the series of pyrimidine and purine N-[2-(2-phosphonomethoxy)ethyl] nucleotide analogues. 1. Derivatives substituted at the carbon atoms of the base. J Med Chem 1999; 42:2064-86. [PMID: 10377214 DOI: 10.1021/jm9811256] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of dialkyl esters of purine and pyrimidine N-[2-(phosphonomethoxy)ethyl] derivatives substituted at position 2, 6, or 8 of the purine base or position 2, 4, or 5 of the pyrimidine base were prepared by alkylation of the appropriate heterocyclic base with 2-chloroethoxymethylphosphonate diester in the presence of sodium hydride, cesium carbonate, or 1,8-diazabicyclo[5,4, 0]undec-7-ene (DBU) in dimethylformamide. Additional derivatives were obtained by the transformations of the bases in the suitably modified intermediates bearing reactive functions at the base moiety. The diesters were converted to the corresponding monoesters by sodium azide treatment, while the free acids were obtained from the diester by successive treatment with bromotrimethylsilane and hydrolysis. None of the PME derivatives in the pyrimidine series, their 6-aza or 3-deaza analogues, exhibited any activity against DNA viruses or retroviruses tested, except for the 5-bromocytosine derivative. Substitution of the adenine ring in PMEA at position 2 by Cl, F, or OH group decreased the activity against all DNA viruses tested. PMEDAP was highly active against HSV-1, HSV-2, and VZV in the concentration range (EC50) of 0.07-2 microg/mL. Also the 2-amino-6-chloropurine derivative was strongly active (EC50 = 0.1-0. 4 microg/mL) against herpes simplex viruses and (EC50 = 0.006-0.3 microg/mL) against CMV and VZV. PMEG was the most active compound of the whole series against DNA viruses (EC50 approximately 0.01-0.02 microg/mL), though it exhibited significant toxicity against the host cells. The base-modified compounds did not show any appreciable activity against DNA viruses except for 7-deazaPMEA (IC50 approximately 7.5 microg/mL) against HIV-1 and MSV. The neutral (diisopropyl, diisooctyl) diesters of PMEA were active against CMV and VZV, while the corresponding monoesters were inactive. The diisopropyl ester of the 2-chloroadenine analogue of PMEA showed substantially (10-100x) higher activity against CMV and VZV than the parent phosphonate. Also, the diisopropyl and diisooctyl ester of PMEDAP inhibited CMV and VZV, but esterification of the phosphonate residue did not improve the activity against either MSV or HIV.
Collapse
Affiliation(s)
- A Holý
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám.2, 16610 Praha 6, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Ono-Nita SK, Kato N, Shiratori Y, Lan KH, Yoshida H, Carrilho FJ, Omata M. Susceptibility of lamivudine-resistant hepatitis B virus to other reverse transcriptase inhibitors. J Clin Invest 1999; 103:1635-40. [PMID: 10377169 PMCID: PMC408383 DOI: 10.1172/jci5882] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The emergence of resistant hepatitis B virus (HBV), with mutations in the YMDD motif of the polymerase gene after treatment with lamivudine, is becoming an important clinical problem. In this study, susceptibility of wild-type and lamivudine-resistant HBV M552I, M552V, and L528M/M552V mutants to other reverse transcriptase inhibitors was investigated by transient transfection of full-length HBV DNA into human hepatoma cells. HBV DNA replication was monitored by Southern blot hybridization, which showed the presence of a single-stranded band (representative of the HBV replicative intermediates) in the drug-free, wild-type HBV-transfected cells. This band was diminished in the samples of wild-type HBV DNA treated with either lamivudine, adefovir, or lobucavir. The band intensities from the lamivudine-resistant mutants were not decreased by treatment with lamivudine, but were decreased by the treatments with adefovir or lobucavir. In contrast, penciclovir and nevirapine did not diminish the intensity of the single-stranded band of wild-type HBV or the lamivudine-resistant mutants. These results demonstrate that lamivudine-resistant HBV is susceptible to adefovir and lobucavir. Lamivudine-resistant HBV should be treated with adefovir or lobucavir, and combination therapy with lamivudine and adefovir/lobucavir may prevent the emergence of lamivudine-resistant HBV.
Collapse
Affiliation(s)
- S K Ono-Nita
- Department of Gastroenterology, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
64
|
Fu L, Liu SH, Cheng YC. Sensitivity of L-(-)2,3-dideoxythiacytidine resistant hepatitis B virus to other antiviral nucleoside analogues. Biochem Pharmacol 1999; 57:1351-9. [PMID: 10353255 DOI: 10.1016/s0006-2952(99)00073-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
L-(-)2',3'-Dideoxythiacytidine (L(-)SddC, Lamivudine) resistant hepatitis B virus (HBV) develops in patients after prolonged treatment. Point mutations detected in the viral genome from these patients have been shown to be responsible for L(-)SddC resistance. Therefore, new drugs active against L(-)SddC resistant HBV are needed. Using a transient transfection system, we studied the sensitivity of L(-)SddC resistant HBV to other anti-HBV nucleoside analogues. It was found that the L526M mutation alone caused greater resistance to penciclovir (PCV) than did the V553I mutation alone. Both mutations also caused the virus to be less sensitive to L(-)SddC and 2'-fluoro-5-methyl-beta-L-arabinofuranosyluracil (L-FMAU), although the degree of resistance was much less than that to PCV. The A546V mutation had no impact on the sensitivity to L(-)SddC, L-FMAU, and PCV. When these single mutations were coupled with the M550V/I mutation, all the double mutants were resistant to those drugs. Although 2',3'-dideoxy-2',3'-didehydro-beta-L(-)-5-fluorocytidine (L(-)Fd4C) was also less active, the IC50 of L(-)Fd4C against the L(-)SddC resistant mutant was at least fifty times lower than that against cell growth in culture. DNA polymerase associated with L(-)SddC resistant virions was also found to be less sensitive than that with wild-type HBV to those L-nucleoside triphosphates. All the L(-)SddC resistant mutants were still sensitive to 9-(2-phosphonylmethoxyethyl)-adenine (PMEA). These results suggest that different mutations in the HBV genome have a different impact on its sensitivity to those compounds, and L(-)SddC resistant HBV may also be resistant to PCV, L-FMAU, and L(-)Fd4C. A nucleoside analogue less toxic than PMEA could be developed against L(-)SddC resistant HBV.
Collapse
Affiliation(s)
- L Fu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
65
|
Lau GK, Carman WF, Locarnini SA, Okuda K, Lu ZM, Williams R, Lam SK. Treatment of chronic hepatitis B virus infection: an Asia-Pacific perspective. J Gastroenterol Hepatol 1999; 14:3-12. [PMID: 10029271 DOI: 10.1046/j.1440-1746.1999.01812.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis B infection is a serious health threat in the Asia-Pacific area. A consensus meeting on the treatment of chronic hepatitis B infection was conducted in Hong Kong, in August 1997. It was generally agreed that treatment of chronic hepatitis B infection should be based on the understanding of the natural history of chronic hepatitis B infection. To date, interferon alpha is the only Food and Drug Administration (FDA)-approved form of therapy for chronic hepatitis B infection. The overall response in Asian patients is unsatisfactory: approximately 15-20% will clear hepatitis B e antigen, but less than 5% will clear hepatitis B surface antigen. Newer immunomodulatory therapies are under trial. In contrast, nucleoside analogues, such as lamivudine (pending FDA approval) and famciclovir, have been shown to be potent suppressors of hepatitis B viral replication; however, their role as monotherapy in the treatment of chronic hepatitis B infection remains to be defined. Also, the issues of resistance to nucleoside analogues and withdrawal rebound need to be carefully studied. The future direction of therapy in chronic hepatitis B infection is probably a combination of nucleoside analogues or nucleoside analogues with immunomodulatory therapy.
Collapse
Affiliation(s)
- G K Lau
- Department of Medicine, Queen Mary Hospital, Hong Kong, China.
| | | | | | | | | | | | | |
Collapse
|
66
|
Nicoll AJ, Colledge DL, Toole JJ, Angus PW, Smallwood RA, Locarnini SA. Inhibition of duck hepatitis B virus replication by 9-(2-phosphonylmethoxyethyl)adenine, an acyclic phosphonate nucleoside analogue. Antimicrob Agents Chemother 1998; 42:3130-5. [PMID: 9835503 PMCID: PMC106011 DOI: 10.1128/aac.42.12.3130] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/1998] [Accepted: 08/29/1998] [Indexed: 11/20/2022] Open
Abstract
The use of regimens that use nucleoside analogues for the treatment of chronic hepatitis B virus infection is often limited because of their high relapse rates. This is thought to be due to the persistence of virus in nonhepatocyte reservoirs and/or the viral covalently closed circular (CCC) DNA species in the nucleus of infected hepatocytes. We have evaluated the novel nucleoside analogue 9-(2-phosphonylmethoxyethyl)adenine (PMEA) in the duck model of hepatitis B. Eight Pekin-Aylesbury ducks congenitally infected with the duck hepatitis B virus (DHBV) were treated with PMEA at a dosage of 15 mg/kg of body weight/day via the intraperitoneal route for 4 weeks. At the end of the treatment period, four animals were killed and the remainder were monitored for a further 4-week drug-free period before analysis. The results were compared with those for eight age-matched, untreated controls. The levels of viremia, the total intrahepatic DHBV load, and CCC DNA, viral RNA, and protein levels were measured by Southern hybridization, Northern hybridization, and immunoblotting of the appropriate specimen, respectively. Viral proteins and DNA were also measured by immunohistochemistry (IHC) and in situ hybridization (ISH) of sections of liver and pancreatic tissue. PMEA treatment reduced the viremia to undetectable levels, while the total viral DNA load in the liver was reduced by 95% compared to the control level. Viral RNA and protein levels decreased by approximately 30%. ISH and IHC confirmed the PMEA-related intrahepatic changes and established that the amount of virus in bile duct epithelial cells (BDEC) was reduced by 70% during therapy. During the follow-up period all parameters of active virological replication returned to those for the age-matched controls. PMEA had no significant effect upon the number of virus-infected islet or acinar cells in the pancreas. PMEA at a dosage of 15 mg/kg/day has potent activity against DHBV found within hepatocytes and BDEC and inhibits DHBV replication in BDEC.
Collapse
Affiliation(s)
- A J Nicoll
- Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria 3051, Australia
| | | | | | | | | | | |
Collapse
|
67
|
Hatse S, Naesens L, De Clercq E, Balzarini J. Potent differentiation-inducing properties of the antiretroviral agent 9-(2-phosphonylmethoxyethyl) adenine (PMEA) in the rat choriocarcinoma (RCHO) tumor cell model. Biochem Pharmacol 1998; 56:851-9. [PMID: 9774147 DOI: 10.1016/s0006-2952(98)00058-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
9-(2-phosphonylmethoxyethyl)adenine (PMEA) and its closely related structural analogue (R)-9-(2-phosphonylmethoxypropyl)adenine (PMPA) are potent inhibitors of retroviruses and hepatitis B virus. In its oral prodrug form (adefovir dipivoxil), PMEA is currently the subject of advanced phase II/III clinical trials for the treatment of HIV infections. PMEA has also been shown to be a potent differentiation-inducing agent. In the present study, PMEA was found to have a strong differentiation-inducing effect on rat choriocarcinoma (RCHO) cells, comparable to that of methotrexate, which is the drug of choice for the chemotherapy of choriocarcinoma in humans. PMEA induced differentiation of choriocarcinoma trophoblast cells in a concentration-dependent manner within the 2- to 50-microM concentration range, as ascertained by giant cell formation, alkaline phosphatase induction, progesterone secretion, and the disappearance of a cytotrophoblast-specific surface antigen. PMEA had to be exposed to the rat choriocarcinoma cell cultures for at least 2-3 days to achieve optimal growth inhibition and differentiation of the tumor cells. Unlike PMEA, (R)-9-(2-phosphonylmethoxypropyl)adenine failed to induce differentiation of proliferating cytotrophoblasts into nonproliferating, hormonally active giant cells. This points to the specificity of PMEA as an inducer of choriocarcinoma cell differentiation.
Collapse
Affiliation(s)
- S Hatse
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium
| | | | | | | |
Collapse
|
68
|
Colacino JM, Staschke KA. The identification and development of antiviral agents for the treatment of chronic hepatitis B virus infection. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1998; 50:259-322. [PMID: 9670781 DOI: 10.1007/978-3-0348-8833-2_6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hepatitis B virus (HBV) is the leading cause of chronic hepatitis throughout the world. Notwithstanding the availability of a safe and effective vaccine, the world prevalence of HBV has not declined significantly, thus resulting in the need for a selective antiviral agent. HBV is a small, partially double-stranded DNA virus which replicates through an RNA intermediate. Most efforts to develop anti-HBV agents have been targeted to the viral DNA polymerase which possesses reverse transcriptase activity. Currently, the most promising anti-HBV agents are nucleoside analogs which interfere with viral DNA replication. Although earlier nucleoside analogs such as vidarabine (ara-A) and fialuridine (FIAU) have displayed unacceptable toxicities, newer analogs such as lamivudine (3TC), bis-POM PMEA (GS-840), lobucavir, and BMS-200,475 have demonstrated clinical utility. In particular, the use of lamivudine has generated considerable interest in the development of other L-enantiomeric nucleoside analogs for use against HBV. Here, we provide an overview of HBV structure and replication strategy and discuss the use of cell culture systems, in vitro viral polymerase systems, and animal models to identify and evaluate anti-HBV agents. We also discuss the various classes of nucleoside analogs in terms of structure, mechanism of action, status in clinical development, ability to select for resistant HBV variants, and use in combination therapies. Finally, we present a discussion of novel antiviral approaches, including antisense and gene therapy, and address the various challenges to successful anti-HBV chemotherapeutic intervention.
Collapse
Affiliation(s)
- J M Colacino
- Infectious Diseases Research, Lilly Research Laboratories, Indianapolis, IN, USA
| | | |
Collapse
|
69
|
Hatse S, Naesens L, Degrève B, Vandeputte M, Waer M, De Clercq E, Balzarini J. In vitro and in vivo inhibitory activity of the differentiation-inducing agent 9-(2-phosphonylmethoxyethyl)adenine (PMEA) against rat choriocarcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 431:605-9. [PMID: 9598137 DOI: 10.1007/978-1-4615-5381-6_117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The acyclic nucleoside phosphonate 9-(2-phosphonylmethoxyethyl)adenine (PMEA) has previously been shown to be a strong inducer of differentiation in several tumor cell lines. We have now investigated the in vitro differentiation-inducing and the in vivo antitumor, properties of PMEA in a rat choriocarcinoma tumor cell model. PMEA at 2 to 50 microM induced choriocarcinoma RCHO cell differentiation in vitro in a concentration-dependent manner, as monitored by morphological changes, induction of alkaline phosphatase and production and secretion of progesterone. Likewise, a clear dose-response relationship was established for the in vivo antitumor activity of PMEA in choriocarcinoma-bearing rats. (R)-PMPA, a structural analogue of PMEA which is much less effective than PMEA in inducing differentiation in vitro did not demonstrate any in vivo antitumor activity. This observation points to the specificity of the differentiation-inducing potential of PMEA.
Collapse
Affiliation(s)
- S Hatse
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
In the past decade, significant progress has been achieved in the battle against hepatitis B virus. In addition to the immunomodulating agents such as interferon-alpha and thymosin, many novel antiviral agents have been discovered, among which nucleoside analogues are the mainstay. New-generation compounds such as 3TC and famciclovir have shown promise in the treatment of patients chronically infected by this virus, and are on the line for approval. However, viral rebound after cessation of therapy still remains a major problem. Additionally, the reports on the drug resistance to these antiviral agents suggest that combination therapy will be the eventual strategy (Bartholomew et al., 1997; Tipples et al., 1996). Therefore, developments of safe and effective antiviral agents which do not cross-resist with currently available antiviral drugs are still much needed.
Collapse
Affiliation(s)
- J H Hong
- Center for Drug Discovery, Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens 30602-2352, USA
| | | | | | | | | |
Collapse
|
71
|
Nicoll A, Locarnini S. Review: Present and future directions in the treatment of chronic hepatitis B infection. J Gastroenterol Hepatol 1997; 12:843-54. [PMID: 9504896 DOI: 10.1111/j.1440-1746.1997.tb00382.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The last decade has witnessed substantial progress in the development of chemotherapeutic agents for chronic hepatitis B. However, the only currently licensed treatment in Australia, interferon-alpha, has low initial response rates and the adverse effects are often unacceptable. Of the newer agents in the class of nucleoside analogues, famciclovir and lamivudine are in phase III clinical trials with encouraging preliminary results, while other agents, such as bis-POM PMEA (Adefovir), are at phase I/II development. Future approaches to therapy will be governed by an understanding of the effects of nucleoside analogues on the natural history of the disease as well as on the hepatitis B virus hepatocyte interaction. Combination antiviral therapy should theoretically offer improved response rates, decrease the development of viral resistance, and provide the greatest reduction in viral load, but it has not yet been widely examined in the clinical setting. In this article, we review the currently available strategies, discuss potential problem areas, and speculate on promising approaches with combination chemotherapy and the features of agents soon to be trialed.
Collapse
Affiliation(s)
- A Nicoll
- Victorian Infectious Diseases Reference Laboratory, Fairfield Hospital, Victoria, Australia
| | | |
Collapse
|
72
|
Abstract
This article describes several approaches to a selective therapy of virus infections: (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU [brivudin]) for the therapy of herpes simplex virus type 1 and varicella-zoster virus infections: (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (HPMPC [cidofovir]) for the therapy of various DNA virus (i.e., herpesvirus, adenovirus, papillomavirus, polyomavirus, and poxvirus) infections; 9-(2-phosphonylmethoxyethyl)adenine (PMEA [adefovir]) for the therapy of retrovirus, hepadnavirus, and herpesvirus infections; (R)-9-(2-phosphonylmethoxypropyl)adenine (PMPA) for the therapy and prophylaxis of retrovirus and hepadnavirus infections; and nonnucleoside reverse transcriptase inhibitors (NNRTIs), such as tetrahydroimidazo[4,5,1-jk][1,4]-benzodiazepin-2(IH)-one and -thione (TIBO), 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT), alpha-anilinophenylacetamide (alpha-APA), and 2',5'bis-O-(tert-butyldimethylsilyl)-3'-spiro-5"-(4"-amino-1",2"-oxat hiole- 2",2"-dioxide)pyrimidine (TSAO) derivatives, and thiocarboxanilides for the treatment of human immunodeficiency virus type 1 (HIV-1) infections. For the clinical use of NNRTIs, some guidelines have been elaborated, such as starting treatment with combinations of different compounds at sufficiently high concentrations to effect a pronounced and sustained suppression of the virus. Despite the diversity of the compounds described here and the different viruses at which they are targeted, they have a number of characteristics in common. As they interact with specific viral proteins, the compounds achieve a selective inhibition of the replication of the virus, which, in turn, should be able to develop resistance to the compounds. However, as has been established for the NNRTIs, the problem of viral resistance may be overcome if the compounds are used from the start at sufficiently high doses, which could be reduced if different compounds are combined. For HIV infections, drug treatment regimens should be aimed at reducing the viral load to such an extent that the risk for progression to AIDS will be minimized, if not avoided entirely. This may result in a real "cure" of the disease but not necessarily of the virus infection, and in this sense, HIV disease may be reduced to a dormant infection, reminiscent of the latent herpesvirus infections. Should virus replication resume after a certain time, the armamentarium of effective anti-HIV and anti-herpesvirus compounds now available, if applied at the appropriate dosage regimens, should make the virus return to its dormant state before it has any chance to damage the host. It is unlikely that this strategy would eradicate the virus and thus "cure" the viral infection, but it definitely qualifies as a cure of the disease.
Collapse
Affiliation(s)
- E De Clercq
- Rega Institue for Medical Research, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
73
|
de Jong MD, Boucher CA, Cooper DA, Galasso GJ, Gazzard B, Lange JM, Montaner JS, Richman DD, Thomas HC. Summary of the II International Consensus Symposium on Combined Antiviral Therapy and implications for future therapies. Antiviral Res 1997; 35:65-82. [PMID: 9217244 PMCID: PMC7173273 DOI: 10.1016/s0166-3542(97)00020-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M D de Jong
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
de Vrueh RL, Rump ET, Biessen EA, Balzarini J, van Berkel TJ, Bijsterbosch MK. Lipophilic Derivatization of the Antiviral Drug 9-(2-Phosphonylmethoxyethyl)adenine and Its Incorporation into a Lactosylated Lipid Carrier to Improve Its Liver Uptake. ACTA ACUST UNITED AC 1997. [DOI: 10.1080/07328319708006170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
75
|
Balzarini J, Kruining J, Wedgwood O, Pannecouque C, Aquaro S, Perno CF, Naesens L, Witvrouw M, Heijtink R, De Clercq E, McGuigan C. Conversion of 2',3'-dideoxyadenosine (ddA) and 2',3'-didehydro-2',3'-dideoxyadenosine (d4A) to their corresponding aryloxyphosphoramidate derivatives markedly potentiates their activity against human immunodeficiency virus and hepatitis B virus. FEBS Lett 1997; 410:324-8. [PMID: 9237655 DOI: 10.1016/s0014-5793(97)00616-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
2',3'-Dideoxyadenosine (ddA), 2',3'-didehydro-2',3'-dideoxyadenosine (d4A) and their lipophilic 5'-monophosphate triester (aryloxyphosphoramidate) prodrugs were evaluated for their anti-retrovirus and anti-hepatitis B virus activity in various cell culture models. The aryloxyphosphoramidate derivatives of ddA (Cf 1093) and d4A (Cf 1001) showed markedly superior (100-1000-fold) efficacies than the parent drugs against human immunodeficiency virus type 1 (HIV-1), HIV-2, simian immunodeficiency virus (SIV), Moloney murine sarcoma virus (MSV) and human hepatitis B virus (HBV) replication regardless of the cell type in which the virus replication was studied (i.e., human T-lymphocyte CEM, MT-4, Molt/4 and C8166 cells, peripheral blood lymphocytes (PBL), monocyte/macrophages (M/M), murine embryo fibroblasts and human hepatocyte cells). Also the selectivity index (ratio of cytotoxic concentration/antivirally effective concentration) of both aryloxyphosphoramidate prodrugs was markedly increased. In particular the d4A prodrug Cf 1001 showed a selectivity index of 300-3000 as compared with 2-3 for the parental d4A in established laboratory cell lines. Also Cf 1001 had a selectivity index of 400-650 in HIV-1-infected PBL and M/M, respectively. Both Cf 1001 and Cf 1093 were equally efficient as 3TC (lamivudine) in inhibiting HBV replication in hepatocytes, and rank among the most potent HIV and HBV inhibitors reported so far in cell culture.
Collapse
Affiliation(s)
- J Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Parang K, Wiebe LI, Knaus EE, Huang JS, Tyrrell DL, Csizmadia F. In vitro antiviral activities of myristic acid analogs against human immunodeficiency and hepatitis B viruses. Antiviral Res 1997; 34:75-90. [PMID: 9191015 DOI: 10.1016/s0166-3542(96)01022-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A group of myristic acid analogs, designed as alternative substrates for N-myristoyltransferase (NMT), were evaluated against human immunodeficiency virus (HIV), hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) in vitro. Antiviral potency was increased when S or O was substituted for -CH2- in myristic acid and selectivity was affected by the presence and position of the heteroatoms and phenyl groups. A correlation was established among anti-HIV activity, Log P and Log D7.4 and between anti-HIV activity and carbonyl-heteroatom interatomic distances in the myristoyl analogs. 12-Thioethyldodecanoic acid 6 was moderately active (EC50 = 9.37 microM) against HIV-infected T4-lymphocytes (CEM-SS cell line), and it exhibited in vitro activity (EC50 = 17.8 microM) against HBV-producing 2.2.15 cell cultures derived from a human hepatoblastoma cell line (Hep G2). 12-Methoxydodecanoic acid 1 exhibited in vitro activity (EC50 = 20-30 microM) against hepatitis B in the HBV DNA-transfected 2.2.15 cell line. At a concentration of 10 microg/ml, none of the fatty acids significantly inhibited the replication of DHBV in infected hepatocytes.
Collapse
Affiliation(s)
- K Parang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
77
|
Discovery of imidazo[1,2-c]pyrimidin-5(6H)-one heterosubstituted nucleoside analogues with potent activity against human hepatitis B virus in vitro. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)00001-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
78
|
Holý A, Dvoráková H, Jindrich J, Masojídková M, Budĕsínský M, Balzarini J, Andrei G, De Clercq E. Acyclic nucleotide analogs derived from 8-azapurines: synthesis and antiviral activity. J Med Chem 1996; 39:4073-88. [PMID: 8831773 DOI: 10.1021/jm960314q] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Reaction of phosphoroorganic synthons with 8-azaadenine, 8-aza-2, 6-diaminopurine, and 8-azaguanine using cesium carbonate yielded regioisomeric 8-azapurine N7-, N8-, and N9-(2-(phosphonomethoxy)alkyl) derivatives. This reaction followed by deprotection afforded isomeric 2-(phosphonomethoxy)ethyl (PME), (S)-(3-hydroxy-2-(phosphonomethoxy)propyl) [(S)-HPMP], (S)-(3-flouro-2-(phosphonomethoxy)propyl) [(S)-FPMP], (S)-(2-(phosphonomethoxy)propyl) [(S)-PMP], and (R)-(2-(phosphonomethoxy)propyl) [(R)-PMP] derivatives. 13C NMR spectra were used for structural assignment of the regioisomers. None of the 8-isomers exhibited any antiviral activity against herpesviruses, Moloney murine sarcoma virus (MSV), and/or HIV. 9-(S)-HPMP-8-azaadenine (23) and PME-8-azaguanine (65) were active against HSV-1, HSV-2, and CMV at 0.2-7 micrograms/mL, VZV at 0.04-0.4 microgram/mL, and MSV (at 0.3-0.6 microgram/mL). PME-8-azaguanine (65) and (R)-PMP-8-azaguanine (71a) protected MT-4 and CEM cells against HIV-1- and HIV-2-induced cytopathicity at a concentration of approximately 2 micrograms/mL.
Collapse
Affiliation(s)
- A Holý
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Praha
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Bridges CG, Taylor DL, Ahmed PS, Brennan TM, Hornsperger JM, Navé JF, Casara P, Tyms AS. MDL 74,968, a new acyclonucleotide analog: activity against human immunodeficiency virus in vitro and in the hu-PBL-SCID.beige mouse model of infection. Antimicrob Agents Chemother 1996; 40:1072-7. [PMID: 8723443 PMCID: PMC163268 DOI: 10.1128/aac.40.5.1072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The novel acyclonucleotide derivative of guanine, 9-[2-methylidene-3-(phosphonomethoxy)propyl] guanine (MDL 74,968), had antiviral activity comparable to those of 9-(2-phosphonomethoxyethyl) adenine (PMEA) and 2',3'-dideoxyinosine against laboratory strains of both human immunodeficiency virus (HIV) types 1 and 2 cultured in MT-4 cells and several clinical HIV isolates cultured in human peripheral blood mononuclear cells (PBMCs). MDL 74,968 was at least fourfold less toxic than PMEA to MT-4 cells or PBMCs, thereby producing a more favorable in vitro selectivity index for the former compound. Studies of acute toxicity in CD-1 mice showed that MDL 74,968 was not toxic at doses of 1,600 mg/kg of body weight via the intraperitoneal route or at doses of 500 mg/kg via the intravenous route. Furthermore, no adverse effects of MDL 74,968 were apparent when mice were treated at doses of 200 mg/kg twice daily for 5 days. Treatment by continuous subcutaneous infusion of MDL 74,968 or PMEA at the daily dose of 20 mg/kg in the hu-PBL-SCID.beige murine model of HIV infection significantly reduced the severity of infection compared with that in placebo-treated controls. Quantitation of virus recovery by endpoint titration of spleen cells in coculture with mitogen-activated PBMCs demonstrated that MDL 74,968 as well as PMEA significantly reduced the amount of virus (P < 0.02). Moreover, by using DNA extracted from spleens, the mean HIV:HLA PCR product ratio, which takes into account individual variation in immune system reconstitution, were 0.50 and 0.40 for MDL 74,968 and PMEA treatments, respectively, whereas animals receiving the placebo control had significantly higher levels of HIV proviral DNA (mean 0.78; P < 0.02). Taken together, these promising findings suggest that an orally bioavailable prodrug of MDL 74,968 should be developed for the treatment of HIV infection.
Collapse
Affiliation(s)
- C G Bridges
- Medical Research Council Collaborative Centre, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Duck hepatitis B virus (DHBV) belongs to the same virus family as the human hepatitis B virus (HBV). Domestic ducks infected with DHBV can be used as an animal model for chronic hepatitis B virus infection in therapeutic trials. In this study the antiviral effect of the guanosine analogue 2',3'-dideoxy-3'-fluoroguanosine (FLG) was tried in vivo on chronically DHBV-infected ducks. The ducks were either congenitally infected, or inoculated with DHBV immediately post-hatch. FLG was given as intraperitoneal injections twice daily, at different dosages. Serum DHBV levels were determined by DNA dot-blot hybridization. A strong inhibition of serum DHBV DNA was observed with FLG doses down to 1 mg kg-1 day-1, given for 7 to 10 days. With the corresponding thymidine analogue, 2',3'-dideoxy-3'-fluorothymidine; however, no inhibition was obtained. This difference may be due to different phosphorylation mechanisms. Independently of FLG dose, serum DHBV DNA returned to pretreatment levels within a few days after cessation of therapy. After a long-term trial (FLG, 5 mg kg-1 day-1 for 33 days), the same relapse of DHBV production was seen. Thus, FLG is an efficient inhibitor of DHBV replication, and is a candidate for treatment of HBV infections. However, the effect is transient, and therefore combination with other types of anti-HBV drugs should be considered.
Collapse
Affiliation(s)
- B Löfgren
- Department of Medical Microbiology, Lund University, Sweden
| | | | | | | |
Collapse
|
81
|
Sudo K, Konno K, Shigeta S, Yokota T. Colorimetric assay system for screening antiviral compounds against hepatitis B virus. Microbiol Immunol 1996; 40:153-9. [PMID: 8867612 DOI: 10.1111/j.1348-0421.1996.tb03319.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A highly sensitive, rapid, and accurate assay system was developed for the in vitro evaluation of anti-hepatitis B virus (anti-HBV) agents. Chronic HBV-producing HB611 cells were used in combination with immunoaffinity purification, polymerase chain reaction (PCR), and hybrid capture detection. HB611 cells were incubated with putative anti-HBV agents for 7 days in 96-well microtiter plates. HBV was purified from HB611 cell culture media using immunoaffinity purification. The HBV DNA was extracted, amplified with PCR, and assayed using a hybrid capture colorimetric method. This assay provided quantitative detection of extracellular HBV DNA from 25 microliters of cell culture media. Using the colorimetric method, we found that 50% effective concentration levels of several known anti-HBV agents (HPMPA, PMEDAP, PMEA and others) were similar to those reported in studies using Southern blot analysis. These results demonstrate that this new and easily automated colorimetric assay system can be used for the rapid and accurate assessment of anti-HBV compound selectivity.
Collapse
Affiliation(s)
- K Sudo
- Rational Drug Design Laboratories, Fukushima, Japan
| | | | | | | |
Collapse
|
82
|
Affiliation(s)
- J Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
83
|
Naesens L, Balzarini J, Bischofberger N, De Clercq E. Antiretroviral activity and pharmacokinetics in mice of oral bis(pivaloyloxymethyl)-9-(2-phosphonylmethoxyethyl)adenine, the bis(pivaloyloxymethyl) ester prodrug of 9-(2-phosphonylmethoxyethyl)adenine. Antimicrob Agents Chemother 1996; 40:22-8. [PMID: 8787873 PMCID: PMC163050 DOI: 10.1128/aac.40.1.22] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lipophilic ester prodrugs of 9-(2-phosphonylmethoxyethyl)adenine (PMEA), i.e., bis(pivaloyloxymethyl)-PMEA [bis(POM)-PMEA] and diphenyl-PMEA, have been synthesized in an attempt to increase the oral bioavailability of this broad-spectrum antiviral agent. The antiretroviral efficacy was determined in severe combined immune deficiency (SCID) mice infected with Moloney murine sarcoma virus (MSV). They were treated twice daily for 5 days after infection. Oral treatment with bis(POM)-PMEA at a dose equivalent to 100 or 50 mg of PMEA per kg of body weight per day proved markedly effective in delaying MSV-induced tumor formation and death of the mice. Oral bis(POM)-PMEA afforded anti-MSV efficacy equal to that of subcutaneous PMEA given at equimolar doses. Oral treatment with PMEA or diphenyl-PMEA proved less efficient. Similarly, in mice infected with Friend leukemia virus (FLV), oral treatment with bis(POM)-PMEA at a dose equivalent to 100 or 50 mg of PMEA per kg per day effected a marked inhibition of FLV-induced splenomegaly (87 and 48% inhibition, respectively), the efficacy being equal to that of PMEA given subcutaneously at equivalent doses. Pharmacokinetic experiments with mice showed that the oral bioavailabilities of PMEA following oral gavage of bis(POM)-PMEA, diphenyl-PMEA, or PMEA (at a dose equivalent to 50 mg of PMEA per kg) were 53,3, and 16%, respectively. These data were calculated from the levels of free PMEA in plasma. Also, the recoveries of free PMEA in the urine upon oral administration of bis(POM)-PMEA, diphenyl-PMEA, or PMEA (at a dose equivalent to 25 mg of PMEA per kg) were 48, 4, and 7%, respectively. Oral bis(POM)-PMEA was not recovered from plasma, suggesting that it was readily cleaved to free PMEA. In contrast, diphenyl-PMEA was not efficiently cleaved to free PMEA, resulting in a rather low oral bioavailability of PMEA from this prodrug. Bis(POM)-PMEA appears to be an efficient oral prodrug of PMEA that deserves further clinical evaluation in human immunodeficiency virus-infected individuals.
Collapse
Affiliation(s)
- L Naesens
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium. lieve.naesens/rega.kuleuven.ac.be
| | | | | | | |
Collapse
|
84
|
Arends S, van Halteren E, Kamp W, Schokker J. Safety of 9-(2-phosphonylmethoxyethyl)adenine (PMEA) in patients with human immunodeficiency virus infection: a pilot study. PHARMACY WORLD & SCIENCE : PWS 1996; 18:30-4. [PMID: 8861829 DOI: 10.1007/bf00449687] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The compound 9-(2-phosphonylmethoxyethyl)adenine (PMEA) is a potent inhibitor of a number of viruses in vitro such as human immunodeficiency virus types 1 and 2, herpes simplex virus types 1 and 2, hepatitis B virus, cytomegalovirus, and Epstein-Barr virus. PMEA also proved to be effective in vivo against feline immunodeficiency virus in cats and simian immunodeficiency virus in rhesus monkeys. In an open, non-placebo-controlled trial, the safety of weekly doses of PMEA in 10 patients with acquired immunodeficiency syndrome (AIDS) or AIDS-related complex was studied for a period of 11 weeks. CD4+ T-cell counts at baseline were between 10 and 450/mm(3). The drug was administered intravenously at a dose of 1000 mg. No serious side-effects were seen. On one occasion one patient showed alanine aminotransferase and aspartate aminotransferase levels 5 times higher than the upper limit of normal and another patient showed on one occasion aspartate aminotransferase levels 5 times higher than the upper limit of normal. In another patient serum amalyse levels increased, on one occasion 1.5 times above the upper limit of normal. An improvement in general well-being was reported by all patients. For patients with a CD4+ T-cell count > 100/mm(3) at baseline, the CD4+ T-cell count increased from a mean of 283/mm(3) at baseline to a mean of 448/mm(3) at the end of the study. Repeat infusions of PMEA at a dose of 1000 mg were safe and well tolerated. Our results suggest that PMEA, administrated according to this treatment schedule, may be effective in treating patients with human immunodeficiency virus infection.
Collapse
Affiliation(s)
- S Arends
- 'Fight for Life', Keizersgracht 670, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
85
|
Abstract
Depending on the stage of their intervention with the viral replicative cycle, human immunodeficiency virus inhibitors could be divided into the following groups: (i) adsorption inhibitors (i.e., CD4 constructs, polysulfates, polysulfonates, polycarboxylates, and polyoxometalates), (ii) fusion inhibitors (i.e., plant lectins, succinylated or aconitylated albumins, and betulinic acid derivatives), (iii) uncoating inhibitors (i.e., bicyclams), (iv) reverse transcription inhibitors acting either competitively with the substrate binding site (i.e., dideoxynucleoside analogs and acyclic nucleoside phosphonates) or allosterically with a nonsubstrate binding site (i.e., non-nucleoside reverse transcriptase inhibitors), (v) integration inhibitors, (vi) DNA replication inhibitors, (vii) transcription inhibitors (i.e., antisense oligodeoxynucleotides and Tat antagonists), (viii) translation inhibitors (i.e., antisense oligodeoxynucleotides and ribozymes), (ix) maturation inhibitors (i.e., protease inhibitors, myristoylation inhibitors, and glycosylation inhibitors), and finally, (x) budding (assembly/release) inhibitors. Current knowledge, including the therapeutic potential, of these various inhibitors is discussed. In view of their potential clinical the utility, the problem of virus-drug resistance and possible strategies to circumvent this problem are also addressed.
Collapse
Affiliation(s)
- E De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
86
|
Balzarini J. Anti-retroviral and pharmacological properties of 9-(2-phosphonylmethoxyethyl) adenine (PMEA). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 370:459-64. [PMID: 7660950 DOI: 10.1007/978-1-4615-2584-4_98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J Balzarini
- Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
87
|
Heijtink RA, Kruining J, de Wilde GA, Balzarini J, de Clercq E, Schalm SW. Inhibitory effects of acyclic nucleoside phosphonates on human hepatitis B virus and duck hepatitis B virus infections in tissue culture. Antimicrob Agents Chemother 1994; 38:2180-2. [PMID: 7811041 PMCID: PMC284706 DOI: 10.1128/aac.38.9.2180] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The inhibitory effects of the 9-(2-phosphonylmethoxyethyl)adenine-related compounds (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)-adenine, (S)-9-(3-fluoro-2-phosphonylmethoxypropyl)adenine, (R)-9-(2-phosphonylmethoxypropyl)adenine, (R)-9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine, and (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine on human hepatitis B virus replication in the human hepatoma cell line HepG2 2.2.15 and duck hepatitis B virus infection in primary duck hepatocytes were investigated. (R)-9-(2-phosphonylmethoxypropyl-2,6-diaminopurine had the lowest 50% inhibitory concentrations against hepatitis B virus and duck hepatitis B virus, 0.22 and 0.06 microM, respectively, i.e., two- to fivefold lower concentrations than required for (R)-9-(2-phosphonylmethoxypropyl)adenine and 9-(2-phosphonylmethoxyethyl)adenine. All compounds were not toxic in vitro at a concentration of 100 microM.
Collapse
Affiliation(s)
- R A Heijtink
- Department of Virology, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
88
|
Naesens L, Balzarini J, De Clercq E. Therapeutic potential of PMEA as an antiviral drug. Rev Med Virol 1994. [DOI: 10.1002/rmv.1980040302] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|