51
|
Yakovleva T, Bazov I, Cebers G, Marinova Z, Hara Y, Ahmed A, Vlaskovska M, Johansson B, Hochgeschwender U, Singh IN, Bruce-Keller AJ, Hurd YL, Kaneko T, Terenius L, Ekström TJ, Hauser KF, Pickel VM, Bakalkin G. Prodynorphin storage and processing in axon terminals and dendrites. FASEB J 2006; 20:2124-6. [PMID: 16966485 DOI: 10.1096/fj.06-6174fje] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The classical view postulates that neuropeptide precursors in neurons are processed into mature neuropeptides in the somatic trans-Golgi network (TGN) and in secretory vesicles during axonal transport. Here we show that prodynorphin (PDYN), precursor to dynorphin opioid peptides, is predominantly located in axon terminals and dendrites in hippocampal and striatal neurons. The molar content of unprocessed PDYN was much greater than that of dynorphin peptides in axon terminals of PDYN-containing neurons projecting to the CA3 region of the hippocampus and in the striatal projections to the ventral tegmental area. Electron microscopy showed coexistence of PDYN and dynorphins in the same axon terminals with occasional codistribution in individual dense core vesicles. Thus, the precursor protein is apparently stored at presynaptic sites. In comparison with the hippocampus and striatum, PDYN and dynorphins were more equally distributed between neuronal somata and processes in the amygdala and cerebral cortex, suggesting regional differences in the regulation of trafficking and processing of the precursor protein. Potassium-induced depolarization activated PDYN processing and secretion of opioid peptides in neuronal cultures and in a model cell line. Regulation of PDYN storage and processing at synapses by neuronal activity or extracellular stimuli may provide a local mechanism for regulation of synaptic transmission.
Collapse
Affiliation(s)
- Tatiana Yakovleva
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Kuzmin A, Madjid N, Terenius L, Ogren SO, Bakalkin G. Big dynorphin, a prodynorphin-derived peptide produces NMDA receptor-mediated effects on memory, anxiolytic-like and locomotor behavior in mice. Neuropsychopharmacology 2006; 31:1928-37. [PMID: 16292317 DOI: 10.1038/sj.npp.1300959] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Effects of big dynorphin (Big Dyn), a prodynorphin-derived peptide consisting of dynorphin A (Dyn A) and dynorphin B (Dyn B) on memory function, anxiety, and locomotor activity were studied in mice and compared to those of Dyn A and Dyn B. All peptides administered i.c.v. increased step-through latency in the passive avoidance test with the maximum effective doses of 2.5, 0.005, and 0.7 nmol/animal, respectively. Effects of Big Dyn were inhibited by MK 801 (0.1 mg/kg), an NMDA ion-channel blocker whereas those of dynorphins A and B were blocked by the kappa-opioid antagonist nor-binaltorphimine (6 mg/kg). Big Dyn (2.5 nmol) enhanced locomotor activity in the open field test and induced anxiolytic-like behavior both effects blocked by MK 801. No changes in locomotor activity and no signs of anxiolytic-like behavior were produced by dynorphins A and B. Big Dyn (2.5 nmol) increased time spent in the open branches of the elevated plus maze apparatus with no changes in general locomotion. Whereas dynorphins A and B (i.c.v., 0.05 and 7 nmol/animal, respectively) produced analgesia in the hot-plate test Big Dyn did not. Thus, Big Dyn differs from its fragments dynorphins A and B in its unique pattern of memory enhancing, locomotor- and anxiolytic-like effects that are sensitive to the NMDA receptor blockade. The findings suggest that Big Dyn has its own function in the brain different from those of the prodynorphin-derived peptides acting through kappa-opioid receptors.
Collapse
Affiliation(s)
- Alexander Kuzmin
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
53
|
Marinelli PW, Lam M, Bai L, Quirion R, Gianoulakis C. A Microdialysis Profile of Dynorphin A1-8 Release in the Rat Nucleus Accumbens Following Alcohol Administration. Alcohol Clin Exp Res 2006; 30:982-90. [PMID: 16737456 DOI: 10.1111/j.1530-0277.2006.00112.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Pharmacological studies have implicated the endogenous opioid system in mediating alcohol intake. Other evidence has shown that alcohol administration can influence endorphinergic and enkephalinergic activity, while very few studies have examined its effect on dynorphinergic systems. The aim of the present study was to investigate the effect of alcohol administration or a mechanical stressor on extracellular levels of dynorphin A(1-8) in the rat nucleus accumbens-a brain region that plays a significant role in the processes underlying reinforcement and stress. METHODS Male Sprague-Dawley rats were implanted with a microdialysis probe aimed at the shell region of the nucleus accumbens. Artificial cerebrospinal fluid was pumped at a rate of 1.5 microL/min in awake and freely moving animals and the dialysate was collected at 30-minute intervals. In one experiment, following a baseline period, rats were injected intraperitoneally with either physiological saline or 1 of 3 doses of alcohol, 0.8, 1.6, or 3.2 g ethanol/kg body weight. In a second experiment, following a baseline period, rats were applied a clothespin to the base of their tail for 20 minutes. The levels of dynorphin A(1-8) in the dialysate were analyzed with solid-phase radioimmunoassay. RESULTS Relative to saline-treated controls, an alcohol dose of 1.6 and 3.2 g/kg caused a transient increase in the extracellular levels of dynorphin A(1-8) in the first 30 minutes of alcohol administration. However, the effect resulting from the high 3.2 g/kg dose was far more pronounced and more significant than with the moderate dose. There was no effect of tail pinch on dynorphin A(1-8) levels in the nucleus accumbens. CONCLUSIONS In this experiment, a very high dose of alcohol was especially capable of stimulating dynorphin A(1-8) release in the nucleus accumbens. Dynorphin release in the accumbens has been previously associated with aversive stimuli and may thus reflect a system underlying the aversive properties of high-dose alcohol administration. However, the lack of effect of tail-pinch stress in the present study suggests that dynorphin A(1-8) is not released in response to all forms of stressful/aversive stimuli.
Collapse
Affiliation(s)
- Peter W Marinelli
- Department of Neurology and Neurosurgery, Douglas Hospital Research Centre and McGill University, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
54
|
Hugonin L, Vukojević V, Bakalkin G, Gräslund A. Membrane leakage induced by dynorphins. FEBS Lett 2006; 580:3201-5. [PMID: 16697372 DOI: 10.1016/j.febslet.2006.04.078] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 04/24/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
Dynorphins, endogeneous opioid peptides, function as ligands to the opioid kappa receptors and induce non-opioid excitotoxic effects. Here we show that big dynorphin and dynorphin A, but not dynorphin B, cause leakage effects in large unilamellar phospholipid vesicles (LUVs). The effects parallel the previously studied potency of dynorphins to translocate through biological membranes. Calcein leakage caused by dynorphin A from LUVs with varying POPG/POPC molar ratios was promoted by higher phospholipid headgroup charges, suggesting that electrostatic interactions are important for the effects. A possibility that dynorphins generate non-opioid excitatory effects by inducing perturbations in the lipid bilayer of the plasma membrane is discussed.
Collapse
Affiliation(s)
- Loïc Hugonin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
55
|
Tan-No K, Taira A, Nakagawasai O, Niijima F, Demuth HU, Silberring J, Terenius L, Tadano T. Differential effects of N-peptidyl-O-acyl hydroxylamines on dynorphin-induced antinociception in the mouse capsaicin test. Neuropeptides 2005; 39:569-73. [PMID: 16271759 DOI: 10.1016/j.npep.2005.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 09/10/2005] [Indexed: 11/18/2022]
Abstract
In the capsaicin test, intrathecal (i.t.) dynorphins are antinociceptive. Cysteine protease inhibitors such as p-hydroxymercuribenzoate (PHMB) given i.t. augment and prolong their activity. The effect of two novel cysteine protease inhibitors, N-peptidyl-O-acyl hydroxylamines, on the antinociception induced by i.t. administered dynorphin A or dynorphin B has been investigated. When administered i.t. 5 min before the injection of capsaicin (800 ng) into the plantar surface of the hindpaw, dynorphin A (62.5-1000 pmol) or dynorphin B (0.5-4 nmol) produced a dose-dependent and significant antinociceptive effect. The effect of dynorphin A (1 nmol) and dynorphin B (4 nmol) disappeared completely within 180 and 60 min, respectively. PHMB (2 nmol) and Boc-Tyr-Gly-NHO-Bz (BYG-Bz) (2 nmol) co-administered with dynorphin A or dynorphin B significantly prolonged antinociception induced by both. On the other hand, Z-Phe-Phe-NHO-Bz (ZFF-Bz) (1 and 2 nmol) only prolonged antinociception induced by dynorphin A. The results suggest that Z-Phe-Phe-NHO-Bz is an inhibitor of cysteine proteases preferring cleavage of dynorphin A, with less specificity towards dynorphin B in the mouse spinal cord.
Collapse
Affiliation(s)
- Koichi Tan-No
- Department of Pharmacology, Tohoku Pharmaceutical University, Aoba-ku, Sendai, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Nguyen XV, Masse J, Kumar A, Vijitruth R, Kulik C, Liu M, Choi DY, Foster TC, Usynin I, Bakalkin G, Bing G. Prodynorphin knockout mice demonstrate diminished age-associated impairment in spatial water maze performance. Behav Brain Res 2005; 161:254-62. [PMID: 15922052 DOI: 10.1016/j.bbr.2005.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 02/14/2005] [Accepted: 02/15/2005] [Indexed: 11/29/2022]
Abstract
Dynorphins, endogenous kappa-opioid agonists widely expressed in the central nervous system, have been reported to increase following diverse pathophysiological processes, including excitotoxicity, chronic inflammation, and traumatic injury. These peptides have been implicated in cognitive impairment, especially that associated with aging. To determine whether absence of dynorphin confers any beneficial effect on spatial learning and memory, knockout mice lacking the coding exons of the gene encoding its precursor prodynorphin (Pdyn) were tested in a water maze task. Learning and memory assessment using a 3-day water maze protocol demonstrated that aged Pdyn knockout mice (13-17 months) perform comparatively better than similarly aged wild-type (WT) mice, based on acquisition and retention probe trial indices. There was no genotype effect on performance in the cued version of the swim task nor on average swim speed, suggesting the observed genotype effects are likely attributable to differences in cognitive rather than motor function. Young (3-6 months) mice performed significantly better than aged mice, but in young mice, no genotype difference was observed. To investigate the relationship between aging and brain dynorphin expression in mice, we examined dynorphin peptide levels at varying ages in hippocampus and frontal cortex of WT 129SvEv mice. Quantitative radioimmunoassay demonstrated that dynorphin A levels in frontal cortex, but not hippocampus, of 12- and 24-month mice were significantly elevated compared to 3-month mice. Although the underlying mechanisms have yet to be elucidated, the results suggest that chronic increases in endogenous dynorphin expression with age, especially in frontal cortex, may adversely affect learning and memory.
Collapse
Affiliation(s)
- Xuan V Nguyen
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, 800 Rose Street, 310 Whitney-Henrickson Facility, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Foradori CD, Goodman RL, Lehman MN. Distribution of preprodynorphin mRNA and dynorphin-a immunoreactivity in the sheep preoptic area and hypothalamus. Neuroscience 2005; 130:409-18. [PMID: 15664697 DOI: 10.1016/j.neuroscience.2004.08.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2004] [Indexed: 11/24/2022]
Abstract
Endogenous opioid peptides (EOP) are important modulators in a variety of neuroendocrine systems, including those mediating reproduction, energy balance, lactation, and stress. Recent work in the ewe has implicated the EOP, dynorphin (DYN), in the inhibitory effects of progesterone on pulsatile gonadotropin releasing hormone secretion. Although DYN is involved in a number of hypothalamic functions in the sheep, little is known regarding the localization of preprodynorphin (PPD) expression and its major product DYN A (1-17). In this study, we determined the distribution of PPD mRNA and DYN A-containing cell bodies in the brains of ovary-intact, luteal ewes. To detect PPD mRNA, an ovine PPD mRNA was subcloned by reverse transcription-polymerase chain reaction from sheep hypothalamus and used to create a (35)S-labeled riboprobe for in situ hybridization. Neurons that expressed PPD mRNA and DYN A immunoreactivity were widely distributed in the ovine preoptic area and hypothalamus. PPD mRNA-expressing cells were seen in the supraoptic nucleus, paraventricular nucleus, preoptic area, anterior hypothalamus area, bed nucleus of the stria terminalis, ventromedial nucleus (VMN), dorsomedial nucleus of the hypothalamus, and the arcuate nucleus. All of these regions also contained DYN A-positive cell bodies except for the VMN, raising the possibility that PPD is preferentially processed into other peptide products in the VMN. In summary, based on the expression of both mRNA and peptide, DYN cells are located in a number of key hypothalamic regions involved in the neuroendocrine control of homeostasis in sheep.
Collapse
Affiliation(s)
- C D Foradori
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | |
Collapse
|
58
|
Marinova Z, Yakovleva T, Melzig MF, Hallberg M, Nylander I, Ray K, Rodgers DW, Hauser KF, Ekström TJ, Bakalkin G. A novel soluble protein factor with non-opioid dynorphin A-binding activity. Biochem Biophys Res Commun 2004; 321:202-9. [PMID: 15358236 DOI: 10.1016/j.bbrc.2004.06.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Indexed: 10/26/2022]
Abstract
A novel soluble non-opioid dynorphin A-binding factor (DABF) was identified and characterized in neuronal cell lines, rat spinal cord, and brain. DABF binds dynorphin A(1-17), dynorphin A(2-17), and the 32 amino acid prodynorphin fragment big dynorphin consisting of dynorphin A and B, but not other opioid and non-opioid peptides, opiates, and benzomorphans. The IC50 for dynorphin A(1-17), dynorphin A(2-17), and big dynorphin is in the 5-10 nM range. Using dynorphin A and big dynorphin fragments a binding epitope was mapped to dynorphin A(6-13). DABF has a molecular mass of about 70 kDa. SH-groups are apparently involved in the binding of dynorphin A since p-hydroxy-mercuribenzoic acid inhibited this process. Upon interaction with DABF dynorphin A was converted into Leu-enkephalin, which remained bound to the protein. These data suggest that DABF functions as an oligopeptidase that forms stable and specific complexes with dynorphin A. The presence of DABF in brain structures and other tissues with low level of prodynorphin expression suggests that DABF as an oligopeptidase may degrade other peptides. Dynorphin A at the sites of its release in the CNS may attenuate this degradation as a competitor when it specifically binds to the enzyme.
Collapse
Affiliation(s)
- Zoya Marinova
- Alcohol and Drug Dependence Research Section, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Garzón M, Pickel VM. Ultrastructural localization of Leu5-enkephalin immunoreactivity in mesocortical neurons and their input terminals in rat ventral tegmental area. Synapse 2004; 52:38-52. [PMID: 14755631 DOI: 10.1002/syn.20000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enkephalin (ENK) immunoreactivity is widely distributed in the ventral tegmental area (VTA), where endogenous ENK and dynorphin opioid peptides are known to have opposing actions in reward, stress, cognition, and fear-related behaviors. Many neurons in the VTA give rise to mesocortical projections terminating in the medial prefrontal cortex (mPFC), and these projections have been implicated to varying extents in all these functions. To determine whether there is a synaptic basis for ENK and/or dynorphin modulation of cortically projecting neurons within the VTA, we combined retrograde tract-tracing from the mPFC with dual immunocytochemical-labeling electron microscopy in the rat VTA. The retrograde tracer Fluorogold (FG) was microinjected into mPFC. At optimal survival periods, sections through the VTA were processed for immunolabeling of anti-FG and a Leu(5)-ENK antibody recognizing both ENK and dynorphin peptides. Over 26% of the retrogradely labeled neuronal somatodendritic profiles (n = 177) were contacted by ENK-immunoreactive axonal profiles including small axons and axon terminals. The axon terminals varied in their subcellular distribution of ENK immunoreactivity and also differed in forming either inhibitory-type (symmetric) or excitatory-type (asymmetric) synapses. Many of the axonal profiles also were apposed to FG-labeled somata or dendrites without forming recognizable synapses. Approximately one-third of the mesocortical neuronal perikarya also showed sparsely distributed somatodendritic ENK-immunoreactivity. Our results provide ultrastructural evidence that ENK and possibly dynorphin in the rat VTA have distributions consistent with involvement in diverse physiological actions affecting the output of mesocortical neurons, some of which also contain one or both peptides.
Collapse
Affiliation(s)
- Miguel Garzón
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021
| | | |
Collapse
|
60
|
Andrews ZB, Grattan DR. Opioid control of prolactin secretion in late pregnant rats is mediated by tuberoinfundibular dopamine neurons. Neurosci Lett 2002; 328:60-4. [PMID: 12123859 DOI: 10.1016/s0304-3940(02)00431-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Prolactin (PRL) secretion from the anterior pituitary is tonically inhibited by tuberoinfundibular dopamine (TIDA) neurons in the arcuate nucleus of the hypothalamus. During late pregnancy, TIDA neuronal activity is reduced allowing the expression of an antepartum PRL surge. We show here that continuous infusion of the opioid receptor antagonist naloxone (10 mg/h) during the night preceding parturition completely abolished the antepartum PRL surge and significantly increased TIDA neuronal activity. These data indicate that endogenous opioid neurons facilitate PRL secretion at the end of pregnancy by suppressing TIDA neuronal activity.
Collapse
Affiliation(s)
- Zane B Andrews
- Department of Anatomy and Structural Biology and Neuroscience Research Centre, School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | | |
Collapse
|
61
|
Parra MC, Nguyen TN, Hurley RW, Hammond DL. Persistent inflammatory nociception increases levels of dynorphin1-17 in the spinal cord, but not in supraspinal nuclei involved in pain modulation. THE JOURNAL OF PAIN 2002; 3:330-6. [PMID: 14622757 DOI: 10.1054/jpai.2002.125185] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is well established that nerve injury or inflammatory injury results in a time-dependent increase in the expression of dynorphin in the spinal cord. However, little is known about the effects of persistent pain on the expression of this endogenous opioid peptide by supraspinal nuclei implicated in the modulation of pain sensitivity. This study used enzyme-linked immunosorbent assay to measure the levels of dynorphin(1-17) in the spinal cord as well as in brainstem nuclei 4 hours, 4 days, or 2 weeks after intraplantar injection of saline or complete Freund's adjuvant in the left hind paw. As previously reported, complete Freund adjuvant produced a time-dependent increase in dynorphin that was confined to the ipsilateral dorsal horn. In contrast, levels of dynorphin(1-17) in the nucleus raphe magnus, nucleus reticularis gigantocellularis pars alpha, parabrachial nuclei, microcellular tegmentum, pontine periaqueductal gray, and midbrain periaqueductal gray were not affected at any time after injection of complete Freund adjuvant. These data suggest that alterations in levels of dynorphin do not mediate the up-regulation of activity in bulbospinal pain inhibitory or pain facilitatory pathways that occurs during persistent pain.
Collapse
|
62
|
Zhang Q, Gallo RV. Effect of prodynorphin-derived opioid peptides on the ovulatory luteinizing hormone surge in the proestrous rat. Endocrine 2002; 18:27-32. [PMID: 12166621 DOI: 10.1385/endo:18:1:27] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2002] [Revised: 04/01/2002] [Accepted: 04/12/2002] [Indexed: 12/15/2022]
Abstract
The objective of this study was to determine whether prodynorphin-derived opioid peptides could block the spontaneous luteinizing hormone (LH) surge and ovulation, and if so, whether this inhibitory action was mediated through kappa-opioid receptors. Various doses of dynorphin peptides (dynorphin A(1-17), dynorphin A(1-8), dynorphin B, alpha- and beta-neoendorphin) were infused into the brain through third-ventricle cannulae in rats between 1330-1800 h on proestrus. Each dynorphin peptide blocked the LH surge and ovulation in a dose-dependent manner. Dynorphin A(1-17) and A(1-8) were equally effective in producing these actions, and more potent than either dynorphin B or alpha- or beta-neoendorphin. U50,488H, a specific kappa-opioid receptor agonist, also blocked the LH surge and ovulation. When a mixture of five dynorphin peptides was infused intraventricularly, each at a dose that inhibited the LH surge, both the surge and ovulation were blocked. However, when norbinaltorphimine, a specific kappa-opioid receptor antagonist, was coinfused with the mixture of dynorphin peptides, the LH surge and ovulation were fully restored. These results demonstrate that prodynorphin-derived opioid peptides, acting through kappa-opioid receptors, can block the LH surge and ovulation. Dynorphin A(1-17) and A(1-8) are the most potent in this regard.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs 06269-4156, USA
| | | |
Collapse
|
63
|
Silva RM, Grossman HC, Hadjimarkou MM, Rossi GC, Pasternak GW, Bodnar RJ. Dynorphin A(1-17)-induced feeding: pharmacological characterization using selective opioid antagonists and antisense probes in rats. J Pharmacol Exp Ther 2002; 301:513-8. [PMID: 11961051 DOI: 10.1124/jpet.301.2.513] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ventricular administration of the opioid dynorphin A(1-17) induces feeding in rats. Because its pharmacological characterization has not been fully identified, the present study examined whether a dose-response range of general and selective opioid antagonists as well as antisense oligodeoxynucleotide (AS ODN) opioid probes altered daytime feeding over a 4-h time course elicited by dynorphin. Dynorphin-induced feeding was significantly reduced by a wide range of doses (5-80 nmol i.c.v.) of the selective kappa(1)-opioid antagonist nor-binaltorphamine. Correspondingly, AS ODN probes directed against either exons 1 and 2, but not 3 of the kappa-opioid receptor clone (KOR-1) reduced dynorphin-induced feeding, whereas a missense oligodeoxynucleotide control probe was ineffective. Furthermore, AS ODN probes directed against either exons 1 or 2, but not 3 of the kappa(3)-like opioid receptor clone (KOR-3/ORL-1) also attenuated dynorphin-induced feeding. Although the selective mu-antagonist beta-funaltrexamine (20-80 nmol) reduced dynorphin-induced feeding, an AS ODN probe directed only against exon 1 of the mu-opioid receptor clone was transiently effective. Neither general (naltrexone, 80 nmol) nor delta (naltrindole, 80 nmol)-selective opioid antagonists were particularly effective in reducing dynorphin-induced feeding, and an AS ODN probe targeting the individual exons of the delta-opioid receptor clone failed to significantly reduce dynorphin-induced feeding. These converging antagonist and AS ODN data firmly implicate the kappa(1)-opioid receptor and the KOR-1 and KOR-3/ORL-1 opioid receptor genes in the mediation of dynorphin-induced feeding.
Collapse
MESH Headings
- Animals
- Dose-Response Relationship, Drug
- Drug Interactions
- Dynorphins/pharmacology
- Feeding Behavior/drug effects
- Male
- Models, Animal
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Oligonucleotides, Antisense/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Robert M Silva
- Department of Psychology and Neuropsychology Doctoral Sub-Program, City University of New York, Flushing, New York 11367, USA
| | | | | | | | | | | |
Collapse
|
64
|
Pesini P, Pego-Reigosa R, Tramu G, Coveñas R. Distribution of alpha-neoendorphin immunoreactivity in the diencephalon and the brainstem of the dog. J Chem Neuroanat 2001; 22:251-62. [PMID: 11719022 DOI: 10.1016/s0891-0618(01)00136-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alpha-neoendorphin (alpha-NE) is an opiate decapeptide derived from the prodynorphin protein. Its anatomical distribution in the brain of mammals other than the rat, particularly in carnivores, is less well known than for other opiate peptides. In the present work, we have charted the distribution of alpha-NE immunoreactive fibers and perikarya in the diencephalon and the brainstem of the dog. The highest densities of labeled fibers were found in the substantia nigra and in patches within the nucleus of the solitary tract. Moderate densities appeared in the arcuate nucleus (Ar), median eminence, entopeduncular nucleus, ventral tegmental area, retrorubral area, periaqueductal central gray, interpeduncular nucleus and lateral parabrachial nucleus. Groups of numerous labeled perikarya were localized in the magnocellular hypothalamic nuclei, Ar and in the central superior and incertus nuclei in the metencephalon. Moreover, less densely packed fibers and cells appeared widely distributed throughout many nuclei in the region studied. These results are discussed with regard to the pattern described in other species. In addition, the present results were compared with the distribution of met-enkephalin immunoreactivity in the diencephalon and the brainstem of the dog that we have recently described. Although the distributions of these two peptides overlap in many areas, the existence of numerous differences suggest that they form separate opiate systems in the dog.
Collapse
Affiliation(s)
- P Pesini
- Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago, 27002 Lugo, Spain.
| | | | | | | |
Collapse
|
65
|
Aizawa T, Ikata T, Katoh S. Double-Immunolabeling Studies of Glucocorticoid Receptors in Enkephalinergic Neurons of the Rat Spinal Cord. Zoolog Sci 2000. [DOI: 10.2108/0289-0003(2000)17[419:dsogri]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
66
|
Wu LZ, Cui CL, Tian JB, Ji D, Han JS. Suppression of morphine withdrawal by electroacupuncture in rats: dynorphin and kappa-opioid receptor implicated. Brain Res 1999; 851:290-6. [PMID: 10642860 DOI: 10.1016/s0006-8993(99)02069-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our previous work has demonstrated that 100-Hz electroacupuncture (EA) or 100-Hz transcutaneous electrical nerve stimulation (TENS) was very effective in ameliorating the morphine withdrawal syndrome in rats and humans. The mechanism was obscure. (1) Rats were made dependent on morphine by repeated morphine injections (5-140 mg/kg, s.c., twice a day) for eight days. They were then given 100-Hz EA for 30 min 24 h after the last injection of morphine. A marked increase in tail flick latency (TFL) was observed. This effect of 100-Hz EA could be blocked by naloxone (NX) at 20 mg/kg, but not at 1 mg/kg, suggesting that 100-Hz EA-induced analgesia observed in morphine-dependent rats is mediated by kappa-opioid receptors. (2) A significant decrease of the concentration of dynorphin A (1-17) immunoreactivity (-ir) was observed in the spinal perfusate in morphine-dependent rats, that could be brought back to normal level by 100-Hz EA. (3) 100-Hz EA was very effective in suppressing NX-precipitated morphine withdrawal syndrome. This effect of EA could be prevented by intrathecal administration of nor-BNI (2.5 micrograms/20 microliters), a kappa-opioid receptor antagonist, or dynorphin A (1-13) antibodies (25 micrograms/20 microliters) administered 10 min prior to EA. In conclusion, while the steady-state spinal dynorphin release is low in morphine-dependent rats, it can be activated by 100-Hz EA stimulation, which may be responsible for eliciting an analgesic effect and ameliorating morphine withdrawal syndrome, most probably via interacting with kappa-opioid receptor at spinal level.
Collapse
Affiliation(s)
- L Z Wu
- Neuroscience Research Institute, Beijing Medical University, China
| | | | | | | | | |
Collapse
|
67
|
Marcos P, Coveñas R, Narváez JA, Diaz-Cabiale Z, Aguirre JA, Tramu G, González-Barón S. Immunohistochemical mapping of enkephalins, NPY, CGRP, and GRP in the cat amygdala. Peptides 1999; 20:635-44. [PMID: 10465517 DOI: 10.1016/s0196-9781(99)00018-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This immunohistochemical study shows a wide distribution of neuropeptides in the cat amygdala. Neuropeptide Y is present along the whole amygdaloid complex, and fibers and cell bodies containing neuropeptide Y are observed in all the nuclei studied. Leucine-enkephalin-, gastrin-releasing peptide/bombesin-, and calcitonin gene-related peptide-immunoreactive fibers and perikarya are observed only in discrete nuclei of the amygdaloid complex, whereas only fibers -but no cell bodies- containing methionine-enkephalin-Arg6-Gly7-Leu8 have been observed. No immunoreactivity has been found for gamma-melanocyte-stimulating hormone, dynorphin A (1-17), or galanin. These data are compared with those reported in the amygdala of other mammals.
Collapse
Affiliation(s)
- P Marcos
- Universidad de Málaga, Facultad de Medicina, Departamento de Fisiología, Spain.
| | | | | | | | | | | | | |
Collapse
|
68
|
Turchan J, Przewłocka B, Lasoń W, Przewłocki R. Effects of repeated psychostimulant administration on the prodynorphin system activity and kappa opioid receptor density in the rat brain. Neuroscience 1998; 85:1051-9. [PMID: 9681945 DOI: 10.1016/s0306-4522(97)00639-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prodynorphin system is implicated in the neurochemical mechanism of psychostimulants. To elucidate the activity of the endogenous prodynorphin system upon treatment with psychostimulants, we investigated the effect of single and repeated cocaine and amphetamine on the prodynorphin messenger RNA level, the prodynorphin-derived peptide alpha-neoendorphin tissue level, and its in vitro release in the nucleus accumbens and striatum of rats. The density of kappa opioid receptors in those brain regions was also assessed. Rats were injected with cocaine following a "binge" administration pattern, 20 mg/kg i.p. every hour for 3 h, one (single treatment) or five days (chronic treatment). Amphetamine, 2.5 mg/kg i.p. was administered once (single treatment) or twice a day for five days (chronic treatment). As shown by an in situ hybridization study, the prodynorphin messenger RNA levels in the nucleus accumbens and striatum were raised following single (at 3 h) and chronic (at 3 and 24 h) cocaine administration. The prodynorphin messenger RNA level in the nucleus accumbens was markedly elevated after single or repeated amphetamine administration. A similar tendency was observed in the striatum. Acute cocaine and amphetamine administration had no effect on the alpha-neoendorphin tissue level, whereas chronic administration of those drugs elevated the alpha-neoendorphin level in the nucleus accumbens and striatum at the late time-points studied. Acute and repeated cocaine administration had no effect on alpha-neoendorphin release in both the nucleus accumbens and striatum at 3 and 48 h after drug injection. In contrast, single and chronic (at 24 and 48 h) amphetamine administration profoundly elevated the release of alpha-neoendorphin in both these structures. Addition of cocaine or amphetamine to the incubation medium (10(-5)-10(-6) M) decreased the basal release of alpha-neoendorphin in the nucleus accumbens slices of naive rats, but it did not change the stimulated release (K+, 57 mM). On the other hand, in the striatum slices, addition of cocaine to the incubation medium depressed basal and stimulated release of the peptide; no significant changes were observed after addition of amphetamine. Cocaine and amphetamine evoked profound and long-term down-regulation of the kappa opioid receptors in both structures. The above data indicate that the amphetamine-induced changes were more abundant than those caused by cocaine; only treatment with amphetamine markedly enhanced the release of prodynorphin-derived peptide. Furthermore, the psychostimulant-induced enhancement of biosynthetic activity of prodynorphin neurons was correlated with a marked and persistent decrease in the kappa opioid receptor density at a late withdrawal time.
Collapse
Affiliation(s)
- J Turchan
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków
| | | | | | | |
Collapse
|
69
|
Lai CC, Wu SY, Dun SL, Dun NJ. Nociceptin-like immunoreactivity in the rat dorsal horn and inhibition of substantia gelatinosa neurons. Neuroscience 1997; 81:887-91. [PMID: 9330354 DOI: 10.1016/s0306-4522(97)00251-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nociceptin, also referred to as orphanin FQ, is believed to be the endogenous ligand for the ORL1. Nociceptin, when injected intracerebroventricularly to mice, produced hyperalgesia in behavioral tests. Recent studies have demonstrated the presence of ORL1 transcript in the spinal cord, and ORL1-like immunoreactivity has been localized to nerve fibers and somata throughout the spinal cord. Here, we report the localization of nociceptin-like immunoreactivity to fiber-like elements of the superficial layers of the rat dorsal horn by immunohistochemical techniques. Whole-cell recordings from substantia gelatinosa neurons in transverse lumbar spinal cord slices of 22-26-day-old rats showed that exogenous nociceptin at low concentrations (100-300 nM) depressed excitatory postsynaptic potentials evoked by stimulation of dorsal rootlets without causing an appreciable change of resting membrane potentials and glutamate-evoked depolarizations. At a concentration of 1 microM, nociceptin hyperpolarized substantia gelatinosa neurons and suppressed spike discharges. The hyperpolarizing and synaptic depressant action of nociceptin was not reversed by the known opioid receptor antagonist naloxone (1 microM). Our result provides evidence that nociceptin-like peptide is concentrated in nerve fibers of the rat dorsal horn and that it may serve as an inhibitory transmitter within the substantia gelatinosa.
Collapse
Affiliation(s)
- C C Lai
- Department of Anatomy and Neurobiology, Medical College of Ohio, Toledo 43614, USA
| | | | | | | |
Collapse
|
70
|
Lee T, Kaneko T, Taki K, Mizuno N. Preprodynorphin-, preproenkephalin-, and preprotachykinin-expressing neurons in the rat neostriatum: an analysis by immunocytochemistry and retrograde tracing. J Comp Neurol 1997; 386:229-44. [PMID: 9295149 DOI: 10.1002/(sici)1096-9861(19970922)386:2<229::aid-cne5>3.0.co;2-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Specific antibodies were produced against C-terminal portions of rat preprodynorphin (PPD), preproenkephalin (PPE), and preprotachykinin A (PPT). PPD, PPE, and PPT C-terminal immunoreactivity was observed in many cell bodies of medium-sized neurons in the rat neostriatum (caudate-putamen). Intense PPE immunoreactivity was found in neuropil of the globus pallidus, whereas intense to moderate PPD and PPT immunoreactivity was distributed in neuropil of the substantia nigra and the entopeduncular nucleus. A double-immunofluorescence analysis revealed that PPE-immunoreactive neostriatal neurons rarely showed immunoreactivity for PPD (<1%) or PPT (<2%). In contrast, more than 95% of PPD-immunoreactive neostriatal neurons showed PPT immunoreactivity, and vice versa. No PPD-, PPE-, or PPT-immunoreactive neostriatal neurons showed immunoreactivity for the markers of neostriatal intrinsic neurons, such as calretinin, choline acetyltransferase, parvalbumin, or somatostatin. When tetramethylrhodamine-dextran amine (TMR-DA) was injected into the substantia nigra, almost all neurons that were labeled retrogradely with TMR-DA showed immunoreactivity for PPD (98%) or PPT (99%), but very few of them exhibited PPE immunoreactivity (1%). After injection of TMR-DA into the globus pallidus, 86%, 17%, and 10% of the retrogradely labeled neurons showed immunoreactivity for PPE, PPD, and PPT, respectively. These results support the notion that the neostriatal projection neurons are divided into at least two groups: The projection neurons of one group contain enkephalins and send projection fibers almost exclusively to the globus pallidus, and the others contain tachykinins and dynorphins/Leu-enkephalin and send projection fibers mainly to the substantia nigra.
Collapse
Affiliation(s)
- T Lee
- Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
71
|
|
72
|
Pavlovic ZW, Cooper ML, Bodnar RJ. Opioid antagonists in the periaqueductal gray inhibit morphine and beta-endorphin analgesia elicited from the amygdala of rats. Brain Res 1996; 741:13-26. [PMID: 9001699 DOI: 10.1016/s0006-8993(96)00880-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In addition to brainstem sites of action, analgesia can be elicited following amygdala microinjections of morphine and mu-selective opioid agonists. The present study examined whether opioid analgesia elicited by either morphine or beta-endorphin in the amygdala could be altered by either the general opioid antagonist, naltrexone, the mu-selective antagonist, beta-funaltrexamine (BFNA) or the delta 2 antagonist, naltrindole isothiocyanate (Ntii) in the periaqueductal gray (PAG). Both morphine (2.5-5 micrograms) and beta-endorphin (2.5-5 micrograms) microinjected into either the baso-lateral or central nuclei of the amygdala significantly increased tail-flick latencies and jump thresholds in rats. The increases were far more pronounced on the jump test than on the tail-flick test. Placements dorsal and medial to the amygdala were ineffective. Naltrexone (1-5 micrograms) in the PAG significantly reduced both morphine (tail-flick: 70-75%; jump: 60-81%) and beta-endorphin (tail-flick: 100%; jump: 93%) analgesia elicited from the amygdala, indicating that an opioid synapse in the PAG was integral for the full expression of analgesia elicited from the amygdala by both agonists. Both BFNA (68%) and Ntii (100%) in the PAG significantly reduced morphine, but not beta-endorphin analgesia in the amygdala on the tail-flick test. Ntii in the PAG was more effective in reducing morphine (60%) and beta-endorphin (79%) analgesia in the amygdala on the jump test than BFNA (15-24%). Opioid agonist-induced analgesia in the amygdala was unaffected by opioid antagonists administered into control misplacements in the lateral mesencephalon, and the small hyperalgesia elicited by opioid antagonists in the PAG could not account for the reductions in opioid agonist effects in the amygdala. These data indicate that PAG delta 2, and to a lesser degree, mu opioid receptors are necessary for the full expression of morphine and beta-endorphin analgesia elicited from the amygdala.
Collapse
Affiliation(s)
- Z W Pavlovic
- Department of Psychology, Queens College, City University of New York, Flushing 11367, USA
| | | | | |
Collapse
|
73
|
You ZB, Herrera-Marschitz M, Pettersson E, Nylander I, Goiny M, Shou HZ, Kehr J, Godukhin O, Hökfelt T, Terenius L, Ungerstedt U. Modulation of neurotransmitter release by cholecystokinin in the neostriatum and substantia nigra of the rat: regional and receptor specificity. Neuroscience 1996; 74:793-804. [PMID: 8884775 DOI: 10.1016/0306-4522(96)00149-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of cholecystokinin peptides on the release of dynorphin B, aspartate, glutamate, dopamine and GABA in the neostriatum and substantia nigra of the rat was investigated using in vivo microdialysis. Sulphated cholecystokinin-8S in the dialysis perfusate (1-100 microM) induced a concentration-dependent increase in extracellular dynorphin B and aspartate levels, both in the neostriatum and substantia nigra. Striatal dopamine levels were only increased by 100 microM of cholecystokinin-8S, while in the substantia nigra they were increased by 10-100 microM of cholecystokinin-8S. Extracellular GABA and glutamate levels were increased following 100 microM of cholecystokinin-8S only. Striatal cholecystokinin-8S administration also produced a significant increase in nigral dynorphin B levels. Local cholecystokinin-4 (100 microM) produced a moderate, but significant, increase of extracellular dynorphin B and aspartate levels in the neostriatum and substantia nigra. No effect was observed on the other neurotransmitters investigated. A 6-hydroxydopamine lesion of the nigrostriatal dopamine pathway did not affect the increases in dynorphin B and aspartate levels produced by local administration of cholecystokinin-8S. Basal extracellular GABA levels were increased significantly in both the neostriatum and substantia nigra ipsilateral to the lesion. Nigral glutamate and aspartate levels were also increased in the lesioned substantia nigra, but in the lesioned neostriatum aspartate levels were decreased. The cholecystokinin-B antagonist L-365,260 (20 mg/kg, s.c.), but not the cholecystokinin-A antagonist L-364,718 (devazepide; 20 mg/kg, s.c.), significantly inhibited the effect of cholecystokinin-8S on striatal dynorphin B and aspartate levels. In the substantia nigra, however, the effect of cholecystokinin-8S on dynorphin B and aspartate levels was inhibited to a similar extent by both L-365,260 and L-364,718. Pretreatment with L-364,718, but not with L-365.260, prevented the increase in nigral dopamine levels produced by nigral cholecystokinin-8S administration. Taken together, these results suggest that cholecystokinin-8S modulates dynorphin B and aspartate release in the neostriatum and substantia nigra of the rat via different receptor mechanisms. In the neostriatum, the effect of cholecystokinin-8S on dynorphin B and aspartate release is mediated via the cholecystokinin-B receptor subtype, while in the substantia nigra, cholecystokinin-8S modulates dynorphin B and aspartate release via both cholecystokinin-A and cholecystokinin-B receptor subtypes. Cholecystokinin-8S modulates dopamine release mainly in the substantia nigra, via the cholecystokinin-A receptor subtype.
Collapse
Affiliation(s)
- Z B You
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Sun SY, Liu Z, Li P, Ingenito AJ. Central effects of opioid agonists and naloxone on blood pressure and heart rate in normotensive and hypertensive rats. GENERAL PHARMACOLOGY 1996; 27:1187-94. [PMID: 8981066 DOI: 10.1016/s0306-3623(96)00055-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1. The central cardiovascular effects of several opioid receptor selective agonists and the nonselective opioid antagonist, naloxone, were studied in anesthetized normotensive control rats, in spontaneously hypertensive rats (SHR), and in foot-shock-stressed rats. 2. Receptor-selective agonists injected into the rostral ventrolateral medulla (RVLM), paraventricular nucleus (PVN), and dorsal hippocampus (dHip) were DAGO (mu), DADLE (delta), and U50,488H (kappa). 3. DAGO and DADLE (3 nM) decreased arterial pressure and heart rate in RVLM and PVN of all rat strains, while U-50,488H (9 nM) had only minimal effects in these areas. 4. In dHip, only DADLE (3 nM) had depressor and bradycardic effects, and then, only in SHR, with DAGO and U50,488H being ineffective in any strain, even at 9 nM. 5. Prior injection of naloxone (10 nM) into the RVLM, PVN and dHip blocked and postinjection reversed the cardiovascular effects of the agonists. Naloxone alone increased blood pressure and heart rate in all three areas, in all rat strains except SHR, suggesting a tonic depressor effect of endogenous opioids. 6. Lack of significant quantitative differences in opioid agonist and antagonist effects between normotensive and hypertensive or stressed rats argues against a role for endogenous brain opioids in experimental hypertension.
Collapse
MESH Headings
- Animals
- Blood Pressure/drug effects
- Heart Rate/drug effects
- Hippocampus/physiology
- Hypertension/genetics
- Hypertension/physiopathology
- Medulla Oblongata/physiology
- Microinjections
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Paraventricular Hypothalamic Nucleus/physiology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Rats, Sprague-Dawley
- Receptors, Opioid/agonists
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, mu/agonists
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- S Y Sun
- Department of Physiology, Shanghai Medical University, People's Republic of China
| | | | | | | |
Collapse
|
75
|
Chou JZ, Chait BT, Wang R, Kreek MJ. Differential biotransformation of dynorphin A (1-17) and dynorphin A (1-13) peptides in human blood, ex vivo. Peptides 1996; 17:983-90. [PMID: 8899817 DOI: 10.1016/0196-9781(96)00154-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The biotransformation in human blood in vitro of three dynorphin A (Dyn A) peptides was studied by matrix assisted laser desorption mass spectrometry to determine whether the natural peptide, Dyn A(1-17), is biotransformed differently from Dyn A (1-13), the natural sequence shortened form used in numerous neurobiological and pharmacological studies. In addition to studies of Dyn A(1-17), a natural product from prodynorphin and Dyn A(1-13), a natural sequence truncation of Dyn A(1-17), Dyn A(1-10)amide, a synthetic analogue of Dyn A(1-17) presumed to be protected from rapid biotransformation was also studied Synthetic Dyn A peptides were incubated in freshly drawn blood for various periods of time prior to mass spectrometric analysis. Several peptide products were identified from each precursor; the time profiles of appearance and disappearance of the major products were followed. Substantial differences in products and especially in the rate of biotransformation were observed between the processing of Dyn A(1-17) and the two shorter Dyn A peptides, Dyn A(1-13) and Dyn A(1-10)amide. Significant amounts of the natural Dyn A(1-17) survived 4 h of incubation (half-life 3 h). Dyn A (2-17), a major processed product of Dyn A(1-17) in blood, continued to accumulate during the 4-h incubation period. By contrast, both Dyn A(1-13) and Dyn A(1-10) amide were biotransformed very rapidly with half-lives of < 1 min and 10 min, respectively. Most of the products from these two peptide precursors were also further processed rapidly, with the exception of Dyn A(4-12) and Dyn A(4-10)amide, which were detected for over 2 h. Dyn A(1-6) was found as a minor biotransformation product from all three precursor peptides. These findings suggest that an important function of the four C-terminal amino acid residues of the natural form, Dyn A(1-17) [compared to Dyn A(1-13)], is to stabilize or protect the peptide from biotransformation by enzymes, by preserving a natural hairpin structure possibly near the carboxyl-terminus.
Collapse
Affiliation(s)
- J Z Chou
- Laboratory on the Biology of Addictive Diseases, Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
76
|
Bodnar RJ, Glass MJ, Ragnauth A, Cooper ML. General, mu and kappa opioid antagonists in the nucleus accumbens alter food intake under deprivation, glucoprivic and palatable conditions. Brain Res 1995; 700:205-12. [PMID: 8624711 DOI: 10.1016/0006-8993(95)00957-r] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ventricular microinjection studies found that whereas mu (beta-funaltrexamine, B-FNA), mu1 (naloxonazine) and kappa (nor-binaltorphamine, Nor-BNI) opioid receptor antagonists, but not delta antagonists, reduce deprivation-induced intake, kappa and mu, but not mu1 or delta antagonists reduce both 2-deoxy-D-glucose (2DG) hyperphagia and sucrose intake. Since opioid agonists stimulate spontaneous food intake in the accumbens, the present study examined whether administration of either naltrexone, B-FNA or Nor-BNI in the accumbens altered intake under deprivation (24 h), glucoprivic (2DG: 500 mg/kg, i.p.) or palatable sucrose (10%) conditions. Naloxonazine's effects in the accumbens were also evaluated for deprivation-induced intake. Deprivation-induced intake was significantly decreased over 4 h by naltrexone (5-20 micrograms, 44%), B-FNA (1-4 micrograms, 55%) and Nor-BNI (4 micrograms, 31%) but not naloxonazine (10 micrograms) in the accumbens. 2DG hyperphagia was significantly decreased by naltrexone (10-20 microgram, 79%), B-FNA (1-4 micrograms, 100%) and NOR-BNI (104 micrograms, 75%) in the accumbens. Sucrose intake was significantly decreased by naltrexone (50 micrograms, 27%) and B-FNA (1-4 micrograms, 37%), but not NOR-BNI in the accumbens. These data suggest that mu receptors, and particularly the mu2 binding site in the accumbens are responsible for the opioid modulation of these forms of intake in this nucleus, and that this control may be acting upon the amount of intake per se.
Collapse
Affiliation(s)
- R J Bodnar
- Department of Psychology, Queens College, City University of New York, Flushing 11367, USA
| | | | | | | |
Collapse
|
77
|
Abrahamsen GC, Berman Y, Carr KD. Curve-shift analysis of self-stimulation in food-restricted rats: relationship between daily meal, plasma corticosterone and reward sensitization. Brain Res 1995; 695:186-94. [PMID: 8556330 DOI: 10.1016/0006-8993(95)00764-h] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic food restriction lowers the threshold for lateral hypothalamic electrical self-stimulation (LHSS). This effect has previously been interpreted to reflect a sensitization of reward. In the present study a curve-shift method was used to explicitly differentiate effects of food restriction on brain stimulation rewarding efficacy and performance. Food restriction consistently shifted rate-frequency curves to the left, lowering the M-50 and Theta-0 parameters of rewarding efficacy. Asymptotic rates of reinforcement and slopes of rate-frequency functions were unaffected, confirming that food restriction does not facilitate LHSS by enhancing performance. In this and previous studies, LHSS in food-restricted rats was measured in the period immediately preceding the daily meal when hunger (i.e., period since last meal) and plasma corticosterone are at peak levels. In the light of evidence that corticosterone may regulate sensitivity of the mesolimbic dopamine pathway and account for the sensitizing effect of stress on psychomotor effects of opiates and stimulants, LHSS and corticosterone were measured in the immediate pre-and post-meal periods. While all food-restricted rats displayed elevated corticosterone levels in the pre-meal period and generally displayed a decline to control levels in the post-meal period, the sensitization of reward was not reversed in the post-meal period. These results indicate that chronic food restriction produces a sensitization of reward that does not depend upon the acute state of hunger that precedes the daily meal and does not vary with dynamic changes in plasma corticosterone level.
Collapse
Affiliation(s)
- G C Abrahamsen
- Millhauser Laboratories, Department of Psychiatry, New York University Medical Center, NY 10016, USA
| | | | | |
Collapse
|
78
|
Berman Y, Devi L, Carr KD. Effects of streptozotocin-induced diabetes on prodynorphin-derived peptides in rat brain regions. Brain Res 1995; 685:129-34. [PMID: 7583238 DOI: 10.1016/0006-8993(95)00419-q] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pharmacological studies suggest that diabetes produces changes in the brain opioid system, affecting several behavioral functions including analgesia, feeding and self-stimulation. Previous investigations of opioid receptor binding have failed to explain the unusual opioid pharmacology of the diabetic animal. In the present study, the effects of streptozotocin-induced diabetes on levels of three immunoreactive (ir)-prodynorphin-derived peptides, ir-dynorphin A1-17 (A1-17), ir-dynorphin A1-8 (A1-8) and ir-dynorphin B1-13 (B1-13), were determined in eleven brain regions known to be involved in appetite, taste and reward. Diabetes was found to increase levels of A1-17 in the ventromedial and dorsomedial hypothalamic nuclei (+60% and +25%, respectively) and levels of A1-8 in the dorsomedial and lateral hypothalamus (+45% and +35%, respectively). The possible significance of these results is discussed in relation to (i) diabetic hyperphagia, (ii) medial hypothalamic transduction of circulating insulin levels, and (iii) the potentiation of reward by metabolic need states.
Collapse
Affiliation(s)
- Y Berman
- Department of Psychiatry, New York University Medical Center, New York 10016, USA
| | | | | |
Collapse
|
79
|
Miller AS, Walker JM. Effects of a cannabinoid on spontaneous and evoked neuronal activity in the substantia nigra pars reticulata. Eur J Pharmacol 1995; 279:179-85. [PMID: 7556399 DOI: 10.1016/0014-2999(95)00151-a] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Single unit electrophysiology was used to explore the role of cannabinoid receptors in the substantia nigra pars reticulata. Intravenous and intraperitoneal injections of the potent and selective synthetic cannabinoid (R)-(+)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3- de]-1,4-benzoxazin-6-yl](1-naphthalenyl) methanone (WIN 55,212-2) produced modest but significant increases in the spontaneous firing rate of neurons in the substantia nigra pars reticulata. In a second set of experiments, WIN 55,212-2 (up to 1.0 mg/kg i.v.) antagonized the inhibition of firing produced in the substantia nigra pars reticulata by electrical stimulation of the striatum. The pharmacological specificity of this effect was demonstrated using the inactive enantiomer WIN 55,212-3. The possibility that WIN 55,212-2 exerts its effects by regulating gamma-aminobutyric acid (GABA) release from striatonigral fibers was suggested by the observation that bicuculline (up to 0.5 mg/kg i.v.) reversed the effect of striatal stimulation. It thus appears that cannabinoid receptors on striatonigral neuron terminals may regulate movement by disinhibiting the activity of substantia nigra pars reticulata neurons, perhaps by inhibiting the release of GABA into the substantia nigra pars reticulata.
Collapse
Affiliation(s)
- A S Miller
- Schrier Research Laboratory, Department of Psychology, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
80
|
Koch JE, Glass MJ, Cooper ML, Bodnar RJ. Alterations in deprivation, glucoprivic and sucrose intake following general, mu and kappa opioid antagonists in the hypothalamic paraventricular nucleus of rats. Neuroscience 1995; 66:951-7. [PMID: 7651622 DOI: 10.1016/0306-4522(95)00001-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
While opioid agonists administered into the hypothalamic paraventricular nucleus increase food intake in rats, naloxone reduces deprivation-induced intake. Ventricular administration of either mu (beta-funaltrexamine) or kappa (nor-binaltorphamine) opioid antagonists reduces spontaneous, deprivation, glucoprivic and palatable intake. The present study assessed whether microinjections of either general, mu or kappa opioid antagonists into the paraventricular nucleus altered either deprivation (24 h) intake, 2-deoxy-D-glucose hyperphagia or sucrose intake in rats. Deprivation intake was significantly reduced by nor-binaltorphamine (5 micrograms, 68 nmol, 30-33%), beta-funaltrexamine (5 micrograms, 100 nmol, 26-29%) or naltrexone (10 micrograms, 260 nmol, 26%) in the paraventricular nucleus. 2-Deoxy-D-glucose hyperphagia was significantly reduced only after 2 h by naltrexone (10 micrograms, 260 nmol, 69%), norbinaltorphamine (20 micrograms, 272 nmol, 69%) or beta-funaltrexamine (20 micrograms, 400 nmol, 83%) in the paraventricular nucleus. Sucrose intake was significantly reduced by nor-binaltorphamine (5 micrograms, 68 nmol, 27-36%), naltrexone (5-10 micrograms, 130-260 nmol, 18-31%) and beta-funaltrexamine (5 micrograms, 100 nmol, 20%) in the paraventricular nucleus. These data indicate that general, mu and kappa opioid antagonists administered into the hypothalamic paraventricular nucleus produce similar patterns of effects upon different forms of food intake as did ventricular administration, implicating this nucleus as part of the circuitry underlying opioid mediation of ingestion.
Collapse
Affiliation(s)
- J E Koch
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing 11367, USA
| | | | | | | |
Collapse
|
81
|
Mansour A, Fox CA, Burke S, Akil H, Watson SJ. Immunohistochemical localization of the cloned mu opioid receptor in the rat CNS. J Chem Neuroanat 1995; 8:283-305. [PMID: 7669273 DOI: 10.1016/0891-0618(95)00055-c] [Citation(s) in RCA: 296] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Three opioid receptor types have recently been cloned that correspond to the pharmacologically defined mu, delta and kappa 1 receptors. In situ hybridization studies suggest that the opioid receptor mRNAs that encode these receptors have distinct distributions in the central nervous system that correlate well with their known functions. In the present study polyclonal antibodies were generated to the C terminal 63 amino acids of the cloned mu receptor (335-398) to examine the distribution of the mu receptor-like protein with immunohistochemical techniques. mu receptor-like immunoreactivity is widely distributed in the rat central nervous system with immunoreactive fibers and/or perikarya in such regions as the neocortex, the striatal patches and subcallosal streak, nucleus accumbens, lateral and medial septum, endopiriform nucleus, globus pallidus and ventral pallidum, amygdala, hippocampus, presubiculum, thalamic and hypothalamic nuclei, superior and inferior colliculi, central grey, substantia nigra, ventral tegmental area, interpeduncular nucleus, medial terminal nucleus of the accessory optic tract, raphe nuclei, nucleus of the solitary tract, spinal trigeminal nucleus, dorsal motor nucleus of vagus, the spinal cord and dorsal root ganglia. In addition, two major neuronal pathways, the fasciculus retroflexus and the stria terminalis, exhibit densely stained axonal fibers. While this distribution is in excellent agreement with the known mu receptor binding localization, a few regions, such as neocortex and cingulate cortex, basolateral amygdala, medial geniculate nucleus and the medial preoptic area fail to show a good correspondence. Several explanations are provided to interpret these results, and the anatomical and functional implications of these findings are discussed.
Collapse
Affiliation(s)
- A Mansour
- Mental Health Research Institute, University of Michigan, Ann Arbor 48109-0720, USA
| | | | | | | | | |
Collapse
|
82
|
Sukhov RR, Walker LC, Rance NE, Price DL, Young WS. Opioid precursor gene expression in the human hypothalamus. J Comp Neurol 1995; 353:604-22. [PMID: 7759618 PMCID: PMC9853479 DOI: 10.1002/cne.903530410] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using in situ hybridization histochemistry, we studied the distribution of neurons that express preproopiomelanocortin (pre-POMC), preprodynorphin (pre-PDYN), and preproenkephalin (pre-PENK) gene transcripts within the human hypothalamus and surrounding structures. Of the three opioid systems, pre-POMC neurons have the most restricted distribution. Pre-POMC cells are most numerous in the infundibular nucleus and retrochiasmatic area of the mediobasal hypothalamus; a few labeled cells are present within the boundaries of the ventromedial nucleus and infundibular stalk. Pre-POMC message was not found in the limited samples of structures adjacent to the hypothalamus. In contrast to neurons that express pre-POMC, neurons expressing pre-PDYN and pre-PENK are more widely represented throughout the hypothalamus and extrahypothalamic structures. However, pre-PDYN and pre-PENK cells differ from one another in distribution. Pre-PDYN message is especially abundant in neurons of the tuberal and mammillary regions, with a distinct population of labeled cells in the premammillary nucleus and dorsal posterior hypothalamus. Pre-PDYN gene expression also is found in neurons of the dorsomedial nucleus, ventromedial nucleus, caudal magnocellular portion of the paraventricular nucleus, dorsolateral supraoptic nucleus, tuberomammillary nucleus, caudal lateral hypothalamus, and retrochiasmatic area. In structures immediately adjacent to the hypothalamus, pre-PDYN neurons were observed in the caudate nucleus, putamen, cortical nucleus of the amygdala, and bed nucleus of the stria terminalis. Pre-PENK neurons occur in varying numbers in all hypothalamic nuclei except the mammillary bodies. The chiasmatic region is particularly rich in pre-PENK neurons, with the highest packing density in the intermediate nucleus [the intermediate nucleus (Braak and Braak [1987] Anat. Embryol. 176:315-330) has also been termed the sexually dimorphic nucleus of the preoptic area (SDA-POA; Swaab and Fliers [1985] Science 228:1112-1115) or the interstitial nucleus of the anterior hypothalamus 1 (Allen et al. [1989] J. Neurosci. 9:497-506)], dorsal suprachiasmatic nucleus, medial preoptic area, and rostral lateral hypothalamic area. Pre-PENK neurons are numerous in the infundibular nucleus, ventromedial nucleus, dorsomedial nucleus, caudal parvicellular portion of the paraventricular nucleus, tuberomammillary nucleus, lateral hypothalamus, and retrochiasmatic area. Only a few lightly labeled cells were found in the periphery of the supraoptic nucleus and lateral tuberal nucleus. In areas adjacent to the hypothalamus, cells that contain pre-PENK message occur in the nucleus basalis of Meynert, central nucleus of amygdala, bed nucleus of the stria terminalis, caudate nucleus, and putamen.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R R Sukhov
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | | | | | | | |
Collapse
|
83
|
Mansour A, Fox CA, Burke S, Meng F, Thompson RC, Akil H, Watson SJ. Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 1994; 350:412-38. [PMID: 7884049 DOI: 10.1002/cne.903500307] [Citation(s) in RCA: 656] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mu, delta, and kappa opioid receptors are the three main types of opioid receptors found in the central nervous system (CNS) and periphery. These receptors and the peptides with which they interact are important in a number of physiological functions, including analgesia, respiration, and hormonal regulation. This study examines the expression of mu, delta, and kappa receptor mRNAs in the rat brain and spinal cord using in situ hybridization techniques. Tissue sections were hybridized with 35S-labeled cRNA probes to the rat mu (744-1,064 b), delta (304-1,287 b), and kappa (1,351-2,124 b) receptors. Each mRNA demonstrates a distinct anatomical distribution that corresponds well to known receptor binding distributions. Cells expressing mu receptor mRNA are localized in such regions as the olfactory bulb, caudate-putamen, nucleus accumbens, lateral and medial septum, diagonal band of Broca, bed nucleus of the stria terminalis, most thalamic nuclei, hippocampus, amygdala, medial preoptic area, superior and inferior colliculi, central gray, dorsal and median raphe, raphe magnus, locus coeruleus, parabrachial nucleus, pontine and medullary reticular nuclei, nucleus ambiguus, nucleus of the solitary tract, nucleus gracilis and cuneatus, dorsal motor nucleus of vagus, spinal cord, and dorsal root ganglia. Cellular localization of delta receptor mRNA varied from mu or kappa, with expression in such regions as the olfactory bulb, allo- and neocortex, caudate-putamen, nucleus accumbens, olfactory tubercle, ventromedial hypothalamus, hippocampus, amygdala, red nucleus, pontine nuclei, reticulotegmental nucleus, motor and spinal trigeminal, linear nucleus of the medulla, lateral reticular nucleus, spinal cord, and dorsal root ganglia. Cells expressing kappa receptor mRNA demonstrate a third pattern of expression, with cells localized in regions such as the claustrum, endopiriform nucleus, nucleus accumbens, olfactory tubercle, medial preoptic area, bed nucleus of the stria terminalis, amygdala, most hypothalamic nuclei, median eminence, infundibulum, substantia nigra, ventral tegmental area, raphe nuclei, paratrigeminal and spinal trigeminal, nucleus of the solitary tract, spinal cord, and dorsal root ganglia. These findings are discussed in relation to the physiological functions associated with the opioid receptors.
Collapse
MESH Headings
- Animals
- Autoradiography/methods
- Brain/anatomy & histology
- Brain/cytology
- Brain/metabolism
- Ganglia, Spinal/anatomy & histology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- In Situ Hybridization
- Organ Specificity
- RNA Probes
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/biosynthesis
- Receptors, Opioid, kappa/biosynthesis
- Receptors, Opioid, mu/biosynthesis
- Spinal Cord/anatomy & histology
- Spinal Cord/cytology
- Spinal Cord/metabolism
- Sulfur Radioisotopes
Collapse
Affiliation(s)
- A Mansour
- Mental Health Research Institute, University of Michigan, Ann Arbor 48109-0720
| | | | | | | | | | | | | |
Collapse
|
84
|
Berman Y, Devi L, Carr KD. Effects of chronic food restriction on prodynorphin-derived peptides in rat brain regions. Brain Res 1994; 664:49-53. [PMID: 7895045 DOI: 10.1016/0006-8993(94)91952-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chronic food restriction produces a variety of physiological and behavioral adaptations including a potentiation of the reinforcing effect of food, drugs and lateral hypothalamic electrical stimulation. Previous work in this laboratory has revealed that the lowering of self-stimulation threshold by food restriction is reduced by mu- and kappa-selective opioid antagonists. In the present study, the effect of chronic food restriction on levels of three prodynorphin-derived peptides, namely dynorphin A1-17 (A1-17), dynorphin A1-8 (A1-8) and dynorphin B1-13 (B1-13) were measured in eleven brain regions known to be involved in appetite, taste and reward. Food restriction increased levels of A1-17 in dorsal medial (+19.6%), ventral medial (+24.2%) and medial preoptic (+82.9%) hypothalamic areas. Levels of A1-17 decreased in the central nucleus of the amygdala (-35.1%). Food restriction increased levels of A1-8 in nucleus accumbens (+34.4%), bed nucleus of the stria terminalis (+24.5%) and lateral hypothalamus (+41.9%). Food restriction had no effect on levels of B1-13. A1-17 is highly kappa-preferring and the brain regions in which levels increased all have a high ratio of kappa: mu and delta receptors. A1-8 is less discriminating among opioid receptor types and the brain regions in which levels increased have a low ratio of kappa: mu and delta receptors. The present results suggest that food restriction alters posttranslational processing within the dynorphin A domain of the prodynorphin precursor, possibly leading to a change in the balance between kappa and non-kappa opioid receptor stimulation in specific brain regions.
Collapse
Affiliation(s)
- Y Berman
- Department of Psychiatry, New York University Medical Center, NY 10016
| | | | | |
Collapse
|
85
|
Abstract
The distributions of four prodynorphin-derived peptides, dynorphin A (1-17), dynorphin A (1-8), dynorphin B, and alpha-neo-endorphin were determined in 10 cortical regions and the striatum of the old world monkey (Macaca nemestrina). alpha-neo-endorphin was the most abundant peptide in both cortex and striatum. The concentrations of all four peptides were significantly greater in the striatum compared to the cortex. In general, concentrations of each peptide tended to be higher in allocortex than in neocortex. Possible inter- and intradomain processing differences, as estimated by ratios of these peptides, did not vary within cortex, but the intradomain peptide ratio, dyn A (1-17)/dyn A (1-8), was significantly greater in cortex than in striatum. These results indicate that prodynorphin is, in some ways, uniquely processed in the primate. Particularly unusual is the relatively low abundance of prodynorphin-derived products in the cortex, in the face of moderately high levels of kappa opiate receptor expression.
Collapse
Affiliation(s)
- D J Healy
- Department of Psychiatry, Mental Health Research Institute, University of Michigan, Ann Arbor 48109-0720
| | | |
Collapse
|
86
|
Fodor M, Pammer C, Görcs T, Palkovits M. Neuropeptides in the human dorsal vagal complex: an immunohistochemical study. J Chem Neuroanat 1994; 7:141-57. [PMID: 7848571 DOI: 10.1016/0891-0618(94)90025-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The distribution of twelve biologically active neuropeptides, i.e., thyrotropin-releasing hormone, corticotropin-releasing factor, pro-opiomelanocortin-derived peptides (adrenocorticotropic hormone, beta-endorphin, alpha-melanocyte-stimulating hormone), leucine-enkephalin, dynorphin A, dynorphin B, cholecystokinin, substance P, galanin and calcitonin gene-related peptide, was examined by immunohistochemistry in the human dorsal vagal complex including the nucleus of the solitary tract, the dorsal motor nucleus of the vagus and the area postrema. Immunoreactivity of all the twelve neuropeptides was found widely distributed in the various subdivisions of the nucleus of the solitary tract, showing a unique distribution for every peptide. Neuronal cell bodies immunostained with leucine-enkephalin, galanin and dynorphin B were found in this region. There were no immunopositive perikarya for any of the peptides in the other structures studied. Fibers containing galanin, corticotropin-releasing factor, substance P, dynorphin B, thyrotropin-releasing hormone and calcitonin gene-related peptide were observed at a relatively high density in the nucleus of the solitary tract. In the same structure, a moderately dense network of fibers immunostained with dynorphin A, cholecystokinin and leucine-enkephalin, but only solitary pro-opiomelanocortin-derived peptides-containing fiber fragments were observed. In the dorsal motor nucleus of the vagus the most prominent network of fibers was found to contain thyrotropin-releasing hormone, galanin and substance P. In contrast to these, no beta-endorphin immunoreactivity was detected. The area postrema contained only moderate to low densities of galanin-, substance P-, calcitonin gene-related peptide-, dynorphin B- and cholecystokinin-immunoreactive fibers.
Collapse
Affiliation(s)
- M Fodor
- Laboratory of Neuromorphology, Semmelweis University Medical School, Budapest, Hungary
| | | | | | | |
Collapse
|
87
|
Rees H, Ang LC, Shul DD, George DH, Begley H, McConnell T. Increase in enkephalin-like immunoreactivity in hippocampi of adults with generalized epilepsy. Brain Res 1994; 652:113-9. [PMID: 7953707 DOI: 10.1016/0006-8993(94)90324-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The changes of opioid peptide reactivity in seizure activity have been well studied in animals. Increased enkephalin and dynorphin immunoreactivity in the hippocampi of animals are interpreted as the result of seizure induced mossy fibre sprouting. We studied the hippocampi of six patients with a history of long-standing grand mal seizures and six age-matched control patients with no history of epilepsy or neurologic disease, using frozen sections which were immunostained with antibodies against Leu-enkephalin and Met-enkephalin. The staining intensity in the CA3, CA4 and internal molecular layer of the dentate fascia in each case was quantified using optical densitometry image analysis. The CA3 and CA4 of the epileptic hippocampi showed highly significant increase in Leu-enkephalin-like immunoreactivity compared to the controls (P < 0.005) while the inner molecular layer showed only significant increase (P < 0.05). Met-Enkephalin-like immunoreactivity was only significantly increased in CA4 of the epileptic hippocampi (P < 0.05).
Collapse
Affiliation(s)
- H Rees
- Department of Pathology, Royal University Hospital, University of Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
88
|
Abstract
At the present time alcoholism is recognized as a metabolic disease exhibiting the clinical features of craving for alcohol, loss of control over drinking, tolerance and physical dependence on alcohol, while both epidemiological and experimental studies have demonstrated that genetic factors may be important in determining whether an individual has a high or low vulnerability to develop alcoholism. Evidence also indicates that alcoholism is not characterized by a single gene single allele inheritance. Instead it seems that multiple genes and environmental factors interact to increase or decrease an individual's vulnerability to become an alcoholic. Current research is aimed at investigating whether certain behavioral, physiological and biochemical markers are highly associated with the incidence of alcoholism. Among the biochemical markers currently under investigation is the endogenous opioid system and its implication in mediating the reinforcing effects of ethanol. It is the objective of this manuscript to review current research on: (a) the interactions of ethanol with the endogenous opioid system at the molecular level; (b) the existence of genetically determined differences in the response of the endogenous opioid system to ethanol between subjects at high and low risk for excessive ethanol consumption, as well as between lines of animals showing preference or aversion for ethanol solutions; (c) the decrease of alcohol consumption following pretreatment with opioid antagonists; and (d) the possible use of specific opioid receptor antagonists together with behavioral therapy to modify drinking behavior, to control craving and to prevent relapse.
Collapse
Affiliation(s)
- C Gianoulakis
- Douglas Hospital Research Centre, Montreal, Quebec, Canada
| | | |
Collapse
|
89
|
Broman J. Neurotransmitters in subcortical somatosensory pathways. ANATOMY AND EMBRYOLOGY 1994; 189:181-214. [PMID: 7913798 DOI: 10.1007/bf00239008] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Investigations during recent years indicate that many different neuroactive substances are involved in the transmission and modulation of somesthetic information in the central nervous system. This review surveys recent developments within the field of somatosensory neurotransmission, emphasizing immunocytochemical findings. Increasing evidence indicates a widespread role for glutamate as a fast-acting excitatory neurotransmitter at different levels in somatosensory pathways. Several studies have substantiated a role for glutamate as a neurotransmitter in primary afferent neurons and in corticofugal projections, and also indicate a neurotransmitter role for glutamate in ascending somatosensory pathways. Other substances likely to be involved in somatosensory neurotransmission include the neuropeptides. Many different peptides have been detected in primary afferent neurons with unmyelinated or thinly myelinated axons, and are thus likely to be directly involved in primary afferent neurotransmission. Some neurons giving rise to ascending somatosensory pathways, primarily those with cell bodies in the dorsal horn, are also immunoreactive for peptides. Recent investigations have shown that the expression of neuropeptides, both in primary afferent and ascending tract neurons, may change as a result of various kinds of peripheral manipulation. The occurrence of neurotransmitters in intrinsic neurons and neurons providing modulating inputs to somatosensory relay nuclei (the dorsal horn, the lateral cervical nucleus, the dorsal column nuclei and the ventrobasal thalamus) is also reviewed. Neurotransmitters and modulators in such neurons include acetylcholine, monoamines, GABA, glycine, glutamate, and various neuropeptides.
Collapse
Affiliation(s)
- J Broman
- Department of Cell Biology, Faculty of Health Sciences, University of Linköping, Sweden
| |
Collapse
|
90
|
Van Bockstaele EJ, Sesack SR, Pickel VM. Dynorphin-immunoreactive terminals in the rat nucleus accumbens: cellular sites for modulation of target neurons and interactions with catecholamine afferents. J Comp Neurol 1994; 341:1-15. [PMID: 7911809 DOI: 10.1002/cne.903410102] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dynorphin facilitates conditioned place aversion and reduces locomotor activity through mechanisms potentially involving direct activation of target neurons or release of catecholamines from afferents in the nucleus accumbens. We examined the ultrastructural substrates underlying these actions by combining immunoperoxidase labeling for dynorphin 1-8 and immunogold silver labeling for the catecholamine synthesizing enzyme, tyrosine hydroxylase (TH). The two markers were simultaneously visualized in single coronal sections through the rat nucleus accumbens. By light microscopy, dynorphin immunoreactivity was seen as patches of immunoreactive varicosities throughout all rostrocaudal levels of the nucleus accumbens. The dynorphin-immunoreactive terminals identified by electron microscopy ranged from 0.2 to 1.5 microns in cross-sectional diameter, contained numerous small (30-40 nm) clear vesicles, as well as one or more large (80-100 nm) dense core vesicles. From the dynorphin-immunoreactive terminals quantitatively examined in single sections, 74% (173/370) showed symmetric synaptic junctions mainly with large unlabeled dendrites. Of the dynorphin-immunoreactive terminals forming identifiable synapses, approximately 30% contacted more than one dendritic target. In addition, single dendrites frequently received convergent input from more than one dynorphin-labeled terminal. Irrespective of their dendritic associations, dynorphin-immunoreactive terminals also frequently showed close appositions with other axons and terminals; these included unlabeled (41%), TH-labeled (10%) or dynorphin-labeled axons (14%). In contrast to dynorphin-immunoreactive terminals, TH-labeled terminals formed primarily symmetric synapses with small dendrites and spines or lacked recognizable specializations in the plane of section analyzed. In some cases, single dendrites were postsynaptic to both dynorphin and TH-immunoreactive terminals. We conclude that dynorphin-immunoreactive terminals potently modulate, and most likely inhibit, target neurons in both subregions of the rat nucleus accumbens. This modulatory action could attenuate or potentiate incoming catecholamine signals on more distal dendrites of the accumbens neurons. The findings also suggest potential sites for presynaptic modulatory interactions involving dynorphin and catecholamine or other transmitters in apposed terminals.
Collapse
Affiliation(s)
- E J Van Bockstaele
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021
| | | | | |
Collapse
|
91
|
Rutherfurd SD, Gundlach AL. Opioid peptide gene expression in the nucleus tractus solitarius of rat brain and increases induced by unilateral cervical vagotomy: implications for role of opioid neurons in respiratory control mechanisms. Neuroscience 1993; 57:797-810. [PMID: 7906015 DOI: 10.1016/0306-4522(93)90025-b] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neurons expressing messenger RNA encoding the opioid peptide precursors, preproenkephalin and preprodynorphin were localized in the medulla oblongata of the rat by in situ hybridization of specific DNA oligonucleotide probes. Neurons containing preproenkephalin messenger RNA were found throughout the medullary reticular formation in the gigantocellular and paragigantocellular reticular nuclei, the parvicellular and lateral reticular nuclei; commissural, medial and ventrolateral subnuclei in the nucleus tractus solitarius and the nucleus of the spinal trigeminal tract. Labelled cells were also concentrated in the more medial regions of the area postrema. In contrast, neurons containing preprodynorphin messenger RNA had a more restricted distribution and were detected in the commissural and ventrolateral nucleus tractus solitarius and nucleus of the spinal trigeminal tract, especially in the more dorsal regions. Expression of preproenkephalin and preprodynorphin messenger RNA was also examined in the dorsal vagal complex of rats that had undergone a unilateral nodose ganglionectomy or cervical vagotomy. Twenty-four hours after both cervical vagotomy and nodose ganglionectomy, there was a specific 1.5-2-fold elevation in preproenkephalin and preprodynorphin messenger RNA levels in the ventrolateral subnucleus of the contralateral nucleus tractus solitarius relative to levels in the ipsilateral nucleus tractus solitarius and in the nucleus tractus solitarius of sham-operated animals. Previous immunohistochemical studies demonstrating the co-localization of enkephalin and dynorphin in the ventrolateral nucleus tractus solitarius suggest that these changes occurred in the same population of neurons. In light of the suggested role of the ventrolateral nucleus tractus solitarius as a central respiratory centre and the activation of the intact pulmonary afferents that innervate this area following a unilateral vagotomy (which increases inspiration volume and expiratory time by affecting the Hering-Breuer reflex), our results suggest a specific involvement of enkephalin- and dynorphin-containing neurons in the ventrolateral nucleus tractus solitarius in central respiratory control mechanisms.
Collapse
Affiliation(s)
- S D Rutherfurd
- University of Melbourne, Department of Medicine, Heidelberg, Vic., Australia
| | | |
Collapse
|
92
|
Marcos P, Coveñas R, Narváez JA, Tramu G, Aguirre JA, González-Barón S. Alpha-neo-endorphin-like immunoreactivity in the cat brain stem. Peptides 1993; 14:1263-9. [PMID: 8134309 DOI: 10.1016/0196-9781(93)90186-k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This paper examines the distribution of fibers and cell bodies containing alpha-neo-endorphin in the cat brain stem by using an indirect immunoperoxidase technique. A high or moderate density of immunoreactive cell bodies was found in the superior central nucleus, nucleus incertus, dorsal tegmental nucleus, nucleus of the trapezoid body, and in the laminar spinal trigeminal nucleus, whereas a low density of such perikarya was observed in the inferior colliculus, nucleus praepositus hypoglossi, dorsal nucleus of the raphe, nucleus of the brachium of the inferior colliculus, and in the nucleus of the solitary tract. The highest density of immunoreactive fibers was found in the substantia nigra, dorsal motor nucleus of the vagus, nucleus coeruleus, lateral tegmental field, marginal nucleus of the brachium conjunctivum, and in the inferior and medial vestibular nuclei. These results indicate that alpha-neo-endorphin is widely distributed in the cat brain stem and suggest that the peptide could play an important role in several physiological functions, e.g., those involved in respiratory, cardiovascular, auditory, and motor mechanisms.
Collapse
Affiliation(s)
- P Marcos
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
93
|
Todd AJ, Spike RC. The localization of classical transmitters and neuropeptides within neurons in laminae I-III of the mammalian spinal dorsal horn. Prog Neurobiol 1993; 41:609-45. [PMID: 7904359 DOI: 10.1016/0301-0082(93)90045-t] [Citation(s) in RCA: 290] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A J Todd
- Department of Anatomy, University of Glasgow, U.K
| | | |
Collapse
|
94
|
Rabkin SW. Comparative effects on blood pressure and heart rate of dynorphin A(1-13) in anterior hypothalamic area, posterior hypothalamic area, nucleus tractus solitarius, and lateral cerebral ventricle in the rat. Peptides 1993; 14:1253-8. [PMID: 7907790 DOI: 10.1016/0196-9781(93)90184-i] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The objective of this study was to explore the effects of the endogenous opioid peptide dynorphin A(1-13) on the CNS regulation of blood pressure and heart rate. Wistar rats, anesthetized with pentobarbital and halothane, received dynorphin A(1-13) microinjected into the anterior hypothalamus area (AHA), the posterior hypothalamic area (PHA), the nucleus tractus solitarius (NTS), or the lateral cerebral ventricle (ICV). Dynorphin A(1-13), 20 (12 nmol) or 30 micrograms ICV, produced significant (p < 0.05) reductions in blood pressure and heart rate. Naloxone, 50 micrograms/kg ICV, completely prevented the blood pressure response and significantly (p < 0.05) blunted the heart rate response to the highest dynorphin concentration, 30 micrograms ICV (18 nmol). Dynorphin A(1-13), 5 micrograms, in the NTS significantly (p < 0.05) decreased systolic and diastolic blood pressure and heart rate with the response being evident 10 min and persisting for 30 min after injection. In contrast, the same dose of dynorphin A(1-13) in the AHA produced an immediate, marked, and significant (p < 0.05) decrease in systolic and diastolic blood pressure and heart rate that attained its maximum 1-3 min and returned rapidly towards baseline levels. Dynorphin A(1-13), 5 or 10 micrograms in the posterior hypothalamic area, was not associated with any change in blood pressure or heart rate. Injection of the diluent at any site was not associated with any changes in blood pressure or heart rate. The maximum change in blood pressure with dynorphin was greater in the AHA than NTS, and the maximum change in heart rate was greater in the NTS than AHA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S W Rabkin
- University of British Columbia, Vancouver, Canada
| |
Collapse
|
95
|
Laurent-Huck FM, Anguelova E, Rene F, Stoeckel ME, Felix JM. Ontogeny of prodynorphin gene expression in the rat hypothalamus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 75:45-53. [PMID: 8222211 DOI: 10.1016/0165-3806(93)90064-h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Opioid peptides, deriving from prodynorphin, proenkephalin and proopiomelanocortin genes, have been shown to modulate brain development. Prodynorphin gene expression was studied here by in situ hybridization in the developing rat hypothalamus using oligodeoxynucleotide probes. Prodynorphin mRNA-synthetizing cells were observed in the ventromedial hypothalamic nucleus, the supraoptic and the paraventricular nuclei from embryonic days 16, 18 and 21, respectively. We detected no transient expression of prodynorphin gene in the rat hypothalamus. Prodynorphin mRNA-containing cells were also observed prenatally in the striatum, the cortex, the hippocampus and the amygdala. When compared with data from the literature, our results suggest that translation may immediately follow transcription of prodynorphin gene in the supraoptic nucleus. The presence of prodynorphin mRNA in the developing rat hypothalamus also raises the possibility of an involvement of prodynorphin-derived peptides in developmental processes and/or in the maturation of adult neural regulations.
Collapse
Affiliation(s)
- F M Laurent-Huck
- Université Louis Pasteur, Laboratoire de Physiologie Générale, URA CNRS 1446, Strasbourg, France
| | | | | | | | | |
Collapse
|
96
|
Spangler R, Unterwald EM, Kreek MJ. 'Binge' cocaine administration induces a sustained increase of prodynorphin mRNA in rat caudate-putamen. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 19:323-7. [PMID: 7694032 DOI: 10.1016/0169-328x(93)90133-a] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Other workers have established that cocaine injections increase the levels of dynorphin peptides in the caudate putamen and substantia nigra of the rat brain. Using a quantitative solution hybridization protection assay for mRNA, we detected a significant increase in the concentration of prodynorphin mRNA in caudate putamen extracts of rats injected with cocaine following a 'binge' administration pattern designed to mimic human cocaine abuse. Increased prodynorphin mRNA was observed at the earliest time-point studied (50 h) and the lowest dose (10 mg/kg/day) of cocaine tested and persisted through the 14 day period studied. No prodynorphin mRNA was detected in the substantia nigra.
Collapse
Affiliation(s)
- R Spangler
- Biology of Addictive Diseases Laboratory, Rockefeller University, New York, NY 10021
| | | | | |
Collapse
|
97
|
Carr KD, Wolinsky TD. Chronic food restriction and weight loss produce opioid facilitation of perifornical hypothalamic self-stimulation. Brain Res 1993; 607:141-8. [PMID: 8481792 DOI: 10.1016/0006-8993(93)91499-i] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Electrical stimulation frequency thresholds for lateral hypothalamic (LH) self-stimulation were monitored throughout a 3 week period of food restriction and a subsequent 3 week period of re-feeding. Rats with electrodes placed in the perifornical LH were sensitive to this dietary manipulation as evidenced by a high positive correlation between body weight and self-stimulation threshold. Rats with electrodes in the zona incerta/subincertal region or ventral hypothalamus displayed little or no change in threshold. Lateral ventricular injection of naltrexone (200.0 nM) reversed the decline in threshold that was otherwise present during food restriction in rats with perifornical placements. Naltrexone had no effect on thresholds of rats with placements outside the perifornical region. These findings suggest that food restriction and weight loss activate an opioid mechanism that facilitates perifornical LH self-stimulation. The documented association of perifornical LH with the phenomenon of stimulation-induced feeding, and the reciprocal connections between this region and gustatory structures, supports the hypothesis that facilitation of self-stimulation by food restriction is related to the natural phenomenon of positive alliesthesia (i.e. the hunger-dependency of food reward).
Collapse
Affiliation(s)
- K D Carr
- Millhauser Laboratories, Department of Psychiatry New York University Medical Center, NY 10016
| | | |
Collapse
|
98
|
Lechner J, Leah JD, Zimmermann M. Brainstem peptidergic neurons projecting to the medial and lateral thalamus and zona incerta in the rat. Brain Res 1993; 603:47-56. [PMID: 7680939 DOI: 10.1016/0006-8993(93)91298-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The presence of neuropeptides in brainstem neurons that project to the medial and lateral thalamus and zona incerta has been studied in the rat. Brainstem neurons were retrogradely labeled from the medial and lateral thalamus and the zona incerta by colloidal gold-WGA-HRP and, after silver intensification of the retrograde label, their content of immunoreactivity for nine different neuropeptides was determined after colchicine administration. The medial thalamus and zona incerta both received a large peptidergic input and the lateral thalamus a smaller input from neurons in several brainstem nuclei. These were principally from the locus coeruleus, parabrachial nucleus, the dorsal raphe and the dorsal tegmentum. The principal input to the medial thalamus arose from neurotensin, neuropeptide Y and galanin neurons in the locus coeruleus, neurotensin neurons in the dorsal tegmentum, dynorphin neurons in the parabrachial nucleus and dorsal tegmentum, galanin neurons in the dorsal raphe, substance P neurons in the lateral and dorsal periaqueductal grey and calcitonin gene-related peptide neurons in the nucleus paragigantocellularis. The principal peptidergic input to the zona incerta was from dynorphin neurons in the nucleus of the solitary tract, bombesin neurons in the lateral reticular nucleus, calcitonin gene-related peptide and cholecystokinin neurons in the dorsal tegmentum, substance P, bombesin and galanin neurons in the locus coeruleus, dynorphin and substance P neurons in the lateral periaqueductal grey and cholecystokinin neurons in the substantia nigra, ventral tegmental nucleus and raphe linearis. The principal peptidergic input to the lateral thalamus came from calcitonin gene-related peptide and cholecystokinin neurons in the dorsal tegmentum, calcitonin gene-related peptide and galanin neurons in the locus coeruleus; substance P, neuropeptide Y, galanin and calcitonin gene-related peptide neurons in the dorsal raphe, substance P neurons in the lateral periaqueductal gray, galanin neurons in the nucleus interpedunculus and cholecystokinin neurons in the raphe linearis. In all these cases, from 25% to virtually all of the projection neurons in the brainstem nucleus could contain immunoreactivity to the neuropeptide. A lesser, but significant peptidergic input to the thalamus and zona incerta also arose from the trigeminal nucleus, the substantia nigra, the nucleus of the solitary tract, the lateral reticular nucleus, the interpeduncular nucleus, the raphe linearis, the paragigantocellularis, the inferior olive and ventral tegmental area. Overall, the neuropeptides most frequently present in the projection neurons were substance P, calcitonin gene-related peptide, galanin and cholecystokinin. Bombesin, neuropeptide Y, neurotensin and dynorphin were less common; and enkephalin was present in only a small percentage of projection neurons.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Lechner
- II. Physiologisches Institut, Universität Heidelberg, FRG
| | | | | |
Collapse
|
99
|
Carr KD, Papadouka V, Wolinsky TD. Norbinaltorphimine blocks the feeding but not the reinforcing effect of lateral hypothalamic electrical stimulation. Psychopharmacology (Berl) 1993; 111:345-50. [PMID: 7870973 DOI: 10.1007/bf02244951] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The role of central kappa opioid receptors in the regulation of feeding and reward was evaluated using electrical brain stimulation paradigms in combination with the selective kappa antagonist, norbinaltorphimine (nor-BNI). Lateral ventricular injection of 10.0 and 50.0 nmol doses of nor-BNI increased the lateral hypothalamic stimulation frequency threshold for eliciting feeding behavior but had no effect on threshold for self-stimulation in the absence of food. This result is identical to those previously reported for naloxone and antibodies to dynorphin A and suggests that opioid activity is associated with feeding behavior rather than the eliciting brain stimulation. A further similarity between naloxone, dynorphin antiserum, and nor-BNI is their preferential effect on feeding threshold values obtained later, rather than initially, in a post-injection test session. This pattern of threshold elevation is shown to differ from that of the appetite suppressants, amphetamine and phenylpropanolamine, which elevate threshold uniformly throughout a post-injection test. The signature pattern of threshold elevation produced by opioid antagonism is consistent with the hypothesis that opioid activity is involved in the maintenance rather than the initiation of feeding. Specifically, it is hypothesized that a dynorphin A/kappa receptor mechanism is triggered by food taste and sustains feeding behavior by facilitating incentive reward.
Collapse
Affiliation(s)
- K D Carr
- Millhauser Laboratories, Department of Psychiatry, New York University Medical Center, NY 10016
| | | | | |
Collapse
|
100
|
Spampinato S, Paradisi R, Canossa M, Campana G, Frank G, Flamigni C, Ferri S. Immunoreactive dynorphin A-like material in extracted human hypothalamic-hypophysial plasma. Life Sci 1993; 52:223-30. [PMID: 8102766 DOI: 10.1016/0024-3205(93)90143-q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Immunoreactive dynorphin A-like material (ir-dyn A) in human plasma was measured by a validated radioimmunoassay. In peripheral plasma extracts mean concentrations between 20 and 40 fmol/ml were determined in volunteers and in patients with pituitary adenomas. In this latter group superimposable levels were detected three days before and during transsphenoidal microsurgery. Interestingly, ir-dyn A levels evaluated in extracts of hypothalamic-hypophysial plasma obtained during surgery, just after tumor removal, were 4-5 times higher than in peripheral plasma. Reverse-phase high performance liquid chromatography (rp-HPLC) of extracts of peripheral plasma samples revealed two immunoreactive peaks. The major form had the same retention time of dyn A-(1-32); whereas a second, more lipophilic, peak eluted later and was not further characterized. In contrast, rp-HPLC analysis of extracts of plasma collected from the suprapituitary region displayed only one peak eluting in the position of synthetic dyn A-(1-17). The presence of dyn-related peptides in hypothalamic-hypophysial plasma supports the hypothesis that they may play a part in the regulation of hypothalamic and/or pituitary functions in humans.
Collapse
Affiliation(s)
- S Spampinato
- Department of Pharmacology, University of Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|