51
|
el-Maghrabi MR, Correia JJ, Heil PJ, Pate TM, Cobb CE, Pilkis SJ. Tissue distribution, immunoreactivity, and physical properties of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Proc Natl Acad Sci U S A 1986; 83:5005-9. [PMID: 3014526 PMCID: PMC323878 DOI: 10.1073/pnas.83.14.5005] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
6-Phosphofructo-2-kinase (EC 2.7.1.105) and fructose-2,6-bisphosphatase (EC 3.1.3.46) activities were determined in various rat tissues, the latter by using a method based on the formation of a phosphorylated enzyme intermediate during the course of catalysis. Both activities from liver, skeletal muscle, lung, kidney, and testis copurified during polyethylene glycol fractionation, anion-exchange and blue Sepharose chromatography, and gel filtration. The Stokes radius of these enzymes and of the liver bifunctional enzyme was 45 A. Extrahepatic tissues had only 10% or less of the kinase activity found in liver. The results indicate that a liver-type bifunctional enzyme is present in most extrahepatic tissues but that it is minimally expressed. However, the ratio of kinase to bisphosphatase activity in most extrahepatic tissues was 4- to 6-fold higher than in liver, whereas heart 6-phosphofructo-2-kinase had no associated bisphosphatase activity, although its Stokes radius was also 45 A. The heart enzyme was not precipitated by an antiserum to the liver enzyme, whereas only a fraction of the kidney and testis activities was precipitated by this antiserum. The data support the existence of a distinct form of extrahepatic 6-phosphofructo-2-kinase, most readily demonstrated in heart, which may not be bifunctional.
Collapse
|
52
|
Meuwly R, Vasella A. Deoxy-nitrosugars 12th communication Synthesis of isosteric mono-phosphonate analogues of ?-and ?-D-fructose 2,6-bisphosphate. Helv Chim Acta 1986. [DOI: 10.1002/hlca.19860690402] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
53
|
Schubert C, Boehme HJ, Hofmann E. Hormonal control of fructose 2,6-bisphosphate concentration and of phosphofructokinase 2 in the rat liver during development. Biosci Rep 1986; 6:513-8. [PMID: 2945598 DOI: 10.1007/bf01114947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In fetal rat liver the concentration of fructose 2,6-bisphosphate is decreased by administration of glucagon. The glucagon effect, i.e., the phosphorylation state of phosphofructokinase 2, dominates over the substrate supply. Insulin was found to increase fructose 2,6-bisphosphate only when exogenous glucose is supplied simultaneously. The total activity of phosphofructokinase 2 exhibits remarkable developmental changes. It is high at term, moderate in the fetal as well as in the mature organ, and low during suckling. The level of the enzyme during development is controlled by pancreatic and adrenal hormones.
Collapse
|
54
|
Kuo HJ, Malencik DA, Liou RS, Anderson SR. Factors affecting the activation of rabbit muscle phosphofructokinase by actin. Biochemistry 1986; 25:1278-86. [PMID: 2938627 DOI: 10.1021/bi00354a013] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The consistent application of phosphatase inhibitors and a novel final purification step using a connected series of DE-51, DE-52, and DE-53 anion-exchange chromatography columns facilitate the preparation of electrophoretically homogeneous subpopulations of rabbit muscle phosphofructokinase which differ in their catalytic properties and endogenous covalent phosphate content. A band of "high"-phosphate enzyme (fraction II) flanked by regions of "low"-phosphate enzyme (fractions I and III) is an unusual feature of the final purification profile. Fractions I (containing in this case 0.42 mol of P/82 000 g of enzyme) and II (containing 1.26 mol of P/82 000 g of enzyme) exhibit the most pronounced functional differences of the fractions. Following our original report [Liou, R.-S., & Anderson, S. R. (1980) Biochemistry 19, 2684], both are activated by the addition of rabbit skeletal muscle F-actin. Under the assay conditions, half-maximal stimulation of phosphofructokinase activity occurs at 15.4 nM actin (in terms of monomer) for fraction I and 9.7 nM for fraction II. The low-phosphate enzyme is synergistically activated in the presence of 0.12 microM actin plus 3.0 microM fructose 2,6-bisphosphate, with a marked increase in Vmax, while the high-phosphate enzyme is not. Neither fraction is activated appreciably by the addition of G-actin or the chymotrypsin-resistant actin "core". The covalently cross-linked trimer of actin stimulates the activity of both the low- and high-phosphate enzyme fractions. However, the previously mentioned synergistic activation characteristic of fraction I fails to occur in solutions containing the trimer plus fructose 2,6-bisphosphate. Phosphorylation of fraction I in an in vitro reaction catalyzed by the cAMP-dependent protein kinase causes its properties to become more like those of fraction II. The total amount of covalent phosphate present after in vitro phosphorylation approaches 2 mol of P/82 000 g of enzyme for both fractions.
Collapse
|
55
|
Active hepatic glycogen synthesis from gluconeogenic precursors despite high tissue levels of fructose 2,6-bisphosphate. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)35834-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
56
|
Glass DB, el-Maghrabi MR, Pilkis SJ. Synthetic peptides corresponding to the site phosphorylated in 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as substrates of cyclic nucleotide-dependent protein kinases. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)35883-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
57
|
Reibstein D, den Hollander JA, Pilkis SJ, Shulman RG. Studies on the regulation of yeast phosphofructo-1-kinase: its role in aerobic and anaerobic glycolysis. Biochemistry 1986; 25:219-27. [PMID: 2937446 DOI: 10.1021/bi00349a031] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The kinetics of yeast phosphofructo-1-kinase has been studied in vitro. Effector concentrations (Fru-6-P, ATP, ADP, AMP, Pi, Fru-1,6-P2, and Fru-2,6-P2) and pH were adjusted so as to mimic intracellular concentrations in yeast. Under these conditions we were able to reproduce the measured in vivo rate of PFK. In addition, by reconstituting the intracellular conditions existing during aerobic and anaerobic glycolysis, we were able to reproduce in vitro the changes in the rate of PFK observed under these conditions. Without the addition of the newly discovered effector Fru-2,6-P2, in vitro rates of PFK are much lower than its in vivo rate. Changes in Fru-2,6-P2, Fru-1,6-P2, ATP, AMP, Pi, and pH in going from aerobic to anaerobic conditions all contributed somewhat to the change in the rate of PFK observed during the Pasteur effect, with no contribution coming from ADP. These studies show that the control of PFK under the condition of the Pasteur effect cannot be ascribed to changes in any one particular effector but rather to contributions from a variety of effectors. Also, the net change in the rate of PFK in the switch from anaerobic to aerobic glycolysis is small compared with the change in its dependence upon its substrate Fru-6-P, indicating a compensation mechanism.
Collapse
|
58
|
Tornheim K. Activation of muscle phosphofructokinase by fructose 2,6-bisphosphate and fructose 1,6-bisphosphate is differently affected by other regulatory metabolites. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39551-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
59
|
Kountz PD, el-Maghrabi MR, Pilkis SJ. Isolation and characterization of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from bovine liver. Arch Biochem Biophys 1985; 238:531-43. [PMID: 2986553 DOI: 10.1016/0003-9861(85)90197-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities were copurified to homogeneity from bovine liver. The purification scheme consisted of polyethylene glycol precipitation, anion-exchange and Blue-Sepharose chromatography, substrate elution from phosphocellulose, and gel filtration. The bifunctional enzyme had an apparent molecular weight of 102,000 and consisted of two subunits (Mr 49,000). The kinase had a Km for ATP of 12 microM and a S0.5 for fructose 6-phosphate of 150 microM while the bisphosphatase had a Km for fructose 2,6-bisphosphate of 7 microM. Both activities were subject to modulation by various effectors. Inorganic phosphate stimulated both activities, while alpha-glycerolphosphate inhibited the kinase and stimulated the bisphosphatase. The pH optimum for the 6-phosphofructo-2-kinase activity was 8.5, while the fructose-2,6-bisphosphatase reaction was maximal at pH 6.5. Incubation of the purified enzyme with [gamma-32P]ATP and the catalytic subunit of the cAMP-dependent protein kinase resulted in 32P incorporation to the extent of 0.7 mol/mol enzyme subunit with concomitant inhibition of the kinase activity and activation of the bisphosphatase activity. The mediation of the bisphosphatase reaction by a phosphoenzyme intermediate was suggested by the isolation of a stable labeled phosphoenzyme when the enzyme was incubated with fructose 2,6-[2-32P]bisphosphate. The pH dependence of hydrolysis of the phospho group suggested that it was linked to the N3 of a histidyl residue. The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from bovine liver has properties essentially identical to those of the rat liver enzyme, suggesting that hepatic fructose 2,6-bisphosphate metabolism is under the same control in both species.
Collapse
|
60
|
Cronin CN, Tipton KF. Purification and regulatory properties of phosphofructokinase from Trypanosoma (Trypanozoon) brucei brucei. Biochem J 1985; 227:113-24. [PMID: 3158309 PMCID: PMC1144815 DOI: 10.1042/bj2270113] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phosphofructokinase (EC 2.7.1.11) from Trypanosoma (Trypanozoon) brucei brucei was purified to homogeneity by using a three-step procedure that may be performed within 1 day. Proteolysis, which removes a fragment of Mr approx. 2000, may occur during the purification, but this can be prevented by including antipain, an inhibitor of cysteine proteinases, in the buffers during the purification. The subunits of the enzyme appear to be identical in size, with an Mr of 49 000. The Mr of the native enzyme was estimated to be approx. 220 000, suggesting a tetrameric structure. Kinetic studies showed the activity to depend hyperbolically on the concentration of ATP but sigmoidally on the concentration of fructose 6-phosphate. Although cyclic AMP, AMP and ADP stimulated the enzyme activity at low concentrations of fructose 6-phosphate, the last two nucleotides were inhibitory at high concentrations of this substrate. Phosphoenolpyruvate behaved as an allosteric inhibitor of the phosphofructokinase. Citrate, fructose 1,6-bisphosphate, fructose 2,6-bisphosphate and Pi did not influence significantly the activity of the enzyme.
Collapse
|
61
|
Abstract
In this paper, the existence and purification of two species of phosphofructokinase regulatory factor activity are reported. The purification procedure included liver homogenization and ultracentrifugation, a 93 degrees C heat step on the supernate, precipitation with ammonium sulfate, DEAE-cellulose column chromatography, and Sephadex G-75 (fine) chromatography. Two discrete regions of factor activity were eluted from the DEAE-cellulose column with a 0 to 0.5 M linear NaCl gradient. The lesser anionic fraction was not significantly retarded by DEAE-cellulose at pH 7.6, and was referred to as factor A. The more anionic form, factor B, eluted at about 0.2 M NaCl. The presence of two active fractions was confirmed by separation of factor activity (prior to DEAE-cellulose chromatography) into two discrete species by preparative isoelectric focusing on granulated gel. The isoelectric points were approximately 7.0 for factor B and 8.5 for factor A. Factor A and factor B exhibited quite different elution volumes, i.e., apparent molecular weights, when applied to a Sephadex G-75 column. Rechromatography on a Sephadex G-75 column was used for further purification and estimation of native molecular weight. The gel filtration method yielded a molecular weight of 13,800 +/- 1,800 for factor A. Factor A activity eluted as a symmetrical protein peak of constant specific activity, suggesting a homogeneous preparation. For factor B, the absorption at 280 nm and activity profile did not directly overlap. When the peak absorbance at 280 nm was considered, a molecular weight range of 39,000 +/- 4,000 was found, and on the basis of activity the molecular weight range was 36,000 +/- 4,000. After the final Sephadex G-75 chromatographic step, sodium dodecyl sulfate (SDS)-polyacrylamide slab gel electrophoresis of each SDS-treated factor preparation indicated that factor A, after visualization by silver staining, was homogeneous, with a subunit molecular weight of approximately 12,000. The factor B preparation consisted of two major polypeptides (11,000 and 18,000). The data appeared to support the conclusions that factor B was a dimer of the 18,000-Da subunit, and that the major contaminant was a tetramer of the 11,000-Da subunit.
Collapse
|
62
|
Purification of rabbit liver phosphofructokinase and its properties under simulatingin vivo conditions. J Biosci 1984. [DOI: 10.1007/bf02702706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
63
|
El-Maghrabi MR, Pate TM, Murray KJ, Pilkis SJ. Differential effects of proteolysis and protein modification on the activities of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90662-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
64
|
NAKAMURA MASAHISA, SUZUKI AKIRA, OKINAGA SHOICHI, ARAI KIYOSHI. Synergistic Inhibition of Fructose 1,6-Bisphosphatase by Fructose 2,6-Bisphosphate and Adenosine Monophosphate in Round Spermatids of Rats. (fructose 1, 6-bisphosphatase/AMP/fructose 2, 6-bisphosphate/spermatids/rats). Dev Growth Differ 1984. [DOI: 10.1111/j.1440-169x.1984.00497.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
65
|
Nyfeler F, McCain RW, DeBrock BJ, Pilkis SJ. Pentobarbital-anesthesia decreases fructose 2,6-bisphosphate levels in rat liver. Biochem Biophys Res Commun 1984; 122:1154-9. [PMID: 6089777 DOI: 10.1016/0006-291x(84)91212-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fructose 2,6-bisphosphate levels were assayed in freeze-clamped livers of anesthesized rats. All doses of pentobarbital that were effective in anesthesizing the rats caused a significant decrease in fructose 2,6-bisphosphate levels. Injection of pentobarbital also resulted in decreased 6-phosphofructo 2-kinase activity and increased fructose 2,6-bisphosphatase activity measured in dialyzed (NH4)2SO4-treated liver extracts but with no change in pyruvate kinase activity. It was concluded that the anesthesia-induced decrease in fructose 2,6-bisphosphate levels results at least in part from increased phosphorylation of 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase.
Collapse
|
66
|
Sommercorn J, Steward T, Freedland RA. Activation of phosphofructokinase from rat tissues by 6-phosphogluconate and fructose 2,6-bisphosphate. Arch Biochem Biophys 1984; 232:579-84. [PMID: 6235777 DOI: 10.1016/0003-9861(84)90576-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
6-Phosphogluconate activates phosphofructokinase from liver, adipose tissue, kidney, and skeletal muscle by decreasing the apparent S0.5 for fructose 6-phosphate without affecting the maximum velocity. The response of phosphofructokinase to 6-phosphogluconate is hyperbolic, with apparent activation constants similar to concentrations of 6-phosphogluconate in tissues. Phosphofructokinase from these tissues is also activated by fructose 2,6-bisphosphate, but the apparent activation constants are much less than the concentrations of fructose 2,6-bisphosphate in tissues. Under most conditions, the effects of 6-phosphogluconate and fructose 2,6-bisphosphate are additive. However, with low concentrations of fructose 6-phosphate there is synergism between the effectors. Whereas fructose 2,6-bisphosphate overcomes the inhibition of phosphofructokinase by high concentrations of ATP, 6-phosphogluconate does not. Thus, the effectors probably act at different sites on the enzyme. The relative effect of 6-phosphogluconate is much greater on phosphofructokinase from the lipogenic tissues, adipose, and liver, than it is on the enzyme from kidney or skeletal muscle. Thus, the influence of 6-phosphogluconate on phosphofructokinase, which could coordinate the disposition of glucose 6-phosphate between the oxidative branch of the hexosemonophosphate pathway and glycolysis, may be important for lipogenesis.
Collapse
|
67
|
Beitner R, Sofer Y, Chen-Zion M. Opposite changes with age in liver and muscle in the mitochondrial and soluble glucose-1,6-bisphosphate and 6-phosphogluconate dehydrogenase. BIOCHEMICAL MEDICINE 1984; 32:57-66. [PMID: 6497871 DOI: 10.1016/0006-2944(84)90008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glucose-1,6-bisphosphate (Glc-1,6-P2), the powerful regulator of carbohydrate metabolism, was markedly decreased in liver of adult rats (2 months of age) as compared to young rats (1-2 weeks of age). This regulator was found to be present in both the mitochondrial and soluble fractions of liver. Its concentration in both these fractions was decreased with age. Concomitant to the decrease in Glc-1,6-P2, which is a potent inhibitor of 6-phosphogluconate dehydrogenase, the activity of this enzyme was markedly increased with age in both the mitochondrial and soluble fractions. However, the increase in this enzyme's activity was more pronounced in the mitochondrial fraction. The mitochondrial enzyme was more susceptible to inhibition by Glc-1,6-P2 as compared to the soluble enzyme, and this may explain the greater enhancement in its activity with age in this fraction. The tibialis anterior muscle exhibited changes with age opposite to those found in liver; Glc-1,6-P2 concentration, in both the mitochondrial and soluble fractions of muscle increased with age, and this increase was accompanied by a concomitant reduction in the activity of the mitochondrial and soluble 6-phosphogluconate dehydrogenase. Similar to liver, the mitochondrial enzyme was more affected by age, as it also exhibited a greater susceptibility to inhibition by Glc-1,6-P2.
Collapse
|
68
|
Murray KJ, El-Maghrabi MR, Kountz PD, Lukas TJ, Soderling TR, Pilkis SJ. Amino acid sequence of the phosphorylation site of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42845-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
69
|
Marcus F, Edelstein I, Rittenhouse J. Inhibition of Escherichia coli fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate. Biochem Biophys Res Commun 1984; 119:1103-8. [PMID: 6324777 DOI: 10.1016/0006-291x(84)90888-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fructose 2,6-bisphosphate, a potent inhibitor of fructose-1,6-bisphosphatases, was found to be an inhibitor of the Escherichia coli enzyme. The substrate saturation curves in the presence of inhibitor were sigmoidal and the inhibition was much stronger at low than at high substrate concentrations. At a substrate concentration of 20 microM, 50% inhibition was observed at 4.8 microM fructose 2,6-bisphosphate. Escherichia coli fructose-1,6-bisphosphatase was inhibited by AMP (Ki = 16 microM) and phosphoenolpyruvate caused release of AMP inhibition. However, neither AMP inhibition nor its release by phosphoenolpyruvate was affected by the presence of fructose 2,6-bisphosphate. The results obtained, together with previous observations, provide further evidence for the fructose 2,6-bisphosphate - fructose-1,6-bisphosphatase active site interaction.
Collapse
|
70
|
|
71
|
El-Maghrabi MR, Pilkis SJ. Rat liver 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase: a review of relationships between the two activities of the enzyme. J Cell Biochem 1984; 26:1-17. [PMID: 6096384 DOI: 10.1002/jcb.240260102] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Both the synthesis and the degradation of Fru-2,6-P2 are catalyzed by a single enzyme protein; ie, the enzyme is bifunctional. This protein, which we have designated 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase is an important enzyme in the regulation of hepatic carbohydrate metabolism since its activity determines the steady-state concentration of fructose 2,6-P2, an activator of 6-phosphofructo 1-kinase and an inhibitor of fructose 1,6-bisphosphatase. Regulation of the bifunctional enzyme in intact cells is a complex function of both covalent modification via phosphorylation/dephosphorylation and the influence of substrates and low molecular weight effectors. Recent evidence suggests that both reactions may proceed by two-step transfer mechanisms with different phosphoenzyme intermediates. The enzyme catalyzes exchange reactions between ADP and ATP and between fructose 6-P and fructose 2,6-P2. A labeled phosphoenzyme is formed rapidly during incubation with [2-32P]Fru-2,6-P2. The labeled residue has been identified as 3-phosphohistidine. However, it was not possible to demonstrate significant labeling of the enzyme directly from [gamma-32P]ATP. These results can be most readily explained in terms of two catalytic sites, a kinase site whose phosphorylation by ATP is negligible (or whose E-P is labile) and a fructose 2,6-bisphosphatase site which is readily phosphorylated by fructose 2,6-P2. Additional evidence in support of two active sites include: limited proteolysis with thermolysin results in loss of 6-phosphofructo 2-kinase activity and activation of fructose 2,6-bisphosphatase, mixed function oxidation results in inactivation of the 6-phosphofructo 2-kinase but no affect on the fructose 2,6-bisphosphatase, N-ethylmaleimide treatment also inactivates the kinase but does not affect the bisphosphatase, and p-chloromercuribenzoate immediately inactivates the fructose 2,6-bisphosphatase but not the 6-phosphofructo 2-kinase. Our findings indicate that the bifunctional enzyme is a rather complicated enzyme; a dimer, probably with two catalytic sites reacting with sugar phosphate, and with an unknown number of regulatory sites for most of its substrates and products. Three enzymes from Escherichia coli, isocitric dehydrogenase kinase/phosphatase, glutamine-synthetase adenylyltransferase, and the uridylyltransferase for the regulatory protein PII in the glutamine synthetase cascade system also catalyze opposing reactions probably at two discrete sites. All four enzymes are important in the regulation of metabolism and may represent a distinct class of regulatory enzymes.
Collapse
|
72
|
|
73
|
Ganson NJ, Fromm HJ. Mechanism and regulation of bovine liver fructose-1,6-bisphosphatase. CURRENT TOPICS IN CELLULAR REGULATION 1984; 24:197-207. [PMID: 6094107 DOI: 10.1016/b978-0-12-152824-9.50026-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
74
|
Clark MG, Patten GS. Adrenergic control of phosphofructokinase and glycolysis in rat heart. CURRENT TOPICS IN CELLULAR REGULATION 1984; 23:127-76. [PMID: 6327191 DOI: 10.1016/b978-0-12-152823-2.50008-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
75
|
Frucht H, Lilling G, Beitner R. Influence of bradykinin on glucose 1,6-bisphosphate and cyclic GMP levels and on the activities of glucose 1,6-bisphosphatase, phosphofructokinase and phosphoglucomutase in muscle. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1984; 16:397-402. [PMID: 6325266 DOI: 10.1016/0020-711x(84)90138-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The intracellular concentration of glucose-1,6-bisphosphate (Glc-1,6-P2) in rat tibialis anterior muscle was markedly decreased following the injection of bradykinin. Injection of bradykinin also induced a significant increase in the level of cyclic GMP in muscle. The activity of glucose-1,6-bisphosphatase, the enzyme that degrades Glc-1,6-P2, was markedly enhanced by bradykinin, which may account for the decrease in the level of Glc-1,6-P2. The decrease in Glc-1,6-P2, the potent activator of phosphofructokinase and phosphoglucomutase, was accompanied by a concomitant reduction in these enzymes' activities. The bradykinin-induced decrease in Glc-1,6-P2 and in the activity of phosphofructokinase, the rate-limiting enzyme in glycolysis, may be involved in the pathogenic influences of this hormone in various clinical conditions.
Collapse
|
76
|
Preiss J. Starch, sucrose biosynthesis and partition of carbon in plants are regulated by orthophosphate and triose-phosphates. Trends Biochem Sci 1984. [DOI: 10.1016/0968-0004(84)90043-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
77
|
Claus TH, El-Maghrabi MR, Regen DM, Stewart HB, McGrane M, Kountz PD, Nyfeler F, Pilkis J, Pilkis SJ. The role of fructose 2,6-bisphosphate in the regulation of carbohydrate metabolism. CURRENT TOPICS IN CELLULAR REGULATION 1984; 23:57-86. [PMID: 6327193 DOI: 10.1016/b978-0-12-152823-2.50006-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
78
|
Beitner R, Lilling G, Frucht H, Ben-Porat H, Sofer Y. Age-dependent changes in glucose 1,6-bisphosphate levels and in the activities of glucose 1,6-bisphosphatase, and particulate hexokinase and 6-phosphogluconate dehydrogenase in rat skin. BIOCHEMICAL MEDICINE 1983; 30:369-80. [PMID: 6316942 DOI: 10.1016/0006-2944(83)90030-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The levels of glucose 1,6-bisphosphate (Glc-1,6-P2), the powerful regulator of carbohydrate metabolism, changed in rat skin during growth: Glc-1,6-P2 increased during the first week of age, and thereafter was dramatically reduced during maturation. The activity of glucose 1,6-bisphosphatase, the enzyme that degradates Glc-1,6-P2, changed with age in an invert manner as compared to the changes in Glc-1,6-P2. These findings suggest that the age dependent changes in this enzyme's activity may account for the changes in intracellular Glc-1,6-P2 concentration. The age-related changes in Glc-1,6-P2 were accompanied by concomitant changes in the activities of particulate (mitochondrial) hexokinase and 6-phosphogluconate dehydrogenase, the two enzymes known to be inhibited by Glc-1,6-P2. The activities of both these enzymes in the soluble fraction were not changed with age. The particulate enzymes were more susceptible to inhibition by Glc-1,6-P2 than the soluble activities, which may explain why only the particulate, but not the soluble activities, correlated with the age-dependent changes in tissue Glc-1,6-P2. These results suggest that the changes in particulate hexokinase and 6-phosphogluconate dehydrogenase resulted from changes in intracellular concentration of Glc-1,6-P2. The marked reduction in Glc-1,6-P2 during maturation, accompanied by activation of mitochondrial hexokinase and 6-phosphogluconate dehydrogenase, may reflect an enhancement in skin metabolism during growth.
Collapse
|
79
|
Abstract
On the basis of kinetic activation assays, the apparent affinity of muscle phosphofructokinase for fructose 2,6-bisphosphate was about 9-fold greater than that for fructose 1,6-bisphosphate, which in turn was about 10 times higher than that for glucose 1,6-bisphosphate. Equilibrium binding experiments showed that both fructose bisphosphates bind to phosphofructokinase with negative cooperativity; the affinity for fructose 2,6-bisphosphate was about 1 order of magnitude greater than the affinity for fructose 1,6-bisphosphate. Binding of fructose 2,6-bisphosphate to phosphofructokinase was antagonized by fructose 1,6-bisphosphate and glucose 1,6-bisphosphate and vice versa. Both fructose bisphosphates promoted aggregation of the enzyme to higher polymers as indicated by sucrose density gradient centrifugation. Other indicators of phosphofructokinase conformation such as thiol reactivity and maximum activation of in vitro phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase gave identical results in the presence of fructose 2,6-bisphosphate, fructose 1,6-bisphosphate, or glucose 1,6-bisphosphate, indicating a common conformation is produced by all three ligands. It is concluded that the sugar bisphosphates bind to a single site on the enzyme.
Collapse
|
80
|
|
81
|
Fister P, Eigenbrodt E, Schoner W. Glucagon induced inactivation of phosphofructokinase and its counteraction by insulin in isolated hepatocytes from the domestic fowl (Gallus domesticus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1983; 75:341-5. [PMID: 6223782 DOI: 10.1016/0305-0491(83)90337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effects of glucagon and insulin on phosphofructokinase activity in isolated chicken hepatocytes were studied. Phosphofructokinase activity was decreased in extracts of hepatocytes exposed to glucagon both at subsaturating (0.2 mM) and saturating (5 mM) concentrations of fructose 6-phosphate. Both effects were still present after Sephadex G-25 gel filtration and subsequent ammonium sulfate precipitation. Half-maximal effects of glucagon were found between 10(-11) and 10(-10) M glucagon. Insulin alone had no effect but decreased the action of glucagon.
Collapse
|
82
|
Beitner R, Frucht H, Kaplansky M. Changes in the levels of glucose 1,6-diphosphate and cyclic GMP, and in the activities of phosphofructokinase and phosphoglucomutase induced by serotonin in muscle. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1983; 15:935-40. [PMID: 6309580 DOI: 10.1016/0020-711x(83)90170-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Injection of serotonin (5-hydroxytryptamine) induced a marked decrease in the level of glucose 1,6-diphosphate (Glc-1,6-P2) in the rat tibialis anterior muscle. Concomitant to the decrease in Glc-1,6-P2, the potent activator of phosphofructokinase and phosphoglucomutase, the activities of both these enzymes were markedly reduced by serotonin. The level of Glc-1,6-P2 and the activities of phosphofructokinase and phosphoglucomutase increased with age in the tibialis anterior muscle and the effect of serotonin was more pronounced in the older animals. Serotonin also induced a significant increase in the level of cyclic GMP in muscle. The serotonin-induced changes in the normal muscle mimic the changes in carbohydrate metabolism we found previously in muscular dystrophy.
Collapse
|
83
|
Pilkis SJ, Chrisman T, Burgress B, McGrane M, Colosia A, Pilkis J, Claus TH, el-Maghrabi MR. Rat hepatic 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase: a unique bifunctional enzyme. ADVANCES IN ENZYME REGULATION 1983; 21:147-73. [PMID: 6100582 DOI: 10.1016/0065-2571(83)90013-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fructose 2,6-bisphosphate is a potent allosteric activator of 6-phosphofructo 1-kinase and an inhibitor of fructose 1,6-bisphosphatase. It potentiates the effect of AMP on both enzymes. A great deal of compelling evidence supports the hypothesis that fructose 2,6-bisphosphate plays a key role in the hormonal and substrate regulation of substrate cycling at the fructose 6-phosphate/fructose 1,6-bisphosphate level in liver. This regulation is exerted at the level of the enzyme activities responsible for the synthesis and degradation of fructose 2,6-bisphosphate. Synthesis of the compound is catalyzed by a unique enzyme which transfers the gamma-phosphate of ATP to the C2 position of fructose 6-phosphate (ATP:D fructose 6-phosphate 2-phosphotransferase) while degradation is catalyzed by a phosphohydrolase activity which is specific for the C-2 position of fructose 2,6-bisphosphate (D-fructose 2,6-bisphosphate 2-phosphohydrolase). These activities are distinct from the classical 6-phosphofructo 1-kinase and fructose 1,6-bisphosphatase with regard to molecular weight, interaction with ligands, and the efficiency with which phosphoryl transfer occurs. Both activities have been purified to homogeneity and have been shown to be present in a single enzyme protein, i.e. the enzyme is bifunctional. Incubation of the 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase with cAMP-dependent protein kinase and ATP leads to phosphorylation of the enzyme resulting in inactivation of the phosphotransferase activity and stimulation of the phosphohydrolase activity. Since fructose 2,6-bisphosphate is not further metabolized and can only be recycled to fructose 6-phosphate, simultaneous modulation of the synthesis and degradation of the compound by covalent modification of a single protein provides a very efficient and sensitive regulatory mechanism. The bifunctional enzyme was also shown to possess an ATPase activity which was nearly equal to the activity of the kinase reaction. However, in the presence of fructose 6-phosphate the enzyme did not transfer phosphate to water but rather to the C-2 position of the phosphorylated sugar. The ability of the enzyme to catalyze a partial reaction at a rate nearly equal to that of the forward reaction suggested that the reaction mechanism of the kinase proceeds by a two step transfer, i.e. via a phosphoryl enzyme intermediate.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
84
|
Claus TH, Pilkis SJ. Fructose 2,6-bisphosphate levels are elevated in livers of genetically obese mice. Biochem Biophys Res Commun 1982; 109:664-8. [PMID: 6218806 DOI: 10.1016/0006-291x(82)91991-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
85
|
Van Schaftingen E, Lederer B, Bartrons R, Hers HG. A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 129:191-5. [PMID: 6297885 DOI: 10.1111/j.1432-1033.1982.tb07039.x] [Citation(s) in RCA: 485] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pyrophosphate : fructose-6-phosphate phosphotransferase (PPi-PFK) has been purified 150-fold from potato tubers and the kinetic properties of the purified enzyme have been investigated both in the forward and the reverse direction. Saturation curves for fructose 6-phosphate and also for fructose 1,6-bisphosphate were sigmoidal whereas those for PPi and Pi were hyperbolic. In the presence of fructose 2,6-bisphosphate, the affinity for fructose 6-phosphate and for fructose 1,6-bisphosphate were greatly increased and the kinetics became Michaëlian. The effect of fructose 2,6-bisphosphate was increased by the presence of fructose 6-phosphate and decreased by the presence of Pi. Consequently, the Ka for fructose 2,6-bisphosphate was as low as 5 nM for the forward reaction and reached 150 nM for the reverse reaction. On the basis of these properties, a procedure allowing one to measure fructose 2,6-bisphosphate in amounts lower than a picomole, is described.
Collapse
|
86
|
|
87
|
El-Maghrabi MR, Claus TH, Pilkis J, Fox E, Pilkis SJ. Regulation of rat liver fructose 2,6-bisphosphatase. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34422-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
88
|
El-Maghrabi MR, Fox E, Pilkis J, Pilkis SJ. Cyclic AMP-dependent phosphorylation of rat liver 6-phosphofructo 2-kinase, fructose 2,6-bisphosphatase. Biochem Biophys Res Commun 1982; 106:794-802. [PMID: 6288034 DOI: 10.1016/0006-291x(82)91780-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|