51
|
Morales MA, Holmberg K, Xu ZQ, Cozzari C, Hartman BK, Emson P, Goldstein M, Elfvin LG, Hökfelt T. Localization of choline acetyltransferase in rat peripheral sympathetic neurons and its coexistence with nitric oxide synthase and neuropeptides. Proc Natl Acad Sci U S A 1995; 92:11819-23. [PMID: 8524856 PMCID: PMC40494 DOI: 10.1073/pnas.92.25.11819] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Indirect immunofluorescence methods using a mouse monoclonal antibody raised to rat choline acetyltransferase (ChAT) revealed dense networks of ChAT-immunoreactive fibers in the superior cervical ganglion, the stellate ganglion, and the celiac superior mesenteric ganglion of the rat. Numerous and single ChAT-immunoreactive cell bodies were observed in the stellate and superior cervical ganglia, respectively. The majority of ChAT-immunoreactive fibers in the stellate and superior cervical ganglia were nitric oxide synthase (NOS) positive. Some ChAT-immunoreactive fibers contained enkephalin-like immunoreactivity. Virtually all ChAT-positive cell bodies in the stellate ganglion were vasoactive intestinal polypeptide (VIP)-positive, and some were calcitonin gene-related peptide (CGRP)-positive. After transection of the cervical sympathetic trunk almost all ChAT- and NOS-positive fibers and most enkephalin- and CGRP-positive fibers disappeared in the superior cervical ganglion. The results suggest that most preganglionic fibers are cholinergic and that the majority of these in addition can release nitric oxide, some enkephalin, and a few CGRP. Acetylcholine, VIP, and CGRP are coexisting messenger molecules in some postganglionic sympathetic neurons.
Collapse
Affiliation(s)
- M A Morales
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Stapf C, Shakibaei M, Blottner D. Co-existence of NADPH-diaphorase, fibroblast growth factor-2 and fibroblast growth factor receptor in spinal autonomic system suggests target-specific actions. Neuroscience 1995; 69:1253-62. [PMID: 8848111 DOI: 10.1016/0306-4522(95)00318-d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the rat spinal cord, we found substantial co-existence of fibroblast growth factor-2, fibroblast growth factor receptor (type-1 or flg) immunoreactivity and reduced nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity (a histochemical marker for neuronal nitric oxide synthase) in preganglionic autonomic cell groups of intermediate layers VI, VII and X. Anti-fibroblast growth factor-2 and anti-nitric oxide synthase binding sites were confined to the cytoplasm of reactive neurons as judged by immunogold electron microscopy. Within the major autonomic nucleus, i.e. intermediolateral column, three different populations were identified: (i) fibroblast growth factor and fibroblast growth factor receptor, (ii) fibroblast growth factor/NADPH-diaphorase and (iii) NADPH-diaphorase-only stained cell groups. Sympathoadrenal neurons were prelabelled with fluorescent tracer Fast Blue and co-stained for fibroblast growth factor-like protein and NADPH-diaphorase, suggesting heterologous diversification of neuronal phenotypes and functional organization in the spinal autonomic system. Our findings suggest intriguing roles for nitric oxide and fibroblast growth factor-2 cytokine in the preganglionic sympathetic spinal cord system: The "short-term" diffusible messenger nitric oxide may act as "tonic" and/or "phasic" signal within rostrocaudally oriented function-specific preganglionic units necessary for integrated target control. The "long-term" messenger fibroblast growth factor-2 may be involved in, for example, cytokine-dependent regulation of neuronal NADPH-diaphorase/nitric oxide synthase. Furthermore, co-existence of NADPH-diaphorase, fibroblast growth factor-2 and receptor in sympathoadrenal neurons suggest mutual target-specific regulatory functions, e.g. hormone release and blood perfusion or maintenance of phenotype and plasticity responsiveness of adrenal medullary tissue.
Collapse
Affiliation(s)
- C Stapf
- Institute for Anatomy, Freie Universität Berlin, Berlin, Germany
| | | | | |
Collapse
|
53
|
Förstermann U, Gath I, Schwarz P, Closs EI, Kleinert H. Isoforms of nitric oxide synthase. Properties, cellular distribution and expressional control. Biochem Pharmacol 1995; 50:1321-32. [PMID: 7503779 DOI: 10.1016/0006-2952(95)00181-6] [Citation(s) in RCA: 246] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- U Förstermann
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | |
Collapse
|
54
|
Blottner D, Grozdanovic Z, Gossrau R. Histochemistry of nitric oxide synthase in the nervous system. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/bf02388304] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
55
|
Schwarz P, Diem R, Dun NJ, Förstermann U. Endogenous and exogenous nitric oxide inhibits norepinephrine release from rat heart sympathetic nerves. Circ Res 1995; 77:841-8. [PMID: 7554131 DOI: 10.1161/01.res.77.4.841] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study was designed to elucidate whether nitric oxide (NO) controls norepinephrine (NE) release from sympathetic nerves of the rat heart. Hearts were perfused in the Langendorff mode with Tyrode's solution. The right sympathetic nerve was stimulated with trains of 1 or 3 Hz and NE release was measured. The NO synthase (NOS) inhibitor NG-nitro-L-arginine (L-NNA) enhanced the evoked NE release in a concentration-dependent manner. This facilitation was independent of the increase in perfusion pressure and was stereospecifically reversed by L-arginine but not D-arginine. Another NOS inhibitor, NG-methyl-L-arginine, produced a similar increase in NE release. The NO-donor compound S-nitroso-N-acetyl-D,L-penicillamine, added in the presence of L-NNA, restored the suppression of NE release in a concentration-dependent fashion. A similar suppression was achieved with 3-morpholinosydnonimine. These results demonstrated that NE release is under the inhibitory control of endogenous NO. Western blots demonstrated the presence of neuronal NOS I and endothelial NOS III in the hearts. Perfusion of the hearts with a low concentration of the detergent CHAPS produced functional damage of the endothelium, as evidenced by an increase in perfusion pressure and a conversion of the acetylcholine-induced coronary vasodilation to a constriction. However, CHAPS treatment did not produce a facilitation of NE release (as did the NOS inhibitors), and L-NNA still increased NE release in CHAPS-treated hearts. Double-labeling immunofluorescence histochemistry showed NOS I immunoreactivity in stellate ganglion cells and in neurons of the heart, some of which also stained positive for tyrosine hydroxylase.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Schwarz
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
56
|
Nitric oxide synthase-containing neurons in rat parasympathetic, sympathetic and sensory ganglia: a comparative study. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/bf02388306] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
57
|
Förstermann U, Kleinert H. Nitric oxide synthase: expression and expressional control of the three isoforms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1995; 352:351-64. [PMID: 8532063 DOI: 10.1007/bf00172772] [Citation(s) in RCA: 279] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Three isozymes of nitric oxide synthase (NOS) have been identified. Their cDNA- and protein structures as well as their genomic DNA structures have been described. NOS I (ncNOS, originally discovered in neurons) and NOS III (ecNOS, originally discovered in endothelial cells) are low output, Ca(2+)-activated enzymes whose physiological function is signal transduction. NOS II (iNOS, originally discovered in cytokine-induced macrophages) is a high output enzyme which produces toxic amounts of NO that represent an important component of the antimicrobial, antiparasitic and antineoplastic activity of these cells. Depending on the species, NOS II activity is largely (human) or completely (mouse and rat) Ca(2+)-independent. In the human species, the NOS isoforms I, II and III are encoded by three different genes located on chromosomes 12, 17 and 7, respectively. The amino acid sequences of the three human isozymes (deduced from the cloned cDNAs) show less than 59% identity. Across species, amino acid sequences are more than 90% conserved for NOS I and III, and greater 80% identical for NOS II. All NOS produce NO by oxidizing a guanidino nitrogen of L-arginine utilizing molecular oxygen and NADPH as co-substrates. All isoforms contain FAD, FMN and heme iron as prosthetic groups and require the cofactor BH4. NOS I and III are constitutively expressed in various cells. Nevertheless, expression of these isoforms is subject to regulation. Expression is enhanced by e.g. estrogens (for NOS I and III), shear stress, TGF-beta 1, and (in certain endothelial cells) high glucose (for NOS III). TNF-alpha reduces the expression of NOS III by a post-transcriptional mechanism destabilizing the mRNA. The regulation of the NOS I expression seems to be very complex as reflected by at least 8 different promoters transcribing 8 different exon 1 sequences which are expressed differently in different cell types. Expression of NOS II is mainly regulated at the transcriptional level and can be induced in many cell types with suitable agents such as LPS, cytokines, and other compounds. Whether some cells can express NOS II constitutively is still under debate. Pathways resulting in the induction of the NOS II promoter may vary in different cells. Activation of transcription factor NF-kappa B seems to be an essential step for NOS II induction in most cells. The induction of NOS II can be inhibited by a wide variety of immunomodulatory compounds acting at the transcriptional levels and/or post-transcriptionally.
Collapse
Affiliation(s)
- U Förstermann
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | | |
Collapse
|
58
|
Tang FR, Tan CK, Ling EA. A comparative study of NADPH-diaphorase in the sympathetic preganglionic neurons of the upper thoracic cord between spontaneously hypertensive rats and Wistar-Kyoto rats. Brain Res 1995; 691:153-9. [PMID: 8590047 DOI: 10.1016/0006-8993(95)00658-d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With retrograde tracing using fluorogold injection into the superior cervical ganglion and nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry, the present comparative study revealed that the retrogradely labelled neurons in n. intermediolateralis pars funicularis (ILf) and n. intermediolateralis pars principalis (ILp) of the autonomic region in the upper thoracic cord exhibited a much stronger reactivity for NADPH-diaphorase in Wistar-Kyoto (WKY) rats than those in spontaneously hypertensive rats (SHR). It was found that in ILf in WKY rats, 77.62% of the fluorogold-labelled neurons were NADPH-d positive, while in SHR, only 56.43% of the labelled neurons were NADPH-d positive. The frequency distribution of NADPH-d positive retrogradely labelled neurons was significantly reduced in ILf of the spinal cord of SHR (U-test: P < 0.01). In ILp in WKY rats, 65.25% of fluorogold-labelled neurons were NADPH-d positive in WKY rats, while in SHR, only 56.28% of the labelled neurons were NADPH-d positive. Although the difference (P > 0.05) in the frequency of NADPH-d positive neurons in ILp between the two strains of rats was not significant, the reductions in SHR seemed considerable. Examination of the preganglionic sympathetic trunk and the superior cervical ganglion between SHR and WKY rats revealed that virtually all the NADPH-d positive fibers were derived from the sympathetic preganglionic neurons. In SHR, the NADPH-d positive fibers were not as intensely stained as those of WKY rats. This preliminary results suggest that nitric oxide, as an inhibitory neurotransmitter, may be implicated in the onset of hypertension.
Collapse
Affiliation(s)
- F R Tang
- Department of Anatomy, Faculty of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
59
|
Marín J, Rodríguez-Martínez MA. Nitric oxide, oxygen-derived free radicals and vascular endothelium. JOURNAL OF AUTONOMIC PHARMACOLOGY 1995; 15:279-307. [PMID: 8576275 DOI: 10.1111/j.1474-8673.1995.tb00311.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J Marín
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma, Madrid, Spain
| | | |
Collapse
|
60
|
Dun NJ, Dun SL, Chiba T, Förstermann U. Nitric oxide synthase-immunoreactive vagal afferent fibers in rat superior cervical ganglia. Neuroscience 1995; 65:231-9. [PMID: 7538645 DOI: 10.1016/0306-4522(94)00455-e] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic (5-14 days) preganglionic denervation of the rat superior cervical ganglia by sectioning the cervical sympathetic trunk resulted in a time-related partial or complete loss of nitric oxide synthase (isoform I)-immunoreactive fibers and terminals surrounding many sympathetic ganglionic neurons. Unexpectedly, denervation unmasked many varicose nitric oxide synthase-immunoreactive fibers, some of which could be traced the entire length of the superior cervical ganglia. Injection of the retrograde tracer Fluorogold into the superior cervical ganglia labeled a population of nodose ganglion cells and of dorsal root ganglion cells from C8 to T3 segments. When the same sections were processed for nitric oxide synthase-immunoreactivity, 40% of the Fluorogold-containing nodose ganglion cells also expressed nitric oxide synthase-immunoreactivity, whereas colocalization was observed in only a few dorsal root ganglion cells. Similarly, injection of Fluorogold into denervated superior cervical ganglia labeled a population of nodose ganglion cells. Sectioning of all nerve trunks associated with the superior cervical ganglion prior to injection of Fluorogold, except the cervical sympathetic trunk, resulted in no detectable labeling of Fluorogold in the ipsilateral nodose ganglion cells. These results indicate that a population of rat nodose ganglion cells contain nitric oxide synthase and that some of these neurons project their axons through the superior cervical ganglion and terminate in the peripheral target tissues. The possibility that nitric oxide synthase-immunoreactive vagal afferent fibers may participate in nociception is considered.
Collapse
Affiliation(s)
- N J Dun
- Department of Anatomy and Neurobiology, Medical College of Ohio, Toledo 43614, USA
| | | | | | | |
Collapse
|
61
|
Heym C, Braun B, Klimaschewski L, Kummer W. Chemical codes of sensory neurons innervating the guinea-pig adrenal gland. Cell Tissue Res 1995; 279:169-81. [PMID: 7534648 DOI: 10.1007/bf00300702] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Retrograde neuronal tracing in combination with double-labelling immunofluorescence was applied to distinguish the chemical coding of guinea-pig primary sensory neurons projecting to the adrenal medulla and cortex. Seven subpopulations of retrogradely traced neurons were identified in thoracic spinal ganglia T1-L1. Five subpopulations contained immunolabelling either for calcitonin gene-related peptide (CGRP) alone (I), or for CGRP, together with substance P (II), substance P/dynorphin (III), substance P/cholecystokinin (IV), and substance P/nitric oxide synthase (V), respectively. Two additional subpopulations of retrogradely traced neurons were distinct from these groups: neurofilament-immunoreactive neurons (VI), and cell bodies that were nonreactive to either of the antisera applied (VII). Nerve fibers in the adrenal medulla and cortex were equipped with the mediator combinations I, II, IV and VI. An additional meshwork of fibres solely labelled for nitric oxide synthase was visible in the medulla. Medullary as well as cortical fibres along endocrine tissue apparently lacked the chemical code V, while in the external cortex some fibre exhibited code III. Some intramedullary neuronal cell bodies revealed immunostaining for nitric oxide synthase, CGRP or substance P, providing an additional intrinsic adrenal innervation. Perikarya, immunolabelled for nitric oxide synthase, however, were too few to match with the large number of intramedullary nitric oxide synthase-immunoreactive fibres. A non-sensory participation is also supposed for the particularly dense intramedullary network of solely neurofilament-immunoreactive nerve fibres. The findings give evidence for a differential sensory innervation of the guinea-pig adrenal cortex and medulla. Specific sensory neuron subpopulations suggest that nervous control of adrenal functions is more complex than hitherto believed.
Collapse
Affiliation(s)
- C Heym
- Institute for Anatomy and Cell Biology, Ruprecht Karls University, Heidelberg, Germany
| | | | | | | |
Collapse
|
62
|
Förstermann U, Kleinert H, Gath I, Schwarz P, Closs EI, Dun NJ. Expression and expressional control of nitric oxide synthases in various cell types. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1995; 34:171-86. [PMID: 8562433 DOI: 10.1016/s1054-3589(08)61085-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- U Förstermann
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
63
|
Wang Y, Marsden PA. Nitric oxide synthases: gene structure and regulation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1995; 34:71-90. [PMID: 8562454 DOI: 10.1016/s1054-3589(08)61081-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The NOSs are a family of complex enzymes that catalyze the five-electron oxidation of L-arginine to form NO and L-citrulline. They are best characterized as cytochrome P-450-like hemeproteins that depend on molecular oxygen, NADPH, flavins, and tetrahydrobiopterin. The three human NOS isoforms identified to date, ecNOS, nNOS, and iNOS, are found on human chromosomes 7, 12, and 17, respectively. Regulation of NO synthesis and release occurs at the levels of enzyme activity and mRNA synthesis. The nNOS mRNA is structurally diverse as a consequence of alternative promoters and alternate splicing. The iNOS gene is predominantly regulated at the level of transcription by synergistic combinations of proinflammatory cytokines and bacterial wall products. Changes in mRNA levels of the ecNOS following endothelium activation are mediated by altered rates of transcription as well as by the intriguing process of changes in mRNA stability. Given the essential role of the NO pathway in a wide variety of physiological and pathophysiological process, it is possible that the three isoforms of NOS contribute to polygenic genetic diversity in neurological, immune, and cardiovascular biology. Further studies are needed to determine the mechanisms of gene regulation of NOS in health and disease.
Collapse
Affiliation(s)
- Y Wang
- Department of Medicine, St. Michael's Hospital, Toronto, Ontario Canada
| | | |
Collapse
|
64
|
Okamura H, Umehara K, Tadaki N, Hisa Y, Esumi H, Ibata Y. Sympathetic preganglionic neurons contain nitric oxide synthase and project to the superior cervical ganglion: combined application of retrograde neuronal tracer and NADPH-diaphorase histochemistry. Brain Res Bull 1995; 36:491-4. [PMID: 7536106 DOI: 10.1016/0361-9230(94)00234-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nitric Oxide (NO), which was initially identified as an endothelium-derived relaxing factor, has recently been demonstrated to be a neuronal messenger in central and peripheral nervous systems. In the present study, we examined the possibility of NO producing neurons in teh intermediolateral (IML) cell collum of the thoracic spinal cord (Th) project to the superior cervical ganglion (SCG). First, we observed the NADPH-diaphorase-positive/nitric oxide synthase (NOS)-immunoreactive neurons of the IML and the dorsal part of the central canal at the level of Th1-Th3, and numerous fiber-stainings in the superior cervical ganglion. Second, after injecting WGA-HRP (wheat germ agglutinin-horse radish peroxidase complex), a retrograde neuronal tracer, into the SCG, and developing WGA-immunohistochemistry and the NADPH-diaphorase histochemistry in the same sections, we detected double-labeled neurons in the IML. These findings provide evidence that sympathetic preganglionic NO producing neurons directly innervate to the SCG.
Collapse
Affiliation(s)
- H Okamura
- Department of Anatomy, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
65
|
|
66
|
Gould TJ, Steinmetz JE. Multiple-unit activity from rabbit cerebellar cortex and interpositus nucleus during classical discrimination/reversal eyelid conditioning. Brain Res 1994; 652:98-106. [PMID: 7953727 DOI: 10.1016/0006-8993(94)90322-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Multiple-unit activity was monitored in the hemispheric lobule VI (HVI) and the interpositus nucleus of the cerebellum during classical discrimination and reversal eyelid conditioning in rabbits. During both phases of conditioning similar patterns of activity were observed in lobule HVI: conditioned response (CR)-related activity was present on conditioned stimulus (CS)+trials but not on CS-trials. Activity in the interpositus nucleus differed during the two phases of conditioning. After discrimination training, CR-related activity was present on CS+but not CS-trials. After reversal training, however, only a weak activation of the interpositus nucleus was seen on CS+trials with no activation present on CS-trials. These data suggest that lobule HVI and the interpositus nucleus may play different roles in classical eyelid conditioning.
Collapse
Affiliation(s)
- T J Gould
- Department of Psychology, Indiana University, Bloomington 47405-1301
| | | |
Collapse
|
67
|
Abstract
NADPH diaphorase, an enzymatic activity which, in neuronal tissue, is considered to be identical to nitric oxide synthase was localized in ganglion cells and nerve fibers of the mouse adrenal medulla. Staining was inhibited by treatment with N-ethylmaleimide, but was not influenced by removal of Ca++ or the presence of specific inhibitors of nitric oxide synthase. Reaction with NADH as the electron donor resulted in uniform staining of the adrenal medulla. These results suggest that nitric oxide is synthesized in intrinsic neurons and extrinsic axons of the mouse adrenal medulla and support the idea that adrenal function is influenced by nitric oxide.
Collapse
Affiliation(s)
- G Brüning
- Department of Anatomy, Free University of Berlin, Germany
| |
Collapse
|
68
|
Förstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 1994; 23:1121-31. [PMID: 7515853 DOI: 10.1161/01.hyp.23.6.1121] [Citation(s) in RCA: 742] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Three isozymes of nitric oxide (NO) synthase (EC 1.14.13.39) have been identified and the cDNAs for these enzymes isolated. In humans, isozymes I (in neuronal and epithelial cells), II (in cytokine-induced cells), and III (in endothelial cells) are encoded for by three different genes located on chromosomes 12, 17, and 7, respectively. The deduced amino acid sequences of the human isozymes show less than 59% identity. Across species, amino acid sequences for each isoform are well conserved (> 90% for isoforms I and III, > 80% for isoform II). All isoforms use L-arginine and molecular oxygen as substrates and require the cofactors NADPH, 6(R)-5,6,7,8-tetrahydrobiopterin, flavin adenine dinucleotide, and flavin mononucleotide. They all bind calmodulin and contain heme. Isoform I is constitutively present in central and peripheral neuronal cells and certain epithelial cells. Its activity is regulated by Ca2+ and calmodulin. Its functions include long-term regulation of synaptic transmission in the central nervous system, central regulation of blood pressure, smooth muscle relaxation, and vasodilation via peripheral nitrergic nerves. It has also been implicated in neuronal death in cerebrovascular stroke. Expression of isoform II of NO synthase can be induced with lipopolysaccharide and cytokines in a multitude of different cells. Based on sequencing data there is no evidence for more than one inducible isozyme at this time. NO synthase II is not regulated by Ca2+; it produces large amounts of NO that has cytostatic effects on parasitic target cells by inhibiting iron-containing enzymes and causing DNA fragmentation. Induced NO synthase II is involved in the pathophysiology of autoimmune diseases and septic shock. Isoform III of NO synthase has been found mostly in endothelial cells. It is constitutively expressed, but expression can be enhanced, eg, by shear stress. Its activity is regulated by Ca2+ and calmodulin. NO from endothelial cells keeps blood vessels dilated, prevents the adhesion of platelets and white cells, and probably inhibits vascular smooth muscle proliferation.
Collapse
Affiliation(s)
- U Förstermann
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Nitric oxide synthase immunoreactivity was detected in neurons and fibers of the rat pontine medulla. In the medulla, nitric oxide synthase-positive neurons and processes were observed in the gracile nucleus, spinal trigeminal nucleus, nucleus of the solitary tract, dorsal motor nucleus of the vagus, nucleus ambiguus, medial longitudinal fasciculus, reticular nuclei and lateral to the pyramidal tract. In the pons, intensely labeled neurons were observed in the pedunculopontine tegmental nucleus, paralemniscal nucleus, ventral tegmental nucleus, laterodorsal tegmental nucleus, and lateral and medial parabrachial nuclei. Labeled neurons and fibers were seen in the interpeduncular nuclei, dorsal and median raphe nuclei, central gray and dorsal central gray, and superior and inferior colliculi. Double-labeling techniques showed that a small population (< 5%) of nitric oxide synthase-positive neurons in the medulla also contained immunoreactivity to the aminergic neuron marker tyrosine hydroxylase. The majority of nitric oxide synthase-immunoreactive neurons in the dorsal and median raphe nuclei were 5-hydroxytryptamine-positive, whereas very few 5-hydroxytryptamine-positive cells in the caudal raphe nuclei were nitric oxide synthase-positive. Virtually all nitric oxide synthase-positive neurons in the pedunculopontine and laterodorsal tegmental nuclei were also choline acetyltransferase-positive, whereas nitric oxide synthase immunoreactivity was either low or not detected in choline acetyltransferase-positive neurons in the medulla. The results indicate a rostrocaudal gradient in the intensity of nitric oxide synthase immunoreactivity, i.e. it is highest in neurons of the tegmentum nuclei and neurons in the medulla are less intensely labeled. The majority of cholinergic and serotonergic neurons in the pons are nitric oxide synthase-positive, whereas the immunoreactivity was either too low to be detected or absent in the large majority of serotonergic, aminergic and cholinergic neurons in the medulla.
Collapse
Affiliation(s)
- N J Dun
- Department of Anatomy, Medical College of Ohio, Toledo 43614
| | | | | |
Collapse
|