51
|
Gregor W, Staniek K, Nohl H, Gille L. Distribution of tocopheryl quinone in mitochondrial membranes and interference with ubiquinone-mediated electron transfer. Biochem Pharmacol 2006; 71:1589-601. [PMID: 16569397 DOI: 10.1016/j.bcp.2006.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/20/2006] [Accepted: 02/20/2006] [Indexed: 11/30/2022]
Abstract
Alpha-tocopherol (Toc) is an efficient lipophilic antioxidant present in all mammalian lipid membranes. This chromanol is metabolized by two different pathways: excessive dietary Toc is degraded in the liver by side chain oxidation, and Toc acting as antioxidant is partially degraded to alpha-tocopheryl quinone (TQ). The latter process and the similarity between TQ and ubiquinone (UQ) prompted us to study the distribution of TQ in rat liver mitochondrial membranes and the interference of TQ with the activity of mitochondrial and microsomal redox enzymes interacting with UQ. In view of the contradictory literature results regarding Toc, we determined the distribution of Toc, TQ, and UQ over inner and outer membranes of rat liver mitochondria. Irrespective of the preparation method, the TQ/Toc ratio tends to be higher in mitochondrial inner membranes than in outer membranes suggesting TQ formation by respiratory oxidative stress in vivo. The comparison of the catalytic activities using short-chain homologues of TQ and UQ showed decreasing selectivity in the order complex II (TQ activity not detected)>Q(o) site of complex III>Q(i) site of complex III>complex I approximately cytochrome b(5) reductase>cytochrome P-450 reductase (comparable reactivity of UQ and TQ). TQ binding to some enzymes is comparable to UQ despite low activities. These data show that TQ arising from excessive oxidative degradation of Toc can potentially interfere with mitochondrial electron transfer. On the other hand, both microsomal and mitochondrial enzymes contribute to the reduction of TQ to tocopheryl hydroquinone, which has been suggested to play an antioxidative role itself.
Collapse
Affiliation(s)
- Wolfgang Gregor
- Research Institute for Biochemical Pharmacology and Molecular Toxicology, University of Veterinary Medicine Vienna, Austria
| | | | | | | |
Collapse
|
52
|
Kruk J, Myśliwa-Kurdziel B, Jemioła-Rzeminiska M, Strzałka K. Fluorescence Lifetimes Study of α-Tocopherol and Biological Prenylquinols in Organic Solvents and Model Membranes. Photochem Photobiol 2006; 82:1309-14. [PMID: 17421077 DOI: 10.1562/2006-04-14-ra-872] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have found that for biological prenyllipids, such as plastoquinol-9, alpha-tocopherol quinol, and alpha-tocopherol, the shortest fluorescence lifetimes were found in aprotic solvents (hexane, ethyl acetate) whereas the longest lifetimes were those of ubiquinonol-10 in these solvents. For all the investigated prenyllipids, fluorescence lifetime in alcohols increased along with an increase in solvent viscosity. In a concentrated hexane solution, the lifetimes of prenylquinols considerably decreased. This contrasts with methanol solutions, which is probably due to the self-association of these compounds in aprotic solvents. We have also found a correlation of the Stokes shift of prenyllipids fluorescence with the orientation polarizability of the solvents. Based on data obtained in organic solvents, measurements of the fluorescence lifetimes of prenyllipids in liposomes allowed an estimation of the relative distance of their fluorescent rings from the liposome membrane surface, and was found to be the shortest for alpha-tocopherol quinol in egg yolk phosphatidylcholine liposomes, and increased in the following order: alpha-tocopherol in dipalmitoyl phosphatidylcholine liposomes < alpha-tocopherol < plastoquinol-9 < ubiquinol-10 in egg-yolk phosphatidylcholine liposomes.
Collapse
Affiliation(s)
- Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | | | | | | |
Collapse
|
53
|
Affiliation(s)
- M Flint Beal
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| |
Collapse
|
54
|
Ohara K, Watanabe R, Mizuta Y, Nagaoka SI, Mukai K. Time-Resolved Electron Paramagnetic Resonance Investigation of Photoinitiated Antioxidant Reaction of Vitamin C (Ascorbic Acid) with Xanthone in Aqueous Sodium Lauryl Sulfate, Hexadecyltrimethylammonium Chloride, and Triton X-100 Micelle Solutions. J Phys Chem B 2003. [DOI: 10.1021/jp0353486] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keishi Ohara
- Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790-8577, Japan
| | - Ryo Watanabe
- Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790-8577, Japan
| | - Yoko Mizuta
- Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790-8577, Japan
| | - Shin-ichi Nagaoka
- Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790-8577, Japan
| | - Kazuo Mukai
- Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
55
|
Roginsky V, Barsukova T, Loshadkin D, Pliss E. Substituted p-hydroquinones as inhibitors of lipid peroxidation. Chem Phys Lipids 2003; 125:49-58. [PMID: 14625075 DOI: 10.1016/s0009-3084(03)00068-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The technique based on monitoring oxygen consumption was applied to study 12 alkyl- and methoxy-substituted p-hydroquinones (QH(2)) as a chain-breaking antioxidant during the oxidation of styrene and methyl linoleate (ML) in bulk as well as ML oxidation in micellar solution of sodium dodecyl sulfate (SDS) at 37 degrees C. The antioxidant activities of QH(2) were characterized by two parameters: the rate constant k(1) for reaction of QH(2) with the peroxy radical LO(2)*: QH(2)+LO(2)*-->QH*+LOOH and the stoichiometric factor of inhibition, f, which shows how many kinetic chains may be terminated by one molecule of QH(2). In the case of styrene and ML oxidation in bulk, f values never exceed two; for the majority of QH(2), f was found to be significantly less than two due to the interaction of QH* with molecular oxygen. In the absence of superoxide dismutase (SOD), all the studied QH(2) displayed a very moderate if any antioxidant capability during ML oxidation in SDS micelles. When 20U/ml SOD was added, the majority of QH(2) showed a pronounced ability to inhibit ML oxidation, f parameter being ca. one. The features of QH(2) as an antioxidant in aqueous environment are suggested to associate with the reactivity of semiquinone (Q*(-)). Q*(-) reacts readily with molecular oxygen with formation of superoxide (O(2)*(-)); further reactions of O(2)*(-) result in fast depleting QH(2) and chain propagation. The addition of SOD results in purging a reaction mixture from O(2)*(-) and, as a corollary, in depressing undesirable reactions with the participation of O(2)*(-). With all the oxidation models, QH(2) were found to be very reactive to LO(2)*. The rate constants k(1) decreased progressively when going from the oxidation of styrene to ML oxidation in bulk and further to ML oxidation in SDS micelles.
Collapse
Affiliation(s)
- Vitaly Roginsky
- N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991, Moscow, Russia.
| | | | | | | |
Collapse
|
56
|
Abstract
Oxidative stress is believed to be the cause of cell death in multiple disorders of the brain, including perinatal hypoxia/ischemia. Glutamate, cystine deprivation, homocysteic acid, and the glutathione synthesis inhibitor buthionine sulfoximine all cause oxidative injury to immature neurons and oligodendrocytes by depleting intracellular glutathione. Although vitamin K is not a classical antioxidant, we report here the novel finding that vitamin K1 and K2 (menaquinone-4) potently inhibit glutathione depletion-mediated oxidative cell death in primary cultures of oligodendrocyte precursors and immature fetal cortical neurons with EC50 values of 30 nm and 2 nm, respectively. The mechanism by which vitamin K blocks oxidative injury is independent of its only known biological function as a cofactor for gamma-glutamylcarboxylase, an enzyme responsible for posttranslational modification of specific proteins. Neither oligodendrocytes nor neurons possess significant vitamin K-dependent carboxylase or epoxidase activity. Furthermore, the vitamin K antagonists warfarin and dicoumarol and the direct carboxylase inhibitor 2-chloro-vitamin K1 have no effect on the protective function of vitamin K against oxidative injury. Vitamin K does not prevent the depletion of intracellular glutathione caused by cystine deprivation but completely blocks free radical accumulation and cell death. The protective and potent efficacy of this naturally occurring vitamin, with no established clinical side effects, suggests a potential therapeutic application in preventing oxidative damage to undifferentiated oligodendrocytes in perinatal hypoxic/ischemic brain injury.
Collapse
|
57
|
Beal MF. Bioenergetic approaches for neuroprotection in Parkinson's disease. Ann Neurol 2003; 53 Suppl 3:S39-47; discussion S47-8. [PMID: 12666097 DOI: 10.1002/ana.10479] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is considerable evidence suggesting that mitochondrial dysfunction and oxidative damage may play a role in the pathogenesis of Parkinson's disease (PD). This possibility has been strengthened by recent studies in animal models, which have shown that a selective inhibitor of complex I of the electron transport gene can produce an animal model that closely mimics both the biochemical and histopathological findings of PD. Several agents are available that can modulate cellular energy metabolism and that may exert antioxidative effects. There is substantial evidence that mitochondria are a major source of free radicals within the cell. These appear to be produced at both the iron-sulfur clusters of complex I as well as the ubiquinone site. Agents that have shown to be beneficial in animal models of PD include creatine, coenzyme Q(10), Ginkgo biloba, nicotinamide, and acetyl-L-carnitine. Creatine has been shown to be effective in several animal models of neurodegenerative diseases and currently is being evaluated in early stage trials in PD. Similarly, coenzyme Q(10) is also effective in animal models and has shown promising effects both in clinical trials of PD as well as in clinical trials in Huntington's disease and Friedreich's ataxia. Many other agents show good human tolerability. These agents therefore are promising candidates for further study as neuroprotective agents in PD.
Collapse
Affiliation(s)
- M Flint Beal
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
58
|
Affiliation(s)
- M Flint Beal
- Department of Neurology and Neuroscience, New York Presbyterian Hospital, New York, NY 10021, USA.
| | | |
Collapse
|
59
|
Jones KH, Liu JJ, Roehm JS, Eckel JJ, Eckel TT, Stickrath CR, Triola CA, Jiang Z, Bartoli GM, Cornwell DG. Gamma-tocopheryl quinone stimulates apoptosis in drug-sensitive and multidrug-resistant cancer cells. Lipids 2002; 37:173-84. [PMID: 11908909 DOI: 10.1007/s11745-002-0878-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chemotherapy-induced cell death is linked to apoptosis, and there is increasing evidence that multidrug-resistance in cancer cells may be the result of a decrease in the ability of a cell to initiate apoptosis in response to cytotoxic agents. In previous studies, we synthesized two classes of electrophilic tocopheryl quinones (TQ), nonarylating alpha-TQ and arylating gamma- and delta-TQ, and found that gamma- and delta-TQ, but not alpha-TQ, were highly cytotoxic in human acute lymphoblastic leukemia cells (CEM) and multidrug-resistant (MDR) CEM/VLB100. We have now extended these studies on tumor biology with CEM, HL60 and MDR HL60/MX2 human promyelocytic leukemia, U937 human monocytic leukemia, and ZR-75-1 breast adenocarcinoma cells. gamma-TQ, but not alpha-TQ or tocopherols, showed concentration and incubation time-dependent effects on loss of plasma membrane integrity, diminished viable cell number, and stimulation of apoptosis. Its cytotoxicity exceeded that of doxorubicin in HL60/MX2 cells, which express MRP, an MDR-associated protein. Apoptosis was confirmed by TEM, TUNEL, and DNA gel electrophoresis. Kinetic studies showed that an induction period was required to initiate an irreversible multiphase process. Gamma-TQ released mitochondrial cytochrome c to the cytosol, induced the cleavage of poly(ADP-ribose)polymerase, and depleted intracellular glutathione. Unlike xenobiotic electrophiles, gamma-TQ is a highly cytotoxic arylating electrophile that stimulates apoptosis in several cancer cell lines including cells that express MDR through both P-glycoprotein and MRP-associated proteins. The biological properties of arylating TQ electrophiles are closely associated with cytotoxicity and may contribute to other biological effects of these highly active agents.
Collapse
Affiliation(s)
- Kenneth H Jones
- Department of Anatomy and Medical Education, The Ohio State University College of Medicine, Columbus 43210, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Rhodes CJ. Muonium—the second radioisotope of hydrogen—and its contribution to free radical chemistry. ACTA ACUST UNITED AC 2002. [DOI: 10.1039/b100699l] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
61
|
Neuzil J, Weber C, Kontush A. The role of vitamin E in atherogenesis: linking the chemical, biological and clinical aspects of the disease. Atherosclerosis 2001; 157:257-83. [PMID: 11472726 DOI: 10.1016/s0021-9150(00)00741-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Atherosclerosis is a disease involving both oxidative modifications and disbalance of the immune system. Vitamin E, an endogenous redox-active component of circulating lipoproteins and (sub)cellular membranes whose levels can be manipulated by supplementation, has been shown to play a role in the initiation and progression of the disease. Recent data reveal that the activities of vitamin E go beyond its redox function. Moreover, it has been shown that vitamin E can exacerbate certain processes associated with atherogenesis. In this essay we review the role of biology of atherosclerosis, and suggest that these two facets decide the clinical manifestation and outcome of the disease.
Collapse
Affiliation(s)
- J Neuzil
- Institute for Prevention of Cardiovascular Diseases, Ludwig-Maximilians-University, Pettenkoferstr. 9, 80336 Munich, Germany.
| | | | | |
Collapse
|
62
|
Giorgini E, Tommasi G, Stipa P, Tosi G, Littarru G, Greci L. Reactivity of ubiquinones and ubiquinols with free radicals. Free Radic Res 2001; 35:63-72. [PMID: 11697118 DOI: 10.1080/10715760100300601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The reactivity of quinones 1-4 and of the corresponding quinols 5-8 towards carbon- and oxygen-centred radicals were studied. All quinones bearing at least one nuclear position free, readily react with alkyl and phenyl radicals to afford the alkylated quinones 12-24; however, quinones 1 and 3 reacted with 2-cyano-2-propyl radical to yield products (the mono- and di-ethers 9-11) derived from the attack on the carbonylic oxygen. The reactions carried out on quinones with the benzoyloxy radical led to no reaction products and in the case of Q10, the isoprenic chain also remained unchanged. Quinols 5-8 reacted only with oxygen-centred radicals (benzoyloxy and 2-cyano-2-propyl-peroxy radicals) to give the corresponding quinones. The isoprenic chain of Q10 did not undergo attack even with peroxy radicals. Carbon-centred radicals resulted unable to abstract hydrogen from the studied quinols.
Collapse
Affiliation(s)
- E Giorgini
- Dipartimento di Scienze dei Materiali e della Terra, via Brecce Bianche, Università, I-60131 Ancona, Italy
| | | | | | | | | | | |
Collapse
|
63
|
Twaroski TP, O'Brien ML, Larmonier N, Glauert HP, Robertson LW. Polychlorinated biphenyl-induced effects on metabolic enzymes, AP-1 binding, vitamin E, and oxidative stress in the rat liver. Toxicol Appl Pharmacol 2001; 171:85-93. [PMID: 11222084 DOI: 10.1006/taap.2000.9114] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Environmental pollutants, such as polychlorinated biphenyls (PCBs), may induce drug metabolism and may be substrates for the induced metabolic enzymes. Both processes may lead to oxidative stress. The goal of this study was to determine the influence of polychlorinated biphenyls, selected as inducers and substrates of drug metabolism, on oxidative events within the liver over a 3-week time course. Male and female Sprague-Dawley rats received two ip injections per week of 4-chlorobiphenyl, 2,4,4'-trichlorobiphenyl, 3,4,5-trichlorobiphenyl, 3,3',4,4'-tetrachlorobiphenyl (PCB 77), 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153), or both PCB 77 and 153 (100 micromol/kg/injection) and were euthanized at the end of 1, 2, or 3 weeks. Hepatic cytochrome P450 1A1 (EROD) activity, DT-diaphorase activity, AP-1 DNA-binding activity, conjugated dienes, and alpha-tocopherol (vitamin E) as well as alpha-tocopheryl quinone (oxidized vitamin E) were determined. While the lower chlorinated biphenyls (at these doses and times) showed little or no effect on these oxidative stress parameters, both CYP 1A1 and DT-diaphorase activities were significantly increased in both male and female rats receiving PCB 77, a ligand for the aryl hydrocarbon receptor. In addition, the DNA-binding activity of the transcription factor AP-1 was increased in rats treated with PCB 77 or PCB 153. Within the lipid fraction there was no significant increase observed in conjugated diene concentrations, but there was a significant increase in alpha-tocopheryl quinone upon treatment with all PCBs tested. These data indicate that alpha-tocopheryl quinone may be a sensitive marker for PCB exposure and is possibly increased by a wide range of PCBs.
Collapse
Affiliation(s)
- T P Twaroski
- Graduate Center for Toxicology, University of Kentucky, 306 Health Sciences Research Building, Lexington, KY 40536-0305, USA
| | | | | | | | | |
Collapse
|
64
|
Shi H, Noguchi N, Niki E. Comparative study on dynamics of antioxidative action of alpha-tocopheryl hydroquinone, ubiquinol, and alpha-tocopherol against lipid peroxidation. Free Radic Biol Med 1999; 27:334-46. [PMID: 10468207 DOI: 10.1016/s0891-5849(99)00053-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Alpha-tocopheryl quinone is a metabolite of alpha-tocopherol (TOH) in vivo. The antioxidant action of its reduced form, alpha-tocopheryl hydroquinone (TQH2), has received much attention recently. In the present study, the antioxidative activity of TQH2 was studied in various systems in vitro and compared with that of ubiquinol-10 (UQH2) or TOH to obtain the basic information on the dynamics of the antioxidant action of TQH2. First, their hydrogen-donating abilities were investigated in the reaction with galvinoxyl, a stable phenoxyl radical, and TQH2 was found to possess greater second-order rate constant (1.0 x 10(4) M(-1) s(-1)) than UQH2 (6.0 x 10(3) M(-1) s(-1)) and TOH (2.4 x 10(3) M(-1) s(-1)) at 25 degrees C in ethanol. The stoichiometric numbers were obtained as 1.9, 2.0, and 1.0 for TQH2, UQH2, and TOH, respectively, in reducing galvinoxyl. Second, their relative reactivities toward peroxyl radicals were assessed in competition with N,N'-diphenyl-p-phenylenediamine (DPPD) and found to be 6.0 (TQH2), 1.9 (UQH2), and 1.0 (TOH). Third, their antioxidant efficacies were evaluated in the oxidation of methyl linoleate in organic solvents and in aqueous dispersions. The antioxidant potency decreased in the order TOH > UQH2 > TQH2, as assessed by either the extent of the reduction in the rate of oxidation or the duration of inhibition period. The reverse order of their reactivities toward radicals and their antioxidant efficacies was interpreted by the rapid autoxidation of TQH2 and UQH2, carried out by hydroperoxyl radicals. Although neither TQH2 nor UQH2 acted as a potent antioxidant by itself, they acted as potent antioxidants in combination with TOH. TQH2 and UQH2 reduced alpha-tocopheroxyl radical to spare TOH, whereas TOH suppressed the autoxidation of TQH2 and UQH2. In the micelle oxidation, the antioxidant activities of TQH2, UQH2, and TOH were similar, whereas 2,2,5,7,8-pentamethyl-6-chromanol exerted much more potent efficacy than TQH2, UQH2, or TOH. These results clearly show that the antioxidant potencies against lipid peroxidation are determined not only by their chemical reactivities toward radicals, but also by the fate of an antioxidant-derived radical and the mobility of the antioxidant at the microenvironment.
Collapse
Affiliation(s)
- H Shi
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Japan
| | | | | |
Collapse
|
65
|
Ortiz A, Aranda FJ. The influence of vitamin K1 on the structure and phase behaviour of model membrane systems. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1418:206-20. [PMID: 10209225 DOI: 10.1016/s0005-2736(99)00034-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vitamin K1 is a component of the Photosystem I of plants which constitutes the major dietary form of vitamin K. The major function of this vitamin is to be cofactor of the microsomal gamma-glutamylcarboxylase. Recently, novel roles for this vitamin in the membrane have been postulated. To get insight into the influence of vitamin K1 on the phospholipid component of the membrane, we have studied the interaction between vitamin K1 and model membranes composed of dimyristoylphosphatidylcholine (DMPC) and dielaidoylphosphatidylethanolamine (DEPE). We utilized high-sensitivity differential scanning calorimetry and small-angle X-ray diffraction techniques. Vitamin K1 affected the thermotropic properties of the phospholipids, broadened and shifted the transitions to lower temperatures, and produced the appearance of several peaks in the thermograms. The presence of the vitamin gave rise to the formation of vitamin-rich domains which were immiscible with the bulk phospholipid in both the gel and the liquid-crystalline phases. Vitamin K1 was unable to alter the lamellar organization of DMPC, but we found that it produced an increase in the interlamellar repeat spacing of DMPC at 10 degrees C. Interestingly, vitamin K1 promoted the formation of inverted hexagonal HII structures in the DEPE system. We discuss the possible implications that these vitamin K1-phospholipid interactions might have with respect to the biological function of the vitamin.
Collapse
Affiliation(s)
- A Ortiz
- Departamento de Bioquímica y Biología Molecular (A), Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| | | |
Collapse
|
66
|
Poderoso JJ, Carreras MC, Schöpfer F, Lisdero CL, Riobó NA, Giulivi C, Boveris AD, Boveris A, Cadenas E. The reaction of nitric oxide with ubiquinol: kinetic properties and biological significance. Free Radic Biol Med 1999; 26:925-35. [PMID: 10232836 DOI: 10.1016/s0891-5849(98)00277-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The reaction of nitric oxide (*NO) with ubiquinol-0 and ubiquinol-2, short-chain analogs of coenzyme Q, was examined in anaerobic and aerobic conditions in terms of formation of intermediates and stable molecular products. The chemical reactivity of ubiquinol-0 and ubiquinol-2 towards *NO differed only quantitatively, the reactions of ubiquinol-2 being slightly faster than those of ubiquinol-0. The ubiquinol/*NO reaction entailed oxidation of ubiquinol to ubiquinone and reduction of *NO to NO-, the latter identified by its reaction with metmyoglobin to form nitroxylmyoglobin and indirectly by measurement of nitrous oxide (N2O) by gas chromatography. Both the rate of ubiquinone accumulation and *NO consumption were linearly dependent on ubiquinol and *NO concentrations. The stoichiometry of *NO consumed per either ubiquinone formed or ubiquinol oxidized was 1.86 A 0.34. The reaction of *NO with ubiquinols proceeded with intermediate formation of ubisemiquinones that were detected by direct EPR. The second order rate constants of the reactions of ubiquinol-0 and ubiquinol-2 with *NO were 0.49 and 1.6 x 10(4) M(-1)s(-1), respectively. Studies in aerobic conditions revealed that the reaction of *NO with ubiquinols was associated with O2 consumption. The formation of oxyradicals - identified by spin trapping EPR- during ubiquinol autoxidation was inhibited by *NO, thus indicating that the O2 consumption triggered by *NO could not be directly accounted for in terms of oxyradical formation or H2O2 accumulation. It is suggested that oxyradical formation is inhibited by the rapid removal of superoxide anion by *NO to yield peroxynitrite, which subsequently may be involved in the propagation of ubiquinol oxidation. The biological significance of the reaction of ubiquinols with *NO is discussed in terms of the cellular O2 gradients, the steady-state levels of ubiquinols and *NO, and the distribution of ubiquinone (largely in its reduced form) in biological membranes with emphasis on the inner mitochondrial membrane.
Collapse
Affiliation(s)
- J J Poderoso
- Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Affiliation(s)
- V E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pennsylvania 15238, USA
| | | | | |
Collapse
|
68
|
Abstract
Substantial evidence implicates oxidative modification of low density lipoprotein (LDL) as an important event contributing to atherogenesis. As a result, the elucidation of the molecular mechanisms by which LDL is oxidized and how such oxidation is prevented by antioxidants has been a significant research focus. Studies on the antioxidation of LDL lipids have focused primarily on alpha-tocopherol (alpha-TOH), biologically and chemically the most active form of vitamin E and quantitatively the major lipid-soluble antioxidant in extracts prepared from human LDL. In addition to alpha-TOH, plasma LDL also contains low levels of ubiquinol-10 (CoQ10H2; the reduced form of coenzyme Q10). Recent studies have shown that in oxidizing plasma lipoproteins alpha-TOH can exhibit anti- or pro-oxidant activities for the lipoprotein's lipids exposed to a vast array of oxidants. This article reviews the molecular action of alpha-TOH in LDL undergoing "mild" radical-initiated lipid peroxidation, and discusses how small levels of CoQ10H2 can represent an efficient antioxidant defence for lipoprotein lipids. We also comment on the levels alpha-TOH, CoQ10H2 and lipid oxidation products in the intima of patients with coronary artery disease and report on preliminary studies examining the effect of coenzyme Q10 supplementation on atherogenesis in apolipoprotein E knockout mice.
Collapse
Affiliation(s)
- S R Thomas
- Biochemistry Group, Heart Research Institute, Camperdown, NSW, Australia
| | | | | |
Collapse
|
69
|
Abstract
Ubiquinol (QH2) is increasingly used as antioxidant for the treatment of a variety of diseases and the modulation of biological aging; however, the biological significance of secondary reaction products has been disregarded so far. Our studies on the antioxidant activity of ubiquinol in peroxidizing lipid membranes demonstrate the existence of ubisemiquinone (SQ*) as the first reaction product of ubiquinol. A fraction of SQ* derived from the antioxidative activity of QH2 was detected in the outer section of the membrane bordering the aqueous phase. This localization allows an access of protons and water from the aqueous phase to SQ* a prerequisite earlier found to trigger autoxidation. Superoxide radicals emerging from this fraction of autoxidizing SQ* form H2O2 by spontaneous dismutation. SQ* not involved in autoxidation may react with H2O2. Transfer of the odd electron to H2O2 resulted in HO* and HO- formation by homolytic cleavage. An analogous reaction was also possible with lipid hydroperoxides which accumulate in biological membranes during lipid peroxidation. The reaction products emerging from this reaction were alkoxyl radicals. Both HO* and alkoxyl radicals are strong initiators and promoters of lipid peroxidation. Indirect evidence of the existence and prooxidative activities of these secondary reaction products came from comparative studies with vitamin E. While in the absence of other reactants, QH2 and vitamin E were equally effective in scavenging lipid radicals; the radical protecting activity of QH2 was found to be significantly lower as compared to vitamin E when these antioxidants operate in peroxidizing lipid membranes. This discrepancy reveals that the antioxidative activity of coenzyme Q is compulsorily linked to the formation of split products counteracting the membrane protective effect of this natural antioxidant.
Collapse
Affiliation(s)
- H Nohl
- Institute of Pharmacology and Toxicology, Veterinary University of Vienna, Austria.
| | | | | |
Collapse
|
70
|
Abstract
Vitamin E acts as an important antioxidant against oxidative modification of low density lipoprotein (LDL) which is accepted as an initial event in the pathogenesis of atherosclerosis. In spite of the numerous studies and reports, the action and role of vitamin E have not been fully elucidated yet. In this brief overview, the dynamics of action of vitamin E as an antioxidant have been discussed and it is emphasized that the total antioxidant potency is determined by the relative importance of many competing reactions which is determined by the reactivities and concentrations of substrates, radicals and antioxidant and by physical factors of the environment.
Collapse
Affiliation(s)
- N Noguchi
- Research Center for Advanced Science and Technology, University of Tokyo, Meguro, Japan
| | | |
Collapse
|
71
|
Nagaoka SI, Nishioku Y, Mukai K. Tunneling effect in the regeneration reaction of vitamin E by ubiquinol. Chem Phys Lett 1998. [DOI: 10.1016/s0009-2614(98)00160-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
72
|
Vervoort LM, Ronden JE, Thijssen HH. The potent antioxidant activity of the vitamin K cycle in microsomal lipid peroxidation. Biochem Pharmacol 1997; 54:871-6. [PMID: 9354587 DOI: 10.1016/s0006-2952(97)00254-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the vitamin K cycle, vitamin K-hydroquinone, the active cofactor for gamma-glutamylcarboxylase, is continuously regenerated. The successive pathways contain oxidation of the hydroquinone to the epoxide, followed by reduction to the quinone and reduction to the hydroquinone. Vitamin K-hydroquinone is a potent radical scavenging species (Mukai et al., J Biol Chem 267: 22277-22281, 1992). We tested the potential antioxidant activity of the vitamin K cycle in lipid peroxidation reactions (thiobarbituric acid reactive substances, TBARS) in rat liver microsomes. As prooxidant we used Fe2+/ascorbate, NADPH-Fe3+/ATP, and NADPH/CCl4. Vitamin K (< or = 50 microM) on its own did not influence the formation of TBARS. In combination with 1 mM dithiothreitol (DTT), the reductive cofactor for the microsomal enzyme vitamin K epoxide reductase, vitamin K suppressed lipid peroxidation with a concentration that blocked the maximal response by 50% (IC50) of ca. 0.2 microM. Vitamin K1 (phylloquinone) and vitamin K2 (menaquinone-4) were equally active. Warfarin (5 microM) and chloro-vitamin K (50 microM), inhibitors of vitamin K epoxide reductase and gamma-glutamylcarboxylase, respectively, were able to completely abolish the antioxidant effect. Lipid peroxidation was inversely related to the amount of vitamin K hydroquinone in the reaction. Vitamin K epoxide reductase seemed sensitive to lipid peroxidation, with half of the activity being lost within 10 min during oxidation with NADPH/CCl4. The inactivation could be attenuated by antioxidants such as vitamin E, reduced glutathione, and menadione and also by a K vitamin in combination with DTT, but not by superoxide dismutase and catalase. The results show that the vitamin K cycle could act as a potent antioxidant, that the active species in all probability is vitamin K-hydroquinone, and that the primary reaction product is the semiquinone. The results also show that the reaction product is processed in the vitamin K cycle to regenerate vitamin K-hydroquinone.
Collapse
Affiliation(s)
- L M Vervoort
- Department of Pharmacology, Cardiovascular Research Institute, University of Maastricht, The Netherlands
| | | | | |
Collapse
|
73
|
Plastoquinol and α-tocopherol quinol are more active than ubiquinol and α-tocopherol in inhibition of lipid peroxidation. Chem Phys Lipids 1997. [DOI: 10.1016/s0009-3084(97)00027-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
74
|
Fiorentini D, Cipollone M, Galli MC, Landi L. Antioxidant activity of reduced menadione in solvent solution and in model membranes. Free Radic Res 1997; 26:419-29. [PMID: 9179587 DOI: 10.3109/10715769709084478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The antioxidant activity of reduced menadione was investigated and compared with that of alpha-tocopherol both in solvent solution and in large unilamellar vesicles by using azocompounds as free radical generators. The results show that: i) reduced menadione behaves as a chain-breaking antioxidant; ii) its inhibition rate constant is similar to that of alpha-tocopherol in homogeneous solution, whereas it is 4 times larger in egg yolk lecithin vesicles; iii) the stoichiometric factor is found lower than 1 in both systems, since a substantial portion of menadiol is consumed by autoxidation and does not contribute to radical trapping; iv) when both alpha-tocopherol and menadiol are present in vesicles, reduced menadione can spare alpha-tocopherol. Data presented here suggest that the reduced form of vitamin K may protect, when present, cellular membranes from free radical damage.
Collapse
Affiliation(s)
- D Fiorentini
- Dipartimento di Biochimíca G. Moruzzi, Università di Bologna, Italy
| | | | | | | |
Collapse
|
75
|
Nohl H, Gille L, Staniek K. Endogenous and exogenous regulation of redox-properties of coenzyme Q. Mol Aspects Med 1997; 18 Suppl:S33-40. [PMID: 9266504 DOI: 10.1016/s0098-2997(97)00020-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ubiquinol (QH2, reduced coenzyme Q) is increasingly reported to exert antioxidant functions besides its implication in mitochondrial energy metabolism. On the other hand ubisemiquinones (SQ-.) of the respiratory chain are considered to account for the production of superoxide radicals as a byproduct of cellular respiration. Since the formation of potentially prooxidative ubisemiquinones can be expected to result from the antioxidant activity of ubiquinol, the evaluation whether or not QH2 exerts antioxidant activities depends on the fate of antioxidant-derived metabolites and the existence of a natural recycling system for oxidized QH2. We have recently shown that SQ increasingly undergo autoxidation when approaching the external more polar phase of the membrane. In contrast to mitochondria where the QH2/ SQ-./Q pools are dynamically kept in relatively stable relationships the fate of semi and fully oxidized QH2 is not at all clear in LDL particles where QH2 is suggested to exert important antioxidant functions. Therefore, the antioxidant-derived metabolites of QH2 in liposomes following lipid peroxidation were studied with respect to their localization in the bilayer and the possibility to recycle oxidized QH2 via dihydrolipoic acid (DHLA). The results revealed a considerable fraction of QH2 existing in the outer membrane section where protons from the aqueous phase have access to allow autoxidation. DHLA was found to recycle oxidized QH2 although due to slow partition equilibration the reduction velocity appears to be not sufficient for therapeutic application.
Collapse
Affiliation(s)
- H Nohl
- Institute of Pharmacology and Toxicology, Veterinary University of Vienna, Austria
| | | | | |
Collapse
|
76
|
Kishi T, Takahashi T, Okamoto T. Cytosolic NADPH-UQ reductase-linked recycling of cellular ubiquinol: its protective effect against carbon tetrachloride hepatotoxicity in rat. Mol Aspects Med 1997; 18 Suppl:S71-7. [PMID: 9266508 DOI: 10.1016/s0098-2997(97)00030-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To confirm whether or not cytosolic NADPH-UQ reductase is involved in the recycling of cellular ubiquinol (UQH2) consumed during lipid peroxidation, the effect of a UQ-10 supplement on the NADPH-UQ reductase and cellular defense against oxidative damage in rat livers was investigated. Supplements of UQ-10 for 14 days enhanced the levels of UQH2-10 and NADPH-UQ reductase in rat livers without any appreciable changes in other antioxidant contents and related enzyme activities. However, the injection of carbon tetrachloride (CCl4) into the rats induced lipid peroxidation and decreased the cellular UQH2-10 contents (and increased equivalent amounts of UQ-10), as well as decreasing the ascorbic acid, reduced glutathione (GSH) and alpha-tocopherol contents of the rat livers. Administration of the UQ-10 supplement prior to the CCl4 treatment spared alpha-tocopherol (but not GSH or ascorbic acid), inhibited lipid peroxidation, and thus improved CCl4-induced hepatitis. These findings support the notion that NADPH-UQ reductase in cytosol is the enzyme responsible for the regeneration of UQH2 from UQ formed by lipid peroxidation in cells.
Collapse
Affiliation(s)
- T Kishi
- Faculty of Pharmaceutical Science, Kobe Gakuin University, Japan
| | | | | |
Collapse
|
77
|
Kontush A, Hübner C, Finckh B, Kohlschütter A, Beisiegel U. How different constituents of low density lipoprotein determine its oxidizability by copper: a correlational approach. Free Radic Res 1996; 24:135-47. [PMID: 8845914 DOI: 10.3109/10715769609088009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although low density lipoprotein (LDL) susceptibility to oxidation is expected to be primarily related to its composition, the individual contributions of different constituents to its oxidizability remain unclear. The present study was undertaken to elucidate how different constituents of isolated LDL determine its susceptibility to oxidation induced by Cu2+ under conditions close to those of well-known Cu2(+)-oxidation assay (H. Esterbauer, G. Striegl, H. Puhl and M. Rotheneder (1989) Free Radical Research Communications, 6, 67-75). We characterized antioxidant, fatty acid and total lipid composition of human LDL from healthy donors (n = 22) and compared each with LDL oxidizability by Cu2+. LDL oxidizability was evaluated as oxidizability of antioxidant-containing LDL (rate of lipid peroxidation measured before total consumption of alpha-tocopherol, the major LDL antioxidant), oxidizability of antioxidant-depleted LDL (maximal rate of lipid peroxidation and maximal production of conjugated dienes within the propagation, antioxidant-depleted phase of oxidation) and overall LDL resistance to oxidation (duration of the lag-phase before the onset of the propagation phase). We found that the oxidizability of antioxidant-containing LDL correlated negatively with LDL content of ubiquinol-10 and free cholesterol, and positively with that of n-3 polyunsaturated fatty acids (PUFAs). LDL n-3 PUFAs, ubiquinol-10 and free cholesterol were the most important determinants of the oxidizability of antioxidant-containing LDL, contributing to about 35%, 25% and 25% of its total variability, respectively. Oxidizability of antioxidant-depleted LDL was largely determined by LDL PUFA content. The overall LDL resistance to oxidation correlated weakly with LDL chemical composition. alpha-Tocopherol was found to be only a minor contributor to the oxidizability of isolated LDL under oxidative conditions used (7.5 or 14 mol Cu2+ / mol LDL). It appears that the oxidizability of antioxidant-containing LDL represents a parameter highly sensitive to changing LDL composition, whereas the overall LDL resistance to oxidation combines contributions from different LDL constituents more uniformly, being weaker sensitive to individual factors. It is suggested that PUFAs, ubiquinol-10 and free cholesterol are the most important determinants of LDL oxidizability of Cu2+.
Collapse
Affiliation(s)
- A Kontush
- Medizinische Klinik, Universitätskrankenhaus Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
78
|
Kontush A, Hübner C, Finckh B, Kohlschütter A, Beisiegel U. Antioxidative activity of ubiquinol-10 at physiologic concentrations in human low density lipoprotein. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1258:177-87. [PMID: 7548181 DOI: 10.1016/0005-2760(95)00115-s] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ubiquinol-10 is a powerful lipid-soluble antioxidant found in cell membranes and lipoproteins in vivo. Its mechanism of action on lipid peroxidation has been determined in model and biological systems. Data concerning antioxidative activity of ubiquinol-10 in lipoproteins, however, are still controversial. The present work examines its role in the prevention of low density lipoprotein (LDL) oxidation, specifically its influence on a copper-mediated oxidative modification of human LDL in vitro. We found that ubiquinol-10 incorporated in LDL in subnormal concentrations (0.05-0.13 mol/mol LDL incorporated in comparison with 0.10-1.20 mol/mol LDL reported as normally in human LDL) slightly but not significantly decreased production of lipid peroxidation products (lipid peroxides, conjugated dienes, thiobarbituric acid-reactive substances) during the first hours of oxidation. The extent of apolipoprotein B modification (LDL fluorescence at 360/430 nm) was also decreased. Increasing the ubiquinol-10 concentration in LDL to 0.55-1.48 mol/mol LDL made it significantly more resistant to copper-mediated oxidation than native LDL. Adding the same amounts of either ubiquinone-10 or alpha-tocopherol to the LDL suspension had almost no effect on its oxidation. Ubiquinol-10 decreased alpha-tocopherol consumption during LDL oxidation and was consumed more rapidly than the latter. These results demonstrate that LDL ubiquinol-10 content is an important factor influencing LDL susceptibility to oxidation by copper and suggest that it represents the first line of defense against oxidative modification in human LDL.
Collapse
Affiliation(s)
- A Kontush
- Medical Clinic, University of Hamburg, Germany
| | | | | | | | | |
Collapse
|
79
|
Kruk J, Schmid GH, Strzałka K. Antioxidant properties of plastoquinol and other biological prenylquinols in liposomes and solution. Free Radic Res 1994; 21:409-16. [PMID: 7834055 DOI: 10.3109/10715769409056593] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Oxidation of biological prenylquinols, like plastoquinol-9 (PQH2-9), ubiquinol-10 (UQH2-10), reduced vitamins K1 (VK1H2) and K2 (VK2H2), alpha-tocopherol quinol (alpha-TQH2) and alpha-tocopherol (alpha-T) was followed by their fluorescence during sonication of egg yolk lecithin/prenylquinol liposomes. The order of magnitude of oxidation of the prenylquinols by free radicals generated during sonication was UQH2-10 > VK2H2 > VK1H2 > alpha-TQH2 > PQH2-9 > alpha-T. It was shown that egg yolk lecithin undergoes degradation even when sonicated briefly under atmosphere of nitrogen and at 0 degree C. A kinetic study of free radical scavenging action of the prenylquinols in solvents of different polarity was performed. The pseudo-first-order rate constants, k, for the reaction of the prenylquinols with 1,1-diphenyl-2-picrylhydrazyl (DPPH) in hexane showed that their scavenging activity changes in the order VK2H2 > VK1H2 > alpha-TQH2 > PQH2-9 > alpha-T > UQH2-10, being the highest in hexane and methanol, whereas in acetone and ethyl acetate the scavenging activity appeared much lower. The reaction rate constants, k, were apparently not dependent on the solvent polarity. The antioxidant activity of the prenylquinols in natural membranes is discussed.
Collapse
Affiliation(s)
- J Kruk
- Department of Plant Physiology and Biochemistry, Jan Zurzycki Institute of Molecular Biology, Jagiellonian University, Kraków, Poland
| | | | | |
Collapse
|
80
|
Jezowska I, Wolak A, Gruszecki WI, Strzałka K. Effect of beta-carotene on structural and dynamic properties of model phosphatidylcholine membranes. II. A 31P-NMR and 13C-NMR study. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1194:143-8. [PMID: 8075128 DOI: 10.1016/0005-2736(94)90213-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Spin label EPR studies (Strzałka and Gruszecki (1994) Biochim. Biophys. Acta 1194, 138-142) revealed that beta-carotene affects structural and dynamic properties of model dipalmitoylphosphatidylcholine (DPPC) membranes (multilamellar liposomes) more than polar carotenoid lutein. NMR measurements presented in this paper demonstrate that beta-carotene exerts different effect on various groups of the DPPC molecule. It was found that beta-carotene: (1) increases motional freedom of lipid headgroups as revealed by means of 31P-NMR; (2) increases motional freedom of alkyl chains forming the hydrophobic core of the membrane greater than that of a choline moiety as revealed by means of 13C-NMR. In all cases the effect of beta-carotene with respect to the dynamics of DPPC molecules is found to be more pronounced below the main phase transition temperature than in the membrane's fluid state. The influence of beta-carotene on the molecular dynamics of DPPC molecules is discussed in terms of localization and orientation of this pigment within lipid bilayer.
Collapse
Affiliation(s)
- I Jezowska
- Institute of Physics, Jagiellonian University, Kraków, Poland
| | | | | | | |
Collapse
|
81
|
Kontush A, Hübner C, Finckh B, Kohlschütter A, Beisiegel U. Low density lipoprotein oxidizability by copper correlates to its initial ubiquinol-10 and polyunsaturated fatty acid content. FEBS Lett 1994; 341:69-73. [PMID: 8137925 DOI: 10.1016/0014-5793(94)80242-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
At an early stage of oxidation induced by Cu2+, the rate of oxidative modification of human low density lipoprotein (LDL) from healthy donors correlated negatively to its ubiquinol-10 (r = -0.58, P < 0.01) and positively to its polyunsaturated fatty acid (PUFA) (r = 0.53, P < 0.05) content. The PUFA/ubiquinol-10 ratio was the best predictor of LDL susceptibility to oxidation (r = 0.68, P < 0.01). No significant correlation between LDL oxidizability and its alpha-tocopherol content was found at any oxidation stage. It is suggested that ubiquinol-10 plays a central role in the early protection of LDL PUFAs against Cu(2+)-induced oxidation whereas alpha-tocopherol posesses both pro- and antioxidant activity.
Collapse
Affiliation(s)
- A Kontush
- Medizinische Klinik, Universitätskrankenhaus Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
82
|
Mukai K, Itoh S, Daifuku K, Morimoto H, Inoue K. Kinetic study of the quenching reaction of singlet oxygen by biological hydroquinones and related compounds. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1993. [DOI: 10.1016/0005-2728(93)90234-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|