51
|
MAY OLIVIAL, ERISIR ALEV, HILL DAVIDL. Ultrastructure of primary afferent terminals and synapses in the rat nucleus of the solitary tract: comparison among the greater superficial petrosal, chorda tympani, and glossopharyngeal nerves. J Comp Neurol 2007; 502:1066-78. [PMID: 17444498 PMCID: PMC2798003 DOI: 10.1002/cne.21371] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The greater superficial petrosal (GSP), chorda tympani (CT), and glossopharyngeal (IX) nerves terminate in overlapping patterns in the brainstem in the rat nucleus of the solitary tract (NTS). There is one region, in particular, that receives overlapping inputs from all three nerves and is especially plastic during normal and experimentally altered development. To provide the requisite data necessary ultimately to delineate the circuitry in this region, we characterized the morphology of the synaptic inputs provided by the GSP, CT, and IX nerves through transmission electron microscopy. Although all three nerves had features characteristic of excitatory nerve terminals, ultrastructural analysis revealed dimorphic morphologies differentiating IX terminals from GSP and CT terminals. IX terminals had a larger area than GSP and CT terminals, and more synapses were associated with IX terminals compared with GSP and CT terminals. Additionally, IX terminals formed synapses most often with spines, as opposed to GSP and CT terminals, which formed synapses more often with dendrites. IX terminals also exhibited morphological features often associated with synaptic plasticity more often than was seen for GSP and CT terminals. These normative data form the basis for future studies of developmentally and environmentally induced plasticity in the rodent brainstem.
Collapse
Affiliation(s)
- OLIVIA L. MAY
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109-1078
| | - ALEV ERISIR
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904-4400
| | - DAVID L. HILL
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904-4400
- Correspondence to: Dr. David L. Hill, Department of Psychology, P.O. Box 400400, University of Virginia, Charlottesville, VA 22904.
| |
Collapse
|
52
|
Mangold JE, Hill DL. Extensive reorganization of primary afferent projections into the gustatory brainstem induced by feeding a sodium-restricted diet during development: less is more. J Neurosci 2007; 27:4650-62. [PMID: 17460078 PMCID: PMC2613514 DOI: 10.1523/jneurosci.4518-06.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural development is especially vulnerable to environmental influences during periods of neurogenesis and rapid maturation. In fact, short periods of environmental manipulations confined to embryonic development lead to significant changes in morphology and function. A guiding principal emerging from studies of sensory systems is that experimentally induced effects are most dramatic in higher neural levels (e.g., cortex) and primarily involve postnatal synaptic refinements. In contrast to other sensory systems, the gustatory system is particularly susceptible to the effects of deprivation much earlier and with profound changes evident in the brainstem. Here we show that feeding pregnant rats a custom diet featuring a low-sodium content for 9 d before the tongue appears in the fetus produces extensive restructuring of the gustatory brainstem. Rats born to mothers fed the custom diet from embryonic day 3 (E3) to E12 have terminal field volumes of the greater superficial petrosal, chorda tympani, and glossopharyngeal nerves at adulthood that are expanded as much as 10 times beyond that found in rats fed a standard rat chow. The widespread alterations are not attributable to increased numbers of nerve cells, increased target size, or obvious changes in peripheral taste function. Moreover, we show that the limited period of feeding the custom diet has much larger effects than if rats were fed the diet to postweaning ages. Our results suggest that early periods of altered experience, especially during nucleus of the solitary tract neurogenesis, leads to a restructuring of the gustatory brainstem, which in turn may impact the control of sensory and homeostatic processes.
Collapse
Affiliation(s)
- Jamie E. Mangold
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904-4400
| | - David L. Hill
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904-4400
| |
Collapse
|
53
|
Travers SP, Travers JB. Taste-evoked Fos expression in nitrergic neurons in the nucleus of the solitary tract and reticular formation of the rat. J Comp Neurol 2007; 500:746-60. [PMID: 17154256 DOI: 10.1002/cne.21213] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The current investigation used double labeling for NADPHd and Fos-like immunoreactivity to define the relationship between nitric oxide synthase-containing neural elements and taste-activated neurons in the nucleus of the solitary tract (NST) and subjacent reticular formation (RF). Stimulation of awake rats with citric acid and quinine resulted in significant increases in the numbers of double-labeled neurons in both the NST and RF, suggesting that some medullary gustatory neurons utilize nitric oxide (NO) as a transmitter. Overall, double-labeled neurons were most numerous in the caudal reaches of the gustatory zone of the NST, where taste neurons receive inputs from the IXth nerve, suggesting a preferential role for NO neurons in processing gustatory inputs from the posterior oral cavity. However, double-labeled neurons also exhibited a preferential distribution depending on the gustatory stimulus. In the NST, double-labeled neurons were most numerous in the rostral central subnucleus after either stimulus but had a medial bias after quinine stimulation. In the RF, after citric acid stimulation, there was a cluster of double-labeled neurons with distinctive large soma in the parvicellular division of the lateral RF, subjacent to the rostral tip of NST. In contrast, in response to quinine, there was a cluster of double-labeled neurons with much smaller soma in the intermediate zone of the medial RF, a few hundred micrometers caudal to the citric acid cluster. These differential distributions of double-labeled neurons in the NST and RF suggest a role for NO in stimulus-specific gustatory autonomic and oromotor reflex circuits.
Collapse
Affiliation(s)
- Susan P Travers
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio 43210-1267, USA.
| | | |
Collapse
|
54
|
|
55
|
Bradley R. rNST Circuits. Front Neurosci 2006. [DOI: 10.1201/9781420005974.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
56
|
Li CS, Cho YK. Efferent projection from the bed nucleus of the stria terminalis suppresses activity of taste-responsive neurons in the hamster parabrachial nuclei. Am J Physiol Regul Integr Comp Physiol 2006; 291:R914-26. [PMID: 16966389 DOI: 10.1152/ajpregu.00750.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the reciprocal projections between the bed nucleus of the stria terminalis (BNST) and the gustatory parabrachial nuclei (PbN) have been demonstrated neuroanatomically, there is no direct evidence showing that the projections from the PbN to the BNST carry taste information or that descending inputs from the BNST to the PbN modulate the activity of PbN gustatory neurons. A recent electrophysiological study has demonstrated that the BNST exerts modulatory influence on taste neurons in the nucleus of the solitary tract (NST), suggesting that the BNST may also modulate the activity of taste neurons in the PbN. In the present study, we recorded from 117 taste-responsive neurons in the PbN and examined their responsiveness to electrical stimulation of the BNST bilaterally. Thirteen neurons (11.1%) were antidromically invaded from the BNST, mostly from the ipsilateral side (12 cells), indicating that a subset of taste neurons in the PbN project their axons to the BNST. The BNST stimulation induced orthodromic responses on most of the PbN neurons: 115 out of 117 (98.3%), including all BNST projection units. This descending modulation on the PbN gustatory neurons was exclusively inhibitory. We also confirmed that activation of this efferent inhibitory projection from the BNST reduces taste responses of PbN neurons in all units tested. The BNST is part of the neural circuits that involve stress-associated feeding behavior. It is also known that brain stem gustatory nuclei, including the PbN, are associated with feeding behavior. Therefore, this neural substrate may be important in the stress-elicited alteration in ingestive behavior.
Collapse
Affiliation(s)
- Cheng-Shu Li
- Department of Anatomy, Southern Illinois University School of Medicine, Life Science III Rm. 2073, 1135 Lincoln Dr., Carbondale, IL 62901, USA.
| | | |
Collapse
|
57
|
May OL, Hill DL. Gustatory terminal field organization and developmental plasticity in the nucleus of the solitary tract revealed through triple-fluorescence labeling. J Comp Neurol 2006; 497:658-69. [PMID: 16739199 PMCID: PMC2724654 DOI: 10.1002/cne.21023] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Early dietary sodium restriction has profound influences on the organization of the gustatory brainstem. However, the anatomical relationships among multiple gustatory nerve inputs have not been examined. Through the use of triple-fluorescence labeling and confocal laser microscopy, terminal fields of the greater superficial petrosal (GSP), chorda tympani (CT), and glossopharyngeal (IX) nerves were visualized concurrently in the nucleus of the solitary tract (NTS) of developmentally sodium-restricted and control rats. Dietary sodium restriction during pre- and postnatal development resulted in a twofold increase in the volume of both the CT and the IX nerve terminal fields but did not affect the volume of the GSP terminal field. In controls, these nerve terminal fields overlapped considerably. The dietary manipulation significantly increased the overlapping zones among terminal fields, resulting in an extension of CT and IX fields past their normal boundaries. The differences in terminal field volumes were exaggerated when expressed relative to the respective NTS volumes. Furthermore, increased terminal field volumes could not be attributed to an increase in the number of afferents because ganglion cell counts did not differ between groups. Taken together, selective increases in terminal field volume and ensuing overlap among terminal fields suggest an increased convergence of these gustatory nerve terminals onto neurons in the NTS. The genesis of such convergence is likely related to disruption of cellular and molecular mechanisms during the development of individual terminal fields, the consequences of which have implications for corresponding functional and behavioral alterations.
Collapse
Affiliation(s)
- Olivia L. May
- Department of Psychology, PO Box 400400, University of Virginia, Charlottesville, VA 22904-4400
| | - David L. Hill
- Department of Psychology, PO Box 400400, University of Virginia, Charlottesville, VA 22904-4400
| |
Collapse
|
58
|
Hallock RM, Di Lorenzo PM. Effects of electrical stimulation of the glossopharyngeal nerve on cells in the nucleus of the solitary tract of the rat. Brain Res 2006; 1113:163-73. [PMID: 16904656 DOI: 10.1016/j.brainres.2006.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 07/11/2006] [Accepted: 07/11/2006] [Indexed: 11/25/2022]
Abstract
Electrophysiological responses to electrical stimulation of the lingual branch of the glossopharyngeal (GP) nerve (which innervates taste buds on the caudal 1/3 of the tongue) were recorded from single cells in the rostral nucleus of the solitary tract (NTS) of anesthetized rats. Electrical stimulation was delivered as single pulses (n=55), paired-pulses (n=15) and tetanic trains (n=11). NTS cells with GP-evoked responses were also tested for responsivity to taste stimuli (0.1 M NaCl, 0.5 M sucrose, 0.01 M HCl and 0.01 M quinine HCl). Fifty-five neurons were studied: 49 cells showed GP-evoked (mean latency+/-SEM=18.0+/-1.32 ms); seven of these were taste-responsive. Spontaneous rate of these cells was low (mean+/-SEM=1.4+/-0.3 spikes per second; median=0.21 spikes per second) and many cells showed no spontaneous activity. Paired-pulse stimulation of the GP nerve in 13 rats produced both paired-pulse suppression (n=11) and paired-pulse enhancement (n=4); tetanic stimulation (25 Hz, 1.0 s) produced sustained (>20 s) increases or decreases in firing rate in 7 of 11 cells tested. Histological data suggested that GP-evoked responses recorded in the most rostral NTS were likely the result of polysynaptic connections. Cells with GP-evoked responses formed a heterogeneous group in terms of their response properties and differed from cells with evoked responses to chorda tympani (CT; which innervates taste buds on the rostral 1/3 of the tongue) nerve stimulation. These differences may reflect the respective functional specializations of the GP and CT nerves.
Collapse
Affiliation(s)
- Robert M Hallock
- Department of Psychology, Box 6000, State University of New York at Binghamton, Binghamton, New York 13902-6000, USA.
| | | |
Collapse
|
59
|
Spector AC, Travers SP. The representation of taste quality in the mammalian nervous system. ACTA ACUST UNITED AC 2006; 4:143-91. [PMID: 16510892 DOI: 10.1177/1534582305280031] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The process by which the mammalian nervous system represents the features of a sapid stimulus that lead to a perception of taste quality has long been controversial. The labeled-line (sparse coding) view differs from the across-neuron pattern (ensemble) counterpoint in proposing that activity in a given class of neurons is necessary and sufficient to generate a specific taste perception. This article critically reviews molecular, electro-physiological, and behavioral findings that bear on the issue. In the peripheral gustatory system, the authors conclude that most qualities appear to be signaled by labeled lines; however, elements of both types of coding characterize signaling of sodium salts. Given the heterogeneity of neuronal tuning functions in the brain, the central coding mechanism is less clear. Both sparse coding and neuronal ensemble models remain viable possibilities. Furthermore, temporal patterns of discharge could contribute additional information. Ultimately, until specific classes of neurons can be selectively manipulated and perceptual consequences assessed, it will be difficult to go beyond mere correlation and conclusively discern the validity of these coding models.
Collapse
Affiliation(s)
- Alan C Spector
- Department of Psychology and Center for Smell and Taste, University of Florida
| | | |
Collapse
|
60
|
Uteshev VV, Smith DV. Cholinergic modulation of neurons in the gustatory region of the nucleus of the solitary tract. Brain Res 2006; 1084:38-53. [PMID: 16546141 DOI: 10.1016/j.brainres.2006.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 02/03/2006] [Accepted: 02/07/2006] [Indexed: 02/05/2023]
Abstract
The rostral portion of the nucleus of the solitary tract (rNST) is an obligatory relay for gustatory afferent input on its way to the forebrain. Previous studies have demonstrated excitation of rNTS neurons by glutamate and substance P and inhibition by gamma-aminobutyric acid (GABA) and met-enkephalin (ENK). Despite the existence of cholinergic neurons and putative terminals within the rNTS, there are no data on the effects of acetylcholine (ACh) on rNTS processing. Here, we use patch-clamp recording of rNTS neurons in vitro to examine ACh-mediated responses and voltage-gated conductances in these cells. Results revealed (1) intrinsic voltage-gated inhibition via activation of voltage-gated potassium A-channels (I(A)), found almost exclusively in the medial rNTS, and hyperpolarization-activated potassium/sodium channels (I(h)), found more frequently in the lateral rNST; and (2) ligand-gated inhibition via activation of muscarinic m2 ACh receptors (mAChRs) linked to inward rectifier potassium channels (K(ir)) evenly distributed throughout the rNTS, a mechanism dependent on cholinergic inputs. Muscarinic responses were blocked by AFDX-116, a selective m2 mAChR antagonist, and by BaCl2, an antagonist of K(ir) channels. In addition, many rNTS neurons exhibited excitation via alpha7 and non-alpha7 nicotinic AChRs. Non-alpha7 nAChRs, blocked by 10 microM mecamylamine, occurred more frequently in the lateral rNTS. In contrast, alpha7 nAChRs, blocked by 20 nM methyllcaconitine, were evenly distributed across the nucleus. As previously reported for voltage-activated conductances, none of these currents was related to neuronal morphology. These voltage- and ligand-dependent inhibitory mechanisms would be expected to contribute to the modulation of gustatory processing through the NST.
Collapse
Affiliation(s)
- Victor V Uteshev
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA.
| | | |
Collapse
|
61
|
Hermes SM, Mitchell JL, Aicher SA. Most neurons in the nucleus tractus solitarii do not send collateral projections to multiple autonomic targets in the rat brain. Exp Neurol 2006; 198:539-51. [PMID: 16487517 DOI: 10.1016/j.expneurol.2005.12.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 12/06/2005] [Accepted: 12/23/2005] [Indexed: 02/02/2023]
Abstract
The nucleus tractus solitarii (NTS) receives primary visceral afferents and sends projections to other autonomic nuclei at all levels of the neuroaxis. However, it is unknown if distinct populations of NTS neurons project to individual autonomic targets or if individual neurons in the NTS project to multiple autonomic targets. Understanding the basic circuitry of visceral reflex pathways is essential for the analyses of functional central autonomic networks. We examined projections from the NTS to autonomic targets within the hypothalamus (paraventricular nucleus, PVN), pons (parabrachial nucleus, PB), and medulla (caudal ventrolateral medulla, CVL) using retrograde tracing and immunohistochemistry. Dual retrograde tracer microinjections were made into pairs of targets (PVN + CVL; PVN + PB; PB + CVL), and the pattern of retrograde labeling was examined within NTS. The extent of collateralization, seen as dual retrogradely labeled neurons, was negligible for combined PVN and CVL injections and increased for injections combining PB with either PVN or CVL, but the majority of NTS neurons project to only one autonomic target. Immunohistochemistry for tyrosine hydroxylase (TH) was used to examine the pattern of TH-immunoreactivity (TH-ir) within retrogradely labeled NTS neurons. TH-ir was seen predominantly in projections to PVN, to a lesser degree in projections to PB, and was largely absent from projections to CVL. The percentage of dual retrogradely labeled neurons displaying TH-ir corresponded to the target displaying the most TH-ir, and TH-ir was not predictive of collateralization. Together, these results indicate that NTS neurons project to individual autonomic targets in the brain.
Collapse
Affiliation(s)
- Sam M Hermes
- Neurological Sciences Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | | | |
Collapse
|
62
|
Anseloni VCZ, Ren K, Dubner R, Ennis M. A brainstem substrate for analgesia elicited by intraoral sucrose. Neuroscience 2005; 133:231-43. [PMID: 15893646 DOI: 10.1016/j.neuroscience.2005.01.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 01/26/2005] [Accepted: 01/26/2005] [Indexed: 10/25/2022]
Abstract
Previous studies demonstrated that nursing or intraoral infusion of certain components of mother's milk (e.g. sugars and fats) produces calming and opiate receptor-dependent analgesia in newborn rats and humans. However, the neural circuitry underlying such analgesia is unknown. The aim of the present study was to specify the central pathways by which taste stimuli engage neural antinociceptive mechanisms. For this purpose, midcollicular transactions were used to investigate the role of the forebrain in analgesia elicited by intraoral infusion of 0.2 M sucrose in neonatal rats. Sucrose-induced analgesia persisted, and was enhanced, following midcollicular transection, indicating that it did not require neural circuits confined to the forebrain. Fos immunohistochemistry was used to identify brainstem neurons activated by a brief (90 s) intraoral infusion of a small volume (90 microl, 0.2M) of sucrose or a salt solution (0.1 M ammonium chloride) in 10-day-old rat pups. Compared with control groups (intact, cannula, distilled water), both sucrose and ammonium chloride induced Fos expression in the rostral nucleus tractus solitarius, the first relay in the ascending gustatory pathway. Sucrose also elicited Fos expression in several brainstem areas associated with centrally mediated analgesia, including the periaqueductal gray and the nucleus raphe magnus. Taken together, these findings demonstrate that analgesia elicited by intraoral sucrose does not require involvement of the forebrain. Intraoral sucrose activates neurons in the periaqueductal gray and nucleus raphe magnus, two key brainstem sites critically involved in descending pain modulation.
Collapse
Affiliation(s)
- V C Z Anseloni
- Department of Biomedical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
63
|
Li CS, Cho YK, Smith DV. Modulation of parabrachial taste neurons by electrical and chemical stimulation of the lateral hypothalamus and amygdala. J Neurophysiol 2004; 93:1183-96. [PMID: 15483060 DOI: 10.1152/jn.00828.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lateral hypothalamus (LH) and the central nucleus of the amygdala (CeA) exert an influence on ingestive behavior and are reciprocally connected to gustatory and viscerosensory areas, including the nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN). We investigated the effects of LH and CeA stimulation on the activity of 101 taste-responsive neurons in the hamster PbN. Eighty three of these neurons were antidromically activated by stimulation of these sites; 57 were antidromically driven by both. Of these 83 neurons, 21 were also orthodromically activated--8 by the CeA and 3 by the LH. Additional neurons were excited (n = 5) or inhibited (n = 8) by these forebrain nuclei but not antidromically activated. Taste stimuli were: 0.032 M sucrose, 0.032 M sodium chloride (NaCl), 0.032 M quinine hydrochloride (QHCl), and 0.0032 M citric acid. Among the 34 orthodromically activated neurons, more sucrose-best neurons were excited than inhibited, whereas the opposite occurred for citric-acid- and QHCl-best cells. Neurons inhibited by the forebrain responded significantly more strongly to citric acid and QHCl than cells excited by these sites. The effects of electrical stimulation were mimicked by microinjection of DL-homocysteic acid, indicating that cells at these forebrain sites were responsible for these effects. These data demonstrate that many individual PbN gustatory neurons project to both the LH and CeA and that these areas modulate the gustatory activity of a subset of PbN neurons. This neural substrate is likely involved in the modulation of taste activity by physiological and experiential factors.
Collapse
Affiliation(s)
- Cheng-Shu Li
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Ave., Suite 515, Memphis, TN 38163, USA
| | | | | |
Collapse
|
64
|
Harrison TA, Hoover DB, King MS. Distinct regional distributions of NK1 and NK3 neurokinin receptor immunoreactivity in rat brainstem gustatory centers. Brain Res Bull 2004; 63:7-17. [PMID: 15121234 DOI: 10.1016/j.brainresbull.2003.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Revised: 10/01/2003] [Accepted: 11/03/2003] [Indexed: 02/05/2023]
Abstract
Tachykinins and their receptors are present in gustatory centers, but little is known about tachykinin function in gustation. In this study, immunohistochemical localization of substance P and two centrally prevalent neurokinin receptors, NK1 and NK3, was carried out in the rostral nucleus of the solitary tract and the caudal parabrachial nucleus to evaluate regional receptor/ligand correspondences. All three proteins showed regional variations in labeling density that correlated with distinct sites in gustatory centers. In the rostral nucleus of the solitary tract, the relative densities of substance P and NK1 receptors varied in parallel across subnuclei, with both being moderate to dense in the dorsocentral, chemoresponsive zone. NK3 receptors had a distinct distribution in the caudal half of this zone, suggesting a unique role in processing taste input from the posterior tongue. In the caudal parabrachial nucleus, substance P and NK1 receptor immunoreactivities were dense in the pontine taste area, while NK3 receptor labeling was sparse. The external medial subnucleus had substantial NK3 receptor and substance P labeling, but little NK1 receptor immunoreactivity. These findings suggest that distinct tachykinin ligand/neurokinin receptor combinations may be important in local processing of information within brainstem gustatory centers.
Collapse
Affiliation(s)
- Theresa A Harrison
- Department of Anatomy and Cell Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| | | | | |
Collapse
|
65
|
Dallel R, Ricard O, Raboisson P. Organization of parabrachial projections from the spinal trigeminal nucleus oralis: An anterograde tracing study in the rat. J Comp Neurol 2004; 470:181-91. [PMID: 14750160 DOI: 10.1002/cne.11043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, we have accumulated data showing that the spinal trigeminal nucleus oralis (Sp5O) contributes to the processing of somatosensory inputs from the orofacial region. Although the parabrachial area (PB) represents the main brainstem relay for autonomic, nociceptive, and gustatory afferents, few data are available regarding the topographical distribution of the efferent projections from the Sp5O to the PB. We have addressed this question with the rat, by using the anterograde tracer Phaseolus vulgaris leucoagglutinin. A dense trigeminoparabrachial pathway from the Sp5O toward, predominantly, the ipsilateral PB was revealed. Projections come mainly from the dorsal part of the Sp5O that was found to innervate densely the medial, external medial, and ventral lateral subnuclei. In contrast, the ventral part of the Sp5O projected almost exclusively to an as yet not formally described region, located dorsally and laterally to the lateral tip of the brachium conjunctivum, close to the Kölliker-Fuse nucleus. These results suggest that distinct regions within the Sp5O may be involved in the processing of gustatory and nociceptive information.
Collapse
Affiliation(s)
- Radhouane Dallel
- Institut National de la Santé et de la Recherche Médicale E 0216, Neurobiologie de La Douleur Trigéminale, Faculté de Chirurgie Dentaire, 63000 Clermont-Ferrand, France.
| | | | | |
Collapse
|
66
|
King CT, Deyrup LD, Dodson SE, Galvin KE, Garcea M, Spector AC. Effects of gustatory nerve transection and regeneration on quinine-stimulated Fos-like immunoreactivity in the parabrachial nucleus of the rat. J Comp Neurol 2003; 465:296-308. [PMID: 12949788 DOI: 10.1002/cne.10851] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The distribution of quinine-stimulated Fos-like immunoreactivity (FLI) in several subdivisions of the parabrachial nucleus (PBN) known to be responsive to gustatory stimulation was examined in rats in which the chorda tympani nerve (CT) and/or glossopharyngeal nerve (GL) was transected (Experiment 1) and in rats in which the GL was transected with regeneration promoted or prevented (Experiment 2). We confirmed previous findings in the literature by demonstrating that rats intraorally infused with 3 mM quinine showed a robust population of FLI in the waist area and the external lateral (EL) and external medial (EM) subdivisions of the PBN (Yamamoto et al. [1994] Physiol Behav 56:1197-1202; Travers et al., [ 1999] Am J Physiol 277:R384-R394). In the waist area, only GL transection significantly decreased the number of FLI-neurons elicited by intraoral infusion of quinine compared with water-stimulated controls. In the external subdivisions neither neurotomy affected the number of FLI-neurons. The effect of GL transection in the waist area was enduring for rats in which the GL did not regenerate (up to 94 days), but regeneration of the GL after 52 days restored quinine-stimulated FLI to control values. In these same GL-transected animals, there were parallel decreases in the number of gapes elicited by intraoral quinine stimulation that recovered, but only subsequent to regeneration of the GL. These data provide support for the role of the waist area in the brainstem processing that underlies oromotor rejection behaviors and also help substantiate the hypothesis that the CT and GL are relatively specialized with regard to function. Moreover, when the quinine-induced pattern of neural activity in the second central gustatory relay, as assessed by FLI, is substantially altered by the loss of peripheral gustatory input from the GL, it can be restored upon regeneration of the nerve.
Collapse
|
67
|
Di Lorenzo PM, Victor JD. Taste response variability and temporal coding in the nucleus of the solitary tract of the rat. J Neurophysiol 2003; 90:1418-31. [PMID: 12966173 DOI: 10.1152/jn.00177.2003] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Theories of taste coding in the brain stem have been based on the idea that taste responses are integrated over time without regard to the temporal structure of the taste-evoked spike train. In the present experiment, the reliability of response rate across stimulus repetitions and the potential contribution of temporal coding to the discrimination of taste stimuli was examined. Taste stimuli representing the four basic taste qualities were presented repeatedly, and electrophysiological responses were recorded from single cells in the nucleus of the solitary tract (NTS) of anesthetized rats. Blocks of the four tastants were repeated for as long as the cell remained isolated. Nineteen cells were recorded with between 8 and 27 repetitions of each stimulus. Response magnitude to a given tastant varied widely within some NTS cells. This impacted the determination of both the breadth of tuning and best stimulus for a given cell. The contribution of spike timing and the pattern of interspike intervals to discrimination of taste stimuli was evaluated by an information-theoretic approach based on two families of metrics. Spike timing significantly contributed to the discrimination of taste qualities in 10 of 19 (53%) cells. This contribution was especially notable during the initial 2 s of the response. Those cells that showed the most variable firing rates in response to repetition of taste stimuli tended to show the largest contribution of temporal coding. These results suggest that, in addition to response rate, the temporal parameters of responses may convey information about taste stimuli in the NTS.
Collapse
|
68
|
Chen Z, Travers JB. Inactivation of amino acid receptors in medullary reticular formation modulates and suppresses ingestion and rejection responses in the awake rat. Am J Physiol Regul Integr Comp Physiol 2003; 285:R68-83. [PMID: 12663257 DOI: 10.1152/ajpregu.00054.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lateral medullary reticular formation (RF) is the source of many preoromotor neurons and is essential for generation of ingestive consummatory responses. Although the neurochemistry mediating these responses is poorly understood, studies of fictive mastication suggest that both excitatory and inhibitory amino acid receptors play important roles in the generation of these ororhythmic behaviors. We tested the hypothesis that amino acid receptors modulate the expression of ingestion and rejection responses elicited by natural stimuli in awake rats. Licking responses were elicited by either intraoral (IO) gustatory stimuli or sucrose presented in a bottle. Oral rejection responses (gaping) were elicited by IO delivery of quinine hydrochloride. Bilateral microinjection of the N-methyl-D-aspartate (NMDA) receptor antagonist d-[(3)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (D-CPP) suppressed licking and gape responses recorded electromyographically from a subset of orolingual muscles. Likewise, infusion of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) significantly reduced licking and gape responses but was accompanied by spontaneous gasping responses. Rats still actively probed the bottle, indicating an intact appetitive response. Neither D-CPP nor CNQX differentially affected ingestion or rejection, suggesting that the switch from one behavior to the other does not simply rely on one glutamate receptor subtype. Nevertheless, a glutamate receptor-mediated switch from consummatory behavior to gasps after CNQX infusions suggests a multifunctional substrate for coordinating the jaw and tongue in different behaviors. Bilateral infusions of the GABA(A) receptor antagonist bicuculline or the glycine receptor antagonist strychnine enhanced the amplitude of IO stimulation-induced oral responses. These data suggest that the neural substrate underlying ingestive consummatory responses is under tonic inhibition. Release of this inhibition may be one mechanism by which aversive oral stimuli produce large-amplitude mouth openings associated with the rejection response.
Collapse
Affiliation(s)
- Zhixiong Chen
- Ohio State Univ., 305 W. 12th Ave, PO Box 182357, Columbus, OH 43218-2357, USA
| | | |
Collapse
|
69
|
King MS. Distribution of immunoreactive GABA and glutamate receptors in the gustatory portion of the nucleus of the solitary tract in rat. Brain Res Bull 2003; 60:241-54. [PMID: 12754086 DOI: 10.1016/s0361-9230(03)00034-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The distribution of glutamate (GLU) and gamma-aminobutyric acid (GABA) receptors within the gustatory portion of the rat nucleus of the solitary tract (gNST) was investigated using immunohistochemical, histological and neural tract tracing techniques. Numerous somata throughout the gNST were immunoreactive for alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors, while few were labeled for kainate receptors. AMPA and NMDA receptors were particularly abundant in the rostral central (RC) subdivision of the gNST, which receives most of the primary afferent input from the oral cavity and contains most of the gNST neurons that project to the parabrachial nuclei (PBN). This finding supports electrophysiological evidence that AMPA and NMDA receptors are involved in responses to orosensory input and indicates that their action may influence ascending taste signals as well. Compared to the ionotropic GLU receptors, few cell bodies were immunoreactive for metabotropic GLU receptors. Somata immunoreactive for GABA(A) and GABA(B) receptors were located throughout the nucleus. The densest neuropil labeling was for GABA(A) receptors in the ventral (V) subnucleus, the gNST subdivision that sends output to brainstem oromotor centers. The distributions of immunolabeling for GLU and GABA receptors imply that different functional roles may exist for specific receptors within this nucleus.
Collapse
Affiliation(s)
- Michael S King
- Unit 8264, Biology Department, Stetson University, DeLand, FL 32723, USA.
| |
Collapse
|
70
|
Abstract
Projections to the parabrachial nucleus (PBN) from the nucleus of the solitary tract (NST) carry afferent signals from both the oral cavity and gastrointestinal tract. Although physiological studies suggest the convergence of oral and gastrointestinal sensory signals in the parabrachial nucleus, anatomical studies have emphasized the segregation of these pathways. To more precisely determine the anatomical relationship between gastric distension and oral afferent representation in PBN, small deposits of two anterograde tracers were made into the NST under physiological guidance in the same rat. Gastric terminations were dense and separate from taste projections in the rostral portion of the external lateral and dorsal lateral subnuclei. Gustatory projections were densest and separate from gastric terminations in the ventral lateral and central medial subnuclei of the caudal waist region, but were intermingled with gastric projections in these subnuclei and the external subnuclei at slightly more rostral levels. Patterns of segregation and overlap often appeared as 'patches' within or across subnuclear boundaries. In a second set of experiments, physiological evidence for overlap in PBN was evaluated from single unit extracellular responses evoked by gastric distension and orosensory (taste and orotactile) stimulation. Neurophysiological recordings verified that a small proportion of single cells within the waist and external subnuclei could be activated by both gastric and orotactile stimulation. The anatomical experiments further revealed intranuclear projections from the caudal NST injections that extended rostrally to sites at which responses to oral stimulation had been recorded. Although existing physiological data suggest such interactions are more limited than those in PBN, these anatomical data suggest that gastric/oral interactions may also exist in the NST.
Collapse
|
71
|
Künzle H, Radtke-Schuller S, von Stebut B. Parabrachio-cortical connections with the lateral hemisphere in the madagascan hedgehog tenrec: prominent projections to layer 1, weak projections from layer 6. Brain Res Bull 2002; 57:705-19. [PMID: 11927376 DOI: 10.1016/s0361-9230(01)00784-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present study was undertaken to further characterize and subdivide the rhinal cortex (insular and perirhinal areas) in the hedgehog tenrec (Echinops telfairi), a placental mammal with a rather low encephalisation index. Injections of wheat germ agglutinin-horseradish peroxidase into the dorsolateral pontine tegmentum revealed a prominent layer 1 projection to several rhinal target areas, while the rhinal cortex only stained weakly for the calcitonin gene-related peptide. Among the regions retrogradely labeled following tracer injections into the rhinal cortex, the parabrachial nucleus was considered the main origin of the tegmento-cortical projection. This conclusion was based on the circumscribed pattern of termination, as well as the differences noted between the pattern of anterograde labeling and the pattern obtained by thyrosine hydroxylase immunohistochemistry. The tracer injections into the dorsolateral tegmentum also revealed numerous retrogradely labeled cells in the layer 5 of the dorsomedial frontal cortex. In contrast, the rhinal cortex only showed few labeled cells and most of these cells were located in the layer 6/7. A comparison with other species indicates that the tenrec's parabrachial nucleus gives rise to the most extensive cortical projections but receives the least prominent input from the lateral cerebral hemisphere. The layer 6/7 projection may be a common mammalian feature but it is overshadowed by the layer 5 projection in higher mammals.
Collapse
Affiliation(s)
- Heinz Künzle
- Institute of Anatomy, Ludwig Maximilians University, Pettenkoferstrasse 11, D-80336 Munich, Germany.
| | | | | |
Collapse
|
72
|
Harrison TA. Chorda tympani nerve stimulation evokes Fos expression in regionally limited neuron populations within the gustatory nucleus of the solitary tract. Brain Res 2001; 904:54-66. [PMID: 11516411 DOI: 10.1016/s0006-8993(01)02449-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The distribution of neurons in the rostral nucleus of the solitary tract (rNST) that respond to gustatory input from the anterior tongue was visualized by Fos protein immunohistochemistry following electrical stimulation of the chorda tympani (CT) nerve in rats. Maps of Fos-immunoreactive (Fos-ir) neurons were compared with the distribution of CT afferent terminal fields labeled by transganglionic transport of rhodamine-dextran in a separate group of animals. The primary concentration of Fos-ir neurons localized in register with the major terminal fields of CT afferent fibers, in the central third of the rostral 1.0 mm of the NST ipsilateral to the stimulated nerve. A similar correspondence in location and degree of labeling of Fos-ir neurons and afferent terminals was observed in the ipsilateral dorsal spinal trigeminal complex (Sp5) pars caudalis, near the obex, and the Sp5 pars oralis near the rostral pole of the rNST. Thus, the magnitude of Fos upregulation in brainstem targets of the CT nerve having chemosensory or nociceptive function, was proportional to the relative density of the CT afferent input. This correspondence, and the absence of labeling in neurons known to be one additional synapse away from the afferent input within gustatory or oral reflex pathways, suggests that the cell map obtained represents mainly neurons that are directly activated via primary afferent synapses from CT fibers. The availability of a method to histochemically identify a population of putative second-order taste neurons will facilitate analysis of the cellular/molecular properties of these neurons and of synaptic circuitry in the rNST.
Collapse
Affiliation(s)
- T A Harrison
- Department of Pharmacology and Physiology, and the Cardiovascular Research Institute, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
73
|
Matsuo R, Yamauchi Y, Kobashi M, Funahashi M, Mitoh Y, Adachi A. Role of parabrachial nucleus in submandibular salivary secretion induced by bitter taste stimulation in rats. Auton Neurosci 2001; 88:61-73. [PMID: 11474548 DOI: 10.1016/s1566-0702(01)00234-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
When rats lick a bitter taste solution such as quinine-hydrochloride, they secrete profuse amounts of saliva. The salivation has a higher flow rate than that induced by other qualities of taste stimulation: sweet, salty, and sour. The present study is aimed to clarify the neural mechanism of the quinine-evoked salivation by means of behavioral, neuroanatomical, and electrophysiological experiments. Behaviorally, submandibular salivary secretion and rejection behavior (gaping) were observed in normal rats, as well as in rats chronically decerebrated at the precollicular level. In chronically decerebrate rats, these quinine-evoked reactions were strongly suppressed by destruction of the medial part of the parabrachial nucleus, including the so-called taste area, and ventral part of the parabrachial nucleus, including the pontine reticular formation. Neuroanatomical study using a retrograde tracer, Fluoro-gold, revealed that the neurons sending their axons to the superior salivatory nucleus, parasympathetic secretory center, were located mainly in the pontine reticular formation ventral to the parabrachial nucleus, not in the parabrachial taste area. Extracellular neural activity was recorded from the parabrachial region in decerebrate rats, and responsiveness to taste stimulation, jaw movements, and electrical stimulation of the superior salivatory nucleus was examined. Neurons responsive to both taste stimulation and antidromic stimulation of the superior salivatory nucleus were found in the pontine reticular formation ventral to the parabrachial nucleus, which responded well to quinine and HCl taste stimuli. Neurons in the parabrachial taste area could respond to four qualities of taste stimulation, but not to antidromic stimulation of the salivary center. These results suggest that aversive taste information from the parabrachial taste area reaches the salivary secretory center via the reticular formation ventral to the parabrachial nucleus.
Collapse
Affiliation(s)
- R Matsuo
- Department of Oral Physiology, Okayama University Dental School, Japan.
| | | | | | | | | | | |
Collapse
|
74
|
Chen Z, Travers SP, Travers JB. Muscimol infusions in the brain stem reticular formation reversibly block ingestion in the awake rat. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1085-94. [PMID: 11247831 DOI: 10.1152/ajpregu.2001.280.4.r1085] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have localized a central pattern generator for mastication to the midline pontomedullary reticular formation (RF) based on cortically induced ororhythmic movements. The present study determined whether this same substrate mediated licking responses evoked by more natural stimuli. Licking in the awake rat was initiated either through an appetitive response to sucrose presented in a bottle or by intraoral (IO) infusions. Oral rejection responses also were obtained by IO infusions of quinine hydrochloride. Small volumes of the GABA(A) agonist muscimol bilaterally infused into the lateral medullary RF significantly reduced licking and oral rejection responses measured electromyographically from the anterior digastric and geniohyoid muscles. Other than the decrement or absence of ororhythmic activity, rats appeared normal and actively approached and probed the water bottle. The suppression was reversible and returned to baseline within 3 h. In contrast, midline infusions of muscimol did not affect licking or rejection responses. We postulate that the lateral medullary RF is an essential final common path for ingestive consummatory responses.
Collapse
Affiliation(s)
- Z Chen
- College of Dentistry, Section of Oral Biology, Ohio State University, 305 W. at 12th Ave., Columbus, OH 43218, USA
| | | | | |
Collapse
|
75
|
Glossopharyngeal nerve regeneration is essential for the complete recovery of quinine-stimulated oromotor rejection behaviors and central patterns of neuronal activity in the nucleus of the solitary tract in the rat. J Neurosci 2001. [PMID: 11069950 DOI: 10.1523/jneurosci.20-22-08426.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The peripheral, central, and behavioral consequences of glossopharyngeal nerve transection (GLX), regeneration, and the prevention of regeneration on the quinine-elicited responses of adult rats were concurrently examined. Oromotor taste reactivity (TR) was videotaped during intraoral infusion of 7 ml of either quinine (3 mm) or distilled water at 17, 52, or 94 d after surgery. We confirmed previous findings by showing that 17 d after neurotomy, (1) the number of circumvallate (CV) and foliate taste buds, (2) gapes (a characteristic aversive TR response), and (3) the number of Fos-like immunoreactive (FLI) neurons in the gustatory NST (gNST), particularly in the medial portion (subfield 5) of the rostral central subdivision (RC), were all severely attenuated in GLX rats. We extended these findings by showing that these lesion-induced effects were enduring when the GL did not regenerate (up to 94 d). In contrast, when the GL regenerated, as few as 52 d were sufficient to re-establish quinine-elicited TR, especially gaping, and FLI expression in RC, particularly within subfield 5, to values comparable with quinine-stimulated sham-operated rats. Evidently, the gNST maintains its potential to restore accurately the organization of neural activity that is disrupted by nerve injury, as assessed by FLI, ultimately leading to the return of normal protective oromotor responses, provided the nerve regenerates. This recovery was complete despite the reappearance of a reduced population of CV taste buds ( approximately 75% control values) and may relate to peripheral and/or central changes that occur in tandem with regeneration of the GL.
Collapse
|
76
|
Acuña-Goycolea C, Fuentealba P, Torrealba F. Anatomical substrate for separate processing of ascending and descending visceral information in the nucleus of the solitary tract of the rat. Brain Res 2000; 883:229-32. [PMID: 11074052 DOI: 10.1016/s0006-8993(00)02845-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We examined the possible existence of divergent visceral pathways arising from the nucleus of the solitary tract, by co-injecting axonal tracers into the parabrachial nucleus and into the ventrolateral medulla. We found that around 5% of NTS neurons projected to both sites, and that neurons projecting to VLM were larger. This parallel organization allows a differential control of the ascending versus descending visceral pathways at an early stage of processing.
Collapse
Affiliation(s)
- C Acuña-Goycolea
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | |
Collapse
|
77
|
Abstract
Technological advances in neuroscience in general, and molecular biology in particular, offer tremendous experimental opportunities for researchers studying the vertebrate gustatory system. Ultimately, however, the neurobiological events must be linked to the taste-related behavior of the animal. Although there has been some promising work in this regard, progress has been hampered by an absence of a unified theoretical framework regarding function, unconfirmed assumptions inherent in many experimental designs, and a misguided predilection for researchers to interpret results from a variety of vertebrate models in the context of human psychophysics. This review article offers a heuristic for the organization of taste function and encourages greater coordination between behavioral and neurobiological approaches to the problem of understanding gustatory processes in the nervous system. The potential power of such coordinated efforts is discussed as well as the possible interpretive pitfalls associated with the neural analysis of gustation.
Collapse
Affiliation(s)
- A C Spector
- Department of Psychology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
78
|
|
79
|
|
80
|
Travers JB, Urbanek K, Grill HJ. Fos-like immunoreactivity in the brain stem following oral quinine stimulation in decerebrate rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R384-94. [PMID: 10444544 DOI: 10.1152/ajpregu.1999.277.2.r384] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study compared the distribution of Fos-like immunoreactivity (FLI) following intraoral stimulation with quinine monohydrochloride (QHCl) in awake intact rats to the pattern obtained in chronic supracollicular decerebrate (CD) rats. Because the behavioral rejection response to QHCl is evident in the CD rat, it was hypothesized that the pattern of FLI in the lower brain stem should be similar in both groups. Overall, the distribution of FLI in the brain stem was quite similar in both intact and CD groups, and QHCl stimulation increased FLI in the rostral (gustatory) nucleus of the solitary tract, the parabrachial nucleus (PBN), and the lateral reticular formation (RF) compared with an unstimulated control group. The CD group differed from the intact group, however, with a trend toward less FLI in the RF and a shift in the pattern of label away from the external subdivision of the PBN. CD rats also had increased FLI in the caudal nucleus of the solitary tract, with or without intraoral infusions. The distribution of QHCl-induced FLI in the brain stem of intact rats thus indicates both local sensorimotor processing as well as the influence of forebrain structures.
Collapse
Affiliation(s)
- J B Travers
- Oral Biology, Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
81
|
Glossopharyngeal nerve transection eliminates quinine-stimulated fos-like immunoreactivity in the nucleus of the solitary tract: implications for a functional topography of gustatory nerve input in rats. J Neurosci 1999. [PMID: 10191326 DOI: 10.1523/jneurosci.19-08-03107.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The relationship between specific gustatory nerve activity and central patterns of taste-evoked neuronal activation is poorly understood. To address this issue within the first central synaptic relay in the gustatory system, we examined the distribution of neurons in the nucleus of the solitary tract (NST) activated by the intraoral infusion of quinine using Fos immunohistochemistry in rats with bilateral transection of the chorda tympani (CTX), bilateral transection of the glossopharyngeal nerve (GLX), or combined neurotomy (DBLX). Compared with nonstimulated and water-stimulated controls, quinine evoked significantly more Fos-like-immunoreactive (FLI) neurons across the rostrocaudal extent of the gustatory NST (gNST), especially within its dorsomedial portion (subfield 5). Although the somatosensory aspects of fluid stimulation contributed to the observed increase in FLI neurons, the elevated number and spatial distribution of FLI neurons in response to quinine were remarkably distinguishable from those in response to water. GLX and DBLX produced a dramatic attenuation of quinine-evoked FLI neurons and a shift in their spatial distribution such that their number and pattern were indiscernable from those observed in water-stimulated controls. Although CTX had no effect on the number of quinine-evoked FLI neurons within subfield 5 at intermediate levels of the gNST, it produced intermediate effects elsewhere; yet, the spatial distribution of the quinine-evoked FLI neurons was not altered by CTX. These findings suggest that the GL provides input to all FLI neurons responsive to quinine, however, some degree of convergence with CT input apparently occurs in this subpopulation of neurons. Although the role of these FLI neurons in taste-guided behavioral responses to quinine remains speculative, their possible function in oromotor reflex control is considered.
Collapse
|
82
|
Davis BJ, Smith HM. Neurokinin-1 receptor immunoreactivity in the nucleus of the solitary tract in the hamster. Neuroreport 1999; 10:1003-6. [PMID: 10321475 DOI: 10.1097/00001756-199904060-00020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Substance P (SP) modulates the activity of taste-responsive neurons in the gustatory zone of the nucleus of the solitary tract (NST) in the hamster. The distribution of the neurokinin-1 (NK1) receptor (i.e. the SP receptor) was mapped and compared with the distribution of SP immunoreactivity to identify the sites of ligand-receptor interactions. NK1-immunoreactive puncta and somata were located mostly in the rostral lateral, upper half of the rostral central and medial NST subnuclei. These subnuclei also contained intense SP-immunoreactive puncta, and are known to receive substantial inputs via gustatory and somatosensory afferent fibers. The ventral subnucleus, which is involved in visceromotor reflexes accompanying ingestion, contained little NK1 or lighter SP-immunoreactivity. These findings suggest that SP modulates taste activity destined for the ascending gustatory pathway at the level of the first central synapse in the gustatory pathway.
Collapse
Affiliation(s)
- B J Davis
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore 21201-1509, USA
| | | |
Collapse
|
83
|
Gill CF, Madden JM, Roberts BP, Evans LD, King MS. A subpopulation of neurons in the rat rostral nucleus of the solitary tract that project to the parabrachial nucleus express glutamate-like immunoreactivity. Brain Res 1999; 821:251-62. [PMID: 10064811 DOI: 10.1016/s0006-8993(98)01270-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In rodents, gustatory information is transmitted from second order neurons in the rostral nucleus of the solitary tract (rNST) to the parabrachial nucleus (PBN) in the pons. The chemical nature of this projection is unknown. Therefore, the goal of the current study was to determine if rNST neurons that project to the PBN express glutamate-like immunoreactivity. Projection neurons were retrogradely labeled following stereotaxic injection of rhodamine-filled latex microspheres into the right PBN of seven rats while glutamate-immunoreactive (GLU-IR) structures were visualized in the same tissue using an immunoperoxidase procedure. The number of single- and double-labeled neurons located in the right (ipsilateral) and left rNST, in each of the nuclear subdivisions as well as their position along the rostral-caudal axis of the rNST was determined. GLU-IR cell bodies were located throughout the rNST. Although the rostral central subdivision contained the highest percentage (33.8%) of GLU-IR perikarya, immunolabeled neurons were most concentrated (number/area of subdivision) within the medial subnucleus. The rostral third of the rNST contained the fewest (20. 5%) and lowest density of GLU-IR cell bodies. The highest percentage of rNST neurons retrogradely labeled from the PBN were located ipsilateral (85.4%) to the pontine injection site, in the middle third of the nucleus (44.2%) and within the rostral central subdivision (52.4%). Overall, 18% of the labeled rNST projection neurons were GLU-IR. The distribution of double-labeled neurons mirrored that of the projection neurons with the largest number located in the ipsilateral rNST (84.5%), middle third of the nucleus (40.5%) and rostral central subdivision (64.7%). These results indicate that glutamate may be a main component of the ascending pathway from the rNST to the PBN. In addition, since GLU-IR neurons were located throughout the rNST and most were not retrogradely-labeled, the current results suggest that glutamate may be an important neurotrans-mitter within the medulla.
Collapse
Affiliation(s)
- C F Gill
- Unit 8264, 421 N. Woodland Blvd., Biology Department, Stetson University, DeLand, FL 32720, USA
| | | | | | | | | |
Collapse
|
84
|
Streefland C, Maes FW, Bohus B. Autonomic brainstem projections to the pancreas: a retrograde transneuronal viral tracing study in the rat. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1998; 74:71-81. [PMID: 9915620 DOI: 10.1016/s0165-1838(98)00047-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The present study describes brainstem nuclei that participate in the autonomic innervation of the pancreas, using a retrograde viral transneuronal tracing technique. It aimed at identifying the neuronal architecture of the parasympathetic, gustatory-induced insulin release by the endocrine pancreas (preabsorptive insulin response, PIR). Autonomic pathways organized for reflex adjustments of the end organ, as it happens in the PIR, involve relatively simple circuits. This implies a short brainstem circuit from the rostral gustatory nucleus of the solitary tract to the dorsal motor nucleus of the vagus. The present findings confirm projections to the pancreas, originating from preganglionic neurons in the dorsal motor nucleus of the vagus. Transneuronal labeling was detected in the medial, and to a lesser extent in the lateral nucleus of the solitary tract mainly at caudal and intermediate levels. Furthermore, infected neurons were seen in the brainstem in the dorsal and ventral part of the medullary reticular formation, in the area postrema and in the raphe nuclei. Sparse labeling was found in the gustatory zone of the nucleus tractus solitarius. These results indicate that a direct connection between the rostral nucleus tractus solitarius and the medial dorsal motor nucleus of the vagus is very unlikely, so that one or more intermediate stations may be involved. Candidates to complete this pathway are the intermediate or caudal nucleus tractus solitarius, the medullary reticular formation or the parabrachial nucleus.
Collapse
Affiliation(s)
- C Streefland
- Groningen Graduate School for Behavioral and Cognitive Neurosciences, Department of Animal Physiology, University of Groningen, Haren, The Netherlands.
| | | | | |
Collapse
|
85
|
Karimnamazi H, Travers JB. Differential projections from gustatory responsive regions of the parabrachial nucleus to the medulla and forebrain. Brain Res 1998; 813:283-302. [PMID: 9838165 DOI: 10.1016/s0006-8993(98)00951-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study combined extracellular electrophysiology with anterograde and retrograde tracing techniques to determine efferent projections from taste responsive sites within the parabrachial nucleus (PBN). Taste activity was recorded from two distinct regions of the PBN, the waist region consisting of the ventrolateral (VL) and central medial (CM) subnuclei, and the external region, consisting of the external medial (EM) and external lateral (EL) subnuclei. Ascending and descending projections from these two regions differed. Small biotinylated dextran injections placed in taste responsive sites in the waist area produced a prominent descending projection to the medullary parvocellular reticular formation, a projection nearly non-existent from the external region. Differences in ascending projections were more subtle. Projections to the thalamus were bilateral in all cases, however, the waist region had a larger ipsilateral thalamic projection than the external region and the external region had a larger contralateral projection compared to the waist. Central nucleus of amygdala (CNA) projections from the waist area were primarily from posterior tongue responsive sites in VL and terminated in the central medial and lateral CNA subnuclei; external region projections were distributed to the capsular region of CNA. Both the external and waist region projected to substantia innominata (SI). Different efferent projections from the two gustatory responsive regions of the PBN may reflect functional specialization of PBN subnuclei. Descending projections from orally responsive sites in the waist area project to the lateral parvocellular reticular formation, a region implicated in brainstem circuitry underlying consummatory components of ingestive function. The external region, contains cells responsive to pain and oral aversive stimuli, but does not apparently contribute directly to local brainstem functions. Rather, forebrain pathways appear critical to the expression of external region functions.
Collapse
Affiliation(s)
- H Karimnamazi
- Department of Oral Biology, College of Dentistry, The Ohio State University, 305 W. 12th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
86
|
Halsell CB. Differential distribution of amygdaloid input across rostral solitary nucleus subdivisions in rat. Ann N Y Acad Sci 1998; 855:482-5. [PMID: 9929642 DOI: 10.1111/j.1749-6632.1998.tb10609.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The orosensory nucleus of the solitary tract (NST) receives input from the amygdala, a key node in the forebrain feeding-related network. Despite numerous studies documenting the existence of this pathway, however, too little is known about the input organization to the gustatory brainstem to allow definitive conclusions about its functional role. Therefore, towards the long-term goal of characterizing such descending regulatory pathways, the purpose of the present study was to describe the distribution of input arising from the amygdala. The anterograde tracer, biotinylated dextran, was injected into the central amygdala based on stereotaxic coordinates in seven adult male rats. Following a 2-week survival time, the animals were sacrificed. Transverse sections of the brains were processed to visualize transported tracer and NST anatomical topography. Labeled fibers were differentially distributed among subdivisions throughout the rostrocaudal extent of NST. Within the rostral NST, the medial (M) subdivision had the highest density of terminal-like endings and swellings (30% of total density), followed by the ventral half of rostral central (vRC, 29%), ventral (V, 25%), dorsal half of rostral central (dRC, 12%) and rostral lateral (RL, 4%). In conclusion, it appears that amygdalar input preferentially overlaps with NST subdivisions (M, V, vRC) containing neurons with local efferent projections to the caudal NST and reticular nuclei that are implicated in medullary reflex circuits, rather than with subdivisions (dRC, RL) receiving primary orosensory afferent input and containing neurons having ascending efferent projections to the parabrachial nucleus. Thus, descending feeding-related pathways may be positioned to act as regulatory substrates controlling the output gain of brainstem circuits which may serve to modulate sensorimotor and autonomic reflexes in response to ingestive behaviors.
Collapse
Affiliation(s)
- C B Halsell
- Section of Oral Biology, College of Dentistry, Ohio State University, Columbus 43210, USA.
| |
Collapse
|
87
|
Behavioral discrimination between quinine and KCl is dependent on input from the seventh cranial nerve: implications for the functional roles of the gustatory nerves in rats. J Neurosci 1998. [PMID: 9592112 DOI: 10.1523/jneurosci.18-11-04353.1998] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rat glossopharyngeal nerve (GL), which innervates posterior tongue taste buds, contains several physiologically defined taste fiber types; at least one type is primarily responsive to certain alkaloids (such as quinine), and another is primarily responsive to acids and salts. In contrast, the chorda tympani (CT), which innervates anterior tongue taste buds, does not appear to contain fibers that differentially respond to quinine relative to salts and acids. It was therefore predicted that GL transection should disrupt behavioral discriminations between quinine and either acids or salts. Water-restricted rats were trained to press one of two levers if a sampled taste stimulus was quinine (0.1-1.0 mM) and the second lever if the sampled stimulus was KCl (0.1-1.0 M). Sham surgery, GL transection, and sublingual and submaxillary salivary gland extirpation were found to have no effect relative to presurgical performance. Both CT transection and combined GL and CT transection caused a substantial and approximately equal decrement in discrimination performance. Removal of the gustatory branches of the seventh cranial nerve [CT and greater superficial petrosal (GSP)] nearly eliminated the discrimination of the taste stimuli, and combined transection of the CT, GL, and GSP unequivocally reduced performance to chance levels. Although these findings were not presaged by the known electrophysiology, they nonetheless compare favorably with other studies reporting little effect of GL transection on behavioral responses to quinine. These results, in the context of other discrimination studies reported in the literature, suggest that, in rats, the neural coding of taste quality depends primarily on the input of the facial nerve.
Collapse
|
88
|
Abstract
The location, organization and anatomical connections of a central pattern generator (CPG) for licking are discussed. Anatomical and physiological studies suggest a brainstem location distributed within several subdivisions of the medullary reticular formation (RF). The involvement of widespread RF regions is evident from brainstem recording experiments in awake freely moving preparations and studies employing electrical stimulation of the frontal cortex to produce ororhythmic activity. The complex multifunctional properties of RF neurons producing licking are indicated by their activity during licking, swallowing and the rejection of an aversive gustatory stimulus. Anatomical studies place descending inputs to a brainstem CPG for licking to widely distributed areas of both the medial and lateral RF. In contrast, most projections originating from brainstem orosensory nuclei terminate primarily within the lateral RF. Because many pre-oromotor neurons appear concentrated largely in the intermediate zone of the RF (IRt), it is hypothesized that neurons from both lateral and medial sites converge within the IRt to control oromotor function.
Collapse
Affiliation(s)
- J B Travers
- College of Dentistry, Department of Psychology, Ohio State University, Columbus 43210, USA.
| | | | | |
Collapse
|
89
|
Halsell CB, Travers SP. Anterior and posterior oral cavity responsive neurons are differentially distributed among parabrachial subnuclei in rat. J Neurophysiol 1997; 78:920-38. [PMID: 9307125 DOI: 10.1152/jn.1997.78.2.920] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The responses of single parabrachial nucleus (PBN) neurons were recorded extracellularly to characterize their sensitivity to stimulation of individual gustatory receptor subpopulations (G neurons, n = 75) or mechanical stimulation of defined oral regions (M neurons, n = 54) then localized to morphologically defined PBN subdivisions. Convergence from separate oral regions onto single neurons occurred frequently for both G and M neurons, but converging influences were more potent when they arose from nearby locations confined to the anterior (AO) or posterior oral cavity (PO). A greater number of G neurons responded optimally to stimulation of AO than to PO receptor subpopulations, and these AO-best G neurons had higher spontaneous and evoked response rates but were less likely to receive convergent input than PO-best G neurons. In contrast, proportions, response rates, and convergence patterns of AO- and PO-best M neurons were more comparable. The differential sensitivity of taste receptor subpopulations was reflected in PBN responses. AO stimulation with NaCl elicited larger responses than PO stimulation; the converse was true for QHCl stimulation. Within the AO, NaCl elicited a larger response when applied to the anterior tongue than to the nasoincisor duct. Hierarchical cluster analysis of chemosensitive response profiles suggested two groups of PBN G neurons. One group was composed of neurons optimally responsive to NaCl (N cluster); the other to HCl (H cluster). Most N- and H-cluster neurons were AO-best. Although they were more heterogenous, all but one of the remaining G neurons were unique in responding best or second-best to quinine and so were designated as quinine sensitive (Q+). Twice as many Q+ neurons were PO- compared with AO-best. M neurons were scattered across PBN subdivisions, but G neurons were concentrated in two pairs of subdivisions. The central medial and ventral lateral subdivisions contained both G and M neurons but were dominated by AO-best N-cluster G neurons. The distribution of G neurons in these subdivisions appeared similar to distributions in most previous studies of PBN gustatory neurons. In contrast to earlier studies, however, the external medial and external lateral-inner subdivisions also contained G neurons, intermingled with a comparable population of M neurons. Unlike cells in the central medial and ventral lateral subnuclei, nearly every neuron in the external subnuclei was PO best, and only one was an N-cluster cell. In conclusion, the present study supports a functional distinction between sensory input from the AO and PO at the pontine level, which may represent an organizing principle throughout the gustatory neuraxis. Furthermore, two morphologically distinct pontine regions containing orosensory neurons are described.
Collapse
Affiliation(s)
- C B Halsell
- Section of Oral Biology, The Ohio State University, Columbus 43210, USA.
| | | |
Collapse
|
90
|
Distribution of fos-like immunoreactivity in the medullary reticular formation of the rat after gustatory elicited ingestion and rejection behaviors. J Neurosci 1997. [PMID: 9133401 DOI: 10.1523/jneurosci.17-10-03826.1997] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The distribution of neurons in the medullary reticular formation (RF) activated by the ingestion of sucrose or rejection of quinine was examined using standard immunohistochemical techniques to detect the expression of the Fos protein product of the immediate-early gene c-fos. Double-labeling techniques were used to gain further insight into the possible functional significance of RF neurons exhibiting Fos-like immunoreactivity (FLI). Compared with sucrose and unstimulated controls, quinine elicited significantly more FLI neurons in three specific RF subdivisions: parvocellular reticular nucleus (PCRt), intermediate reticular nucleus (IRt), and dorsal medullary reticular nucleus (MdD). Moreover, the number of FLI neurons in the RF of quinine-stimulated animals was significantly correlated with the degree of oromotor activity. Thus, the distinct distribution of FLI neurons throughout the RF after quinine may reflect the activation of a specific oral rejection circuit. The double-labeling results indicated a high degree of segregation between FLI neurons and premotor projection neurons to the hypoglossal nucleus (mXII) retrogradely labeled with Fluorogold. Thus, although there were a significant number of double-labeled neurons in the RF, the major concentration of premotor projection neurons to mXII in IRt were medial to the preponderance of FLI neurons in the PCRt. In contrast, there was substantial overlap between FLI neurons in the RF and labeled fibers after injections of the anterograde tracer, biotinylated dextran into the rostral (gustatory) portion of the nucleus of the solitary tract. These results support a medial (premotor)/lateral (sensory) functional topography of the medullary RF.
Collapse
|