51
|
Cai J, Xue H, Zhan M, Rao MS. Characterization of Progenitor-Cell-Specific Genes Identified by Subtractive Suppression Hybridization. Dev Neurosci 2005; 26:131-47. [PMID: 15711056 DOI: 10.1159/000082133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 02/23/2004] [Indexed: 11/19/2022] Open
Abstract
We have utilized subtractive suppression hybridization (SSH) to identify differentially expressed genes present in either neuroepithelial (NEP) cells or glial restricted precursor (GRP) cells. Eighteen clones enriched in GRP cells and 28 in NEP cells were identified. Five of the GRP-specific clones (tenascin C, cystatin C, GABA transporter 3, extracellular matrix molecule 2 and H2-4) were characterized further, and their glial specificity was confirmed by RT-PCR, in situ hybridization and immunocytochemistry. H2-4 (an expressed sequence tag) was shown to be part of chondroitin sulfate proteoglycan 3. Overall, our results show that SSH can be used to identify lineage- and stage-specific markers and that extracellular matrix molecules likely play important roles in the migration and differentiation of GRPs.
Collapse
Affiliation(s)
- Jingli Cai
- Laboratoryof Neurosciences, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
52
|
Abstract
Matricellular proteins mediate interactions between cells and their extracellular environment. This functional protein family includes several structurally unrelated members, such as SPARC, thrombospondin 1, tenascin C, and osteopontin, as well as some homologs of these proteins, such as thrombospondin 2 and tensascin X. SPARC, a prototypic matricellular protein, and its homolog hevin, have deadhesive effects on cultured cells and have been characterized as antiproliferative factors in some cellular contexts. Both proteins are produced at high levels in many types of cancers, especially by cells associated with tumor stroma and vasculature. In this Prospect article we summarize evidence for SPARC and hevin in the regulation of tumor cell growth, differentiation, and metastasis, and we propose that matricellular proteins such as these perform critical functions in desmoplastic responses of tumors that culminate in their dissemination and eventual colonization of other sites.
Collapse
Affiliation(s)
- Paul E Framson
- Department of Vascular Biology, The Hope Heart Institute, 1124 Columbia Street, Seattle, Washington 98104, USA
| | | |
Collapse
|
53
|
Sullivan MM, Sage EH. Hevin/SC1, a matricellular glycoprotein and potential tumor-suppressor of the SPARC/BM-40/Osteonectin family. Int J Biochem Cell Biol 2004; 36:991-6. [PMID: 15094114 DOI: 10.1016/j.biocel.2004.01.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 01/07/2004] [Accepted: 01/13/2004] [Indexed: 12/20/2022]
Abstract
Hevin is an extracellular matrix-associated, secreted glycoprotein belonging to the secreted protein acidic and rich in cysteine (SPARC) family of matricellular proteins. It contains three conserved structural domains that are implicated in the regulation of cell adhesion, migration, and proliferation. Hevin is expressed during embryogenesis and tissue remodeling and is especially prominent in brain and vasculature. Its down-regulation in a number of cancers and the possibility of its functional compensation by SPARC has led to recent interest in hevin as a tumor suppressor and regulator of angiogenesis.
Collapse
Affiliation(s)
- Millicent M Sullivan
- Department of Vascular Biology, The Hope Heart Institute, 1124 Columbia Street, Seattle, WA 98104, USA.
| | | |
Collapse
|
54
|
Brekken RA, Sullivan MM, Workman G, Bradshaw AD, Carbon J, Siadak A, Murri C, Framson PE, Sage EH. Expression and characterization of murine hevin (SC1), a member of the SPARC family of matricellular proteins. J Histochem Cytochem 2004; 52:735-48. [PMID: 15150282 DOI: 10.1369/jhc.3a6245.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hevin, also known as SC1, MAST 9, SPARC-like 1, RAGS1 and ECM2, is a member of the SPARC-related family of matricellular proteins. Mouse hevin is 53% identical to mouse SPARC, and both proteins share a follistatin-like module and an extracellular Ca(2+)-binding (E-C) domain. SPARC functions as a modulator of cell-matrix interactions, a regulator of growth factor activity, a de-adhesive protein, and a cell cycle inhibitor. Although the functions of mouse hevin are unknown, its human orthologue has been shown to be de-adhesive for endothelial cells. We now report the production of recombinant mouse hevin in insect cells through the use of a baculoviral expression system and its purification by anion-exchange, size-exclusion chromatography, and isoelectric focusing. Furthermore, we have produced rat anti-hevin monoclonal antibodies (MAbs) that have been characterized by indirect and capture ELISAs, immunoblotting, immunoprecipitation, and immunohistochemistry (IHC). Recombinant hevin, present as a soluble factor or bound to tissue-culture plastic, inhibited the spreading of bovine aortic endothelial cells in vitro. IHC analysis of hevin in normal human and mouse tissues revealed a limited expression pattern in many tissues, with particularly dominant staining in dermis, ducts, vasculature, muscle, and brain. In lung and pancreatic tumor xenografts, we found distinct reactivity with MAbs that were selective for stromal cells, tumor cells, and/or endothelial cells. Although similar to SPARC in its anti-adhesive activities, hevin nevertheless exhibits a distinctive histological distribution that, in certain invasive tumors, is associated with desmoplasia.
Collapse
Affiliation(s)
- Rolf A Brekken
- Department of Vascular Biology, The Hope Heart Institute, Seattle, Washington 98104-2046, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Hambrock HO, Kaufmann B, Müller S, Hanisch FG, Nose K, Paulsson M, Maurer P, Hartmann U. Structural characterization of TSC-36/Flik: analysis of two charge isoforms. J Biol Chem 2003; 279:11727-35. [PMID: 14701841 DOI: 10.1074/jbc.m309318200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant forms of the glycoprotein TSC-36/Flik were expressed in human cells and used to compare their structural and functional properties with those described for other members of the BM-40/SPARC/osteonectin protein family. TSC-36 was found to occur in two charge isoforms that differ in the extent of sialylation of otherwise identical N-linked, complex type oligosaccharides. Conformational analysis with both circular dichroism and intrinsic fluorescence spectroscopy showed a lack of significant structural changes upon calcium addition or depletion. This finding is in contrast to results obtained for several other BM-40 family members and indicates that the extracellular calcium-binding domain in TSC-36 is non-functional. The lack of conservation of important functional features common to several other members of the BM-40 family indicates that TSC-36, despite its sequence homology to BM-40, has evolved clearly distinct properties.
Collapse
Affiliation(s)
- Harald O Hambrock
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, D-50931 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Vannahme C, Gösling S, Paulsson M, Maurer P, Hartmann U. Characterization of SMOC-2, a modular extracellular calcium-binding protein. Biochem J 2003; 373:805-14. [PMID: 12741954 PMCID: PMC1223551 DOI: 10.1042/bj20030532] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Accepted: 05/13/2003] [Indexed: 01/11/2023]
Abstract
We have isolated the novel gene SMOC-2, which encodes a secreted modular protein containing an EF-hand calcium-binding domain homologous to that in BM-40. It further consists of two thyroglobulin-like domains, a follistatin-like domain and a novel domain found only in the homologous SMOC-1. Phylogenetic analysis of the calcium-binding domain sequences showed that SMOC-1 and -2 form a separate group within the BM-40 family. The human and mouse SMOC-2 sequences are coded for by genes consisting of 13 exons located on chromosomes 6 and 17, respectively. Analysis of recombinantly expressed protein showed that SMOC-2 is a glycoprotein with a calcium-dependent conformation. Results from Northern blots and reverse transcription PCR revealed a widespread expression in many tissues.
Collapse
Affiliation(s)
- Christian Vannahme
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann Strasse 52, D-50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
57
|
Sodek J, Zhu B, Huynh MH, Brown TJ, Ringuette M. Novel functions of the matricellular proteins osteopontin and osteonectin/SPARC. Connect Tissue Res 2003; 43:308-19. [PMID: 12489175 DOI: 10.1080/03008200290001050] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteopontin (OPN) and osteonectin/SPARC (ON/SPARC) are prominent matricellular components of the extracellular matrix of mineralized tissues of bones and teeth in which they can regulate the formation and growth of hydroxyapatite crystals and influence a variety of cell activities. OPN regulates cell responses through several integrin receptors and is also a ligand for the CD44 receptor, through which it acts as a chemoattractant. Although a cell-surface receptor for SPARC has not been identified it can block cell-cell and cell-matrix interactions and inhibit cell migration and chemotaxis. OPN and SPARC also appear to function inside cells. Thus, OPN appears to exist in association with the CD44 receptor inside migratory cells, while intracellular SPARC is associated with axonemal tubulin in ciliated epithelial cells. Analyses of fibroblasts and peritoneal macrophages from OPN-null and CD44-null cells show impaired functionality involving migration and cell fusion required for osteoclast formation, while disruption of SPARC expression leads to developmental defects in Xenopus. To gain further insights into the intracellular functions of OPN and SPARC, we have used the yeast two-hybrid system to identify potential interacting molecules. Using full-length SPARC as bait the carboxy-terminal domain, which contains two EF-hand, high-affinity binding sites, was found to have transcriptional activity, while several novel proteins that interact with the amino-terminal domains of SPARC and full-length OPN have been identified. The identification of OPN and SPARC inside specialized cells introduces a novel concept in cellular regulation by matricellular proteins.
Collapse
Affiliation(s)
- Jaro Sodek
- CIHR Group in Matrix Dynamics, 234 FitzGerald Building, Faculty of Dentistry, University of Toronto, Toronto M5S 3E2, Canada.
| | | | | | | | | |
Collapse
|
58
|
Hambrock HO, Nitsche DP, Hansen U, Bruckner P, Paulsson M, Maurer P, Hartmann U. SC1/hevin. An extracellular calcium-modulated protein that binds collagen I. J Biol Chem 2003; 278:11351-8. [PMID: 12538579 DOI: 10.1074/jbc.m212291200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SC1, a member of the BM-40 family of extracellular matrix proteins, was recombinantly expressed in a eukaryotic expression system. The full-length protein as well as truncated versions were purified to homogeneity under non-denaturing conditions. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry of full-length SC1 revealed a mass of 87.8 kDa of which 16.8 kDa is contributed by posttranslational modifications. In electron microscopy, after negative staining, SC1 was revealed as a globule attached to a thread-like structure. A calcium dependence of the SC1 conformation could be demonstrated by fluorescence spectroscopy. In the extracellular matrix of cultured osteosarcoma cells SC1 was found associated with collagen I-containing fibrils, and binding of SC1 to reconstituted collagen I fibrils could be demonstrated by immunogold labeling and electron microscopy. SC1 showed a broad expression in a variety of tissues.
Collapse
Affiliation(s)
- Harald O Hambrock
- Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
59
|
Kelley MW. Cell adhesion molecules during inner ear and hair cell development, including notch and its ligands. Curr Top Dev Biol 2003; 57:321-56. [PMID: 14674486 DOI: 10.1016/s0070-2153(03)57011-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cellular adhesion plays a key role in a number of unique developmental events, including proliferation, cell fate, morphogenesis, neurite outgrowth, fasciculation, and synaptogensis. The number of families of molecules that can mediate cell adhesion and the number of members of each of those families has continued to increase over time. Moreover, the potential for the formation of different pairs of heterodimers with different binding specificities, and for both homo- and hetero-dimeric interactions suggest that a vast number of specific signaling events can be mediated through the expression of different combinations of adhesion factors at different developmental time points. By comparison with the number of known adhesion molecules and their potential effects, our understanding of the role of adhesion in ear development is extremely limited. The patterns of expression for some adhesion molecules have been determined for some aspects of inner ear development. Similarly, with a few exceptions, functional data to indicate the roles of these adhesion molecules are also lacking. However, a consideration of even the limited existing data must lead to the conclusion that adhesion molecules play key roles in all aspects of the development of the auditory system. Unique expression domains for different groups of adhesion molecules within the developing otocyst and ear strongly suggest a role in the determination of different cellular domains. Similarly, the specific expression of adhesion molecules on developing neurites and their target hair cells, suggests a key role for adhesion in the establishment of neuronal connections and possible the development of tonotopy. Finally, the recent demonstration that Cdh23 and Pcdh15 play specific roles in the formation of the hair cell stereociliary bundle provides compelling evidence for the importance of adhesion molecules in the development of stereocilia. With the imminent completion of the mouse genome, it seems likely that the number of adhesion molecules can soon be fixed and that it will then be possible to generate a more comprehensive map of expression of these molecules within the developing inner ear. At the same time, the generation of new transgenic and molecular technologies promises to provide researchers with new tools to examine the specific effects of different adhesion molecules during inner ear development.
Collapse
Affiliation(s)
- Matthew W Kelley
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland 20850, USA
| |
Collapse
|
60
|
Genter MB, Burman DM, Vijayakumar S, Ebert CL, Aronow BJ. Genomic analysis of alachlor-induced oncogenesis in rat olfactory mucosa. Physiol Genomics 2002; 12:35-45. [PMID: 12419858 DOI: 10.1152/physiolgenomics.00120.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alachlor induces olfactory mucosal tumors in rats in a highly ordered temporal process. We used GeneChip analysis to test the hypothesis that histological progression and oncogenic transformation are accompanied by gene expression changes that might yield clues as to the molecular pathogenesis of tumor formation. Acute alachlor exposure caused upregulation of matrix metalloproteinases (MMP)-2 and -9, tissue inhibitor of metalloproteinase-1, carboxypeptidase Z, and other genes related to extracellular matrix homeostasis. Heme oxygenase was upregulated acutely and maintained elevated expression. Expression of ebnerin, related to the putative human tumor suppressor gene DMBT1, progressively increased in alachlor-treated olfactory mucosa. Progression from adenomas to adenocarcinoma was correlated with upregulation of genes in the wnt signaling pathway. Activated wnt signaling was confirmed by immunohistochemical localization of beta-catenin to nuclei of adenocarcinomas, but not earlier lesions. These observations suggest that initiation and progression of alachlor-induced olfactory mucosal tumors is associated with alterations in extracellular matrix components, induction of oxidative stress, upregulation of ebnerin, and final transformation to a malignant state by wnt pathway activation.
Collapse
Affiliation(s)
- Mary Beth Genter
- Departmet of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267-0056, USA.
| | | | | | | | | |
Collapse
|
61
|
Stegall M, Park W, Kim D, Kremers W. Gene expression during acute allograft rejection: novel statistical analysis of microarray data. Am J Transplant 2002; 2:913-25. [PMID: 12482143 DOI: 10.1034/j.1600-6143.2002.21007.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
High-throughput microarrays promise a comprehensive analysis of complex biological processes, yet their applicability is hampered by problems of reproducibility and data management. The current study examines some of the major questions of microarray use in a well-described model of allograft rejection. Using the Brown Norway to Lewis heterotopic heart transplant model, highly purified RNA was isolated from cardiac tissue at postoperative days (POD) 3, 5 and 7 and hybridized onto Affymetrix U34A microarrays. Using the log average ratio (LAR), changes in gene expression were monitored at each timepoint and p-values generated through statistical analysis. Microarray data were verified for 13 significant transcripts using RT-PCR. Of the 8800 transcripts studied, 2864 were increased on POD 3, 1418 on POD 5 and 2745 on POD 7. Verifying previous studies, many up-regulated genes appeared to be associated with the inflammatory process and graft infiltrating cells. Down-regulated transcripts included many novel molecules such as SC1 and decorin. LAR analysis provides a useful approach to analyze microarray data. Results were reproducible and correlated well with both RT-PCR and prior studies. Most importantly, these results provide new insights into the pathogenesis of acute rejection and suggest new molecules for future studies.
Collapse
Affiliation(s)
- Mark Stegall
- Department of Surgery, Division of Transplantation, Mayo Foundation and Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
62
|
Vannahme C, Smyth N, Miosge N, Gösling S, Frie C, Paulsson M, Maurer P, Hartmann U. Characterization of SMOC-1, a novel modular calcium-binding protein in basement membranes. J Biol Chem 2002; 277:37977-86. [PMID: 12130637 DOI: 10.1074/jbc.m203830200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated the novel gene SMOC-1 that encodes a secreted modular protein containing an EF-hand calcium-binding domain homologous to that in BM-40. It further consists of two thyroglobulin-like domains, a follistatin-like domain and a novel domain. Recombinant expression in human cells showed that SMOC-1 is a glycoprotein with a calcium-dependent conformation. Results from Northern blots, reverse transcriptase-PCR, and immunoblots revealed a widespread expression in many tissues. Immunofluorescence studies with an antiserum directed against recombinant human SMOC-1 demonstrated a basement membrane localization of the protein and additionally its presence in other extracellular matrices. Immunogold electron microscopy confirmed the localization of SMOC-1 within basement membranes in kidney and skeletal muscle as well as its expression in the zona pellucida surrounding the oocyte.
Collapse
Affiliation(s)
- Christian Vannahme
- Institute for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann Strasse 52, D-50931 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Mothe AJ, Brown IR. Effect of hyperthermia on the transport of mRNA encoding the extracellular matrix glycoprotein SC1 into Bergmann glial cell processes. Brain Res 2002; 931:146-58. [PMID: 11897100 DOI: 10.1016/s0006-8993(02)02270-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
SC1 is an extracellular matrix glycoprotein that is related to the multifunctional protein SPARC. These matricellular members play regulatory roles in modulating cellular interactions. SC1 expression is enriched in the central nervous system during embryonic and postnatal development as well as in the adult brain. In the rat cerebellum, SC1 is expressed at high levels in Bergmann glial cells and their radial fibers which project into the synaptic-rich molecular layer. At specific stages of development and in the adult, SC1 mRNA is selectively transported into cellular processes of these cells. In the present study, we have examined the effect of whole-body hyperthermia on the transport of SC1 mRNA in Bergmann glial cells of the rat cerebellum. Our results show that SC1 mRNA transport is diminished at 10 and 15 h post-hyperthermia, but returns to control levels by 24 h after heat shock. One of the characteristics of a heat shock on cells grown in tissue culture is a collapse of the cytoskeletal network. Intact components of the cytoskeleton are necessary for the transport of mRNA into peripheral processes of cells. However, in vivo hyperthermia does not appear to affect the morphology of the intermediate filament proteins GFAP, vimentin, or the beta-tubulin component of microtubules in Bergmann glial cell processes. During the hyperthermic time course, levels of vimentin protein increase, which is reflected by immunoreactivity of activated astrocytes and microvasculature in cerebellar white matter.
Collapse
Affiliation(s)
- Andrea J Mothe
- Department of Zoology, University of Toronto at Scarborough, Ontario, Canada, M1C 1A4
| | | |
Collapse
|
64
|
Ikemoto M, Takita M. [Microinfusion experiment for mice and its application to pharmacological studies]. Nihon Yakurigaku Zasshi 2001; 118:277-82. [PMID: 11680171 DOI: 10.1254/fpj.118.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It is urgently necessary to clarify functions of uncharacterized proteins. To understand life processes, we must investigate the functions and networks of proteins expressed from genomic DNA. In the near future, microinfusion experiments will become a more important method for analyzing uncharacterized function of proteins in vivo. Here we provide a practical manual for performing microinfusion experiments in mice. We also describe our experiment in which we performed a single injection of morphine following Secreted Protein Acidic and Rich in Cysteine (SPARC) infusion into the basolateral amygdala of previously uninjected mice and found markedly enhanced locomotor activity. We discuss the utility of microinfusion experiments in mice.
Collapse
Affiliation(s)
- M Ikemoto
- Gene Discovery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | |
Collapse
|
65
|
Wrang ML, Møller F, Alsbo CW, Diemer NH. Changes in gene expression following induction of ischemic tolerance in rat brain: detection and verification. J Neurosci Res 2001; 65:54-8. [PMID: 11433429 DOI: 10.1002/jnr.1127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tolerance against ischemic insults can be elicited in the CA1 region of rat hippocampus by inducing a short ischemic period 2-3 days prior to the ischemic insult. To detect genes whose expression changes following induction of ischemic tolerance (IT), we applied a differential display technique called restriction fragment differential display-PCR (RFDD-PCR). RFDD-PCR displays the coding region of mRNA and allows detection of differentially expressed mRNA. Double-stranded cDNA generated using a T25V primer is digested by the endonuclease TaqI, and adapters are ligated onto the cDNA fragments. When amplifying the adapter-containing cDNA fragments under high-stringency conditions, reproducible PCR profiles are obtained. By comparing these profiles from naïve and ischemia-tolerant rat brains statistically, significant expression changes of 20 fragments were identified. To verify the observed changes, quantitative PCR and in situ hybridization were performed for three fragments representing proteins with quite different functions (GluR2-flop, SC1, and p68 RNA helicase). Quantitative PCR displayed the same degree of regulation as RFDD-PCR, but in situ hybridization did not display any regulation. As the applied PCR-based techniques detect only polyadenylated mRNA, whereas in situ hybridization detects both nonadenylated and adenylated mRNA, changes in the polyadenylation state of the mRNA, rather than inconsistent changes in the total amount of mRNA, probably explain this discrepancy. Thus, our results show that the expression of genes hitherto not related to IT changes with the induction of IT and that the degree of regulation displayed by RFDD-PCR can be verified by quantitative PCR.
Collapse
Affiliation(s)
- M L Wrang
- Laboratory of Neuropathology, Institute of Molecular Pathology, University of Copenhagen, and NeuroScience PharmaBiotech, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
66
|
Mothe AJ, Brown IR. Expression of mRNA encoding extracellular matrix glycoproteins SPARC and SC1 is temporally and spatially regulated in the developing cochlea of the rat inner ear. Hear Res 2001; 155:161-74. [PMID: 11335086 DOI: 10.1016/s0378-5955(01)00246-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SPARC is a multifunctional extracellular matrix (ECM) glycoprotein that shares partial sequence homology with SC1/hevin. These ECM molecules exhibit calcium-binding properties and modulate cellular interactions. This study examines the expression of SC1 and SPARC mRNA in the developing cochlea of the rat inner ear prior to and after the onset of hearing. At all ages examined, SC1 mRNA is highly expressed in neurons of the spiral ganglion. In contrast, SPARC transcripts are not detected in the spiral ganglion but are enriched in the temporal bone and cartilaginous otic capsule surrounding the cochlea. Both SC1 and SPARC mRNA are expressed in connective tissue elements involved in maintaining ionic homeostasis of cochlear fluids. SC1 mRNA is localized to type III fibrocytes of the spiral ligament (slg) and marginal cells of the stria vascularis, while SPARC mRNA is apparent in the spiral limbus and type I fibrocytes of the slg. At postnatal day 10, SPARC mRNA shows a dramatic change in expression. High levels of SPARC transcripts are induced in Deiters cells (dc) of the organ of Corti. Interestingly, this induction of SPARC mRNA correlates with the onset of hearing. This suggests that SPARC may play a role in calcium regulation in dc when functional maturation of the cochlea is attained and rapid changes in calcium levels are required.
Collapse
Affiliation(s)
- A J Mothe
- Department of Zoology, University of Toronto at Scarborough, M1C 1A4, Toronto, ON, Canada
| | | |
Collapse
|
67
|
Tanaka S, Nambu F, Nambu Z. Isolation of a cDNA encoding a putative SPARC from the brine shrimp, Artemia franciscana. Gene 2001; 268:53-8. [PMID: 11368900 DOI: 10.1016/s0378-1119(01)00419-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
SPARC (Secreted protein, acidic, rich in cysteine) is an extracellular matrix-associated and anti-adhesive glycoprotein extensively studied in vertebrates. Its presence among invertebrates has been reported in nematodes and flies. We cloned a cDNA containing a complete open reading frame for SPARC from the brine shrimp, Artemia franciscana. The amino acid sequence identity between the Artemia and the fly SPARCs was 55%, whereas that of the Artemia and the nematode proteins was 45%. Artemia and vertebrates exhibited a sequence identity of 30% in the predicted aa sequences. The SPARC consisted of four domains commonly found among reported SPARCs. The protein comprised 291 amino acids, having a signal peptide, a follistatin-like domain, one N-glycosylation site and one calcium-binding EF-hand motif. Fourteen cysteine residues conserved among all the secreted forms of SPARCs were present in the Artemia SPARC, and four extra cysteine residues were also found in it. The extra residues were conserved among SPARCs of the arthropods and the nematode. Phylogenetic analyses showed that the sequences of SPARCs were grouped into those of vertebrates and invertebrates. Though the structural organization of SPARC was conserved among all the species studied, SPARC within a group was highly conserved within that group, but divergent between the two. Northern blots revealed the presence of a 1.1 kb mRNA, which was faintly expressed in embryos and considerably detected in prenauplii and nauplii. The isolation of a SPARC cDNA from Artemia franciscana provides intriguing features of the divergent protein, SPARC.
Collapse
Affiliation(s)
- S Tanaka
- Biology, Department of Medical Technology, School of Health Sciences, University of Occupational and Environmental Health, Japan, Yahatanishi-ku, 807-8555, Kitakyushu, Japan
| | | | | |
Collapse
|
68
|
Mothe AJ, Brown IR. Differential mRNA expression of the related extracellular matrix glycoproteins SC1 and SPARC in the rat embryonic nervous system and skeletal structure. Brain Res 2001; 892:27-41. [PMID: 11172746 DOI: 10.1016/s0006-8993(00)03141-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
SPARC is a multifunctional extracellular matrix glycoprotein that shares partial sequence homology with SC1. These extracellular matrix molecules are thought to play important roles in modulating cellular interactions. In vitro, SPARC has been shown to exhibit anti-adhesive activity. In the present investigation, in situ hybridization is used to compare the expression patterns of SC1 and SPARC mRNA in the rat embryo. Results show that SC1 and SPARC expression is spatially and temporally regulated. SC1 mRNA is strongly expressed in the embryonic brain and spinal cord, whereas SPARC mRNA is enriched in craniofacial cartilage and skeletal structures. This differential expression pattern in the rat embryo suggests that SC1 plays an important role in the developing nervous system, whereas SPARC participates primarily in events associated with skeletal development. However at embryonic day 17, SC1 and SPARC mRNA show parallel expression patterns in areas of the cerebellum undergoing cell migratory events.
Collapse
Affiliation(s)
- A J Mothe
- Department of Zoology, University of Toronto at Scarborough, Ontario, Toronto, Canada M1C 1A4
| | | |
Collapse
|
69
|
Tochitani S, Liang F, Watakabe A, Hashikawa T, Yamamori T. The occ1 gene is preferentially expressed in the primary visual cortex in an activity-dependent manner: a pattern of gene expression related to the cytoarchitectonic area in adult macaque neocortex. Eur J Neurosci 2001; 13:297-307. [PMID: 11168534 DOI: 10.1046/j.0953-816x.2000.01390.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Marker molecules to visualize specific subsets of neurons are useful for studying the functional organization of the neocortex. One approach to identify such molecular markers is to examine the differences in molecular properties among morphologically and physiologically distinct neuronal cell types. We used differential display to compare mRNA expression in the anatomically and functionally distinct areas of the adult macaque neocortex. We found that a gene, designated occ1, was preferentially transcribed in the posterior region of the neocortex, especially in area 17. Complete sequence analysis revealed that occ1 encodes a macaque homolog of a secretable protein, TSC-36/follistatin-related protein (FRP). In situ hybridization histochemistry confirmed the characteristic neocortical expression pattern of occ1 and showed that occ1 transcription is high in layers II, III, IVA and IVC of area 17. In addition, occ1 transcription was observed selectively in cells of the magnocellular layers in the lateral geniculate nucleus (LGN). Dual labeling immunohistochemistry showed that the occ1-positive neurons in area 17 include both gamma-aminobutyric acid (GABA)-positive aspiny inhibitory cells and the alpha-subunit of type II calcium/calmodulin-dependent protein kinase (CaMKII alpha)-positive spiny excitatory cells. With brief periods of monocular deprivation, the occ1 mRNA level decreased markedly in deprived ocular dominance columns of area 17. From this we conclude that the expression of occ1 mRNA is present in a subset of neurons that are preferentially localized in particular laminae of area 17 and consist of various morphological and physiological neuronal types, and, furthermore, occ1 transcription is subject to visually driven activity-dependent regulation.
Collapse
Affiliation(s)
- S Tochitani
- Division of Speciation Mechanisms I, National Institute for Basic Biology, Aichi 444-8585, Japan
| | | | | | | | | |
Collapse
|
70
|
Abstract
SPARC is a multifunctional glycoprotein that belongs to the matricellular group of proteins. It modulates cellular interaction with the extracellular matrix (ECM) by its binding to structural matrix proteins, such as collagen and vitronectin, and by its abrogation of focal adhesions, features contributing to a counteradhesive effect on cells. SPARC inhibits cellular proliferation by an arrest of cells in the G1 phase of the cell cycle. It also regulates the activity of growth factors, such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF)-2, and vascular endothelial growth factor (VEGF). The expression of SPARC in adult animals is limited largely to remodeling tissue, such as bone, gut mucosa, and healing wounds, and it is prominent in tumors and in disorders associated with fibrosis. The crystal structure of two of the three domains of the protein has revealed a novel follistatin-like module and an extracellular calcium-binding (EC) module containing two EF-hand motifs. The follistatin-like module and the EC module are shared by at least four other proteins that comprise a family of SPARC-related genes. Targeted disruption of the SPARC locus in mice has shown that SPARC is important for lens transparency, as SPARC-null mice develop cataracts shortly after birth. SPARC is a prototypical matricellular protein that functions to regulate cell-matrix interactions and thereby influences many important physiological and pathological processes.
Collapse
Affiliation(s)
- R A Brekken
- The Department of Vascular Biology, The Hope Heart Institute, 1124 Columbia St., Seattle, WA 98104, USA
| | | |
Collapse
|
71
|
Abstract
SPARC is a multifunctional glycoprotein that belongs to the matricellular group of proteins. It modulates cellular interaction with the extracellular matrix (ECM) by its binding to structural matrix proteins, such as collagen and vitronectin, and by its abrogation of focal adhesions, features contributing to a counteradhesive effect on cells. SPARC inhibits cellular proliferation by an arrest of cells in the G1 phase of the cell cycle. It also regulates the activity of growth factors, such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF)-2, and vascular endothelial growth factor (VEGF). The expression of SPARC in adult animals is limited largely to remodeling tissue, such as bone, gut mucosa, and healing wounds, and it is prominent in tumors and in disorders associated with fibrosis. The crystal structure of two of the three domains of the protein has revealed a novel follistatin-like module and an extracellular calcium-binding (EC) module containing two EF-hand motifs. The follistatin-like module and the EC module are shared by at least four other proteins that comprise a family of SPARC-related genes. Targeted disruption of the SPARC locus in mice has shown that SPARC is important for lens transparency, as SPARC-null mice develop cataracts shortly after birth. SPARC is a prototypical matricellular protein that functions to regulate cell-matrix interactions and thereby influences many important physiological and pathological processes.
Collapse
Affiliation(s)
- R A Brekken
- The Department of Vascular Biology, The Hope Heart Institute, 528 18th Avenue, Seattle, WA 98122-5720, USA
| | | |
Collapse
|
72
|
Mendis DB, Ivy GO, Brown IR. Induction of SC1 mRNA encoding a brain extracellular matrix glycoprotein related to SPARC following lesioning of the adult rat forebrain. Neurochem Res 2000; 25:1637-44. [PMID: 11152393 DOI: 10.1023/a:1026626805612] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SC1 is an extracellular matrix (ECM) glycoprotein related to SPARC which exhibits anti-adhesive properties. ECM molecules are thought to play important roles in influencing cell shape, proliferation and migration during neurogenesis. Following localized injury to the adult rat forebrain, a biphasic induction of SC1 mRNA was apparent, namely a rapid, transient induction at 1 day post-lesion in cortical neurons which border the lesion site followed by a more prolonged induction in astrocytes which are proximal to the wound site. A similar SC1 induction pattern was observed in the hippocampus in response to the injury. SPARC mRNA exhibits a divergent pattern of induction because it is induced in mature blood vessels close to the lesion and in blood vessels which develop following the trauma. Thus mRNAs encoding the related ECM glycoproteins SC1 and SPARC are induced in different cell populations in the adult forebrain during the neural response to localized injury.
Collapse
Affiliation(s)
- D B Mendis
- Division of Life Sciences, University of Toronto at Scarborough, Ontario, Canada
| | | | | |
Collapse
|
73
|
Provot S, Pouponnot C, Lecoq O, Calothy G, Felder-Schmittbuhl MP. Characterization of a novel quiescence responsive element downregulated by v-Src in the promoter of the neuroretina specific QR1 gene. Oncogene 2000; 19:4736-45. [PMID: 11032024 DOI: 10.1038/sj.onc.1203837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neuroretina is a functional unit of the central nervous system which arises through successive steps of division, growth arrest and differentiation of neuroectodermal precursors. Postmitotic quail neuroretina (QNR) cells are conditionally induced to divide upon infection with temperature sensitive mutants of Rous sarcoma virus (RSV), since QNR cell division can be arrested by either inactivating p60v-Src at the nonpermissive temperature (41 degrees C) or by serum deprivation at 37 degrees C. We are studying the transcriptional control of QR1, a neuroretina specific gene, whose expression is down-regulated in proliferating cells at 37 degrees C and is fully restored when these cells are made quiescent. We previously showed that this quiescence specific upregulation implicates a promoter region named A box, which binds Maf transcription factors. We report the identification of the C box, a second promoter sequence that activates QR1 transcription in non dividing cells. This sequence is able to form two DNA-protein complexes, one of which (C4) is predominantly detected in growth arrested NR cells. We identified the DNA binding site for C4 and described mutations that abolish both C4 binding and promoter activity in quiescent cells. Moreover, we show that a multimerized C box is able to stimulate a heterologous promoter in non dividing cells and constitutes, therefore, a novel quiescence responsive enhancer. Finally, we report that QR1 transcriptional response to cell quiescence requires cooperation between the C box and A box.
Collapse
Affiliation(s)
- S Provot
- UMR 146 CNRS-Institut Curie, Orsay, France
| | | | | | | | | |
Collapse
|
74
|
Busch E, Hohenester E, Timpl R, Paulsson M, Maurer P. Calcium affinity, cooperativity, and domain interactions of extracellular EF-hands present in BM-40. J Biol Chem 2000; 275:25508-15. [PMID: 10801822 DOI: 10.1074/jbc.m001770200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure and function of cytosolic Ca(2+)-binding proteins containing EF-hands are well understood. Recently, the presence of EF-hands in an extracellular protein was for the first time proven by the structure determination of the EC domain of BM-40 (SPARC (for secreted protein acidic and rich in cysteine)/osteonectin) (Hohenester, E., Maurer, P., Hohenadl, C., Timpl, R., Jansonius, J. N., and Engel, J. (1996) Nat. Struct. Biol. 3, 67-73). The structure revealed a pair of EF-hands with two bound Ca(2+) ions. Two unusual features were noted that distinguish the extracellular EF-hands of BM-40 from their cytosolic counterparts. An insertion of one amino acid into the loop of the first EF-hand causes a variant Ca(2+) coordination, and a disulfide bond connects the helices of the second EF-hand. Here we show that the extracellular EF-hands in the BM-40 EC domain bind Ca(2+) cooperatively and with high affinity. The EC domain is thus in the Ca(2+)-saturated form in the extracellular matrix, and the EF-hands play a structural rather than a regulatory role. Deletion mutants demonstrate a strong interaction between the EC domain and the neighboring FS domain, which contributes about 10 kJ/mol to the free energy of binding and influences cooperativity. This interaction is mainly between the FS domain and the variant EF-hand 1. Certain mutations of Ca(2+)-coordinating residues changed affinity and cooperativity, but others inhibited folding and secretion of the EC domain in a mammalian cell line. This points to a function of EF-hands in extracellular proteins during biosynthesis and processing in the endoplasmic reticulum or Golgi apparatus.
Collapse
Affiliation(s)
- E Busch
- Institute for Biochemistry, Medical Faculty, University of Cologne, Germany
| | | | | | | | | |
Collapse
|
75
|
Ikemoto M, Takita M, Imamura T, Inoue K. Increased sensitivity to the stimulant effects of morphine conferred by anti-adhesive glycoprotein SPARC in amygdala. Nat Med 2000; 6:910-5. [PMID: 10932229 DOI: 10.1038/78675] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Repeated administration of morphine substantially increases its locomotor-enhancing activity, a phenomenon termed locomotor sensitization. Here we show that secreted protein acidic and rich in cysteine (SPARC), an anti-adhesive glycoprotein present in the basolateral amygdala, contributes to the establishment of locomotor sensitization. The morphine-induced increase in SPARC levels in the basolateral amygdala persisted after morphine withdrawal and coincided with the duration of locomotor sensitization. Moreover, a single injection of morphine after SPARC infusion into the basolateral amygdala of previously uninjected mice substantially enhanced locomotor activity. Thus, SPARC may be an important element for establishing locomotor sensitization to morphine.
Collapse
Affiliation(s)
- M Ikemoto
- Department of Biomolecular Engineering, National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry 1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | | | |
Collapse
|
76
|
Mothe AJ, Brown IR. Selective transport of SC1 mRNA, encoding a putative extracellular matrix glycoprotein, during postnatal development of the rat cerebellum and retina. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:73-84. [PMID: 10719217 DOI: 10.1016/s0169-328x(99)00336-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The selective transport of mRNA species into peripheral processes of cells is an important aspect of gene expression in the nervous system. In this study, we report the transport of SC1 mRNA into the distal processes of Bergmann glial (BG) cells at particular stages of development. SC1 is a putative anti-adhesive extracellular matrix (ECM) glycoprotein that is expressed not only in the developing central nervous system (CNS) but also in the adult brain. The intracellular distribution of SC1 mRNA was examined in two highly laminated neural structures, the cerebellum and retina, during postnatal development and in the adult rat. Our results indicate that SC1 mRNA expression is both spatially and temporally regulated. SC1 message was localized to BG cell bodies at postnatal day 5 (P5) and P10. However, by P15 through to the adult, SC1 mRNA was transported to distal processes of BG cells in the synapse-rich molecular layer (ML) of the cerebellum. In the developing rat retina, SC1 mRNA was expressed in specific neuronal populations by P10, however, transport of SC1 message to the dendrites of these retinal neurons was not detected during development or in the adult. These results indicate neural mechanisms which control the timing and cell type in which selective transport of SC1 mRNA is observed. The localization of SC1 mRNA to the distal processes of BG cells in the synapse-rich ML of the cerebellum could facilitate local control of SC1 protein synthesis which may play roles in synapse formation during development and in synaptic plasticity in the adult.
Collapse
Affiliation(s)
- A J Mothe
- Department of Zoology, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, Ontario, Canada
| | | |
Collapse
|
77
|
McKinnon PJ, McLaughlin SK, Kapsetaki M, Margolskee RF. Extracellular matrix-associated protein Sc1 is not essential for mouse development. Mol Cell Biol 2000; 20:656-60. [PMID: 10611244 PMCID: PMC85160 DOI: 10.1128/mcb.20.2.656-660.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sc1 is an extracellular matrix-associated protein whose function is unknown. During early embryonic development, Sc1 is widely expressed, and from embryonic day 12 (E12), Sc1 is expressed primarily in the developing nervous system. This switch in Sc1 expression at E12 suggests an importance for nervous-system development. To gain insight into Sc1 function, we used gene targeting to inactivate mouse Sc1. The Sc1-null mice showed no obvious deficits in any organs. These mice were born at the expected ratios, were fertile, and had no obvious histological abnormalities, and their long-term survival did not differ from littermate controls. Therefore, the function of Sc1 during development is not critical or, in its absence, is subserved by another protein.
Collapse
Affiliation(s)
- P J McKinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | | | | | |
Collapse
|
78
|
Abstract
SPARC (secreted protein, acidic and rich in cysteine) is a unique matricellular glycoprotein that is expressed by many different types of cells and is associated with development, remodeling, cell turnover, and tissue repair. Its principal functions in vitro are counteradhesion and antiproliferation, which proceed via different signaling pathways. SPARC consists of three domains, each of which has independent activity and unique properties. The extracellular calcium binding module and the follistatin-like module have been recently crystallized. Specific interactions between SPARC and growth factors, extracellular matrix proteins, and cell surface proteins contribute to the diverse activities described for SPARC in vivo and in vitro. The location of SPARC in the nuclear matrix of certain proliferating cells, but only in the cytosol of postmitotic neurons, indicates potential functions of SPARC as a nuclear protein, which might be involved in the regulation of cell cycle progression and mitosis. High levels of SPARC have been found in adult eye, and SPARC-null mice exhibit cataracts at 1-2 months of age. This animal model provides an excellent opportunity to confirm and explore some of the properties of SPARC, to investigate cataractogenesis, and to study SPARC-related family proteins, e.g., SC1/hevin, a counteradhesive matricellular protein that might functionally compensate for SPARC in certain tissues.(J Histochem Cytochem 47:1495-1505, 1999)
Collapse
Affiliation(s)
- Q Yan
- Department of Vascular Biology, Hope Heart Institute, Seattle, Washington 98122, USA
| | | |
Collapse
|
79
|
Huynh MH, Sage EH, Ringuette M. A calcium-binding motif in SPARC/osteonectin inhibits chordomesoderm cell migration during Xenopus laevis gastrulation: evidence of counter-adhesive activity in vivo. Dev Growth Differ 1999; 41:407-18. [PMID: 10466928 DOI: 10.1046/j.1440-169x.1999.00443.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Secreted protein, acidic, rich in cysteine (SPARC) is a Ca2+-binding, counter-adhesive, extracellular glycoprotein associated with major morphogenic events and tissue remodeling in vertebrates. In Xenopus laevis embryos, SPARC is expressed first by dorsal mesoderm cells at the end of gastrulation and undergoes complex, rapid changes in its pattern of expression during early organogenesis. Another study has reported that precocious expression of SPARC by injection of native protein into the blastocoele cavity of pregastrula embryos leads to a concentration-dependent reduction in anterior development. Thus, normal development requires that the timing, spatial distribution, and/or levels of SPARC be regulated precisely. In a previous study, we demonstrated that injection of a synthetic peptide corresponding to the C-terminal, Ca2+-binding, EF-hand domain of SPARC (peptide 4.2) mimicked the effects of native SPARC. In the present investigation, peptide 4.2 was used to examine the cellular and molecular bases of the phenotypes generated by the aberrant presence of SPARC. Exposure of late blastula embryos to LiCl also generated a concentration-dependent reduction in anterior development; therefore, injections of LiCl were carried out in parallel to highlight the unique effects of peptide 4.2 on early development. At concentrations that caused a similar loss in anterior development (60-100 ng peptide 4.2 or 0.25-0.4 microg LiCl), LiCl had a greater inhibitory effect on the initial rate of chordomesoderm cell involution, in comparison with peptide 4.2. However, as gastrulation progressed, peptide 4.2 had a greater inhibitory effect on prospective head mesoderm migration than that seen in the presence of LiCl. Moreover, peptide 4.2 and LiCl had distinct influences on the expression pattern of dorso-anterior markers at the neural and tail-bud stages of development. Scanning electron microscopy showed that peptide 4.2 inhibited spreading of migrating cells at the leading edge of the involuting chordomesoderm. While still in close proximity to the blastocoele roof, many of the cells appeared rounded and lacked lamellipodia and filopodia extended in the direction of migration. In contrast, LiCl had no effect on the spreading or shape of involuting cells. These data are the first evidence of a counter-adhesive activity for peptide 4.2 in vivo, an activity demonstrated for both native SPARC and peptide 4.2 in vitro.
Collapse
Affiliation(s)
- M H Huynh
- Department of Zoology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
80
|
Hiscott P, Sheridan C, Magee RM, Grierson I. Matrix and the retinal pigment epithelium in proliferative retinal disease. Prog Retin Eye Res 1999; 18:167-90. [PMID: 9932282 DOI: 10.1016/s1350-9462(98)00024-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In their normal state, RPE cell are strongly adherent to Bruch's membrane. Certain pathological conditions such as retinal detachment cause an injury-type response (probably augmented or induced by the local accumulation of a variety of substances which modulate cell behaviour) in which RPE begin to dissociate from the membrane. This RPE-Bruch's membrane separation may be mediated by proteins with counter-adhesive properties and proteolytic enzymes, partly derived from the RPE themselves. Concomitant with the RPE disassociation, the cells begin to lose tertiary differentiation characteristics and gain macrophage-like features. When the "free" RPE arrive at the surface of the neuroretina, they may attach to or create a provisional matrix. Some of the cells adopt a fibroblast-like phenotype. This phenotype is similar to that of the dermal fibroblast during cutaneous wound repair and the fibroblastic RPE synthesise the types of matrix components found in healing skin wounds. Many of these molecules in turn further modulate the activities of the cells via several families of cell surface receptors, while the RPE continue to remodel the new matrix with a range of proteolytic enzymes. The resulting tissue (or membrane) has many of the features of a contractile scar and is the hallmark of the condition known as proliferative vitreoretinopathy (PVR). Thus the development of PVR, and the resulting tractional distortion of the neuroretina, appears to be dependent on RPE-matrix interactions. The interactions present a number of potential therapeutic targets for the management of the disorder.
Collapse
Affiliation(s)
- P Hiscott
- Department of Medicine, University of Liverpool, UK
| | | | | | | |
Collapse
|
81
|
Abstract
Rapid progress is being made in characterizing extracellular matrix and other components of the bone marrow microenvironment. New cloning strategies have been particularly helpful in identifying molecules made by marrow stromal cells. Matrix glycoprotein SC1/ECM2 (SC1/ECM2), a calcum-binding secreted protein, is one example and can contribute to the nurturing environment for B lymphocyte precursors. A fusion protein prepared from the SC1/ECM2 and the constant region of human immunoglobulin preferentially bound to B lineage cells in a divalent cation dependent manner. Furthermore, mitogen-dependent proliferation of mature B cells, as well as the cloning of pre-B cells, was increased in a dose dependent manner by addition of the fusion protein. SC1/ECM2 is also capable of augmenting lymphopoiesis when expressed as a transmembrane protein on fibroblasts. While the C-terminal portion of SC1/ECM2 has sequence homology to osteonectin/SPARC, the unique amino-terminal one fifth of the protein was sufficient to augment lymphocyte growth. As additional information accrues about the molecular requirements for lympho-hematopoiesis, it should become possible to engineer more efficient supporting microenvironments.
Collapse
Affiliation(s)
- K Oritani
- The Second Department of Internal Medicine, Osaka University Medical School, Suita City, Japan
| | | |
Collapse
|
82
|
Fitzgerald MC, Schwarzbauer JE. Importance of the basement membrane protein SPARC for viability and fertility in Caenorhabditis elegans. Curr Biol 1998; 8:1285-8. [PMID: 9822581 DOI: 10.1016/s0960-9822(07)00540-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The basement membrane is a specialized extracellular matrix located at epithelial-mesenchymal boundaries that supports cell adhesion, migration, and proliferation; it is highly conserved between invertebrates and vertebrates [1,2]. One of its component proteins, SPARC (osteonectin/BM-40), binds calcium and collagens, and can modulate cell-matrix interactions, so altering cell shape, growth, and differentiation [3,5]. The tissue distribution of a secreted fusion protein containing SPARC and green fluorescent protein (GFP) was analyzed in Caenorhabditis elegans. The protein localized to most basement membranes along body wall and sex muscles, and was also deposited around the pharynx and the gonad, in the spermatheca and at the distal tip cells. The contributions of SPARC to C. elegans development were determined using RNA interference, which accurately phenocopies loss-of-function defects [6-8]. A reduction in the amount of SPARC protein resulted in embryonic or larval lethality in a significant proportion of progeny. Those that survived developed a 'clear' phenotype characterized by a lack of gut granules, which made the animals appear transparent, plus small size, and sterility or reduced fecundity. No significant morphological abnormalities were observed, indicating that SPARC plays a regulatory rather than structural role in modulating cell-matrix interactions during normal development and reproduction.
Collapse
Affiliation(s)
- M C Fitzgerald
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | |
Collapse
|
83
|
Gilmour DT, Lyon GJ, Carlton MB, Sanes JR, Cunningham JM, Anderson JR, Hogan BL, Evans MJ, Colledge WH. Mice deficient for the secreted glycoprotein SPARC/osteonectin/BM40 develop normally but show severe age-onset cataract formation and disruption of the lens. EMBO J 1998; 17:1860-70. [PMID: 9524110 PMCID: PMC1170533 DOI: 10.1093/emboj/17.7.1860] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
SPARC (secreted protein acidic and rich in cysteine, also known as osteonectin/BM40) is a secreted Ca2+-binding glycoprotein that interacts with a range of extracellular matrix molecules, including collagen IV. It is widely expressed during embryogenesis, and in vitro studies have suggested roles in the regulation of cell adhesion and proliferation, and in the modulation of cytokine activity. In order to analyse the function of this protein in vivo, the endogenous Sparc locus was disrupted by homologous recombination in murine embryonic stem cells. SPARC-deficient mice (Sparctm1Cam) appear normal and fertile until around 6 months of age, when they develop severe eye pathology characterized by cataract formation and rupture of the lens capsule. The first sign of lens pathology occurs in the equatorial bow region where vacuoles gradually form within differentiating epithelial cells and fibre cells. The lens capsule, however, shows no qualitative changes in the major basal lamina proteins laminin, collagen IV, perlecan or entactin. These mice are an excellent resource for further studies on how SPARC affects cell behaviour in vivo.
Collapse
Affiliation(s)
- D T Gilmour
- Wellcome/CRC Institute of Cancer and Developmental Biology and Department of Genetics, University of Cambridge, Tennis Court Rd, Cambridge CB2 3QR
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
|
85
|
Yan Q, Sage EH, Hendrickson AE. SPARC is expressed by ganglion cells and astrocytes in bovine retina. J Histochem Cytochem 1998; 46:3-10. [PMID: 10712100 DOI: 10.1177/002215549804600102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
SPARC (secreted protein, acidic and rich in cysteine)/osteonectin is a matricellular, counteradhesive glycoprotein that disrupts cell-matrix interactions, interacts with growth factors and components of extracellular matrix, and modulates the cell cycle, but appears to subserve only minor structural roles. SPARC is expressed in a variety of tissues during embryogenesis and remodeling and is believed to regulate vascular morphogenesis and cellular differentiation. Although usually limited in normal adult tissues, SPARC is expressed at significant levels in the adult central nervous system. Using a monoclonal antibody against bovine bone osteonectin, we have determined the localization of SPARC in newborn (3-day-old) and adult (4-8-year-old) normal bovine retinas. SPARC was present in the soma of ganglion cells and strong reactivity was found in ganglion cell axons. Muller cells displayed no immunoreactivity, but SPARC was present in retinal astrocytes that were identified by the astrocyte marker glial fibrillary acidic protein (GFAP). Newborn calf retina showed a staining pattern similar to that of adult retina but exhibited significantly reduced levels of SPARC. Minimal levels of SPARC protein were also detected in some capillaries of the inner retina of both newborn and adult animals, whereas large vessels were negative. The presence of SPARC in the retina was confirmed by Western blotting of retinal extracts. These data indicate that SPARC originating from bot h neurons and glia of the inner retina may be an important modulator of retinal angiogenesis. The increased expression of SPARC in adult relative to newborn retinal tissue also indicates that SPARC has an ongoing role in the maintenance of retinal functions.
Collapse
Affiliation(s)
- Q Yan
- Department of Biological Structure, University of Washington, Seattle 98195-7420, USA
| | | | | |
Collapse
|
86
|
Kim SY, Ondhia N, Vidgen D, Malaval L, Ringuette M, Kalnins VI. Spatiotemporal distribution of SPARC/osteonectin in developing and mature chicken retina. Exp Eye Res 1997; 65:681-9. [PMID: 9367648 DOI: 10.1006/exer.1997.0377] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Expression of SPARC (Secreted Protein, Acidic, Rich in Cysteine), a counteradhesive, calcium-binding extracellular matrix (ECM) glycoprotein, is associated with several morphogenetic events during early development. In this study, changes in the spatiotemporal distribution of SPARC transcripts and the protein during chicken retinal development were documented by in situ hybridization and indirect immunofluorescence microscopy. SPARC transcripts were first detected within the proliferating neural ectoderm at embryonic day 4. 5 (E4.5), followed short thereafter (E5) by appearance of SPARC. SPARC was enriched within the inner plexiform layer (IPL) by E10 and within the outer plexiform layer (OPL) by E14, several days after these layers became morphologically distinct. Significant levels of SPARC transcripts were first observed within the ganglion cell layer (GCL) at E17 prior to accumulation of SPARC within the nerve fiber layer, seen first at E20. SPARC protein was first detected within the developing retinal pigment epithelium (RPE) at E10 and increased significantly at RPE cells ceased to proliferate and continued differentiating. Of special note was the restriction of SPARC to the basal-half of the RPE cells. SPARC transcripts were similarly distributed in the adult retina, but at lower levels than in the period just prior to hatching. In the adult retina SPARC was retained in the nerve fiber layer and present in the inner nuclear layer (INL) and outer nuclear layer (ONL), but lost from the IPL and OPL. These changes in expression pattern with time indicate that SPARC is developmentally regulated and therefore may have important function(s) in both morphological development of the retina and functioning of the mature eye.
Collapse
Affiliation(s)
- S Y Kim
- Department of Zoology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | | | | | | | | | | |
Collapse
|
87
|
Abstract
AbstractThe extracellular matrix produced by stromal cells plays a critical role in lympho-hematopoiesis. It was recently discovered that matrix glycoprotein SC1/ECM2 is a component of that matrix and preliminary evidence suggested that it could contribute to the nurturing environment for B-lymphocyte precursors. A fusion protein prepared from the amino terminal portion of SC1/ECM2 and the constant region of human Ig preferentially bound to pre-B cells. Furthermore, the cloning efficiency of interleukin-7–dependent B-cell precursors was increased in a dose-dependent manner by addition of this fusion protein. We now report the complete cDNA sequence for murine SC1/ECM2 and its localization to the central region of chromosome 5. A fusion protein prepared from the full length of SC1/ECM2 and Ig was found to recognize pre-B cells in a divalent cation-dependent manner, and to augment mitogen-dependent proliferation of mature B cells, as well as the cloning of pre-B cells, but to have no influence on myeloid progenitor cells. Although SC1/ECM2 is normally a secreted protein, we show that it is also capable of augmenting lymphopoiesis when expressed as a transmembrane protein on fibroblasts. Although the C-terminal portion of SC1/ECM2 has sequence homology to osteonectin/SPARC, the unique N-terminal one fifth of the protein was sufficient to augment lymphocyte growth.
Collapse
|
88
|
Kohfeldt E, Maurer P, Vannahme C, Timpl R. Properties of the extracellular calcium binding module of the proteoglycan testican. FEBS Lett 1997; 414:557-61. [PMID: 9323035 DOI: 10.1016/s0014-5793(97)01070-3] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The extracellular calcium-binding (EC) module of human testican (115 residues) was obtained in native form by recombinant production in mammalian cell culture and thus shown to represent an independently folding domain. This module showed a large loss in alpha-helix upon calcium depletion. Apparently only one of the two EF hands binds calcium, with a moderate affinity (Kd =68 microM) about 100-fold lower than in the homologous BM-40 protein. No clear evidence was obtained for collagen binding, indicating that EC modules found in different proteins may not share similar functions.
Collapse
Affiliation(s)
- E Kohfeldt
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | |
Collapse
|
89
|
Satyamoorthy K, Samulewicz SJ, Thornburg LD, Basu A, Howe CC. Identification of an intronic enhancer that nullifies upstream repression of SPARC gene expression. Nucleic Acids Res 1997; 25:3169-74. [PMID: 9224620 PMCID: PMC146837 DOI: 10.1093/nar/25.15.3169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The SPARC gene 5'flanking sequence has been shown to contain enhancer elements, but also negative control elements immediately upstream of the enhancer elements. Although these 5'enhancer elements are active in F9 and PYS-2 cells, their activities are nullified by the 5'repressor activity. In the present study we have identified within intron 1 between nucleotides (nt) +5000 and +5150 of the SPARC gene an enhancer element that bound to two transcription factors of 48 and 52 kDa and between nt +5000 and +5523 a DNase I hypersensitive site. Furthermore, a region containing the 3'intron 1 enhancer element, together with the 5'enhancer elements, neutralized the 5'repressor activity and stimulated efficient transcription. The resulting SPARC promoter activity is about equal in F9, differentiated F9 and PYS-2 cells. We consistently found that the rate of SPARC transcription is nearly the same in F9 and PYS-2 cells. Association of the 3'enhancer element in intron 1 with the DNase I hypersensitive site suggests that both play a role in regulating SPARC expression in vivo .
Collapse
Affiliation(s)
- K Satyamoorthy
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
90
|
Hohenester E, Maurer P, Timpl R. Crystal structure of a pair of follistatin-like and EF-hand calcium-binding domains in BM-40. EMBO J 1997; 16:3778-86. [PMID: 9233787 PMCID: PMC1170001 DOI: 10.1093/emboj/16.13.3778] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BM-40 (also known as SPARC or osteonectin) is an anti-adhesive secreted glycoprotein involved in tissue remodelling. Apart from an acidic N-terminal segment, BM-40 consists of a follistatin-like (FS) domain and an EF-hand calcium-binding (EC) domain. Here we report the crystal structure at 3.1 A resolution of the FS-EC domain pair of human BM-40. The two distinct domains interact through a small interface that involves the EF-hand pair of the EC domain. Residues implicated in cell binding, inhibition of cell spreading and disassembly of focal adhesions cluster on one face of BM-40, opposite the binding epitope for collagens and the N-linked carbohydrate. The elongated FS domain is structurally related to serine protease inhibitors of the Kazal family. Notable differences are an insertion into the inhibitory loop in BM-40 and a protruding N-terminal beta-hairpin with striking similarities to epidermal growth factor. This hairpin is likely to act as a rigid spacer in proteins containing tandemly repeated FS domains, such as follistatin and agrin, and forms the heparin-binding site in follistatin.
Collapse
Affiliation(s)
- E Hohenester
- Department of Crystallography, Birkbeck College, London, UK
| | | | | |
Collapse
|
91
|
Soderling JA, Reed MJ, Corsa A, Sage EH. Cloning and expression of murine SC1, a gene product homologous to SPARC. J Histochem Cytochem 1997; 45:823-35. [PMID: 9199668 DOI: 10.1177/002215549704500607] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A number of cDNAs (SC1, QR1, and hevin) have been shown to be similar to SPARC (secreted protein acidic and rich in cysteine), a matricellular protein that regulates cell adhesion, cell cycle, and matrix assembly and remodeling. These proteins are 61-65% identical in the final 200 residues of their C-termini; their N-terminal sequences are related but more divergent. All have an overall acidic pl, with a follistatin-like region that is rich in cysteine, and a Ca+2 binding consensus sequence at the C-terminus. Using degenerate primers representing the most highly conserved region in SPARC, SC1, and QR1, we identified a 300-BP SC1 clone in a primary polymerase chain reaction (PCR) screen of a mouse brain cDNA library. This cDNA was used to obtain a full-length clone, which hybridized to a 2.8-KB RNA abundant in brain. Mouse SC1 displays a similarity of 70% to mouse SPARC at the amino acid level. Northern blot and RNAse protection assays revealed a 2.8-KB mRNA expressed at moderate levels (relative to brain) in mouse heart, adrenal gland, epididymis, and lung, and at low levels in kidney, eye, liver, spleen, submandibular gland, and testis. In contrast to SPARC, in situ hybridization showed expression of SC1 mRNA in the tunica media and/or adventitia of medium and large vessels; transcripts were not detected in capillaries, venules, or large lymphatics. The distribution of transcripts for SC1 was also different from that of SPARC in several organs, including adrenal gland, lung, heart, liver, and spleen. Moreover, SC1 mRNA was not evident in endothelium cultured from rat heart, bovine fetal and adult aorta, mouse aorta, human omentum, and bovine retina. Cultured smooth muscle cells and fibroblasts also failed to express SC1 mRNA. The absence of SC1 transcript in cultured cells indicates that the SC1 gene is potentially sensitive to regulatory factors in serum or to a three-dimensional architecture conferred by the extracellular matrix that is lacking in vitro. In conclusion, the expression of SPARC and SC1 appears to be coincident in specific tissues (e.g., adrenal gland and brain), but these proteins exhibit distinct expression patterns in most organs of the mouse. Because SC1 and SPARC are structurally similar and exhibit counteradhesive effects on cultured cells, their overlapping and/or adjacent expression in most tissues predicts that one protein might compensate functionally, at least in part, for the other.
Collapse
Affiliation(s)
- J A Soderling
- Department of Biological Structure, University of Washington, Seattle 98195-7420, USA
| | | | | | | |
Collapse
|
92
|
Bassuk JA, Braun LP, Motamed K, Baneyx F, Sage EH. Renaturation of SPARC expressed in Escherichia coli requires isomerization of disulfide bonds for recovery of biological activity. Int J Biochem Cell Biol 1996; 28:1031-43. [PMID: 8930126 DOI: 10.1016/1357-2725(96)00036-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
SPARC (secreted protein acidic and rich in cysteine, also known as osteonectin and BM-40) belongs to a group of secreted macromolecules that modulate cellular interactions with the extracellular matrix. During vertebrate embryogenesis, as well as in tissues undergoing remodeling and repair, the expression pattern of SPARC is consistent with a fundamental role for this protein in tissue morphogenesis and cellular differentiation. Human SPARC was cloned by the polymerase chain reaction from an endothelial cell cDNA library and was expressed in Escherichia coli as a biologically active protein. Two forms of recombinant SPARC (rSPARC) were recovered from BL21(DE3) cells after transformation with the plasmid pSPARCwt: a soluble, monomeric form that is biologically active (Bassuk et al., 1996, Archiv. Biochem. Biophys. 325, 8-19), and an insoluble form sequestered in inclusion bodies. Aggregated rSPARC was unfolded by urea treatment, purified by nickel-chelate affinity chromatography, and renatured by gradual removal of the denaturant. Proper isomerization of the disulfide bonds was achieved in the presence of a glutathione redox couple. After final purification by high resolution gel filtration chromatography, a monomeric form of rSPARC displaying biological activity was obtained. The recombinant protein inhibited the spreading and synthesis of DNA by endothelial cells, two properties characteristic of the native protein. We conclude that the information for the correct folding of rSPARC resides in the primary structure of the protein, and suggest that post-translational modifications are required neither for folding nor for biological activity.
Collapse
Affiliation(s)
- J A Bassuk
- Department of Biological Structure, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
93
|
Mendis DB, Ivy GO, Brown IR. SC1, a brain extracellular matrix glycoprotein related to SPARC and follistatin, is expressed by rat cerebellar astrocytes following injury and during development. Brain Res 1996; 730:95-106. [PMID: 8883893 DOI: 10.1016/0006-8993(96)00440-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the nervous system, extracellular matrix components are believed to influence cell shape, proliferation and migration during development and following injury. SC1 is a secreted glycoprotein expressed during neural development and in the adult brain. The molecule shows partial sequence homology to the anti-adhesive extracellular matrix molecule SPARC/osteonectin and to follistatin. We have made a surgical lesion in the adult rat cerebellum and examined changes in SC1 expression at 1 to 14 days after injury. Dual in situ hybridization/immunohistochemistry demonstrated that SC1 mRNA was induced in astrocytes surrounding the wound, reaching maximal levels at 10 days post-lesion. Immunohistochemistry revealed changes in the deposition of SC1 protein in radial fibres of Bergmann glia. SC1 protein was also detected at the border of the lesion, suggesting an association with the glial scar. Double immunohistochemistry with the astrocytic marker GFAP demonstrated that astrocytes also express SC1 during postnatal development.
Collapse
Affiliation(s)
- D B Mendis
- Department of Zoology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
94
|
Abstract
Our understanding of lympho-hematopoietic microenvironments is incomplete, and a new cloning strategy was developed to identify molecules that bind to B lineage lymphocyte precursors. A cell sorting procedure was used for initial enrichment of cDNAs from stromal cell mRNA that contained signal sequences and were therefore likely to encode transmembrane or secreted proteins. A second step involved expression of the library as soluble Ig fusion proteins. Finally, pools representing these proteins were screened for the ability to recognize pre-B cells. This approach resulted in the cloning of biglycan, syndecan 4, collagen type I, clusterin, matrix glycoprotein sc1, osteonectin, and one unknown molecule (designated SIM). The full-length cDNA of SIM revealed that it is a type I transmembrane protein, and its intracellular domain has weak homology with myosin heavy chain and related proteins. Staining of established cell lines and freshly isolated hematopoietic cells with the Ig fusion proteins revealed distinct patterns of reactivity and differential dependence on divalent cations. Biglycan-, sc1-, and SIM-Ig fusion proteins selectively increased interleukin 7-dependent proliferation of pre-B cells. Overexpression of the entire SIM protein affected the morphology of 293T cells, while expression of just the extracellular portion was without effect. Thus, a series of stromal cell surface molecules has been identified that interact with blood cell precursors. Three of them promoted the survival and/or proliferation of pre-B cells in culture, and all merit further study in relation to lympho-hematopoiesis.
Collapse
Affiliation(s)
- K Oritani
- Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|
95
|
Mendis DB, Shahin S, Gurd JW, Brown IR. SC1, a SPARC-related glycoprotein, exhibits features of an ECM component in the developing and adult brain. Brain Res 1996; 713:53-63. [PMID: 8724975 DOI: 10.1016/0006-8993(95)01472-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although extracellular matrix (ECM) components have been shown to play important roles in the development of the CNS, expression generally decreases in the adult brain. This study examines the expression of the SPARC-related glycoprotein SC1 in the rat brain during postnatal development and in the adult. In situ hybridization analysis indicates that expression of SC1 mRNA increases in a caudal to rostral manner as postnatal neural development proceeds and is found at near maximal levels in the adult brain. SC1 mRNA is expressed in glial-enriched areas of the brain at postnatal day 1 (P1) and P5. Between P10 and P20, SC1 mRNA increases in neuron-enriched regions of the hippocampus, dentate gyrus, and cerebral cortex. Immunohistochemistry in the adult shows that SC1 protein is localized to neurons in these regions and to scattered glial cells. Subcellular fractionation demonstrates that the SC1 116/120 kDa doublet is associated with synaptosomes. SC1 is present in the aqueous phase following extraction of membranes with TX-114, suggesting that it is not a transmembrane protein, a property consistent with other adult brain ECM components. Furthermore in cerebellar granule cells grown in culture, high levels of the 120 kDa component are secreted into the media. These results are consistent with the hypothesis that SC1 is an ECM glycoprotein expressed in both the developing and adult brain.
Collapse
Affiliation(s)
- D B Mendis
- Department of Zoology, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
96
|
Bonnet F, Périn JP, Charbonnier F, Camuzat A, Roussel G, Nussbaum JL, Alliel PM. Structure and cellular distribution of mouse brain testican. Association with the postsynaptic area of hippocampus pyramidal cells. J Biol Chem 1996; 271:4373-80. [PMID: 8626787 DOI: 10.1074/jbc.271.8.4373] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The complete deduced primary structure of mouse brain testican has been established from cDNA cloning. The cDNA encodes a polypeptide of 442 amino acids belonging to the proteoglycan family. The mouse brain testican core protein is 95% identical to its human testicular counterpart. In situ hybridization investigations revealed that mouse testican mRNA is mainly present in a subpopulation of pyramidal neurons localized in the CA3 area of the hippocampus. An immunocytochemical approach, with antibodies directed against an overexpressed chimeric antigen, produced in bacterial systems, showed that testican is associated with the postsynaptic region of these pyramidal neurons. Testican includes several putative functional domains related to extracellular or pericellular proteins associated with binding and/or regulatory functions. On the basis of its structural organization and its occurrence in postsynaptic areas, this proteoglycan might contribute to various neuronal mechanisms in the central nervous system.
Collapse
Affiliation(s)
- F Bonnet
- Centre National de la Recherche Scientifique, URA 1188, Université Paris V, 45 rue des Saints-Pères, F-75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
97
|
McKinnon PJ, Margolskee RF. SC1: a marker for astrocytes in the adult rodent brain is upregulated during reactive astrocytosis. Brain Res 1996; 709:27-36. [PMID: 8869553 DOI: 10.1016/0006-8993(95)01224-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Astrocytes are the most abundant cell type in the mammalian central nervous system (CNS), and are involved in many processes critical for normal CNS maintenance and function. We have used double-label immunocytochemistry and in situ analysis to show that the SPARC (secreted protein acidic and rich in cysteine)-related protein SC1, co-localizes with the astrocyte marker glial fibrillary acidic protein (GFAP) in the adult rodent brain. Thus, SC1 is an astrocyte marker that may be used to investigate astrocyte heterogeneity and analyze glial cell lineages during neural development. Consistent with the presence of SC1 and GFAP in astrocytes, both proteins were markedly upregulated following reactive astrocytosis induced by focal mechanical trauma. Therefore, SC1 may play an important role in reactive astrocytosis subsequent to a wide variety of neural trauma, including neurodegenerative diseases and acute neural damage.
Collapse
Affiliation(s)
- P J McKinnon
- Roche Institute of Molecular Biology, Hoffman-LaRoche, Nutley, NJ 07110, USA
| | | |
Collapse
|
98
|
Casado FJ, Pouponnot C, Jeanny JC, Lecoq O, Calothy G, Pierani A. QRI, a retina-specific gene, encodes an extracellular matrix protein exclusively expressed during neural retina differentiation. Mech Dev 1996; 54:237-50. [PMID: 8652416 DOI: 10.1016/0925-4773(95)00482-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neural retina development results from growth arrest of neuroectodermal precursors and differentiation of postmitotic cells. The QRI gene is specifically expressed in Müller retinal glial cells. Its expression coincides with the stage of withdrawal from the cell cycle and establishment of differentiation and is repressed upon induction of retinal cell proliferation by the v-src gene product. In this report, we show that the QR1 gene encodes several glycosylated proteins that are secreted and can either associate with the extracellular matrix or remain diffusible in the medium. By using pulse-chase experiments, the 100-103 kDa forms seem to appear first and are specifically incorporated into the extracellular matrix, whereas the 108 and 60 kDa polypeptides appear later and are detected as soluble forms in the culture medium. We also report that expression of the QR1 gene is developmentally regulated in the chicken. Its mRNA is first detectable at embryonic day 10, reaches a maximal level at embryonic day 15 and is no longer detected at embryonic day 18. Immunolocalization of the QR1 protein in chicken retina sections during development shows that expression of the protein parallels the differentiation pattern of post-miotic cells (in particular Müller cells and rods), corresponding to the two differentiation gradients in the retina: from the ganglion cell layer to the inner nuclear layer and outer nuclear layer, and from the optic nerve to the iris. At embryonic day 10, expression of the QR1 protein(s) is restricted to the optic nerve region and the inner nuclear layer, colocalizing with Müller cell bodies. As development proceeds, QR1 protein localization spreads towards the iris and towards the outer nuclear layer, following Müller cell elongations towards the photoreceptors. Between embryonic days 16 and 18, the QR1 protein is no longer detectable in the optic nerve region and is concentrated around the basal segment of the photoreceptors in the peripheral retina. Our results suggest a role for the QR1 gene product in the process of growth arrest and establishment of photoreceptor differentiation.
Collapse
Affiliation(s)
- F J Casado
- Unité Mixte de Recherche 146 du CNRS, Institut Curie, Centre Universitaire, Orsay, France
| | | | | | | | | | | |
Collapse
|
99
|
Hohenester E, Maurer P, Hohenadl C, Timpl R, Jansonius JN, Engel J. Structure of a novel extracellular Ca(2+)-binding module in BM-40. NATURE STRUCTURAL BIOLOGY 1996; 3:67-73. [PMID: 8548457 DOI: 10.1038/nsb0196-67] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The EF-hand is a highly conserved Ca(2+)-binding motif found in many cytosolic Ca(2+)-modulated proteins. Here we report the crystal structure at 2.0 A resolution of the carboxy-terminal domain of human BM-40 (SPARC, osteonectin), an extracellular matrix protein containing an EF-hand pair. The two EF-hands interact canonically but their detailed structures are unusual. In the first EF-hand a one-residue insertion is accommodated by a cis-peptide bond and by substituting a carboxylate by a peptide carbonyl as a Ca2+ ligand. The second EF-hand is stabilized by a disulphide bond. The EF-hand pair interacts tightly with an amphiphilic amino-terminal helix, reminiscent of target peptide binding by calmodulin. The present structure defines a novel protein module occurring in several other extracellular proteins.
Collapse
Affiliation(s)
- E Hohenester
- Department of Structural Biology, University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
100
|
Sawhney RS. Identification of SPARC in the anterior lens capsule and its expression by lens epithelial cells. Exp Eye Res 1995; 61:645-48. [PMID: 8654509 DOI: 10.1016/s0014-4835(05)80060-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|