51
|
Viola JP, Rao A. Role of the cyclosporin-sensitive transcription factor NFAT1 in the allergic response. Mem Inst Oswaldo Cruz 1998; 92 Suppl 2:147-55. [PMID: 9698927 DOI: 10.1590/s0074-02761997000800020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Proteins belonging to the NFAT (nuclear factor of activated T cells) family of transcription factors are expressed in most immune cell types, and play a central role in the transcription of cytokine genes, such as IL-2, IL-4, IL-5, IL-13, IFN-gamma, TNF-alpha, and GM-CSF. The activity NFAT proteins is regulated by the calcium/calmodulin-dependent phosphatase calcineurin, a target for inhibition by CsA and FK506. Recently, two different groups have described that mice lacking the NFAT1 transcription factor show an enhanced immune response, with tendency towards the development of a late Th2-like response. This review evaluates the possible role of NFAT proteins in the Th2 immune response and in the eosinophil-mediated allergic response.
Collapse
Affiliation(s)
- J P Viola
- Center for Blood Research, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
52
|
Chan VW, Mecklenbräuker I, Su I, Texido G, Leitges M, Carsetti R, Lowell CA, Rajewsky K, Miyake K, Tarakhovsky A. The molecular mechanism of B cell activation by toll-like receptor protein RP-105. J Exp Med 1998; 188:93-101. [PMID: 9653087 PMCID: PMC2525555 DOI: 10.1084/jem.188.1.93] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/1998] [Revised: 04/17/1998] [Indexed: 12/19/2022] Open
Abstract
The B cell-specific transmembrane protein RP-105 belongs to the family of Drosophila toll-like proteins which are likely to trigger innate immune responses in mice and man. Here we demonstrate that the Src-family protein tyrosine kinase Lyn, protein kinase C beta I/II (PKCbetaI/II), and Erk2-specific mitogen-activated protein (MAP) kinase kinase (MEK) are essential and probably functionally connected elements of the RP-105-mediated signaling cascade in B cells. We also find that negative regulation of RP-105-mediated activation of MAP kinases by membrane immunoglobulin may account for the phenomenon of antigen receptor-mediated arrest of RP-105-mediated B cell proliferation.
Collapse
Affiliation(s)
- V W Chan
- Department of Laboratory Medicine, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Berland R, Wortis HH. An NFAT-Dependent Enhancer Is Necessary for Anti-IgM-Mediated Induction of Murine CD5 Expression in Primary Splenic B Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.1.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
CD5 is a 67-kDa membrane glycoprotein the expression of which in murine splenic B cells is induced by surface IgM cross-linking. To analyze this induction, we transiently transfected primary splenic B cells with luciferase reporter constructs driven by various wild-type and mutated CD5 5′-flanking sequences. The transfected cells were subsequently cultured in medium with or without F(ab′)2 anti-IgM (anti-IgM), and luciferase expression was assayed. Using this approach, we identified a 122-bp enhancer element necessary for anti-IgM-mediated induction of the CD5 promoter. Electrophoretic mobility shift assays indicated that four inducible and four constitutive complexes form on the enhancer fragment in nuclear extracts of primary B cells. Supershift assays revealed that two of the inducible complexes contained NFATc. Point mutations that abolished NFAT binding severely impaired enhancer function. Thus, CD5 is a target of NFAT in B cells. A third inducible complex required an intact H4TF-1 site. One of several constitutive complexes required an intact Ebox site while a second required an intact putative ets binding site. Mutation of the H4TF-1, Ebox, and Ets sites, in the presence of wild-type NFAT sites, significantly reduced the activity of the enhancer. Therefore, the induction of B cell CD5 expression requires NFAT binding and binding to at least one of three additional sites in the CD5 enhancer.
Collapse
Affiliation(s)
- Robert Berland
- Department of Pathology and Program in Immunology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111
| | - Henry H. Wortis
- Department of Pathology and Program in Immunology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111
| |
Collapse
|
54
|
Abstract
Information is increasingly available concerning the molecular events that occur during primary and antigen-dependent stages of B cell development. In this review the roles of transcription factors and coactivators are discussed with respect to changes in expression patterns of various genes during B cell development. Transcriptional regulation is also discussed in the context of developmentally regulated immunoglobulin gene V(D)J recombination, somatic hypermutation, and isotype switch recombination.
Collapse
Affiliation(s)
- A Henderson
- Department of Veterinary Science, Pennsylvania State University, University Park 16802, USA.
| | | |
Collapse
|
55
|
Abstract
The Ig kappa 3' enhancer is required for high levels of Ig kappa gene expression. We now show that kappa 3' enhancer function increases five- to eightfold after stimulation of primary murine B cells with phorbol 12-myristate 13-acetate (PMA) and the calcium ionophore ionomycin. In the presence of cyclosporin A this induction is almost halved, suggesting that transcription factors of the NFAT family contribute to kappa 3' enhancer induction. Indeed, we identify a novel NFAT binding site which is required for full enhancer function. We find that this site is transcriptionally active in stimulated B cells, T cells and fibroblasts and that both PMA and ionomycin are required for maximal induction. Time course analysis of the components of the protein-DNA complex in primary lymphocytes reveals that both NFATp and NFATc are present in the complex after 15 min, while only NFATc is detectable after 4 h. This suggests that NFATc plays the dominant role in controlling long-term responses of this transcription factor family. Furthermore, JunB, JunD, FosB and cFos form part of the DNA-protein complex in Bal-17 B cells. Complex formation as well as transcriptional activity can also be induced by crosslinking of surface Ig. We have, thus, identified a unique NFAT complex in B cells that contributes to Ig kappa gene expression.
Collapse
Affiliation(s)
- K B Meyer
- The Wellcome/CRC Institute of Cancer and Developmental Biology, Department of Pathology, University of Cambridge, GB.
| | | |
Collapse
|
56
|
Iwasaki T, Hamano T, Fujimoto J, Kakishita E. Regulation of interleukin-6 and interleukin-6R alpha (gp80) expression by murine immunoglobulin-secreting B-cell hybridomas. Immunology 1998; 93:498-504. [PMID: 9659221 PMCID: PMC1364127 DOI: 10.1046/j.1365-2567.1998.00460.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the contribution of endogenous interleukin-6 (IL-6) to the differentiation of murine B-cell hybridomas. AT73 was established by somatic hybridization between BALB/c mice B cells and 2.52M, a hypoxanthine-aminopterine-thymidine (HAT) medium-sensitive B-cell line mutant. It spontaneously secreted IgM, and addition of exogenous IL-6 augmented IgM secretion. Triggering of CD40 led to an augmentation of IL-6 expression and IgM secretion. Blocking the binding of IL-6 to its cellular receptor through the use of inhibitory monoclonal antibodies inhibited CD40-induced IgM secretion, suggesting a possible autocrine role of IL-6 for the differentiation of a CD40-activated B-cell hybridoma. Co-triggering with CD40 and B-cell receptor or activation through CD40 and IL-4 led to a synergistic augmentation of IL-6 expression as well as additive IgM secretion; this was followed by a marked decrease in the expression of B-cell surface markers on the cell membrane. Furthermore, under conditions where IL-6 expression was augmented, gp80 expression was down-regulated, suggesting a negative feedback mechanism in this B-cell hybridoma. These findings provide a role by which T-cell-dependent activation through CD40 regulates an IL-6 autocrine loop, controlling B-cell differentiation.
Collapse
Affiliation(s)
- T Iwasaki
- Second Department of Internal Medicine, Hyogo College of Medicine, Japan
| | | | | | | |
Collapse
|
57
|
Aramburu J, Garcia-Cózar F, Raghavan A, Okamura H, Rao A, Hogan PG. Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT. Mol Cell 1998; 1:627-37. [PMID: 9660947 DOI: 10.1016/s1097-2765(00)80063-5] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
NFAT transcription factors play a key role in the immune response. The activation of NFAT proteins is controlled by calcineurin, the calmodulin-dependent phosphatase that is inhibited by the immunosuppressive drugs cyclosporin A and FK506. Here we identify a short conserved sequence in NFAT proteins that targets calcineurin to NFAT. Mutation of a single residue in this sequence impairs the calcineurin-mediated dephosphorylation and nuclear translocation of NFAT1. Peptides spanning the region inhibit the ability of calcineurin to bind to and dephosphorylate NFAT proteins, without affecting the phosphatase activity of calcineurin against other substrates. When expressed intracellularly, a corresponding peptide inhibits NFAT dephosphorylation, nuclear translocation, and NFAT-mediated expression in response to stimulation. Thus, disruption of the enzyme-substrate docking interaction that directs calcineurin to NFAT can effectively block NFAT-dependent functions.
Collapse
Affiliation(s)
- J Aramburu
- Center for Blood Research, Harvard Medical School, Boston Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
58
|
Purkerson JM, Parker DC. Differential Coupling of Membrane Ig and CD40 to the Extracellularly Regulated Kinase Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.5.2121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Coupling of membrane Ig (mIg) and CD40 to the extracellularly regulated kinase (ERK) signal transduction pathway was examined in the WEHI-231 B lymphoma and normal mouse B cells. Cross-linking mIg induces ERK activation in both WEHI-231 and normal B cells. In contrast, CD40 cross-linking failed to induce ERK activation in WEHI-231, but signals through CD40 were more effective than mIg as a stimulus for ERK activation in normal B cells. However, several lines of evidence suggest that CD40 and the B cell Ag regulate ERK through distinct pathways that converge at the level of MEK-1, mitogen-activated protein kinase kinase. Abs to mIg or CD40 induced MEK-1 activation with different kinetics. Cross-linking of mIg, but not CD40, induced tyrosine phosphorylation of the SHC adapter molecule that couples receptors to Ras-dependent signaling pathways. Finally, agents that elevate cAMP, causing protein kinase A-mediated inhibition of Raf-1, inhibited activation of ERK in response to mIg cross-linking, but had no affect on ERK activation in response to anti-CD40 or Jun N-terminal kinase activation by signals through either receptor. Thus, CD40 uses an unidentified protein kinase A-insensitive MEK kinase, rather than Raf-1, to regulate ERK activity.
Collapse
Affiliation(s)
- Jeffrey M. Purkerson
- *Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, OR 97201
| | - David C. Parker
- *Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, OR 97201
| |
Collapse
|
59
|
Lund FE, Cockayne DA, Randall TD, Solvason N, Schuber F, Howard MC. CD38: a new paradigm in lymphocyte activation and signal transduction. Immunol Rev 1998; 161:79-93. [PMID: 9553766 DOI: 10.1111/j.1600-065x.1998.tb01573.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
CD38 is a type II transmembrane glycoprotein that is extensively expressed on cells of hematopoietic and non-hematopoietic lineage. Although the intracellular domain of CD38 is not homologous to any known proteins, the extracellular domain of CD38 is structurally related to enzymes in the ADP-ribosyl cyclase family. The structural homology between CD38 and the cyclase family members extends to functional homology, as the extracellular domain of CD38 can mediate the catalysis of beta-NAD+ into nicotinamide, ADP-ribose (ADPR) and, to a lesser extent, into cyclic ADPR-ribose (cADPR). Extensive investigation in other systems has shown that cADPR is an important regulator of intracellular Ca2+ release. Since engagement of CD38 on hematopoietic cells with anti-CD38 Abs has been shown to have potent effects on a number of in vitro cellular responses, we have speculated that cADPR might control CD38-mediated signal transduction. However, it has been difficult to understand how a mediator which is typically an intracellular signaling molecule could potentiate its effects from an extracellular location, thus posing a dilemma which pertains to all ecto-enzymes and the mechanisms by which they regulate signal transduction and cellular processes. This review describes the biologic properties of murine CD38, its role in humoral immunity, and its signal transduction properties in B lymphocytes. We suggest that signaling through CD38 represents a new paradigm in lymphocyte signal transduction and is predicated upon extracellular, rather than intracellular, crosstalk.
Collapse
Affiliation(s)
- F E Lund
- Trudeau Institute, Saranac Lake, New York 12983, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Pan S, Koyano-Nakagawa N, Tsuruta L, Amasaki Y, Yokota T, Mori S, Arai N, Arai K. Molecular cloning and functional characterization of murine cDNA encoding transcription factor NFATc. Biochem Biophys Res Commun 1997; 240:314-23. [PMID: 9388475 DOI: 10.1006/bbrc.1997.7381] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcription factors of the NFAT (nuclear factor of activated T cells) family play important roles in immune and inflammatory responses by regulating the expression of genes encoding cytokines and immunoregulatory proteins. Here we describe cloning and characterization of full-length cDNA encoding murine (m) NFATc which predicts that the protein has all the conserved structural motifs of NFAT family members, including the rel homology domain, the NFAT homology domain and the nuclear translocation signals. mNFATc complexed with AP-1 bound specifically to the murine IL-2 NFAT recognition sequence and activated transcription from the co-transfected IL-2 promoter in COS-7 cells. Northern blot analysis showed that the cDNA probe hybridized with a 4.5 kb transcript which is highly inducible in murine T cells. By Northern and in situ hybridization, mNFATc transcript was detected from the early stage of development. In the mouse embryo, mNFATc transcript was strongly expressed in thymus, lung and submandibular gland and weakly in skeletal muscle and heart suggesting that mNFATc may have a role both in embryogenesis and in mature T cells.
Collapse
Affiliation(s)
- S Pan
- Department of Molecular and Developmental Biology, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Fu C, Chan AC. Identification of two tyrosine phosphoproteins, pp70 and pp68, which interact with phospholipase Cgamma, Grb2, and Vav after B cell antigen receptor activation. J Biol Chem 1997; 272:27362-8. [PMID: 9341187 DOI: 10.1074/jbc.272.43.27362] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tyrosine phosphorylation of cellular proteins mediates the assembly and localization of effector proteins through interactions facilitated by modular Src homology 2 (SH2) and phosphotyrosine binding domains. We describe here two tyrosine-phosphorylated proteins with Mr values of 70,000 and 68,000 that interact with Grb2, phospholipase C (PLCgamma1 and PLCgamma2), and Vav after B cell receptor cross-linking. The interaction of pp70 and pp68 with PLC and Vav is mediated by the carboxyl-terminal SH2 domain of PLC and the SH2 domain of Vav. In contrast, the interaction of pp70 and pp68 with Grb2 requires cooperative binding of the SH2 and SH3 domains of Grb2. Western blot analysis demonstrated that neither pp70 nor pp68 represented the recently described linker protein SLP-76, which binds Grb2, PLC, and Vav in T cells after T cell receptor activation. Moreover, SLP-76 protein was not detected in a number of B cell lines or in normal mouse B cells. Hence, we propose that pp70 and pp68 likely represent B cell homologs of SLP-76 which facilitate and coordinate B cell activation.
Collapse
Affiliation(s)
- C Fu
- Program in Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
62
|
Sugawara H, Kurosaki M, Takata M, Kurosaki T. Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J 1997; 16:3078-88. [PMID: 9214625 PMCID: PMC1169926 DOI: 10.1093/emboj/16.11.3078] [Citation(s) in RCA: 361] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stimulation of B-cell antigen receptor (BCR) induces a rapid increase in cytoplasmic free calcium due to its release from intracellular stores and influx from the extracellular environment. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ligand-gated channels that release intracellular calcium stores in response to the second messenger, inositol 1,4,5-trisphosphate. Most hematopoietic cells, including B cells, express at least two of the three different types of IP3R. We demonstrate here that B cells in which a single type of IP3R has been deleted still mobilize calcium in response to BCR stimulation, whereas this calcium mobilization is abrogated in B cells lacking all three types of IP3R. Calcium mobilization by a transfected G protein-coupled receptor (muscarinic M1 receptor) was also abolished in only triple-deficient cells. Capacitative Ca2+ entry, stimulated by thapsigargin, remains unaffected by loss of all three types of IP3R. These data establish that IP3Rs are essential and functionally redundant mediators for both BCR- and muscarinic receptor-induced calcium mobilization, but not for thapsigargin-induced Ca2+ influx. We further show that the BCR-induced apoptosis is significantly inhibited by loss of all three types of IP3R, suggesting an important role for Ca2+ in the process of apoptosis.
Collapse
MESH Headings
- Biological Transport
- Calcium/metabolism
- Calcium Channels/classification
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Cell Line
- Enzyme Activation
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Intracellular Signaling Peptides and Proteins
- Isoenzymes/metabolism
- Membrane Proteins
- Mutation
- Myristoylated Alanine-Rich C Kinase Substrate
- Phospholipase C gamma
- Proteins/metabolism
- Receptor, Muscarinic M1
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Cytoplasmic and Nuclear/classification
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Muscarinic/metabolism
- Signal Transduction
- Thapsigargin/pharmacology
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- H Sugawara
- Department of Integrated Medicine, Omiya Medical Center, Jichi Medical School, Japan
| | | | | | | |
Collapse
|
63
|
Abstract
Recent gene-targeting experiments have highlighted the importance of the intracellular protein tyrosine kinases Lyn, Syk, and Btk in BCR signal transduction and B cell development. In addition, the interactions of these kinases and their regulatory mechanisms have been reported. Activation loop phosphorylation of these kinases is critical for their participation in signal propagation. Several substrates have been identified for these kinases and this has led to elucidation of the mechanisms by which these kinases mediate the downstream signaling events that lead to cellular responses of B cells.
Collapse
Affiliation(s)
- T Kurosaki
- Department of Molecular Genetics, Institute for Hepatic Research Kansai, Medical University, 10-15 Fumizono-cho, Moriguchi, Osaka, 570, Japan.
| |
Collapse
|
64
|
Abstract
NFAT proteins constitute a family of transcription factors involved in mediating signal transduction. Using a panel of specific antisera in immunoprecipitation assays, we found that NFATp (135 kDa) is constitutively expressed in normal human T cells, while synthesis of NFATc (predominant form of 86 kDa) is induced by ionomycin treatment. NFAT4/x was very weakly expressed in unstimulated cells, and its level did not increase upon treatment with activating agents. NFAT3 protein was not observed under any conditions. Higher-molecular-weight species of NFATc (of 110 and 140 kDa) were also detected. In addition, translation of NFATc mRNA apparently initiates at two different AUG codons, giving rise to proteins that differ in size by 36 amino acids. Additional size heterogeneity of both NFATc and NFATp results from phosphorylation. In contrast to ionomycin treatment, exposure of cells to phorbol myristate acetate (PMA) plus anti-CD28 did not induce NFATc, indicating that under these conditions, interleukin-2 synthesis by these cells is apparently independent of NFATc. In DNA binding assays, both PMA plus anti-CD28 and PMA plus ionomycin resulted in nuclear NFAT. Surprisingly, the PMA-ionomycin-induced synthesis of NFATc that was detected by immunoprecipitation was not mirrored in the DNA binding assays: nearly all of the activity was due to NFATp. This is the first study of expression of all family members at the protein level in normal human T cells.
Collapse
Affiliation(s)
- L Lyakh
- Molecular Basis of Carcinogenesis Laboratory, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | |
Collapse
|
65
|
Parra E, Varga M, Hedlund G, Kalland T, Dohlsten M. Costimulation by B7-1 and LFA-3 targets distinct nuclear factors that bind to the interleukin-2 promoter: B7-1 negatively regulates LFA-3-induced NF-AT DNA binding. Mol Cell Biol 1997; 17:1314-23. [PMID: 9032258 PMCID: PMC231856 DOI: 10.1128/mcb.17.3.1314] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have characterized the regulation of nuclear factors involved in transcriptional control of the interleukin-2 (IL-2) promoter-enhancer activity in Jurkat T cells stimulated with superantigen presented on HLA-DR transfectants combined with the ligands LFA-3 (CD58) and B7-1 (CD80). Gel shift analyses showed that NF-AT was strongly induced in LFA-3-costimulated Jurkat T cells, suggesting that NF-AT is a key target nuclear factor for the CD2-LFA-3 pathway. Studies using HLA-DR-B7-1-LFA-3 triple transfectants showed that the LFA-3-induced NF-AT DNA binding activity was negatively regulated by B7-1 costimulation. In contrast, induction of a CD28 response complex containing only c-Rel proteins was seen after B7-1 costimulation. Both LFA-3 costimulation and B7-1 costimulation induced the AP-1 and NF-kappaB nuclear factors. Distinct compositions of the NF-AT complexes were seen in B7-1- and LFA-3-costimulated cells. LFA-3 induced primarily Jun-D, Fra-1, and Fra-2, while B7-1 induced June-D-Fos complexes. In contrast, AP-1 and NF-kappaB complexes induced in B7-1- and LFA-3-costimulated T cells showed similar contents. Transient transfection of Jurkat T cells with a construct encoding the IL-2 enhancer-promoter region (position -500 to +60) linked to a luciferase reporter gene revealed that B7-1 costimulation was required to induce strong transcriptional activity. Combined B7-1-LFA-3 costimulation resulted in a synergistic increase in IL-2 transcriptional activity. Multimers of the AP-1, NF-AT, NF-kappaB, and CD28 response elements showed distinct kinetics and activity after LFA-3 and B7-1 costimulation and revealed that B7-1 and LFA-3 converge to superinduce transcriptional activity of the AP-1, NF-AT, and CD28 response elements. Transcriptional studies with an IL-2 enhancer-promoter carrying a mutation in the CD28 response element site revealed that the activity was reduced by 80% after B7-1 and B7-1-LFA-3 costimulation whereas the transcriptional activity induced by LFA-3 was unaffected. Our data strongly suggest a selectivity in induction of nuclear factors by the CD2-LFA-3 and CD28-B7-1 pathways. This selectivity may contribute to regulation of the levels of IL-2 induced by LFA-3 and B7-1 costimulation and favor autocrine and paracrine T-cell responses, respectively.
Collapse
Affiliation(s)
- E Parra
- Department of Cell and Molecular Biology, University of Lund, Sweden
| | | | | | | | | |
Collapse
|
66
|
Rincón M, Flavell RA. Transcription mediated by NFAT is highly inducible in effector CD4+ T helper 2 (Th2) cells but not in Th1 cells. Mol Cell Biol 1997; 17:1522-34. [PMID: 9032280 PMCID: PMC231878 DOI: 10.1128/mcb.17.3.1522] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transcriptional factors of the NFAT family play an important role in regulating the expression of several cytokine genes during the immune response, such as the genes for interleukin 2 (IL-2) and IL-4, among others. Upon antigen stimulation, precursor CD4+ T helper (pTh) cells proliferate and differentiate into two populations of effector cells (eTh1 and eTh2), each one expressing a specific pattern of cytokines that distinguishes them from their precursors. eTh2 cells are the major source of IL-4, while gamma interferon is produced by eTh1 cells. Here we have used reporter transgenic mice to show that DNA binding and transcriptional activities of NFAT are transiently induced during the differentiation of pTh cells into either eTh1 or eTh2 cells to mediate the expression of IL-2 as a common growth factor in both pathways. However, although NFAT DNA binding is similarly induced in both eTh1 and eTh2 cells upon antigen stimulation, only the NFAT complexes present in eTh2 cells are able to mediate high-level transcription, and relatively little NFAT transcriptional activity was induced in eTh1 cells. In contrast to activated pTh cells, neither eTh1 nor eTh2 cells produced significant IL-2 upon stimulation, but the high levels of NFAT transcriptional activities directly correlate with the IL-4 production induced in response to antigen stimulation in eTh2 cells. These data suggest that activated NFAT is involved in the effector function of eTh2 cells and that the failure of eTh1 cells to produce IL-4 in response to an antigen is due, at least partially, to a failure to induce high-level transcription of the IL-4 gene by NFAT. Regulation of NFAT could be therefore a critical element in the polarization to eTh1 or eTh2.
Collapse
Affiliation(s)
- M Rincón
- Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
67
|
Handen JS, Rosenberg HF. Intronic enhancer activity of the eosinophil-derived neurotoxin (RNS2) and eosinophil cationic protein (RNS3) genes is mediated by an NFAT-1 consensus binding sequence. J Biol Chem 1997; 272:1665-9. [PMID: 8999843 DOI: 10.1074/jbc.272.3.1665] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The eosinophil-derived neurotoxin (EDN) and eosinophil cationic protein (ECP) are both small, cationic ribonuclease toxins that are stored in and secreted by activated human eosinophilic leukocytes. We have previously shown that optimal expression of the EDN gene is dependent on an interaction between an intronic enhancer element or elements and the 5' promoter region. Here we present evidence demonstrating that the gene encoding ECP is regulated in an analogous fashion and that an intronic enhancer element functioning in both genes is a consensus binding sequence for the transcription factor NFAT-1. Our initial results demonstrate that one or more nuclear proteins isolated from human promyelocytic leukemia (HL-60) cells bind specifically at this consensus site (5'-GGAGAA-3') within the intron of the EDN gene and that disruption of this sequence reduced the characteristic 20-30-fold increase in reporter gene activity observed with the tandem EDN promoter/exon 1/intron construct to background levels. The NFAT-1 consensus site in the ECP gene differs from that found in the EDN gene by a single nucleotide (5'-GGAGAG-3'); the conversion of the 3' G to an A resulted in a further enhancement of the reporter gene activity supported by the ECP promoter/exon 1/intron construct. Interestingly, no "supershift" was observed in gel shift assays performed in the presence of anti-NFAT-1 antiserum, suggesting that a nuclear protein other than NFAT-1 may be acting at this consensus site.
Collapse
Affiliation(s)
- J S Handen
- Laboratory of Host Defenses, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
68
|
Klaus GG, Choi MS, Lam EW, Johnson-Léger C, Cliff J. CD40: a pivotal receptor in the determination of life/death decisions in B lymphocytes. Int Rev Immunol 1997; 15:5-31. [PMID: 9178070 DOI: 10.3109/08830189709068169] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CD40 is a 48 kDa glycoprotein predominantly expressed on B cells in both mouse and man, which interacts with a counterligand (CD40L), expressed on activated CD4+ T cells. CD40/CD40L interactions are now known to be essential for the initiation of antibody responses to T-dependent antigens. In this review we discuss the immunobiology of CD40, with a special emphasis on our own studies in the mouse. These have focused on signal transduction via CD40, the role of cytokines (both T cell-derived and B cell-derived) in CD40-mediated B cell activation, and the role of CD40 in protecting B cells from apoptotic cell death. The available data indicate clearly that this protein is a pivotal receptor on B cells, both for the delivery of activating signals and for promoting B cell survival.
Collapse
Affiliation(s)
- G G Klaus
- Division of Cellular Immunology, National Institute for Medical Research, London, UK
| | | | | | | | | |
Collapse
|
69
|
Abstract
As targets for the immunosuppressive drugs cyclosporin A and FK506, transcription factors of the NFAT (nuclear factor of activated T cells) family have been the focus of much attention. NFAT proteins, which are expressed in most immune-system cells, play a pivotal role in the transcription of cytokine genes and other genes critical for the immune response. The activity of NFAT proteins is tightly regulated by the calcium/calmodulin-dependent phosphatase calcineurin, a primary target for inhibition by cyclosporin A and FK506. Calcineurin controls the translocation of NFAT proteins from the cytoplasm to the nucleus of activated cells by interacting with an N-terminal regulatory domain conserved in the NFAT family. The DNA-binding domains of NFAT proteins resemble those of Rel-family proteins, and Rel and NFAT proteins show some overlap in their ability to bind to certain regulatory elements in cytokine genes. NFAT is also notable for its ability to bind cooperatively with transcription factors of the AP-1 (Fos/Jun) family to composite NFAT:AP-1 sites, found in the regulatory regions of many genes that are inducibly transcribed by immune-system cells. This review discusses recent data on the diversity of the NFAT family of transcription factors, the regulation of NFAT proteins within cells, and the cooperation of NFAT proteins with other transcription factors to regulate the expression of inducible genes.
Collapse
Affiliation(s)
- A Rao
- Center for Blood Research, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
70
|
Zhao Q, Weiss A. Enhancement of lymphocyte responsiveness by a gain-of-function mutation of ZAP-70. Mol Cell Biol 1996; 16:6765-74. [PMID: 8943331 PMCID: PMC231679 DOI: 10.1128/mcb.16.12.6765] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The protein tyrosine kinase ZAP-70 plays an essential role in T-cell activation and development. After T-cell receptor stimulation, ZAP-70 is associated with the receptor and is phosphorylated on many tyrosine residues, including tyrosine 292 (Y-292), in the region between the C-terminal SH2 domain and the kinase domain (interdomain B). Here we show that a mutation of Y-292 (292F) or deletion of interdomain B enhanced the ability of ZAP-70 to reconstitute B-cell receptor stimulation-dependent NF-AT induction in a B-cell line deficient in Syk. In contrast, in a T-cell line, expression of 292F led to basal NF-AT induction independent of T-cell receptor stimulation. These results demonstrate that the role of Y-292 is to negatively regulate the function of ZAP-70 in lymphocytes. This appears to be a dominant function of interdomain B because deletion of most of interdomain B also resulted in a mutant of ZAP-70 with enhanced ability to reconstitute Syk-deficient DT-40 B cells. Since our biochemical studies did not reveal an effect of the 292F mutation on either the kinase activity of ZAP-70 or on the ability of ZAP-70 to bind to the receptor, we propose a model in which Y-292 interacts with an inhibitory protein to negatively regulate ZAP-70 function.
Collapse
Affiliation(s)
- Q Zhao
- Department of Medicine, University of California, San Francisco 94143-0724, USA
| | | |
Collapse
|
71
|
Mayumi M, Sumimoto S, Kanazashi S, Hata D, Yamaoka K, Higaki Y, Ishigami T, Kim KM, Heike T, Katamura K. Negative signaling in B cells by surface immunoglobulins. J Allergy Clin Immunol 1996; 98:S238-47. [PMID: 8977533 DOI: 10.1016/s0091-6749(96)70072-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cross-linking of surface immunoglobulins generates negative signals that cause B-cell death unless appropriate rescue signals are provided. Surface IgM is the main transducer of the negative signaling, but surface IgD and IgG may also transduce negative signaling when cross-linked intensively. In the surface IgM+, IgD+ human malignant B lymphoma cell lines B104 and DND-39, cross-linking of surface IgM by anti-IgM antibodies induced cell death. Anti-IgM antibody-induced B104 cell death was inhibited by stimulation with alpha- and beta-interferons but not stimulation with anti-CD40 antibody or IL-4, whereas anti-IgM antibody-induced DND-39 cell death was inhibited by stimulation with anti-CD40 antibody but not stimulation with alpha- and beta-interferons. Anti-IgM antibody-stimulated B104 cells had morphologic features compatible with necrosis, whereas anti-IgM antibody-stimulated DND-39 cells showed morphologic features of apoptosis. CD11a/CD54-dependent cell adhesion induced by stimulation with anti-CD40 antibody was involved in anti-CD40 antibody-mediated inhibition of anti-IgM antibody-induced DND-39 cells. In normal human mature B cells, cross-linking of surface IgM induced different signaling consequences, including DNA synthesis or cell division (positive signaling) or cell cycle arrest or death (negative signaling). In this system, too, CD40-transduced signal inhibited anti-IgM antibody-induced negative signaling, and CD11a/CD54-dependent cell adhesion played a role in the rescue process. It is suggested that quantitatively different intensities of surface IgM cross-linking induce qualitatively different signaling consequences; relatively weak cross-linking may induce DNA synthesis; moderate cross-linking may induce DNA synthesis with cell cycle arrest at the G2/M interphase; and intense cross-linking may induce apoptotic cell death. The reasons for this difference are not yet known. Further elucidation of the molecular mechanisms responsible for surface IgM-mediated negative signaling and its rescue signaling may contribute toward development of therapy for allergic disorders by artificial modulation of specific immunoglobulin production.
Collapse
Affiliation(s)
- M Mayumi
- Department of Pediatrics, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Schuh K, Avots A, Tony HP, Serfling E, Kneitz C. Nuclear NF-ATp is a hallmark of unstimulated B cells from B-CLL patients. Leuk Lymphoma 1996; 23:583-92. [PMID: 9031090 DOI: 10.3109/10428199609054868] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
B lymphocytes from the peripheral blood of patients with chronic lymphocytic leukaemia (CLL) were analysed for the nuclear presence and DNA binding of a panel of transcription factors which are involved in the gene control of lymphoid cells. The following transcription factors were studied: the Octamer factors Oct-1 and Oct-2, members of the AP-1 factor family, NF-AT factors, in particular NF-ATp, and members of the Rel/NF-kB family. We show that the constitutive nuclear translocation of NF-ATp, a member of the growing family of NF-AT factors, is a hallmark of nonstimulated B cells from CLL patients that distinguishes B-CLL cells from 'normal' B lymphocytes. Constitutive nuclear appearance was also observed for NF-kB2/p52. Constitutive binding of further factor proteins to DNA, such as JunD, c-Fos and FosB, was detected in several patients whereas the localisation and DNA binding of other factors such as c-Jun, RelA/p65 and c-Rel was unaltered. It is remarkable that in B-CLL cells the nuclear appearance and DNA binding of specific transcription factors is dramatically affected whereas other members of the same factor family remained unaltered in these leukemic cells. It remains to be shown which molecular events lead to the specific 'pre-activation', i.e. constitutive nuclear translocation and DNA binding, of these members of NF-AT, NF-kB and AP-1 factor families.
Collapse
Affiliation(s)
- K Schuh
- Institute of Pathology, University of Würzburg, Germany
| | | | | | | | | |
Collapse
|
73
|
Lapointe R, Lemieux R, Olivier M, Darveau A. Tyrosine kinase and cAMP-dependent protein kinase activities in CD40-activated human B lymphocytes. Eur J Immunol 1996; 26:2376-82. [PMID: 8898948 DOI: 10.1002/eji.1830261016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In vitro, human B lymphocytes undergo long-term proliferation when activated through CD40, a protein expressed on their cell surface. The nature of CD40-dependent signals in proliferating fresh human Epstein-Barr virus-negative B lymphocytes is currently unknown. In this study, a CD40-dependent B cell culture system was used to examine the role of different signal transduction elements. Protein kinase C (PKC) depletion generated by a long-term phorbol 12 myristate 13-acetate treatment had weak effects on proliferation. Rather, tyrosine phosphorylation was shown to be directly involved in mediating CD40-dependent signals. The use of the protein tyrosine kinase (PTK)-specific inhibitor herbimycin A dramatically decreased cellular proliferation without altering the activity of the human immunodeficiency virus-1 long terminal repeat (HIV-1 LTR), a promoter largely dependent on the binding of nuclear factor kappa B (NF- kappa B). In contrast, the cAMP-dependent protein kinase specific inhibitor H-89 totally inhibited HIV-1 LTR activity at a concentration as low as 100 nM without affecting cellular proliferation. Electrophoretic mobility shift assay (EMSA) and supershift assay using an NF-kappa B binding sequence from the kappa light chain as a probe, revealed that both p65 (RelA) and c-Rel were present in CD40-stimulated B cells. While PKC depletion did not alter the NF-kappa B level, treatment of B lymphocytes with H-89 or herbimycin A provoked a decrease in the NF-kappa B level. These observations establish the importance of different signal transducing pathways leading to CD40 activation of B lymphocytes.
Collapse
Affiliation(s)
- R Lapointe
- Canadian Red Cross Society, Blood Services, Transfusion Centre of Québec, Canada
| | | | | | | |
Collapse
|
74
|
Lin SC, Stavnezer J. Activation of NF-kappaB/Rel by CD40 engagement induces the mouse germ line immunoglobulin Cgamma1 promoter. Mol Cell Biol 1996; 16:4591-603. [PMID: 8756615 PMCID: PMC231458 DOI: 10.1128/mcb.16.9.4591] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Interaction between CD40 on B cells and CD40 ligand (CD40L) on T cells has been shown to mediate T-cell contact help for B-cell proliferation, differentiation, and immunoglobulin isotype switching. It has recently been shown that cross-linking CD40 on mouse B cells induces germ line gamma1 and epsilon transcripts and that interleukin-4 synergizes with CD40 signaling to further induce these germ line transcripts. Germ line transcripts have been shown to be required for class switch recombination. Here we show that signaling via CD40 increases expression of a transiently transfected luciferase reporter plasmid driven by the germ line Cgamma1 promoter in M12.4.1 B-lymphoma cells. By linker-scanning mutation analysis of the promoter, we have identified a CD40-responsive region (CD40RR) which is able to confer inducibility by CD40L to a minimal c-fos promoter. The CD40RR contains three binding sites for NF-kappaB/Rel proteins which are each required for maximal induction of CD40RR activity by CD40L. Binding of the NF-kappaB/Rel proteins p50, p65, c-Rel, and RelB to the CD40RR is induced by CD40 signaling in M12.4.1 cells and in splenic B cells. Cotransfection of expression plasmids for p50 and p65 or p50 and RelB, but not c-Rel, into M12.4.1 cells transactivates the CD40RR and the germ line gamma1 promoter. These data demonstrate that NF-kappaB Rel proteins activated by CD40 ligation play an important role in induction of the germ line Cgamma1 promoter.
Collapse
Affiliation(s)
- S C Lin
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worecester 01655-0122, USA
| | | |
Collapse
|
75
|
Park J, Takeuchi A, Sharma S. Characterization of a new isoform of the NFAT (nuclear factor of activated T cells) gene family member NFATc. J Biol Chem 1996; 271:20914-21. [PMID: 8702849 DOI: 10.1074/jbc.271.34.20914] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The cyclosporin A (CsA)/FK506-sensitive nuclear factor of activated T cells (NFAT) plays a key role in the inducible expression of cytokine genes in T cells. Although NFAT has been recently shown to be inducible in several non-T immune cells, the NFAT gene family members characterized to date have been isolated only from T cells. To further characterize NFAT function in human B cells and to demonstrate cytokine gene specificity of NFAT proteins, we report here the isolation and characterization of a cDNA clone from the Raji B cell line. The cDNA clone encodes a new isoform, NFATc.beta, of the NFAT gene family member NFATc (designated here NFATc.alpha). The amino acid sequence of NFATc.beta differs from that of NFATc. alpha in the first NH2-terminal 29 residues and contains an additional region of 142 residues at the COOH terminus. Northern analysis using a probe encompassing a common region of both isoforms showed two mRNA species of 2.7 and 4.5 kilobase pairs, while an NFATc.beta-specific probe detected only the 4.5-kilobase pair mRNA which was preferentially expressed in the spleen. Transient expression of NFATc.beta was capable of activating an interleukin-2 NFAT-driven reporter gene in stimulated Jurkat cells in a CsA-sensitive manner. However, NFATc.beta neither bound to the kappa3 element (an NFAT-binding site) in the tumor necrosis factor-alpha promoter nor activated the tumor necrosis factor-alpha promoter in cotransfection assays. These data suggest that different members or isoforms of NFAT gene family may regulate inducible expression of different cytokine genes.
Collapse
Affiliation(s)
- J Park
- Department of Pathology, Roger Williams Medical Center-Brown University, Providence, Rhode Island 02908, USA
| | | | | |
Collapse
|
76
|
Luo C, Shaw KT, Raghavan A, Aramburu J, Garcia-Cozar F, Perrino BA, Hogan PG, Rao A. Interaction of calcineurin with a domain of the transcription factor NFAT1 that controls nuclear import. Proc Natl Acad Sci U S A 1996; 93:8907-12. [PMID: 8799126 PMCID: PMC38567 DOI: 10.1073/pnas.93.17.8907] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The nuclear import of the nuclear factor of activated T cells (NFAT)-family transcription factors is initiated by the protein phosphatase calcineurin. Here we identify a regulatory region of NFAT1, N terminal to the DNA-binding domain, that controls nuclear import of NFAT1. The regulatory region of NFAT1 binds directly to calcineurin, is a substrate for calcineurin in vitro, and shows regulated subcellular localization identical to that of full-length NFAT1. The corresponding region of NFATc likewise binds calcineurin, suggesting that the efficient activation of NFAT1 and NFATc by calcineurin reflects a specific targeting of the phosphatase to these proteins. The presence in other NFAT-family transcription factors of several sequence motifs from the regulatory region of NFAT1, including its probable nuclear localization sequence, indicates that a conserved protein domain may control nuclear import of all NFAT proteins.
Collapse
Affiliation(s)
- C Luo
- Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Luo C, Burgeon E, Carew JA, McCaffrey PG, Badalian TM, Lane WS, Hogan PG, Rao A. Recombinant NFAT1 (NFATp) is regulated by calcineurin in T cells and mediates transcription of several cytokine genes. Mol Cell Biol 1996; 16:3955-66. [PMID: 8668213 PMCID: PMC231392 DOI: 10.1128/mcb.16.7.3955] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcription factors of the NFAT family play a key role in the transcription of cytokine genes and other genes during the immune response. We have identified two new isoforms of the transcription factor NFAT1 (previously termed NFATp) that are the predominant isoforms expressed in murine and human T cells. When expressed in Jurkat T cells, recombinant NFAT1 is regulated, as expected, by the calmodulin-dependent phosphatase calcineurin, and its function is inhibited by the immunosuppressive agent cyclosporin A (CsA). Transactivation by recombinant NFAT1 in Jurkat T cells requires dual stimulation with ionomycin and phorbol 12-myristate 13-acetate; this activity is potentiated by coexpression of constitutively active calcineurin and is inhibited by CsA. Immunocytochemical analysis indicates that recombinant NFAT1 localizes in the cytoplasm of transiently transfected T cells and translocates into the nucleus in a CsA-sensitive manner following ionomycin stimulation. When expressed in COS cells, however, NFAT1 is capable of transactivation, but it is not regulated correctly: its subcellular localization and transcriptional function are not affected by stimulation of the COS cells with ionomycin and phorbol 12-myristate 13-acetate. Recombinant NFAT1 can mediate transcription of the interleukin-2, interleukin-4, tumor necrosis factor alpha, and granulocyte-macrophage colony-stimulating factor promoters in T cells, suggesting that NFAT1 contributes to the CsA-sensitive transcription of these genes during the immune response.
Collapse
Affiliation(s)
- C Luo
- Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
Programmed death in B cells is a highly regulated process. During the past year it has become increasingly apparent that specific receptor signals influence B cell apoptosis in distinct ways as a function of developmental stage and/or apoptotic trigger. Studies making use of opposing signals for programmed death have begun to reveal molecular correlates of sensitivity and resistance to apoptosis.
Collapse
Affiliation(s)
- T L Rothstein
- Boston University Medical Center Hospital, MA 02118, USA.
| |
Collapse
|
79
|
Xanthoudakis S, Viola JP, Shaw KT, Luo C, Wallace JD, Bozza PT, Luk DC, Curran T, Rao A. An enhanced immune response in mice lacking the transcription factor NFAT1. Science 1996; 272:892-5. [PMID: 8629027 DOI: 10.1126/science.272.5263.892] [Citation(s) in RCA: 289] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transcription factors of the NFAT family are thought to play a major role in regulating the expression of cytokine genes and other inducible genes during the immune response. The role of NFAT1 was investigated by targeted disruption of the NFAT1 gene. Unexpectedly, cells from NFAT1 -/- mice showed increased primary responses to Leishmania major and mounted increased secondary responses to ovalbumin in vitro. In an in vivo model of allergic inflammation, the accumulation of eosinophils and levels of serum immunoglobulin E were increased in NFAT1 -/- mice. These results suggest that NFAT1 exerts a negative regulatory influence on the immune response.
Collapse
Affiliation(s)
- S Xanthoudakis
- Neurogenetics Program, Department of CNS Research, Hoffmann-LaRoche, Nutley, NJ 07110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Boss V, Talpade DJ, Murphy TJ. Induction of NFAT-mediated transcription by Gq-coupled receptors in lymphoid and non-lymphoid cells. J Biol Chem 1996; 271:10429-32. [PMID: 8631834 DOI: 10.1074/jbc.271.18.10429] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The nuclear factor of activated T cells (NFAT) was discovered as an inducible transcription factor activated by antigen stimulation of the T cell receptor in lymphocytes. Stimulation of NFAT-mediated transcription is now reported in both lymphoid and non-lymphoid cells following activation of a neurotransmitter receptor. Carbachol induces robust luciferase responses in Jurkat and pheochromocytoma PC12 cells expressing an NFAT-luciferase reporter construct and a Gq-coupled m3 muscarinic receptor. Cyclosporin blocks this response in PC12 cells, as in Jurkat cells. In PC12 cells expressing a Gi-coupled m2 muscarinic receptor, carbachol induces NFAT-mediated luciferase activity that is strictly dependent upon co-expression of a chimeric G alpha q/alpha i subunit, which confers Gq-effector coupling on Gi-linked receptors. These findings suggest that neurotransmitters, autacoids, or hormones acting on Gq-protein-coupled receptors may serve as physiological stimulators of NFAT in lymphoid and non-lymphoid cells.
Collapse
Affiliation(s)
- V Boss
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
81
|
Loh C, Shaw KT, Carew J, Viola JP, Luo C, Perrino BA, Rao A. Calcineurin binds the transcription factor NFAT1 and reversibly regulates its activity. J Biol Chem 1996; 271:10884-91. [PMID: 8631904 DOI: 10.1074/jbc.271.18.10884] [Citation(s) in RCA: 242] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
NFAT1 (previously termed NFATp) is a cytoplasmic transcription factor involved in the induction of cytokine genes. We have previously shown that the dephosphorylation of NFAT1, accompanied by its nuclear translocation and increased DNA binding activity, is regulated by calcium- and calcineurin-dependent mechanisms, as each of these hallmarks of NFAT1 activation is elicited by ionomycin and blocked by the immunosuppressive drugs cyclosporin A and FK506 (Shaw, K.T.-Y., Ho, A.M., Raghavan, A., Kim, J., Jain, J., Park, J., Sharma, S., Rao, A., and Hogan, P.G. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 11205-11209). Here we show that the activation state of NFAT1 in T cells is remarkably sensitive to the level of calcineurin activity. Addition of cyclosporin A, even in the presence of ongoing ionomycin stimulation, results in rephosphorylation of NFAT1, its reappearance in the cytoplasm, and a return of its DNA binding activity to low levels. Similar effects are observed upon removal of ionomycin or addition of EGTA. We also demonstrate a direct interaction between calcineurin and NFAT1 that is consistent with a direct enzyme-substrate relation between these two proteins and that may underlie the sensitivity of NFAT1 activation to the level of calcineurin activity. The NFAT1-calcineurin interaction, which involves an N-terminal region of NFAT1 conserved in other NFAT family proteins, may provide a target for the design of novel immunosuppressive drugs.
Collapse
Affiliation(s)
- C Loh
- Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Kerkhofs P, Adam E, Droogmans L, Portetelle D, Mammerickx M, Burny A, Kettmann R, Willems L. Cellular pathways involved in the ex vivo expression of bovine leukemia virus. J Virol 1996; 70:2170-7. [PMID: 8642639 PMCID: PMC190055 DOI: 10.1128/jvi.70.4.2170-2177.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Bovine leukemia virus (BLV) is the etiologic agent of enzootic bovine leukosis. The virus adopts a strategy based on the lack of viral expression in vivo; only very rare BLV-infected B lymphocytes express viral information. When the cells are isolated from animals in persistent lymphocytosis and cultivated ex vivo, a tremendous increase in viral expression occurs. To gain insight into this mechanism, we employed a general approach using chemicals that interfere specifically with cellular pathways involved in signal transduction from the cell membrane to the nucleus. Our data demonstrate that BLV expression is not correlated with the activity of protein kinase A (PKA) and is even inhibited by cyclic AMP (cAMP). The cAMP/PKA pathway is thus apparently not involved in ex vivo viral expression. In contrast, PKC appears to play a key role in this process. Phorbol myristate acetate can directly activate viral expression in B cells (in the absence of T cells). Furthermore, calphostin C, a highly specific inhibitor of PKC, partly decreases ex vivo BLV expression. Our data further demonstrate that calmodulin and calcineurin, a calmodulin-dependent phosphatase, play a key role in the induction of viral expression. The involvement of this calmodulin-dependent pathway could explain the induction of expression that cannot be assigned to PKC. Furthermore, it appears that the activation of viral expression requires a calmodulin but not a PKA-dependent pathway. These data highlight major differences between transient transfection and ex vivo experiments. Finally, despite their homologies, BLV and human T-cell leukemia virus appear to use different signal transduction pathways to induce viral expression.
Collapse
Affiliation(s)
- P Kerkhofs
- National Institute for Veterinary Research, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Goldstein MD, Debenedette MA, Hollenbaugh D, Watts TH. Induction of costimulatory molecules B7-1 and B7-2 in murine B cells. the CBA/N mouse reveals a role for Bruton's tyrosine kinase in CD40-mediated B7 induction. Mol Immunol 1996; 33:541-52. [PMID: 8700170 DOI: 10.1016/0161-5890(96)00005-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The binding of CD40 ligand on activated T cells to CD40 on resting B cells induces the expression of costimulatory molecules B7-1 (CD80) and B7-2 (CD86). The induction of B7 molecules by CD40 ligand-CD40 interaction represents a critical step in rendering B cells competent for antigen presentation. The CBA/N mouse has a defect in CD40 signalling which has been attributed to a mutation in Bruton's tyrosine kinase. We have compared the ability of murine CD40 ligand to induce B7-1 and B7-2 expression on B cells isolated from CBA/N and wild-type CBA/J mice. We find that the CBA/N defect partially impairs both B7-1 and B7-2 induction via CD40. Subsequent experiments investigated the roles of different second messenger systems in B7-1 and B7-2 induction in normal B cells. In M12 B lymphomas either CD40 cross-linking or cAMP treatment can induce B7 molecules. Here we report that treatment with dibutyryl-cAMP also induces B7 molecules in normal B cells provided that they have been preactivated by CD40 cross-linking. We also find that PMA and ionomycin treatment of B cells induces B7-2 but not B7-1 expression. Our data therefore show roles for BTK, cAMP and PMA/ionomycin in B7 induction, as well as providing further evidence for differential regulation of B7-1 and B7-2 induction in B cells.
Collapse
Affiliation(s)
- M D Goldstein
- Department of Immunology, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
84
|
Tsytsykova AV, Tsitsikov EN, Geha RS. The CD40L promoter contains nuclear factor of activated T cells-binding motifs which require AP-1 binding for activation of transcription. J Biol Chem 1996; 271:3763-70. [PMID: 8631992 DOI: 10.1074/jbc.271.7.3763] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Four nuclear factor of activated T cells (NF-AT) binding motifs were found in the murine CD40 ligand promoter. Electrophoretic mobility shift assays using 18-base pair (bp) long oligonucleotides corresponding to the proximal site and nuclear extracts from activated T cells revealed two complexes which were inhibited by cyclosporin A and contained NF-ATc and NF-ATp. Neither complex contained AP-1 proteins. Multimers of the 18-bp oligonucleotides were not active in transient transfection assays using luciferase reporter gene constructs. In contrast, a 30-bp long oligonucleotide bound AP-1 proteins in addition to NF-AT proteins and its multimers strongly induced luciferase gene expression. These results suggested that NF-AT proteins play an important role in the expression of the CD40L gene and that their transcriptional activity requires AP-1 binding.
Collapse
Affiliation(s)
- A V Tsytsykova
- Division of Immunology, Children's Hospital and Departments of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
85
|
Sundstedt A, Sigvardsson M, Leanderson T, Hedlund G, Kalland T, Dohlsten M. In vivo anergized CD4+ T cells express perturbed AP-1 and NF-kappa B transcription factors. Proc Natl Acad Sci U S A 1996; 93:979-84. [PMID: 8577772 PMCID: PMC40015 DOI: 10.1073/pnas.93.3.979] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Anergy is a major mechanism to ensure antigen-specific tolerance in T lymphocytes in the adult. In vivo, anergy has mainly been studied at the cellular level. In this study, we used the T-cell-activating superantigen staphylococcal enterotoxin A (SEA) to investigate molecular mechanisms of T-lymphocyte anergy in vivo. Injection of SEA to adult mice activates CD4+ T cells expressing certain T-cell receptor (TCR) variable region beta-chain families and induces strong and rapid production of interleukin 2 (IL-2). In contrast, repeated injections of SEA cause CD4+ T-cell deletion and anergy in the remaining CD4+ T cells, characterized by reduced expression of IL-2 at mRNA and protein levels. We analyzed expression of AP-1, NF-kappa B, NF-AT, and octamer binding transcription factors, which are known to be involved in the regulation of IL-2 gene promoter activity. Large amounts of AP-1 and NF-kappa B and significant quantities of NF-AT were induced in SEA-activated CD4+ spleen T cells, whereas Oct-1 and Oct-2 DNA binding activity was similar in both resting and activated T cells. In contrast, anergic CD4+ T cells contained severely reduced levels of AP-1 and Fos/Jun-containing NF-AT complexes but expressed significant amounts of NF-kappa B and Oct binding proteins after SEA stimulation. Resolution of the NF-kappa B complex demonstrated predominant expression of p50-p65 heterodimers in activated CD4+ T cells, while anergic cells mainly expressed the transcriptionally inactive p50 homodimer. These alterations of transcription factors are likely to be responsible for repression of IL-2 in anergic T cells.
Collapse
|
86
|
Affiliation(s)
- C Van Kooten
- Laboratory for Immunological Research, Schering-Plough, Dardilly, France
| | | |
Collapse
|
87
|
Shaw KT, Ho AM, Raghavan A, Kim J, Jain J, Park J, Sharma S, Rao A, Hogan PG. Immunosuppressive drugs prevent a rapid dephosphorylation of transcription factor NFAT1 in stimulated immune cells. Proc Natl Acad Sci U S A 1995; 92:11205-9. [PMID: 7479966 PMCID: PMC40600 DOI: 10.1073/pnas.92.24.11205] [Citation(s) in RCA: 274] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The immunosuppressive drugs cyclosporin A and FK506 interfere with the inducible transcription of cytokine genes in T cells and in other immune cells, in part by preventing the activation of NF-AT (nuclear factor of activated T cells). We show that transcription factor NFAT1 in T cells is rapidly dephosphorylated on stimulation, that dephosphorylation occurs before translocation of NFAT1 into the cell nucleus, and that dephosphorylation increases the affinity of NFAT1 for its specific sites in DNA. Cyclosporin A prevents the dephosphorylation and the nuclear translocation of NFAT1 in T cells, B cells, macrophages, and mast cells, delineating at least one mechanism that contributes to the profound immunosuppressive effects of this compound.
Collapse
Affiliation(s)
- K T Shaw
- Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Nakayama K, Nakayama K, Dustin LB, Loh DY. T-B cell interaction inhibits spontaneous apoptosis of mature lymphocytes in Bcl-2-deficient mice. J Exp Med 1995; 182:1101-9. [PMID: 7561683 PMCID: PMC2192300 DOI: 10.1084/jem.182.4.1101] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bcl-2 expression is tightly regulated during lymphocyte development. Mature lymphocytes in Bcl-2-deficient mice show accelerated spontaneous apoptosis in vivo and in vitro. Stimulation of Bcl-2-deficient lymphocytes by anti-CD3 antibody inhibited the spontaneous apoptosis not only in T cells but also in B cells. The rescue of B cells was dependent on the presence of T cells, mainly through CD40L and interleukin (IL)-4. Furthermore, we generated Bcl-2-deficient mice transgenic for a T cell receptor or an immunoglobulin, both specific for chicken ovalbumin, to test for antigen-specific T-B cell interaction in the inhibition of the spontaneous apoptosis. The initial T cell activation by antigenic peptides presented by B cells suppressed apoptosis in T cells. Subsequently, T cells expressed CD40L and released ILs, leading to the protection of B cells from spontaneous apoptosis. These results suggest that the antiapoptotic signaling via CD40 or IL-4 may be largely independent of Bcl-2. Engagement of the Ig alone was not sufficient for the inhibition of B cell apoptosis. Thus, the physiological role of Bcl-2 in mature lymphocytes may be to protect cells from spontaneous apoptosis and to extend their lifespans to increase the opportunity for T cells and B cells to interact with each other and specific antigens in secondary lymphoid tissues. Bcl-2, however, appears to be dispensable for survival once mature lymphocytes are activated by antigen-specific T-B cell collaboration.
Collapse
Affiliation(s)
- K Nakayama
- Howard Hughes Medical Institute, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
89
|
Serfling E, Avots A, Neumann M. The architecture of the interleukin-2 promoter: a reflection of T lymphocyte activation. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1263:181-200. [PMID: 7548205 DOI: 10.1016/0167-4781(95)00112-t] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- E Serfling
- Institute of Pathology, University of Würzburg, Germany
| | | | | |
Collapse
|
90
|
Wang DZ, McCaffrey PG, Rao A. The cyclosporin-sensitive transcription factor NFATp is expressed in several classes of cells in the immune system. Ann N Y Acad Sci 1995; 766:182-94. [PMID: 7486655 DOI: 10.1111/j.1749-6632.1995.tb26661.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- D Z Wang
- Committee on Immunology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
91
|
Worm M, Geha RS. CD40-mediated lymphotoxin alpha expression in human B cells is tyrosine kinase dependent. Eur J Immunol 1995; 25:2438-44. [PMID: 7589108 DOI: 10.1002/eji.1830250905] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The cytokine lymphotoxin (LT)alpha is known to play a role in B cell activation. As the engagement of the B cell antigen CD40 is known to lead to B cell proliferation and differentiation, we studied LT alpha expression in human B cells after CD40 ligation. We demonstrate that anti-CD40 monoclonal antibody (mAb) induces strong LT alpha mRNA and surface-expression in human tonsil B cells. Induction of LT alpha mRNA and surface expression by CD40 ligation is inhibited by the protein tyrosine kinase (PTK) inhibitors herbimycin and genistein in a dose-dependent manner. The protein kinase C (PKC)-specific inhibitors sphingosine and bis-indolylmaleimide caused negligible inhibition of anti-CD40-induced LT alpha mRNA and surface expression. No inhibition is observed with the protein kinase (PKA) inhibitors H89 and HA1004. Cross-linking of the transmembrane phosphatase CD45 to CD40 by using goat-anti-mouse F(ab')2 fragments strongly inhibits CD40-mediated LT alpha expression in human B cells, confirming the role of PTK activation in CD40-mediated induction of LT alpha expression. Inhibitors of the serine/threonine protein phosphatases PP1 and PP2A, okadaic acid and calyculin induce LT alpha mRNA expression. In contrast, cyclosporin A, an inhibitor of the serine/threonine phosphatase calcineurin has no effect on anti-CD40-induced LT alpha expression. These results suggest that induction of LT alpha expression in B cells following engagement of CD40 involves activation of protein tyrosine kinases.
Collapse
Affiliation(s)
- M Worm
- Children's Hospital/Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
92
|
Aramburu J, Azzoni L, Rao A, Perussia B. Activation and expression of the nuclear factors of activated T cells, NFATp and NFATc, in human natural killer cells: regulation upon CD16 ligand binding. J Exp Med 1995; 182:801-10. [PMID: 7650486 PMCID: PMC2192167 DOI: 10.1084/jem.182.3.801] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The putative factors that couple the signal transduction from surface receptors to the activation of cytokine synthesis in natural killer (NK) cells have not been elucidated. We report here that the nuclear factor of activated T cells (NFATp), a cyclosporin A (CsA)-sensitive factor that regulates the transcription of several cytokines, mediates CD16-induced activation of cytokine genes in human NK cells. CD16 (Fc gamma RIIIA)-induced expression of cytokine mRNA in NK cells occurs via a CsA-sensitive and Ca(2+)-dependent mechanism. Stimulation of NK cells with CD16 ligands induces NFAT-like DNA binding activity in the nuclear extracts from these cells, as detected in electrophoretic mobility shift assays. This occurs with fast kinetics after stimulation, via a CsA-sensitive and Ca(2+)-dependent mechanism that does not require de novo protein synthesis. NK cell NFAT is present in the cytosol of nonstimulated cells, migrates to the nucleus upon stimulation, and can associate with AP-1. Two distinct molecules, NFATp and NFATc, have been reported to mediate NFAT activity. The results of supershift assays using NFATp- and NFATc- specific antibodies indicate that NK cell activation early after CD16 ligand binding involves primarily, if not exclusively, NFATp, and Western blot analysis shows that this has the same electrophoretic mobility (approximately 120 kD) as that of T lymphocytes. NK cells do not express NFATc constitutively, but NFATc mRNA accumulation is induced in these cells within 2 h of stimulation with CD16 ligands. However, supershift assays using the available mAb recognizing the T cell NFATc revealed no detectable NFATc protein in nuclear and cytoplasmic extracts from CD16- or phorbol ester-stimulated cells at any time tested, up to 4 h. These results provide the first direct evidence that both CsA-sensitive transcription factors, NFATp and NFATc, are expressed in human NK cells, and that their activation and/or expression can be regulated in primary cells by a single stimulus, that, in the case of CD16 in NK cells, results in early activation of NFATp and subsequently induced expression of NFATc mRNA.
Collapse
Affiliation(s)
- J Aramburu
- Department of Microbiology and Immunology, Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
93
|
Park J, Yaseen NR, Hogan PG, Rao A, Sharma S. Phosphorylation of the transcription factor NFATp inhibits its DNA binding activity in cyclosporin A-treated human B and T cells. J Biol Chem 1995; 270:20653-9. [PMID: 7657645 DOI: 10.1074/jbc.270.35.20653] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cyclosporin A (CsA) exerts its immunosuppressive effect by inhibiting the activity of nuclear factor of activated T cells (NFAT), thus preventing transcriptional induction of several cytokine genes. This effect is thought to be largely mediated through inactivation of the phosphatase calcineurin, which in turn inhibits translocation of an NFAT component to the nucleus. Here we report that CsA treatment of Raji B and Jurkat T cell lines yields a phosphorylated form of NFATp that is inhibited in DNA-binding and in its ability to form an NFAT complex with Fos and Jun. Immunoblot analyses and metabolic labeling with [32P]orthophosphate show that CsA alters NFATp migration on SDS-polyacrylamide gel electrophoresis by increasing its phosphorylation level without affecting subcellular distribution. Dephosphorylation by in vitro treatment with calcineurin or alkaline phosphatase restores NFATp DNA binding activity and its ability to reconstitute an NFAT complex with Fos and Jun proteins. These data point to a new mechanism for CsA-sensitive regulation of NFATp in which dephosphorylation is critical for DNA binding.
Collapse
Affiliation(s)
- J Park
- Department of Pathology, Roger Williams Medical Center-Brown University, Providence, Rhode Island 02908, USA
| | | | | | | | | |
Collapse
|
94
|
Mouzaki A, Serfling E, Zubler RH. Interleukin-2 promoter activity in Epstein-Barr virus-transformed B lymphocytes is controlled by nuclear factor-chi B. Eur J Immunol 1995; 25:2177-82. [PMID: 7664781 DOI: 10.1002/eji.1830250809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The regulation of interleukin (IL)-2 gene expression has been investigated mainly in T lymphocytes, the predominant producers of IL-2. However, B cells can also synthesize IL-2. In the present study we analyzed the control of IL-2 promoter activity in Epstein-Barr virus (EBV)-transformed B cell clones which are capable of secreting IL-2 at a low level after stimulation with phorbol 12-myristate 13-acetate and the Ca2+ ionophore ionomycin. Transient transfections using reporter constructs with multiples of transcription factor binding sites from the IL-2 promoter [distal nuclear factor (NF)-AT, proximal NF-AT, AP-1/Octamer (UPS) or NF-chi B (TCEd) sites] were performed. In EBV-transformed B clones, the chi B site exerted the strongest inducible activity; the NF-AT binding sites showed either no or only weak activity compared to Jurkat T cells. An IL-2 promoter bearing a defective NF-chi B site was completely inactive in EBV-transformed B cells, while it still had activity in Jurkat T cells. In seven EBV-B cell clones or lines differing in their capacity to secrete IL-2, the activity of the IL-2 promoter correlated well with the status of IL-2 secretion. Similarly, a human immunodeficiency virus promoter, whose activity is controlled through chi B factors, was found to be active in the IL-2 producing EBV-B cells, but inactive in the non-IL-2-producing cells. Electrophoretic mobility shift assays using protein extracts from EBV-B cells and the IL-2 NF-chi B probe revealed the constitutive generation of chi B complexes in IL-2-secreting cells consisting mainly of heterodimeric p50/p65 complexes. A weaker chi B complex formation and faster-migrating complexes were detected in non-IL-2-secreting cells. These results demonstrate that the IL-2 NF-chi B site is indispensable for the activity of the IL-2 promoter in EBV-transformed B cells, whereas other transcription factors appear to be less important for IL-2 expression in these cells.
Collapse
Affiliation(s)
- A Mouzaki
- Department of Medicine, Hôpital Cantonal Universitaire, Genève, Switzerland
| | | | | |
Collapse
|
95
|
Lundgren M, Ström L, Bergquist LO, Skog S, Heiden T, Stavnezer J, Severinson E. Cell cycle regulation of immunoglobulin class switch recombination and germ-line transcription: potential role of Ets family members. Eur J Immunol 1995; 25:2042-51. [PMID: 7621878 DOI: 10.1002/eji.1830250736] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous studies have indicated that transcription of germ-line (GL) CH genes is necessary to obtain immunoglobulin (Ig) class switching. We report here a correlation between proliferation, switching and GL transcripts. Smu-S gamma 1 switch recombination in lipopolysaccharide (LPS) + interleukin-4 (IL-4)-activated mouse B cells was assayed by a digestion-circularization polymerase chain reaction. Switching to gamma 1 is reduced upon inhibition of DNA synthesis with hydroxy-urea (HU) or aphidicholin (AC). Incubation of activated B cells with HU severely reduces steady-state levels of GL gamma 1 and epsilon RNA. By utilizing elutriation to synchronize B cell blasts in different phases of the cell cycle, it was found that GL gamma 1 transcripts are mainly expressed in G1 and S phases, but not in G0. Using the electrophoretic mobility shift assay, we characterized two major LPS-induced complexes, which bind to the GL gamma 1 promoter and are expressed at levels which correlate with the amount of LPS-induced DNA synthesis. Furthermore, the intensity of the complexes is reduced when cells are arrested with the DNA synthesis inhibitors HU or AC. Elutriation experiments revealed that the complexes are expressed in G1 and S, but not in G0. They bind to an Ets consensus element near the major initiation sites used in proliferating cells. The possible implications of these findings for Ig isotype switching are discussed.
Collapse
Affiliation(s)
- M Lundgren
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
96
|
Kong GH, Bu JY, Kurosaki T, Shaw AS, Chan AC. Reconstitution of Syk function by the ZAP-70 protein tyrosine kinase. Immunity 1995; 2:485-92. [PMID: 7538440 DOI: 10.1016/1074-7613(95)90029-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ZAP-70 and Syk are PTKs required for TCR and BCR function, respectively. Loss of the Syk PTK results in a nonfunctional BCR. We provide evidence here that ZAP-70 and Syk are functionally homologous in antigen receptor signaling by demonstrating that expression of ZAP-70 in Syk- B cells reconstitutes BCR function. Reconstitution required the presence of functional Src homology 2 (SH2) and catalytic domains of ZAP-70. Thus, drug targeting of a single SH2 domain within ZAP-70 should be sufficient to inhibit hematopoietic antigen receptor function. In addition, we demonstrate that both ZAP-70 and Syk can bind directly to the phosphorylated Ig alpha and Ig beta subunits with affinities comparable to their binding to the TCR CD3 epsilon subunit. These data suggest that ZAP-70 and Syk are comparable in their abilities to mediate hematopoietic antigen receptor signaling.
Collapse
Affiliation(s)
- G H Kong
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
97
|
Hoey T, Sun YL, Williamson K, Xu X. Isolation of two new members of the NF-AT gene family and functional characterization of the NF-AT proteins. Immunity 1995; 2:461-72. [PMID: 7749981 DOI: 10.1016/1074-7613(95)90027-6] [Citation(s) in RCA: 314] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The activation of cytokine genes in response to antigenic stimulation of T cells is mediated by NF-AT proteins. Previous studies have identified two NF-AT proteins, NF-ATp and NF-ATc, that are homologous within a 290 aa domain distantly related to the Rel domain. We have isolated two additional members of this gene family, NF-AT3 and NF-AT4, which encode proteins 65% identical to the other NF-AT proteins within the Rel domain. The four NF-AT genes are transcribed in different sets of tissues that included many sites of expression outside the immune system. The Rel homology domain is sufficient for DNA recognition and cooperative binding interactions with AP-1. Although other members of the Rel family bind DNA as dimers, NF-AT proteins are monomers in solution or bound to DNA. Transfection assays indicate that each of the four NF-AT proteins can activate the IL-2 promoter in T cells.
Collapse
Affiliation(s)
- T Hoey
- Tularik, Incorporated, South San Francisco, California 94080, USA
| | | | | | | |
Collapse
|
98
|
Choi MS, Boise LH, Gottschalk AR, Quintans J, Thompson CB, Klaus GG. The role of bcl-XL in CD40-mediated rescue from anti-mu-induced apoptosis in WEHI-231 B lymphoma cells. Eur J Immunol 1995; 25:1352-7. [PMID: 7539757 DOI: 10.1002/eji.1830250533] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The phenotypically immature B cell lymphoma WEHI-231 undergoes apoptotic cell death when cultured with anti-immunoglobulin (Ig) antibodies, via a bcl-2-independent mechanism. We have therefore studied the role of the bcl-2-related protein bcl-x in controlling cell death in WEHI-231. We find that overexpression of the long form of bcl-x (bcl-XL) renders these cells refractory to anti-Ig-induced cell death. Stimulation of WEHI-231 via CD40 has similar protective effects. We show here that ligation of CD40 rapidly induces the appearance of the bcl-XL protein in WEHI-231, while stimulation via sIgM, sIgD, CD5 or CD45 receptors, or with phorbol esters plus ionomycin does not. WEHI-231 cells also rapidly undergo massive apoptosis following culture with thapsigargin, a specific inhibitor of the Ca(2+)-ATPase of the endoplasmic reticulum: this is also reversed by anti-CD40, or by overexpression of bcl-XL. We, therefore, conclude that bcl-XL plays a key role in the regulation of antigen receptor-mediated apoptosis via CD40 in WEHI-231. In addition, the fact that this protein is not induced in WEHI-231 in response to phorbol dibutyrate plus ionomycin points to a fundamental signaling defect in these cells, which could conceivably be a reflection of their immature, apoptosis-susceptible phenotype.
Collapse
Affiliation(s)
- M S Choi
- National Institute for Medical Research, Mill Hill, London, GB
| | | | | | | | | | | |
Collapse
|
99
|
Wortis HH, Teutsch M, Higer M, Zheng J, Parker DC. B-cell activation by crosslinking of surface IgM or ligation of CD40 involves alternative signal pathways and results in different B-cell phenotypes. Proc Natl Acad Sci U S A 1995; 92:3348-52. [PMID: 7536930 PMCID: PMC42163 DOI: 10.1073/pnas.92.8.3348] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Treatment of small resting B cells with soluble F(ab')2 fragments of anti-IgM, an analogue of T-independent type 2 antigens, induced activation characterized by proliferation and the expression of surface CD5. In contrast, B cells induced to proliferate in response to thymus-dependent inductive signals provided by either fixed activated T-helper 2 cells or soluble CD40 ligand-CD8 (CD40L) recombinant protein displayed elevated levels of CD23 (Fc epsilon II receptor) and no surface CD5. Treatment with anti-IgM and CD40L induced higher levels of proliferation and generated a single population of B cells coexpressing minimal amounts of CD5 and only a slight elevation of CD23. Anti-IgM- but not CD40L-mediated activation was highly sensitive to inhibition by cyclosporin A and FK520. Sp-cAMPS, an analogue of cAMP, augmented CD40L and suppressed surface IgM-mediated activation. Taken together these results are interpreted to mean that there is a single population of small resting B cells that can respond to either T-independent type 2 (surface IgM)- or T-dependent (CD40)-mediated activation. In response to different intracellular signals these cells are induced to enter alternative differentiation pathways.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- CD40 Antigens
- CD5 Antigens
- Cells, Cultured
- Cyclic AMP/analogs & derivatives
- Cyclic AMP/pharmacology
- Cyclosporine/pharmacology
- Dose-Response Relationship, Drug
- Flow Cytometry
- Immunoglobulin M/metabolism
- Immunologic Capping
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred CBA
- Receptors, Antigen, B-Cell/metabolism
- Receptors, IgE/biosynthesis
- Signal Transduction
- Spleen/cytology
- Spleen/immunology
- Tacrolimus/analogs & derivatives
- Tacrolimus/pharmacology
- Thionucleotides/pharmacology
Collapse
Affiliation(s)
- H H Wortis
- Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
100
|
Gold MR, Matsuuchi L. Signal transduction by the antigen receptors of B and T lymphocytes. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 157:181-276. [PMID: 7706020 DOI: 10.1016/s0074-7696(08)62159-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
B and T lymphocytes of the immune system recognize and destroy invading microorganisms but are tolerant to the cells and tissues of one's own body. The basis for this self/non-self-discrimination is the clonal nature of the B and T cell antigen receptors. Each lymphocyte has antigen receptors with a single unique antigen specificity. Multiple mechanisms ensure that self-reactive lymphocytes are eliminated or silenced whereas lymphocytes directed against foreign antigens are activated only when the appropriate antigen is present. The key element in these processes is the ability of the antigen receptors to transmit signals to the interior of the lymphocyte when they bind the antigen for which they are specific. Whether these signals lead to activation, tolerance, or cell death is dependent on the maturation state of the lymphocytes as well as on signals from other receptors. We review the role of antigen receptor signaling in the development and activation of B and T lymphocytes and also describe the biochemical signaling mechanisms employed by these receptors. In addition, we discuss how signal transduction pathways activated by the antigen receptors may alter gene expression, regulate the cell cycle, and induce or prevent programmed cell death.
Collapse
Affiliation(s)
- M R Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|