51
|
Jaimes-Miranda F, Chávez Montes RA. The plant MBF1 protein family: a bridge between stress and transcription. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1782-1791. [PMID: 32037452 PMCID: PMC7094072 DOI: 10.1093/jxb/erz525] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/06/2020] [Indexed: 05/20/2023]
Abstract
The Multiprotein Bridging Factor 1 (MBF1) proteins are transcription co-factors whose molecular function is to form a bridge between transcription factors and the basal machinery of transcription. MBF1s are present in most archaea and all eukaryotes, and numerous reports show that they are involved in developmental processes and in stress responses. In this review we summarize almost three decades of research on the plant MBF1 family, which has mainly focused on their role in abiotic stress responses, in particular the heat stress response. However, despite the amount of information available, there are still many questions that remain about how plant MBF1 genes, transcripts, and proteins respond to stress, and how they in turn modulate stress response transcriptional pathways.
Collapse
Affiliation(s)
- Fabiola Jaimes-Miranda
- CONACyT-Instituto Potosino de Investigación Científica y Tecnológica AC, División de Biología Molecular, San Luis Potosí, San Luis Potosí, México
- Correspondence:
| | - Ricardo A Chávez Montes
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
| |
Collapse
|
52
|
Singh NK, Shukla P, Kirti PB. A CBL-interacting protein kinase AdCIPK5 confers salt and osmotic stress tolerance in transgenic tobacco. Sci Rep 2020; 10:418. [PMID: 31941979 PMCID: PMC6962456 DOI: 10.1038/s41598-019-57383-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/30/2019] [Indexed: 11/17/2022] Open
Abstract
CBL interacting protein kinases play important roles in adaptation to stress conditions. In the present study, we isolated a CBL-interacting protein kinase homolog (AdCIPK5) from a wild peanut (Arachis diogoi) with similarity to AtCIPK5 of Arabidopsis. Expression analyses in leaves of the wild peanut showed AdCIPK5 induction by exogenous signaling molecules including salicylic acid, abscisic acid and ethylene or abiotic stress factors like salt, PEG and sorbitol. The recombinant AdCIPK5-GFP protein was found to be localized to the nucleus, plasma membrane and cytoplasm. We overexpressed AdCIPK5 in tobacco plants and checked their level of tolerance to biotic and abiotic stresses. While wild type and transgenic plants displayed no significant differences to the treatment with the phytopathogen, Phytophthora parasitica pv nicotianae, the expression of AdCIPK5 increased salt and osmotic tolerance in transgenic plants. Analysis of different physiological parameters revealed that the transgenic plants maintained higher chlorophyll content and catalase activity with lower levels of H2O2 and MDA content during the abiotic stress conditions. AdCIPK5 overexpression also contributed to the maintenance of a higher the K+/Na+ ratio under salt stress. The enhanced tolerance of transgenic plants was associated with elevated expression of stress-related marker genes; NtERD10C, NtERD10D, NtNCED1, NtSus1, NtCAT and NtSOS1. Taken together, these results indicate that AdCIPK5 is a positive regulator of salt and osmotic stress tolerance.
Collapse
Affiliation(s)
- Naveen Kumar Singh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
- Agricultural Research Organization-the Volcani Center, 68 HaMaccabim Road P.O.B 15159, Rishon LeZion, 7505101, Israel.
| | - Pawan Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
- Central Sericultural Research and Training Institute, Central Silk Board, NH-1A, Gallandar, Pampore, 192121, J & K, India
| | - P B Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
- Agri Biotech Foundation, Rajendranagar, Hyderabad, 500030, India
| |
Collapse
|
53
|
Ma F, Yang X, Shi Z, Miao X. Novel crosstalk between ethylene- and jasmonic acid-pathway responses to a piercing-sucking insect in rice. THE NEW PHYTOLOGIST 2020; 225:474-487. [PMID: 31407341 DOI: 10.1111/nph.16111] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Ethylene (ET) and jasmonic acid (JA) play important roles in plant defenses against biotic stresses. Crosstalk between JA and ET has been well studied in mediating pathogen resistance, but its roles in piercing-sucking insect resistance are unclear. The brown planthopper (BPH; Nilaparvata lugens) is the most notorious piercing-sucking insect specific to rice (Oryza sativa) that severely affects yield. A genetic analysis revealed that OsEBF1 and OsEIL1, which are in the ET signaling pathway, positively and negatively regulated BPH resistance, respectively. Molecular and biochemical analyses revealed direct interactions between OsEBF1 and OsEIL1. OsEBF1, an E3 ligase, mediated the degradation of OsEIL1 through the ubiquitination pathway, indicating the negative regulation of the ET-signaling pathway in response to BPH infestation. An RNA sequencing analysis revealed that a JA biosynthetic pathway-related gene, OsLOX9, was downregulated significantly in the oseil1 mutant. Biochemical analyses, including yeast one-hybrid, dual luciferase, and electrophoretic mobility shift assay, confirmed the direct regulation of OsLOX9 by OsEIL1. This study revealed the synergistic and negative regulation of JA and ET pathways in response to piercing-sucking insect attack. The synergistic mechanism was realized by transcriptional regulation of OsEIL1 on OsLOX9. OsEIL1-OsLOX9 is a novel crosstalk site in these two phytohormone signaling pathways.
Collapse
Affiliation(s)
- Feilong Ma
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofang Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
54
|
Comparative de novo transcriptomics and untargeted metabolomic analyses elucidate complicated mechanisms regulating celery (Apium graveolens L.) responses to selenium stimuli. PLoS One 2019; 14:e0226752. [PMID: 31887119 PMCID: PMC6936847 DOI: 10.1371/journal.pone.0226752] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022] Open
Abstract
Presently, concern regarding the effects of selenium (Se) on the environment and organisms worldwide is increasing. Too much Se in the soil is harmful to plants. In this study, Illumina RNA sequencing and the untargeted metabolome of control and Se-treated celery seedlings were analyzed. In total, 297,911,046 clean reads were obtained and assembled into 150,218 transcripts (50,876 unigenes). A total of 36,287 unigenes were annotated using different databases. Additionally, 8,907 differentially expressed genes, including 5,319 up- and 3,588 downregulated genes, were identified between mock and Se-treated plants. “Phenylpropanoid biosynthesis” was the most enriched KEGG pathway. A total of 24 sulfur and selenocompound metabolic unigenes were differentially expressed. Furthermore, 1,774 metabolites and 237 significant differentially accumulated metabolites were identified using the untargeted metabolomic approach. We conducted correlation analyses of enriched KEGG pathways of differentially expressed genes and accumulated metabolites. Our findings suggested that candidate genes and metabolites involved in important biological pathways may regulate Se tolerance in celery. The results increase our understanding of the molecular mechanism responsible for celery’s adaptation to Se stress.
Collapse
|
55
|
Zhao J, Liu D, Wang Y, Zhu X, Xuan Y, Liu X, Fan H, Chen L, Duan Y. Biocontrol potential of Microbacterium maritypicum Sneb159 against Heterodera glycines. PEST MANAGEMENT SCIENCE 2019; 75:3381-3391. [PMID: 31282045 DOI: 10.1002/ps.5546] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/16/2019] [Accepted: 07/02/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND The soybean cyst nematode Heterodera glycines (Ichinohe) is the most devastating pathogen affecting soybean production worldwide. Biocontrol agents have become eco-friendly candidates to control pathogens. The aim of this study was to discover novel biocontrol agents against H. glycines. RESULTS Microbacterium maritypicum Sneb159, screened from 804 strains, effectively reduced the number of females in field experiments conducted in 2014 and 2015. The stability and efficiency of H. glycines control by Sneb159 was further assessed in growth chamber and field experiments. Sneb159 decreased H. glycines population densities, especially the number of females by 43.9%-67.7%. To confirm Sneb159 induced plant resistance, a split-root assay was conducted. Sneb159 induced local and systemic resistance to suppress the penetration and development of H. glycines, and enhanced the gene expression of PR2, PR3b, and JAZ1, involved in the salicylic acid and jasmonic acid pathways. CONCLUSION This is the first report of M. maritypicum Sneb159 suppressing H. glycines infection. This effect may be the result of Sneb159-induced resistance. Our study indicates that M. maritypicum Sneb159 is a promising biocontrol agent against H. glycines. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Zhao
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dan Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhu Xuan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xiaoyu Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Sciences, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
56
|
Guo H, Liu A, Wang Y, Wang T, Zhang W, Zhu P, Xu L. Measuring light-induced fungal ethylene production enables non-destructive diagnosis of disease occurrence in harvested fruits. Food Chem 2019; 310:125827. [PMID: 31734011 DOI: 10.1016/j.foodchem.2019.125827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/05/2019] [Accepted: 10/28/2019] [Indexed: 01/16/2023]
Abstract
Pathogenic fungi cause enormous losses to fruits, and ethylene (ET) is associated with disease development in fruit crops. In this study, ET production of several fungal pathogens was enhanced by light, probably through the free radicals produced by photochemical reactions. Real-time gas analysis showed a sharp increase in ET production when fungal cultures were moved from dark-to-light (DTL). Similarly, light accelerated ET production in the Botrytis cinerea-infected Arabidopsis thaliana plants even when pyrazinamide, the inhibitor for plant ET synthesis, was applied, suggesting that the fungus is responsible for ET production during host invasion. Furthermore, a sharp increase in ET production after DTL transition was observed in B. cinerea-infected tomatoes and grapes, but not in healthy or physically wounded fruits. Taken together, these findings indicate that the DTL-induced ET is specific to the plant materials with fungal infection, and thus represents a candidate marker for non-destructive disease diagnosis of harvested fruits.
Collapse
Affiliation(s)
- Han Guo
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Anran Liu
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yunrui Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Tan Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wei Zhang
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Pinkuan Zhu
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| | - Ling Xu
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
57
|
Zhang C, Chen H, Zhuang RR, Chen YT, Deng Y, Cai TC, Wang SY, Liu QZ, Tang RH, Shan SH, Pan RL, Chen LS, Zhuang WJ. Overexpression of the peanut CLAVATA1-like leucine-rich repeat receptor-like kinase AhRLK1 confers increased resistance to bacterial wilt in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5407-5421. [PMID: 31173088 PMCID: PMC6793444 DOI: 10.1093/jxb/erz274] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/31/2019] [Indexed: 06/04/2023]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a devastating disease affecting hundreds of plant species, yet the host factors remain poorly characterized. The leucine-rich repeat receptor-like kinase gene AhRLK1, characterized as CLAVATA1, was found to be up-regulated in peanut upon inoculation with R. solanacearum. The AhRLK1 protein was localized in the plasma membrane and cell wall. qPCR results showed AhRLK1 was induced in a susceptible variety but little changed in a resistant cultivar after inoculated with R. solanacearum. Hormones such as salicylic acid, abscisic acid, methyl jasmonate, and ethephon induced AhRLK1 expression. In contrast, AhRLK1 expression was down-regulated under cold and drought treatments. Transient overexpression of AhRLK1 led to a hypersensitive response (HR) in Nicotiana benthamiana. Furthermore, AhRLK1 overexpression in tobacco significantly increased the resistance to R. solanacearum. Besides, the transcripts of most representative defense responsive genes in HR and hormone signal pathways were significantly increased in the transgenic lines. EDS1 and PAD4 in the R gene signaling pathway were also up-regulated, but NDR1 was down-regulated. Accordingly, AhRLK1 may increase the defense response to R. solanacearum via HR and hormone defense signaling, in particular through the EDS1 pathway of R gene signaling. These results provide a new understanding of the CLAVATA1 function and will contribute to genetic enhancement of peanut.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hua Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rui-Rong Zhuang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-Ting Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ye Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tie-Cheng Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuai-Yin Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qin-Zheng Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rong-Hua Tang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shi-Hua Shan
- Shandong Peanut Research Institute, Qingdao, China
| | - Rong-Long Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, Taiwan
| | - Li-Song Chen
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei-Jian Zhuang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
58
|
Wu Z, Han S, Zhou H, Tuang ZK, Wang Y, Jin Y, Shi H, Yang W. Cold stress activates disease resistance in Arabidopsis thaliana through a salicylic acid dependent pathway. PLANT, CELL & ENVIRONMENT 2019; 42:2645-2663. [PMID: 31087367 DOI: 10.1111/pce.13579] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 05/09/2023]
Abstract
Exposure to short-term cold stress influences disease resistance by mechanisms that remain poorly characterized. The molecular basis of cold-activated immunity was therefore investigated in Arabidopsis thaliana inoculated with the bacterial pathogen Pst DC3000, using a transcriptomic analysis. Exposure to cold stress for 10 hr was sufficient to activate immunity, as well as H2 O2 accumulation and callose deposition. Transcriptome changes induced by the 10-hr cold treatment were similar to those caused by pathogen infection, including increased expression of the salicylic acid (SA) pathway marker genes, PR2 and PR5, and genes playing positive roles in defence against (hemi)-biotrophs. In contrast, transcripts encoding jasmonic acid (JA) pathway markers such as PR4 and MYC2 and transcripts with positive roles in defence against necrotrophs were less abundant following the 10-hr cold treatment. Cold-activated immunity was dependent on SA, being partially dependent on NPR1 and ICS1/SID2. In addition, transcripts encoding SA biosynthesis enzymes such as ICS2, PAL1, PAL2, and PAL4 (but not ICS1/SID2) and MES9 were more abundant, whereas GH3.5/WES1 and SOT12 transcripts that encode components involved in SA modification were less abundant following cold stress treatment. These findings show that cold stress cross-activates innate immune responses via a SA-dependent pathway.
Collapse
Affiliation(s)
- Zhenjiang Wu
- School of Life Sciences, Central China Normal University, Wuhan, 43009, P.R. China
| | - Shiming Han
- School of Life Sciences, Central China Normal University, Wuhan, 43009, P.R. China
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, P.R. China
| | - Hedan Zhou
- School of Life Sciences, Central China Normal University, Wuhan, 43009, P.R. China
| | - Za Khai Tuang
- School of Life Sciences, Central China Normal University, Wuhan, 43009, P.R. China
| | - Yizhong Wang
- School of Life Sciences, Central China Normal University, Wuhan, 43009, P.R. China
| | - Ye Jin
- School of Life Sciences, Central China Normal University, Wuhan, 43009, P.R. China
| | - Huazhong Shi
- School of Life Sciences, Central China Normal University, Wuhan, 43009, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock 79409, Texas, USA
| | - Wannian Yang
- School of Life Sciences, Central China Normal University, Wuhan, 43009, P.R. China
| |
Collapse
|
59
|
Qin B, Wang M, He HX, Xiao HX, Zhang Y, Wang LF. Identification and Characterization of a Potential Candidate Mlo Gene Conferring Susceptibility to Powdery Mildew in Rubber Tree. PHYTOPATHOLOGY 2019; 109:1236-1245. [PMID: 30667341 DOI: 10.1094/phyto-05-18-0171-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mildew resistance locus O (Mlo) gene was first found in barley as a powdery mildew susceptibility gene, and recessive mlo alleles confer durable resistance to barley powdery mildew. To identify candidate Mlo susceptibility genes in rubber tree, HbMlo12 was cloned from rubber tree clone CATAS7-33-97, which is susceptible to powdery mildew. Protein architecture analysis showed that HbMlo12 was a typical Mlo protein with seven transmembrane domains. Protein blast search in the Arabidopsis thaliana proteome database showed that HbMlo12 shared the highest similarity with AtMlo12, with 63% sequence identity. Furthermore, HbMlo12 together with the dicot powdery mildew susceptible Mlo proteins (including AtMlo2, AtMlo6, AtMlo12, tomato SlMlo1, pepper CaMlo2, pea PsMlo1, etc.) were grouped into clade V. Subcellular localization analysis in tobacco epidermal cells revealed that HbMlo12 was localized to the endoplasmic reticulum membrane. HbMlo12 was preferentially expressed in the flower and leaf of rubber tree. Moreover, its expression was significantly upregulated in response to powdery mildew inoculation. Application of exogenous ethephon caused a distinct increase in HbMlo12 expression. Additionally, HbMlo12 transcript was quickly induced by spraying salicylic acid and gibberellic acid and reached the maximum at 0.5 h after treatments. By contrast, HbMlo12 expression was downregulated by methyl jasmonate, abscisic acid, and drought stress treatments. There was no significant change in HbMlo12 expression after indole-3-acetic acid, H2O2, and wounding stimuli. Taken together, these results suggested that HbMlo12 might be a candidate Mlo gene conferring susceptibility to powdery mildew in rubber tree. The results of this study are vital in understanding Mlo gene evolution and developing new rubber tree varieties with powdery mildew resistance using reverse genetics.
Collapse
Affiliation(s)
- Bi Qin
- 1 Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China; and
| | - Meng Wang
- 2 Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hai-Xia He
- 2 Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hua-Xing Xiao
- 2 Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yu Zhang
- 2 Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Li-Feng Wang
- 1 Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China; and
| |
Collapse
|
60
|
Gillmeister M, Ballert S, Raschke A, Geistlinger J, Kabrodt K, Baltruschat H, Deising HB, Schellenberg I. Polyphenols from Rheum Roots Inhibit Growth of Fungal and Oomycete Phytopathogens and Induce Plant Disease Resistance. PLANT DISEASE 2019; 103:1674-1684. [PMID: 31095470 DOI: 10.1094/pdis-07-18-1168-re] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A growing world population requires an increase in the quality and quantity of food production. However, field losses due to biotic stresses are currently estimated to be between 10 and 20% worldwide. The risk of resistance and strict pesticide legislation necessitate innovative agronomical practices to adequately protect crops in the future, such as the identification of new substances with novel modes of action. In the present study, liquid chromatography mass spectrometry was used to characterize Rheum rhabarbarum root extracts that were primarily composed of the stilbenes rhaponticin, desoxyrhaponticin, and resveratrol. Minor components were the flavonoids catechin, epicatechin gallate, and procyanidin B1. Specific polyphenolic mixtures inhibited mycelial growth of several phytopathogenic fungi and oomycetes. Foliar spray applications with fractions containing stilbenes and flavonoids inhibited spore germination of powdery mildew in Hordeum vulgare with indications of synergistic interactions. Formulated extracts led to a significant reduction in the incidence of brown rust in Triticum aestivum under field conditions. Arabidopsis thaliana mutant and quantitative reverse-transcription polymerase chain reaction studies suggested that the stilbenes induce salicylic acid-mediated resistance. Thus, the identified substances of Rheum roots represent an excellent source of antifungal agents that can be used in horticulture and agriculture.
Collapse
Affiliation(s)
- Marit Gillmeister
- 1 Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Silvia Ballert
- 1 Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Anja Raschke
- 2 Institute for Agricultural and Nutritional Sciences - Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Joerg Geistlinger
- 1 Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Kathrin Kabrodt
- 1 Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Helmut Baltruschat
- 1 Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Holger B Deising
- 2 Institute for Agricultural and Nutritional Sciences - Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ingo Schellenberg
- 1 Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| |
Collapse
|
61
|
Bak A, Patton MF, Perilla-Henao LM, Aegerter BJ, Casteel CL. Ethylene signaling mediates potyvirus spread by aphid vectors. Oecologia 2019; 190:139-148. [DOI: 10.1007/s00442-019-04405-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/22/2019] [Indexed: 12/21/2022]
|
62
|
Tezuka D, Kawamata A, Kato H, Saburi W, Mori H, Imai R. The rice ethylene response factor OsERF83 positively regulates disease resistance to Magnaporthe oryzae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:263-271. [PMID: 30590260 DOI: 10.1016/j.plaphy.2018.12.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 05/08/2023]
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice (Oryza sativa) worldwide. Here, we report the identification and functional characterization of a novel ethylene response factor (ERF) gene, OsERF83, which was expressed in rice leaves in response to rice blast fungus infection. OsERF83 expression was also induced by treatments with methyl jasmonate, ethephon, and salicylic acid, indicating that multiple phytohormones could be involved in the regulation of OsERF83 expression under biotic stress. Subcellular localization and transactivation analyses demonstrated that OsERF83 is a nucleus-localized transcriptional activator. A gel-shift assay using recombinant OsERF83 protein indicated that, like other ERFs, it binds to the GCC box. Transgenic rice plants overexpressing OsERF83 exhibited significantly suppressed lesion formation after rice blast infection, indicating that OsERF83 positively regulates disease resistance in rice. Genes encoding several classes of pathogenesis-related (PR) proteins, including PR1, PR2, PR3, PR5, and PR10, were upregulated in the OsERF83ox plants. Taken together, our findings show that OsERF83 is a novel ERF transcription factor that confers blast resistance by regulating the expression of defense-related genes in rice.
Collapse
Affiliation(s)
- Daisuke Tezuka
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai, Tsukuba, 305-8602, Japan; Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589, Japan
| | - Aya Kawamata
- School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589, Japan
| | - Hideki Kato
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hitsujigaoka, Sapporo, 062-8555, Japan
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589, Japan
| | - Ryozo Imai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai, Tsukuba, 305-8602, Japan.
| |
Collapse
|
63
|
Integrated Transcriptome Analysis Reveals Plant Hormones Jasmonic Acid and Salicylic Acid Coordinate Growth and Defense Responses upon Fungal Infection in Poplar. Biomolecules 2019; 9:biom9010012. [PMID: 30609760 PMCID: PMC6358764 DOI: 10.3390/biom9010012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/17/2022] Open
Abstract
Plants have evolved a sophisticated system to respond to various stresses. Fungal attack or infection is one of the most important biotic stresses for most plants. During the defense response to fungal infection, the plant hormones jasmonic acid (JA) and salicylic acid (SA) play critical roles. Here, gene expression data on JA/SA treatments and Melampsora larici-populina (MLP) infection were generated. Integrated transcriptome analyses of these data were performed, and 943 genes in total were identified as common responsive genes (CRG). Gene ontology (GO) term analysis revealed that the genes from CRG are generally involved in the processes of stress responses, metabolism, and growth and development. The further cluster analysis of the CRG identified a set of core genes that are involved in the JA/SA-mediated response to fungal defense with distinct gene expression profiles upon JA/SA treatment, which highlighted the different effects of these two hormones on plant fungal defenses. The modifications of several pathways relative to metabolism, biotic stress, and plant hormone signal pathways suggest the possible roles of JA/SA on the regulation of growth and defense responses. Co-expression modules (CMs) were also constructed using the poplar expression data on JA, SA, M. larici-populina, Septoria musiva, and Marssonina brunnea treatment or infection. A total of 23 CMs were constructed, and different CMs clearly exhibited distinct biological functions, which conformably regulated the concerted processes in response to fungal defense. Furthermore, the GO term analysis of different CMs confirmed the roles of JA and SA in regulating growth and defense responses, and their expression profiles suggested that the growth ability was reduced when poplar deployed defense responses. Several transcription factors (TFs) among the CRG in the co-expression network were proposed as hub genes in regulating these processes. According to this study, our data finely uncovered the possible roles of JA/SA in regulating the balance between growth and defense responses by integrating multiple hormone signaling pathways. We were also able to provide more knowledge on how the plant hormones JA/SA are involved in the regulation of the balance between growth and plant defense.
Collapse
|
64
|
Zhang C, Gao H, Li R, Han D, Wang L, Wu J, Xu P, Zhang S. GmBTB/POZ, a novel BTB/POZ domain-containing nuclear protein, positively regulates the response of soybean to Phytophthora sojae infection. MOLECULAR PLANT PATHOLOGY 2019; 20:78-91. [PMID: 30113770 PMCID: PMC6430474 DOI: 10.1111/mpp.12741] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phytophthora sojae is a destructive pathogen of soybean [Glycine max (L.) Merr.] which causes stem and root rot on soybean plants worldwide. However, the pathogenesis and molecular mechanism of plant defence responses against P. sojae are largely unclear. Herein, we document the underlying mechanisms and function of a novel BTB/POZ protein, GmBTB/POZ, which contains a BTB/POZ domain found in certain animal transcriptional regulators, in host soybean plants in response to P. sojae. It is located in the cell nucleus and is transcriptionally up-regulated by P. sojae. Overexpression of GmBTB/POZ in soybean resulted in enhanced resistance to P. sojae. The activities and expression levels of enzymatic superoxide dismutase (SOD) and peroxidase (POD) antioxidants were significantly higher in GmBTB/POZ-overexpressing (GmBTB/POZ-OE) transgenic soybean plants than in wild-type (WT) plants treated with sterile water or infected with P. sojae. The transcript levels of defence-associated genes were also higher in overexpressing plants than in WT on infection. Moreover, salicylic acid (SA) levels and the transcript levels of SA biosynthesis-related genes were markedly higher in GmBTB/POZ-OE transgenic soybean than in WT, but there were almost no differences in jasmonic acid (JA) levels or JA biosynthesis-related gene expression between GmBTB/POZ-OE and WT soybean lines. Furthermore, exogenous SA application induced the expression of GmBTB/POZ and inhibited the increase in P. sojae biomass in both WT and GmBTB/POZ-OE transgenic soybean plants. Taken together, these results suggest that GmBTB/POZ plays a positive role in P. sojae resistance and the defence response in soybean via a process that might be dependent on SA.
Collapse
Affiliation(s)
- Chuanzhong Zhang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Hong Gao
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Rongpeng Li
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Dan Han
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Le Wang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural SciencesKey Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. ChinaHarbin150086PR China
| | - Pengfei Xu
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| | - Shuzhen Zhang
- Soybean Research Institute/Key Laboratory of Soybean Biology of Chinese Education MinistryNortheast Agricultural UniversityHarbin150030PR China
| |
Collapse
|
65
|
Boro P, Sultana A, Mandal K, Chattopadhyay S. Transcriptomic changes under stress conditions with special reference to glutathione contents. THE NUCLEUS 2018. [DOI: 10.1007/s13237-018-0256-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
66
|
Sharma C, Saripalli G, Kumar S, Gautam T, Kumar A, Rani S, Jain N, Prasad P, Raghuvanshi S, Jain M, Sharma JB, Prabhu KV, Sharma PK, Balyan HS, Gupta PK. A study of transcriptome in leaf rust infected bread wheat involving seedling resistance gene Lr28. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:1046-1064. [PMID: 32291004 DOI: 10.1071/fp17326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/09/2018] [Indexed: 05/02/2023]
Abstract
Leaf rust disease causes severe yield losses in wheat throughout the world. During the present study, high-throughput RNA-Seq analysis was used to gain insights into the role of Lr28 gene in imparting seedling leaf rust resistance in wheat. Differential expression analysis was conducted using a pair of near-isogenic lines (NILs) (HD 2329 and HD 2329+Lr28) at early (0h before inoculation (hbi), 24 and 48h after inoculation (hai)) and late stages (72, 96 and 168 hai) after inoculation with a virulent pathotype of pathogen Puccinia triticina. Expression of a large number of genes was found to be affected due to the presence/absence of Lr28. Gene ontology analysis of the differentially expressed transcripts suggested enrichment of transcripts involved in carbohydrate and amino acid metabolism, oxidative stress and hormone metabolism, in resistant and/or susceptible NILs. Genes encoding receptor like kinases (RLKs) (including ATP binding; serine threonine kinases) and other kinases were the most abundant class of genes, whose expression was affected. Genes involved in reactive oxygen species (ROS) homeostasis and several genes encoding transcription factors (TFs) (most abundant being WRKY TFs) were also identified along with some ncRNAs and histone variants. Quantitative real-time PCR was also used for validation of 39 representative selected genes. In the long term, the present study should prove useful in developing leaf rust resistant wheat cultivars through molecular breeding.
Collapse
Affiliation(s)
- Chanchal Sharma
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - Santosh Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - Avneesh Kumar
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - Sushma Rani
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - Neelu Jain
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - Pramod Prasad
- Regional Station, Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, 171002, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - J B Sharma
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - K V Prabhu
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - P K Sharma
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - H S Balyan
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| |
Collapse
|
67
|
Aqueous Garlic Extract as a Plant Biostimulant Enhances Physiology, Improves Crop Quality and Metabolite Abundance, and Primes the Defense Responses of Receiver Plants. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091505] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Biostimulants are the next-generation choice for sustainable agricultural production and are gradually becoming an alternative to synthetic chemicals. Various botanicals are proposed to exert stimulatory effects, and garlic allelochemicals are among such botanicals; however, a peer-reviewed scientific evaluation is required to understand garlic-derived substances such as biostimulants. Current studies were therefore performed to identify the bioactivity of garlic extract as a biostimulant to improve crop quality, alter its physiological potential, and prime its defense responses against pathogenic fungal infections. 100 µg mL−1 aqueous garlic extracts (AGE) in consort with 1 mM of acetyl salicylic acid (ASA) and distilled water as a control treatment were applied to eggplant and pepper seedlings as foliar application and fertigation methods. The results revealed stimulatory responses in the growth of the vegetables with improved plant height, number of leaves, root growth, fresh and dry weight, etc., due to AGE and ASA applications. Moreover, significant alterations were indicated in plant metabolites such as chlorophyll, carotenoids, and soluble sugars. Additionally, stimulation of the antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD), as well as the root activity of these plants, was observed after treatment. Application of AGE and ASA also exerted priming effects on pepper plants, inducing defense responses prior to Phytopthora capsici inoculation, and the treated plants therefore successfully resisted infection through activated antioxidant systems, and probably carotenoid and other protectory metabolites. Stress-induced H2O2 content was extremely low in the treated plants, indicating successful resistance against pathogenic infection.
Collapse
|
68
|
Jiang K, Asami T. Chemical regulators of plant hormones and their applications in basic research and agriculture*. Biosci Biotechnol Biochem 2018; 82:1265-1300. [DOI: 10.1080/09168451.2018.1462693] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT
Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.
Collapse
Affiliation(s)
- Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
69
|
Cao D, Liu Y, Ma L, Jin X, Guo G, Tan R, Liu Z, Zheng L, Ye F, Liu W. Transcriptome analysis of differentially expressed genes involved in selenium accumulation in tea plant (Camellia sinensis). PLoS One 2018; 13:e0197506. [PMID: 29856771 PMCID: PMC5983420 DOI: 10.1371/journal.pone.0197506] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/03/2018] [Indexed: 01/09/2023] Open
Abstract
Tea plant (Camellia sinensis) has strong enrichment ability for selenium (Se). Selenite is the main form of Se absorbed and utilized by tea plant. However, the mechanism of selenite absorption and accumulation in tea plant is still unknown. In this study, RNA sequencing (RNA-seq) was used to perform transcriptomic analysis on the molecular mechanism of selenite absorption and accumulation in tea plant. 397.98 million high-quality reads were obtained and assembled into 168,212 unigenes, 89,605 of which were extensively annotated. There were 60,582 and 1,362 differentially expressed genes (DEGs) in roots and leaves, respectively. RNA-seq results were further validated by quantitative RT-PCR. Based on GO terms, the unigenes were mainly involved in cell, binding and metabolic process. KEGG pathway enrichment analysis showed that predominant pathways included ribosome and protein processing in endoplasmic reticulum. Further analysis revealed that sulfur metabolism, glutathione metabolism, selenocompound metabolism and plant hormone signal transduction responded to selenite in tea plant. Additionally, a large number of genes of higher expressions associated with phosphate transporters, sulfur assimilation, antioxidant enzymes, antioxidant substances and responses to ethylene and jasmonic acid were identified. Stress-related plant hormones might play a signaling role in promoting sulfate/selenite uptake and assimilation in tea plant. Moreover, some other Se accumulation mechanisms of tea plant were found. Our study provides a possibility for controlling Se accumulation in tea plant through bio-technologies and will be helpful for breeding new tea cultivars.
Collapse
Affiliation(s)
- Dan Cao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Yanli Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Linlong Ma
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Xiaofang Jin
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Guiyi Guo
- Henan Key Laboratory of Tea Comprehensive utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, Henan, China
| | - Rongrong Tan
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Zheng Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Lin Zheng
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Fei Ye
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Wei Liu
- Henan Key Laboratory of Tea Comprehensive utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, Henan, China
| |
Collapse
|
70
|
Jiang HY, Zhang JL, Yang JW, Ma HL. Transcript Profiling and Gene Identification Involved in the Ethylene Signal Transduction Pathways of Creeping Bentgrass (Agrostis stolonifera) during ISR Response Induced by Butanediol. Molecules 2018; 23:molecules23030706. [PMID: 29558428 PMCID: PMC6017539 DOI: 10.3390/molecules23030706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/16/2022] Open
Abstract
Creeping bentgrass (Agrostis stolonifera) is the preferred green lawn grass, with excellent turf characteristics but poor disease resistance. At present, the mechanisms of disease resistance in creeping bentgrass are poorly understood, especially the ethylene signal transduction pathway under the induced systemic resistance (ISR) response. In this study, butanediol (BDO), as a new type of disease-resistance compound, was applied to creeping bentgrass seedlings to induce the ISR response. Then, we measured ethylene production and related enzyme activities. Additionally, transcript profiling and gene identification were performed in association to ethylene signal transduction pathways. The changes of ethylene production and related enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) and 1-aminocyclopropane-1-carboxylic acid synthases (ACS) activities showed significant difference at 24 h after Rhizoctonia solani inoculation among five treatments of various BDO concentrations. After 100 µmol L-1 BDO treatment, ethylene production and related enzyme activities reached their peak levels. Additionally, 208,672 unigenes of creeping bentgrass were obtained by de novo assembly. In total, 15,903 annotated unigenes were grouped into 33 canonical pathways in the KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. Among those, 1803 unigenes were classified as 'signal transduction'. There were 6766 differentially expressed genes (DEGs) among B24 (inoculated-rhizobacteria in MS medium with 100 µmol L-1 BDO for 24 h), NB24, B72 and NB24 (no rhizobacteria in MS medium with 100 µmol L-1 BDO for 24 h) libraries, and 4,639 DEGs between B24 and B72 (inoculated-rhizobacteria in MS medium with 100 µmol L-1 BDO for 72 h) libraries, with 4489 DEGs in all three libraries. As suggested by the RT-PCR assay, the expression levels of ethylene-responsive and defense-related genes were variable among treated samples during the BDO-induced ISR responses. The expression levels of EIN, ERF, NPR1, PR3 and PR4 genes increased and reached their peaks in the first 24 h after R. solani infection in the BDO-induced ISR reaction compared with NB24 treatments. This results is consistent with the changes of important ethylene biosynthetic enzymes and ethylene concentrations during the BDO-induced ISR responses. We further found the intermediate substances for the signaling pathway, and the relationships between the expression levels of BDO-induced ISR disease-resistance genes and those of the response genes for ethylene signal pathway. Our findings present a genetic basis for systemic resistance of creeping bentgrass through transcriptomic analysis and our study provides a theoretical and practical basis for the improvement of turfgrass disease resistance and quality.
Collapse
Affiliation(s)
- Han-Yu Jiang
- Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China.
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou 730070, China.
- Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jin-Lin Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Jiang-Wei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Hui-Ling Ma
- Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China.
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou 730070, China.
- Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou 730070, China.
| |
Collapse
|
71
|
Lu PP, Yu TF, Zheng WJ, Chen M, Zhou YB, Chen J, Ma YZ, Xi YJ, Xu ZS. The Wheat Bax Inhibitor-1 Protein Interacts with an Aquaporin TaPIP1 and Enhances Disease Resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:20. [PMID: 29403525 PMCID: PMC5786567 DOI: 10.3389/fpls.2018.00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/05/2018] [Indexed: 05/20/2023]
Abstract
Bax inhibitor-1 (BI-1) is an endoplasmic reticulum (ER)-resident cell death suppressor evolutionarily conserved in eukaryotes. The ability of BI-1 to inhibit the biotic and abiotic stresses have been well-studied in Arabidopsis, while the functions of wheat BI-1 are largely unknown. In this study, the wheat BI-1 gene TaBI-1.1 was isolated by an RNA-seq analysis of Fusarium graminearum (Fg)-treated wheat. TaBI-1.1 expression was induced by a salicylic acid (SA) treatment and down-regulated by an abscisic acid (ABA) treatment. Based on β-glucuronidase (GUS) staining, TaBI-1.1 was expressed in mature leaves and roots but not in the hypocotyl or young leaves. Constitutive expression of TaBI-1.1 in Arabidopsis enhanced its resistance to Pseudomonas syringae pv. Tomato (Pst) DC3000 infection and induced SA-related gene expression. Additionally, TaBI-1.1 transgenic Arabidopsis exhibited an alleviation of damage caused by high concentrations of SA and decreased the sensitivity to ABA. Consistent with the phenotype, the RNA-seq analysis of 35S::TaBI-1.1 and Col-0 plants showed that TaBI-1.1 was involved in biotic stresses. These results suggested that TaBI-1.1 positively regulates SA signals and plays important roles in the response to biotic stresses. In addition, TaBI-1.1 interacted with the aquaporin TaPIP1, and both them were localized to ER membrane. Furthermore, we demonstrated that TaPIP1 was up-regulated by SA treatment and TaPIP1 transgenic Arabidopsis enhanced the resistance to Pst DC3000 infection. Thus, the interaction between TaBI-1.1 and TaPIP1 on the ER membrane probably occurs in response to SA signals and defense response.
Collapse
Affiliation(s)
- Pan-Pan Lu
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Tai-Fei Yu
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wei-Jun Zheng
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Ming Chen
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jun Chen
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ya-Jun Xi
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- *Correspondence: Zhao-Shi Xu, Ya-Jun Xi,
| | - Zhao-Shi Xu
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- *Correspondence: Zhao-Shi Xu, Ya-Jun Xi,
| |
Collapse
|
72
|
Zhou K, Long L, Sun Q, Wang W, Gao W, Chu Z, Cai C, Mo J, Cheng J, Zhang X, Liu Y, Du X, Miao C, Shi Y, Yuan Y, Zhang X, Cai Y. Molecular characterisation and functional analysis of a cytochrome P450 gene in cotton. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
73
|
Le Berre JY, Gourgues M, Samans B, Keller H, Panabières F, Attard A. Transcriptome dynamic of Arabidopsis roots infected with Phytophthora parasitica identifies VQ29, a gene induced during the penetration and involved in the restriction of infection. PLoS One 2017; 12:e0190341. [PMID: 29281727 PMCID: PMC5744986 DOI: 10.1371/journal.pone.0190341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/13/2017] [Indexed: 12/30/2022] Open
Abstract
Little is known about the responses of plant roots to filamentous pathogens, particularly to oomycetes. To assess the molecular dialog established between the host and the pathogen during early stages of infection, we investigated the overall changes in gene expression in A. thaliana roots challenged with P. parasitica. We analyzed various infection stages, from penetration and establishment of the interaction to the switch from biotrophy to necrotrophy. We identified 3390 genes for which expression was modulated during the infection. The A. thaliana transcriptome displays a dynamic response to P. parasitica infection, from penetration onwards. Some genes were specifically coregulated during penetration and biotrophic growth of the pathogen. Many of these genes have functions relating to primary metabolism, plant growth, and defense responses. In addition, many genes encoding VQ motif-containing proteins were found to be upregulated in plant roots, early in infection. Inactivation of VQ29 gene significantly increased susceptibility to P. parasitica during the late stages of infection. This finding suggests that the gene contributes to restricting oomycete development within plant tissues. Furthermore, the vq29 mutant phenotype was not associated with an impairment of plant defenses involving SA-, JA-, and ET-dependent signaling pathways, camalexin biosynthesis, or PTI signaling. Collectively, the data presented here thus show that infection triggers a specific genetic program in roots, beginning as soon as the pathogen penetrates the first cells.
Collapse
Affiliation(s)
| | | | - Birgit Samans
- Department of Plant Breeding, Institute of Agronomy and Plant Breeding, Giessen, Germany
| | | | | | - Agnes Attard
- INRA, Université Côte d'Azur, CNRS, ISA, France
- * E-mail:
| |
Collapse
|
74
|
Wang Q, Yin X, Chen Q, Xiang N, Sun X, Yang Y, Yang Y. Genome-wide survey indicates diverse physiological roles of the turnip (Brassica rapa var. rapa) calcium-dependent protein kinase genes. Sci Rep 2017; 7:15803. [PMID: 29150669 PMCID: PMC5693941 DOI: 10.1038/s41598-017-16102-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/07/2017] [Indexed: 11/28/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) as crucial sensors of calcium concentration changes play important roles in responding to abiotic and biotic stresses. In this study, 55 BrrCDPK genes, which were phylogenetically clustered into four subfamilies, were identified. Chromosome locations indicated that the CDPK family in turnip expanded by segmental duplication and genome rearrangement. Moreover, gene expression profiles showed that different BrrCDPKs were expressed in specific tissues or stages. Transcript levels of BrrCDPKs indicated that they were involved in abiotic and biotic stresses and that paralogs exhibited functional divergence. Additionally, we identified 15 Rboh genes in turnip; the results of yeast two-hybrid analysis suggested that BrrRbohD1 interacted only with BrrCDPK10 and that BrrRbohD2 interacted with BrrCDPK4/7/9/10/17/22/23. Most of the genes play an important role in pst DC3000 defense by regulating the accumulation of H2O2 and stomatal closure. Our study may provide an important foundation for future functional analysis of BrrCDPKs and reveal further biological roles.
Collapse
Affiliation(s)
- Qiuli Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Xin Yin
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Nan Xiang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xudong Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China.
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, China.
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
75
|
Qian C, Cui C, Wang X, Zhou C, Hu P, Li M, Li R, Xiao J, Wang X, Chen P, Xing L, Cao A. Molecular characterisation of the broad-spectrum resistance to powdery mildew conferred by the Stpk-V gene from the wild species Haynaldia villosa. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:875-885. [PMID: 28881082 DOI: 10.1111/plb.12625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
A key member of the Pm21 resistance gene locus, Stpk-V, derived from Haynaldia villosa, was shown to confer broad-spectrum resistance to wheat powdery mildew. The present study was planned to investigate the resistance mechanism mediated by Stpk-V. Transcriptome analysis was performed in Stpk-V transgenic plants and recipient Yangmai158 upon Bgt infection, and detailed histochemical observations were conducted. Chromosome location of Stpk-V orthologous genes in Triticeae species was conducted for evolutionary study and over-expression of Stpk-V both in barley and Arabidopsis was performed for functional study. The transcriptome results indicate, at the early infection stage, the ROS pathway, JA pathway and some PR proteins associated with the SA pathway were activated in both the resistant Stpk-V transgenic plants and susceptible Yangmai158. However, at the later infection stage, the genes up-regulated at the early stage were continuously held only in the transgenic plants, and a large number of new genes were also activated in the transgenic plants but not in Yangmai158. Results indicate that sustained activation of the early response genes combined with later-activated genes mediated by Stpk-V is critical for resistance in Stpk-V transgenic plants. Stpk-V orthologous genes in the representative grass species are all located on homologous group six chromosomes, indicating that Stpk-V is an ancient gene in the grasses. Over-expression of Stpk-V enhanced host resistance to powdery mildew in barley but not in Arabidopsis. Our results enable a better understanding of the resistance mechanism mediated by Stpk-V, and establish a solid foundation for its use in cereal breeding as a gene resource.
Collapse
Affiliation(s)
- C Qian
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
- Laboratory of Forage Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - C Cui
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| | - X Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| | - C Zhou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| | - P Hu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| | - M Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| | - R Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| | - J Xiao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| | - X Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| | - P Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| | - L Xing
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| | - A Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| |
Collapse
|
76
|
Genome-wide identification and tissue-specific expression analysis of nucleotide binding site-leucine rich repeat gene family in Cicer arietinum (kabuli chickpea). GENOMICS DATA 2017; 14:24-31. [PMID: 28840100 PMCID: PMC5558467 DOI: 10.1016/j.gdata.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022]
Abstract
The nucleotide binding site-leucine rich repeat (NBS-LRR) proteins play an important role in the defense mechanisms against pathogens. Using bioinformatics approach, we identified and annotated 104 NBS-LRR genes in chickpea. Phylogenetic analysis points to their diversification into two families namely TIR-NBS-LRR and non-TIR-NBS-LRR. Gene architecture revealed intron gain/loss events in this resistance gene family during their independent evolution into two families. Comparative genomics analysis elucidated its evolutionary relationship with other fabaceae species. Around 50% NBS-LRRs reside in macro-syntenic blocks underlining positional conservation along with sequence conservation of NBS-LRR genes in chickpea. Transcriptome sequencing data provided evidence for their transcription and tissue-specific expression. Four cis-regulatory elements namely WBOX, DRE, CBF, and GCC boxes, that commonly occur in resistance genes, were present in the promoter regions of these genes. Further, the findings will provide a strong background to use candidate disease resistance NBS-encoding genes and identify their specific roles in chickpea.
Collapse
|
77
|
Lee HY, Chen YC, Kieber JJ, Yoon GM. Regulation of the turnover of ACC synthases by phytohormones and heterodimerization in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:491-504. [PMID: 28440947 DOI: 10.1111/tpj.13585] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 05/19/2023]
Abstract
Ethylene influences many aspects of plant growth and development. The biosynthesis of ethylene is highly regulated by a variety of internal and external cues. A key target of this regulation is 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACS), generally the rate-limiting step in ethylene biosynthesis, which is regulated both transcriptionally and post-transcriptionally. Prior studies have demonstrated that cytokinin and brassinosteroid (BR) act as regulatory inputs to elevate ethylene biosynthesis by increasing the stability of ACS proteins. Here, we demonstrate that several additional phytohormones also regulate ACS protein turnover. Abscisic acid, auxin, gibberellic acid, methyl jasmonic acid, and salicylic acid differentially regulate the stability of ACS proteins, with distinct effects on various isoforms. In addition, we demonstrate that heterodimerization influences the stability of ACS proteins. Heterodimerization between ACS isoforms from distinct subclades results in increased stability of the shorter-lived partner. Together, our study provides a comprehensive understanding of the roles of various phytohormones on ACS protein stability, which brings new insights into crosstalk between ethylene and other phytohormones, and a novel regulatory mechanism that controls ACS protein stability through a heterodimerization of ACS isoforms.
Collapse
Affiliation(s)
- Han Yong Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yi-Chun Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
78
|
Liu X, Yu W, Zhang X, Wang G, Cao F, Cheng H. Identification and expression analysis under abiotic stress of the R2R3- MYB genes in Ginkgo biloba L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:503-516. [PMID: 28878490 PMCID: PMC5567697 DOI: 10.1007/s12298-017-0436-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/11/2017] [Accepted: 03/20/2017] [Indexed: 05/25/2023]
Abstract
The R2R3-MYB gene family is the largest MYB subfamily in plants and is involved in the regulation of plant secondary metabolism and specific morphogenesis, as well as the response to biotic and abiotic stress. However, a systematic identification and characterization of this gene family has not been carried out in Ginkgo biloba. In this study, we performed a transcriptome-wide survey from four tissues of G. biloba to determine the genetic variation and expression pattern of the R2R3-MYB genes. We analyzed 45 GbMYBs and identified 42 with a complete coding sequence via conserved motif searches. The MYB domain and other motifs in GbMYBs are highly conserved with Arabidopsis thaliana AtMYBs. Phylogenetic analysis of the GbMYBs and AtMYBs categorized the R2R3-MYBs into 26 subgroups, of which 11 subgroups included proteins from both G. biloba and Arabidopsis, and 1 subgroup was specific to G. biloba. Moreover, the GbMYBs expression patterns were analyzed in different tissues and abiotic stress conditions. The results revealed that GbMYBs were differentially expressed in various tissues and following abiotic stresses and phytohormone treatments, indicating their possible roles in biological processes and abiotic stress tolerance and adaptation. Our study demonstrated the functional diversity of the GbMYBs and will provide a foundation for future research into their biological and molecular functions.
Collapse
Affiliation(s)
- Xinliang Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- Jiangxi Academy of Forestry, Nanchang, 330032 China
| | - Wanwen Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210037 China
| | - Xuhui Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Hua Cheng
- Economic Forest Germplasm Improvement and Comprehensive Utilization of Resources of Hubei Key Laboratories, Huanggang Normal University, Huanggang, 438000 China
| |
Collapse
|
79
|
Jiang Y, Guo L, Ma X, Zhao X, Jiao B, Li C, Luo K. The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promote Melampsora resistance in Populus. TREE PHYSIOLOGY 2017; 37:665-675. [PMID: 28338710 DOI: 10.1093/treephys/tpx008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/30/2017] [Indexed: 05/23/2023]
Abstract
WRKY transcription factors play important roles in response to diverse environmental stresses, but exact functions of these proteins in poplar defense are still largely unknown. In a previous study, we have shown that poplar WRKY89 is induced by salicylic acid (SA) treatment and plays an important role in resistance against fungi in transgenic poplars. Here, we determined an increase in transcript levels of Group IIa WRKY members in transgenic poplars overexpressing WRKY89 using quantitative real-time polymerase chain reaction analysis. Yeast one-hybrid assay showed that PtrWRKY18 and PtrWRKY35 were potential target genes of WRKY89. Furthermore, we demonstrated that PtrWRKY18 and PtrWRKY35 were localized in the nucleus, and exhibited no transcription activation activity. Constitutive overexpression of PtrWRKY18 and PtrWRKY35 in poplars activated pathogenesis-related genes, and increased resistance to the biotrophic pathogen Melampsora. The results also provided support for the involvement of SA-mediated signaling in Melampsora resistance.
Collapse
Affiliation(s)
- Yuanzhong Jiang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 1, Tiansheng Road, Beibei, Chongqing 400715, China
- MOE Key Laboratory of Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, No. 24, South Section 1, Yihuan Road, Chengdu 610065, China
| | - Li Guo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 1, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Xiaodong Ma
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23, Xinning Road, Xining, Qinghai 810008, China
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, No. 3, Bayi Mid Road, Xining, Qinghai 810007, China
| | - Xin Zhao
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 1, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Bo Jiao
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 1, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Chaofeng Li
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 1, Tiansheng Road, Beibei, Chongqing 400715, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23, Xinning Road, Xining, Qinghai 810008, China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 1, Tiansheng Road, Beibei, Chongqing 400715, China
| |
Collapse
|
80
|
He X, Jiang J, Wang C, Dehesh K. ORA59 and EIN3 interaction couples jasmonate-ethylene synergistic action to antagonistic salicylic acid regulation of PDF expression. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:275-287. [PMID: 28168848 PMCID: PMC5396539 DOI: 10.1111/jipb.12524] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 05/20/2023]
Abstract
Hormonal crosstalk is central for tailoring plant responses to the nature of challenges encountered. The role of antagonism between the two major defense hormones, salicylic acid (SA) and jasmonic acid (JA), and modulation of this interplay by ethylene (ET) in favor of JA signaling pathway in plant stress responses is well recognized, but the underlying mechanism is not fully understood. Here, we show the opposing function of two transcription factors, ethylene insensitive3 (EIN3) and EIN3-Like1 (EIL1), in SA-mediated suppression and JA-mediated activation of PLANT DEFENSIN1.2 (PDF1.2). This functional duality is mediated via their effect on protein, not transcript levels of the PDF1.2 transcriptional activator octadecanoid-responsive Arabidopsis59 (ORA59). Specifically, JA induces ORA59 protein levels independently of EIN3/EIL1, whereas SA reduces the protein levels dependently of EIN3/EIL1. Co-infiltration assays revealed nuclear co-localization of ORA59 and EIN3, and split-luciferase together with yeast-two-hybrid assays established their physical interaction. The functional ramification of the physical interaction is EIN3-dependent degradation of ORA59 by the 26S proteasome. These findings allude to SA-responsive reduction of ORA59 levels mediated by EIN3 binding to and targeting of ORA59 for degradation, thus nominating ORA59 pool as a coordination node for the antagonistic function of ET/JA and SA.
Collapse
Affiliation(s)
- Xiang He
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506, USA
| | - Jishan Jiang
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506, USA
| | - Changquan Wang
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506, USA
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506, USA
- Correspondence: Katayoon Dehesh ()
| |
Collapse
|
81
|
Ju J, Kim K, Lee KJ, Lee WH, Ju HJ. Localization of Barley yellow dwarf virus Movement Protein Modulating Programmed Cell Death in Nicotiana benthamiana. THE PLANT PATHOLOGY JOURNAL 2017; 33:53-65. [PMID: 28167888 PMCID: PMC5291398 DOI: 10.5423/ppj.ft.10.2016.0233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 11/16/2016] [Indexed: 05/11/2023]
Abstract
Barley yellow dwarf virus (BYDV) belongs to Luteovirus and is limited only at phloem related tissues. An open reading frame (ORF) 4 of BYDV codes for the movement protein (MP) of BYDV gating plasmodesmata (PD) to facilitate virus movement. Like other Luteoviruses, ORF 4 of BYDV is embedded in the ORF3 but expressed from the different reading frame in leaky scanning manner. Although MP is a very important protein for systemic infection of BYDV, there was a little information. In this study, MP was characterized in terms of subcellular localization and programmed cell death (PCD). Gene of MP or its mutant (ΔMP) was expressed by Agroinfiltration method. MP was clearly localized at the nucleus and the PD, but ΔMP which was deleted distal N-terminus of MP showed no localization to PD exhibited the different target with original MP. In addition to PD localization, MP appeared associated with small granules in cytoplasm whereas ΔMP did not. MP associated with PD and small granules induced PCD, but ΔMP showed no association with PD and small granules did not exhibit PCD. Based on this study, the distal N-terminal region within MP is seemingly responsible for the localization of PD and the induction small granules and PCD induction. These results suggest that subcellular localization of BYDV MP may modulate the PCD in Nicotiana benthamiana.
Collapse
Affiliation(s)
- Jiwon Ju
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 54896,
Korea
| | - Kangmin Kim
- Division of Biotechnology, Chonbuk National University, Iksan 54596,
Korea
- Plant Medicinal Research Center, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 54896,
Korea
| | - Kui-Jae Lee
- Division of Biotechnology, Chonbuk National University, Iksan 54596,
Korea
- Plant Medicinal Research Center, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 54896,
Korea
| | - Wang Hu Lee
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 54896,
Korea
- Plant Medicinal Research Center, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 54896,
Korea
- Institute of Agricultural Science & Technology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 54896,
Korea
| | - Ho-Jong Ju
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 54896,
Korea
- Plant Medicinal Research Center, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 54896,
Korea
- Institute of Agricultural Science & Technology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 54896,
Korea
| |
Collapse
|
82
|
Tamaoki M, Maruyama-Nakashita A. Molecular Mechanisms of Selenium Responses and Resistance in Plants. PLANT ECOPHYSIOLOGY 2017. [DOI: 10.1007/978-3-319-56249-0_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
83
|
Zhang C, Chen H, Cai T, Deng Y, Zhuang R, Zhang N, Zeng Y, Zheng Y, Tang R, Pan R, Zhuang W. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:39-55. [PMID: 27311738 PMCID: PMC5253469 DOI: 10.1111/pbi.12589] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/16/2016] [Accepted: 06/10/2016] [Indexed: 05/20/2023]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a ruinous soilborne disease affecting more than 450 plant species. Efficient control methods for this disease remain unavailable to date. This study characterized a novel nucleotide-binding site-leucine-rich repeat resistance gene AhRRS5 from peanut, which was up-regulated in both resistant and susceptible peanut cultivars in response to R. solanacearum. The product of AhRRS5 was localized in the nucleus. Furthermore, treatment with phytohormones such as salicylic acid (SA), abscisic acid (ABA), methyl jasmonate (MeJA) and ethephon (ET) increased the transcript level of AhRRS5 with diverse responses between resistant and susceptible peanuts. Abiotic stresses such as drought and cold conditions also changed AhRRS5 expression. Moreover, transient overexpression induced hypersensitive response in Nicotiana benthamiana. Overexpression of AhRRS5 significantly enhanced the resistance of heterogeneous tobacco to R. solanacearum, with diverse resistance levels in different transgenic lines. Several defence-responsive marker genes in hypersensitive response, including SA, JA and ET signals, were considerably up-regulated in the transgenic lines as compared with the wild type inoculated with R. solanacearum. Nonexpressor of pathogenesis-related gene 1 (NPR1) and non-race-specific disease resistance 1 were also up-regulated in response to the pathogen. These results indicate that AhRRS5 participates in the defence response to R. solanacearum through the crosstalk of multiple signalling pathways and the involvement of NPR1 and R gene signals for its resistance. This study may guide the resistance enhancement of peanut and other economic crops to bacterial wilt disease.
Collapse
Affiliation(s)
- Chong Zhang
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Hua Chen
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Tiecheng Cai
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ye Deng
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ruirong Zhuang
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ning Zhang
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yuanhuan Zeng
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yixiong Zheng
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of AgronomyZhongkai Agriculture and Engineering CollegeGuangzhouGuangdongChina
| | - Ronghua Tang
- Cash Crops Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ronglong Pan
- Department of Life Science and Institute of Bioinformatics and Structural BiologyCollege of Life ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Weijian Zhuang
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| |
Collapse
|
84
|
Dufour MC, Magnin N, Dumas B, Vergnes S, Corio-Costet MF. High-throughput gene-expression quantification of grapevine defense responses in the field using microfluidic dynamic arrays. BMC Genomics 2016; 17:957. [PMID: 27875995 PMCID: PMC5120521 DOI: 10.1186/s12864-016-3304-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 11/16/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The fight against grapevine diseases due to biotrophic pathogens usually requires the massive use of chemical fungicides with harmful environmental effects. An alternative strategy could be the use of compounds able to stimulate plant immune responses which significantly limit the development of pathogens in laboratory conditions. However, the efficiency of this strategy in natura is still insufficient to be included in pest management programs. To understand and to improve the mode of action of plant defense stimulators in the field, it is essential to develop reliable tools that describe the resistance status of the plant upon treatment. RESULTS We have developed a pioneering tool ("NeoViGen96" chip) based on a microfluidic dynamic array platform allowing the expression profiling of 85 defense-related grapevine genes in 90 cDNA preparations in a 4 h single run. Two defense inducers, benzothiadiazole (BTH) and fosetyl-aluminum (FOS), have been tested in natura using the "NeoViGen96" chip as well as their efficacy against downy mildew. BTH-induced grapevine resistance is accompanied by the induction of PR protein genes (PR1, PR2 and PR3), genes coding key enzymes in the phenylpropanoid pathway (PAL and STS), a GST gene coding an enzyme involved in the redox status and an ACC gene involved in the ethylene pathway. FOS, a phosphonate known to possess a toxic activity against pathogens and an inducing effect on defense genes provided a better grapevine protection than BTH. Its mode of action was probably strictly due to its fungicide effect at high concentrations because treatment did not induce significant change in the expression level of selected defense-related genes. CONCLUSIONS The NeoViGen96" chip assesses the effectiveness of plant defense inducers on grapevine in vineyard with an excellent reproducibility. A single run with this system (4 h and 1,500 €), corresponds to 180 qPCR plates with conventional Q-PCR assays (Stragene system, 270 h and 9,000 €) thus a throughput 60-70 times higher and 6 times cheaper. Grapevine responses after BTH elicitation in the vineyard were similar to those obtained in laboratory conditions, whereas our results suggest that the protective effect of FOS against downy mildew in the vineyard was only due to its fungicide activity since no activity on plant defense genes was observed. This tool provides better understanding of how the grapevine replies to elicitation in its natural environment and how the elicitor potential can be used to reduce chemical fungicide inputs.
Collapse
Affiliation(s)
- Marie-Cécile Dufour
- INRA, UMR Santé et Agroécologie du vignoble (SAVE-1065), CS 20032, ISVV, 33882 Villenave d’Ornon, CEDEX France
| | - Noël Magnin
- INRA, UMR Santé et Agroécologie du vignoble (SAVE-1065), CS 20032, ISVV, 33882 Villenave d’Ornon, CEDEX France
| | - Bernard Dumas
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, Auzeville, F-31326 Castanet-Tolosan, France
- CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Sophie Vergnes
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, Auzeville, F-31326 Castanet-Tolosan, France
- CNRS, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Marie-France Corio-Costet
- INRA, UMR Santé et Agroécologie du vignoble (SAVE-1065), CS 20032, ISVV, 33882 Villenave d’Ornon, CEDEX France
| |
Collapse
|
85
|
Liu J, Dong L, Liu H, Li Y, Zhang K, Gao S, Zhang T, Zhang S. Molecular characters and different expression of WRKY1 gene from Gossypium barbadense L. and Gossypium hirsutum L. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1214082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jianfeng Liu
- Department of Bioengineering, College of Life Science, Hebei University , Baoding, Hebei, P.R. China
| | - Lijun Dong
- Department of Bioengineering, College of Life Science, Hebei University , Baoding, Hebei, P.R. China
| | - Haoran Liu
- Department of Bioengineering, College of Life Science, Hebei University , Baoding, Hebei, P.R. China
| | - Yanli Li
- Department of Bioengineering, College of Life Science, Hebei University , Baoding, Hebei, P.R. China
| | - Kaijian Zhang
- Department of Bioengineering, College of Life Science, Hebei University , Baoding, Hebei, P.R. China
| | - Suwei Gao
- Department of Bioengineering, College of Life Science, Hebei University , Baoding, Hebei, P.R. China
| | - Tonghui Zhang
- Department of Bioengineering, College of Life Science, Hebei University , Baoding, Hebei, P.R. China
| | - Shuling Zhang
- Department of Bioengineering, College of Life Science, Hebei University , Baoding, Hebei, P.R. China
| |
Collapse
|
86
|
Su Y, Xu L, Wang Z, Peng Q, Yang Y, Chen Y, Que Y. Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineum in sugarcane. BMC Genomics 2016; 17:800. [PMID: 27733120 PMCID: PMC5062822 DOI: 10.1186/s12864-016-3146-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Sugarcane smut, which is caused by Sporisorium scitamineum, has been threatening global sugarcane production. Breeding smut resistant sugarcane varieties has been proven to be the most effective method of controlling this particular disease. However, a lack of genome information of sugarcane has hindered the development of genome-assisted resistance breeding programs. Furthermore, the molecular basis of sugarcane response to S. scitamineum infection at the proteome level was incomplete and combining proteomic and transcriptional analysis has not yet been conducted. RESULTS We identified 273 and 341 differentially expressed proteins in sugarcane smut-resistant (Yacheng05-179) and susceptible (ROC22) genotypes at 48 h after inoculation with S. scitamineum by employing an isobaric tag for relative and absolute quantification (iTRAQ). The proteome quantitative data were then validated by multiple reaction monitoring (MRM). The integrative analysis showed that the correlations between the quantitative proteins and the corresponding genes that was obtained in our previous transcriptome study were poor, which were 0.1502 and 0.2466 in Yacheng05-179 and ROC22, respectively, thereby revealing a post-transcriptional event during Yacheng05-179-S. scitamineum incompatible interaction and ROC22-S. scitamineum compatible interaction. Most differentially expressed proteins were closely related to sugarcane smut resistance such as beta-1,3-glucanase, peroxidase, pathogenesis-related protein 1 (PR1), endo-1,4-beta-xylanase, heat shock protein, and lectin. Ethylene and gibberellic acid pathways, phenylpropanoid metabolism and PRs, such as PR1, PR2, PR5 and PR14, were more active in Yacheng05-179, which suggested of their possible roles in sugarcane smut resistance. However, calcium signaling, reactive oxygen species, nitric oxide, and abscisic acid pathways in Yacheng05-179 were repressed by S. scitamineum and might not be crucial for defense against this particular pathogen. CONCLUSIONS These results indicated complex resistance-related events in sugarcane-S. scitamineum interaction, and provided novel insights into the molecular mechanism underlying the response of sugarcane to S. scitamineum infection.
Collapse
Affiliation(s)
- Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhuqing Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Qiong Peng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuting Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yun Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Guangxi Collaborative Innovation Center of Sugarcane Industry, Guangxi University, Nanning, 530005 China
| |
Collapse
|
87
|
He X, Zhu L, Xu L, Guo W, Zhang X. GhATAF1, a NAC transcription factor, confers abiotic and biotic stress responses by regulating phytohormonal signaling networks. PLANT CELL REPORTS 2016; 35:2167-79. [PMID: 27432176 DOI: 10.1007/s00299-016-2027-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/12/2016] [Indexed: 05/18/2023]
Abstract
Dual function of GhATAF1 in the responses to salinity stress and Verticillium dahliae infection in cotton. NAC (NAM/ATAF1/2/CUC2) is a large plant-specific transcription factor family that plays important roles in the response to abiotic stresses. We previously isolated a cotton NAC transcription factor gene, GhATAF1, which was up-regulated by ABA, cold and salt stresses and classified into AFAT1/2, a sub-family of NAC. Here, we report that GhATAF1 was also highly induced by MeJA, SA and Verticillium dahliae inoculation, which implied that GhATAF1 was involved not only in the response to abiotic stress but also in the response to biotic stress. GhATAF1 was localized in the nucleus and possessed transactivation activity. Overexpression of GhATAF1 enhanced cotton plant tolerance to salt stress by enhancing the expression of various stress-related genes, including the ABA response gene GhABI4; the transporter gene GhHKT1, involved in Na(+)/K(+) homeostasis; and several stress-response genes (GhAVP1, GhRD22, GhDREB2A, GhLEA3, and GhLEA6). Additionally, overexpressing GhATAF1 increased cotton plant susceptibility to the fungal pathogens V. dahliae and Botrytis cinerea, coupled with the suppression of JA-mediated signaling and the activation of SA-mediated signaling. Our results suggested that GhATAF1, the cotton stress-responsive NAC transcription factor, plays important roles in the response to both abiotic stress and biotic stress by coordinating the phytohormone signaling networks.
Collapse
Affiliation(s)
- Xin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Lian Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Weifeng Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|
88
|
Liu F, Wu JB, Zhan RL, Ou XC. Transcription Profiling Analysis of Mango-Fusarium mangiferae Interaction. Front Microbiol 2016; 7:1443. [PMID: 27683574 PMCID: PMC5022174 DOI: 10.3389/fmicb.2016.01443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/30/2016] [Indexed: 11/13/2022] Open
Abstract
Malformation caused by Fusarium mangiferae is one of the most destructive mango diseases affecting the canopy and floral development, leading to dramatic reduction in fruit yield. To further understand the mechanism of interaction between mango and F. mangiferae, we monitored the transcriptome profiles of buds from susceptible mango plants, which were challenged with F. mangiferae. More than 99 million reads were deduced by RNA-sequencing and were assembled into 121,267 unigenes. Based on the sequence similarity searches, 61,706 unigenes were identified, of which 21,273 and 50,410 were assigned to gene ontology categories and clusters of orthologous groups, respectively, and 33,243 were mapped to 119 KEGG pathways. The differentially expressed genes of mango were detected, having 15,830, 26,061, and 20,146 DEGs respectively, after infection for 45, 75, and 120 days. The analysis of the comparative transcriptome suggests that basic defense mechanisms play important roles in disease resistance. The data also show the transcriptional responses of interactions between mango and the pathogen and more drastic changes in the host transcriptome in response to the pathogen. These results could be used to develop new methods to broaden the resistance of mango to malformation, including the over-expression of key mango genes.
Collapse
Affiliation(s)
| | | | - Ru-lin Zhan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Southern Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | | |
Collapse
|
89
|
Yang Y, Chi Y, Wang Z, Zhou Y, Fan B, Chen Z. Functional analysis of structurally related soybean GmWRKY58 and GmWRKY76 in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4727-42. [PMID: 27335454 PMCID: PMC4973743 DOI: 10.1093/jxb/erw252] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
WRKY transcription factors constitute a large protein superfamily with a predominant role in plant stress responses. In this study we report that two structurally related soybean WRKY proteins, GmWRKY58 and GmWRKY76, play a critical role in plant growth and flowering. GmWRKY58 and GmWRKY76 are both Group III WRKY proteins with a C2HC zinc finger domain and are close homologs of AtWRKY70 and AtWRKY54, two well-characterized Arabidopsis WRKY proteins with an important role in plant responses to biotic and abiotic stresses. GmWRKY58 and GmWRKY76 are both localized to the nucleus, recognize the TTGACC W-box sequence with a high specificity, and function as transcriptional activators in both yeast and plant cells. Expression of GmWRKY58 and GmWRKY76 was detected at low levels in roots, stem, leaves, flowers, and pods. Expression of the two genes in leaves increased substantially during the first 4 weeks after germination but steadily declined thereafter with increased age. To determine their biological functions, transgenic Arabidopsis plants were generated overexpressing GmWRKY58 or GmWRKY76 Unlike AtWRKY70 and AtWRKY54, overexpression of GmWRKY58 or GmWRKY76 had no effect on disease resistance and only small effects on abiotic stress tolerance of the transgenic plants. Significantly, transgenic Arabidopsis plants overexpressing GmWRKY58 or GmWRKY76 flowered substantially earlier than control plants and this early flowering phenotype was associated with increased expression of several flowering-promoting genes, some of which are enriched in W-box sequences in their promoters recognized by GmWRKY58 and GmWRKY76. In addition, virus-induced silencing of GmWRKY58 and GmWRKY76 in soybean resulted in stunted plants with reduced leaf expansion and terminated stem growth. These results provide strong evidence for functional divergence among close structural homologs of WRKY proteins from different plant species.
Collapse
Affiliation(s)
- Yan Yang
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou 310058, China
| | - Yingjun Chi
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou 310058, China
| | - Ze Wang
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou 310058, China
| | - Yuan Zhou
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou 310058, China
| | - Baofang Fan
- Department of Botany and Plant Pathology, 915W. State Street, Purdue University, West Lafayette, IN 47907, USA
| | - Zhixiang Chen
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou 310058, China Department of Botany and Plant Pathology, 915W. State Street, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
90
|
Liu Y, Guo Y, Ma C, Zhang D, Wang C, Yang Q, Xu M. Transcriptome analysis of maize resistance to Fusarium graminearum. BMC Genomics 2016; 17:477. [PMID: 27352627 PMCID: PMC4924250 DOI: 10.1186/s12864-016-2780-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/26/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Gibberella stalk rot caused by Fusarium graminearum is one of the most destructive soil-borne diseases of maize (Zea mays L.). Chemical means of controlling Gibberella stalk rot are not very effective; development of highly resistant hybrids is the best choice for disease control. Hence, understanding of the molecular basis underlying maize resistance against Gibberella stalk rot would undoubtedly facilitate the resistance breeding for stalk rot. RESULTS Two quantitative trait loci (QTL), qRfg1 and qRfg2, conferring resistance to Gibberella stalk rot were detected in our previous study. Three near-isogenic lines (NILs) of maize with either qRfg1 (NIL1) or qRfg2 (NIL2), or neither (NIL3) were generated and subjected to RNA sequencing to study the transcriptional changes after F. graminearum inoculation at 0 (control), 6, and 18 h post-inoculation (hpi). In total, 536,184,652 clean reads were generated, and gene expression levels were calculated using FPKM (fragments per kilobase of exon model per million mapped reads). A total of 7252 differentially expressed genes (DEGs) were found in the three NILs after F. graminearum inoculation. As many as 2499 DEGs were detected between NIL1 and NIL3 at 0 hpi, of which 884 DEGs were more abundant in NIL1 and enriched in defense responses. After F. graminearum inoculation, 1070 and 751 genes were exclusively up- and downregulated, respectively, in NIL1 as compared to NIL3. The 1070 upregulated DEGs were enriched in growth/development, photosynthesis/biogenesis, and defense-related responses. Genes encoding putative auxin-induced proteins and GH3 family proteins in auxin signaling pathway were highly induced and lasted longer in NIL3. Genes involved in polar auxin transport (PAT) were more abundant in NIL3 as compared with NIL2. CONCLUSIONS The qRfg1 confers its resistance to Gibberella stalk rot through both constitutive and induced high expression of defense-related genes; while qRfg2 enhances maize resistance to the disease via relatively lower induction of auxin signaling and repression of PAT. The defense-related transcriptional changes underlying each QTL will undoubtedly facilitate our understanding of the resistance mechanism and resistance breeding for maize stalk rot.
Collapse
Affiliation(s)
- Yongjie Liu
- National Maize Improvement Center of China, China Agriculture University, 2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193 China
| | - Yanling Guo
- National Maize Improvement Center of China, China Agriculture University, 2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193 China
| | - Chuanyu Ma
- National Maize Improvement Center of China, China Agriculture University, 2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193 China
| | - Dongfeng Zhang
- National Maize Improvement Center of China, China Agriculture University, 2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193 China
| | - Chao Wang
- National Maize Improvement Center of China, China Agriculture University, 2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193 China
| | - Qin Yang
- National Maize Improvement Center of China, China Agriculture University, 2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193 China
| | - Mingliang Xu
- National Maize Improvement Center of China, China Agriculture University, 2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193 China
| |
Collapse
|
91
|
Shapulatov UM, Buriev ZT, Ulloa M, Saha S, Devor EJ, Ayubov MS, Norov TM, Shermatov SE, Abdukarimov A, Jenkins JN, Abdurakhmonov IY. Characterization of Small RNAs and Their Targets from Fusarium oxysporum Infected and Noninfected Cotton Root Tissues. PLANT MOLECULAR BIOLOGY REPORTER 2016; 34:698-706. [DOI: 10.1007/s11105-015-0945-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
92
|
Nie S, Xu H. Riboflavin-Induced Disease Resistance Requires the Mitogen-Activated Protein Kinases 3 and 6 in Arabidopsis thaliana. PLoS One 2016; 11:e0153175. [PMID: 27054585 PMCID: PMC4824526 DOI: 10.1371/journal.pone.0153175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022] Open
Abstract
As a resistance elicitor, riboflavin (vitamin B2) protects plants against a wide range of pathogens. At molecular biological levels, it is important to elucidate the signaling pathways underlying the disease resistance induced by riboflavin. Here, riboflavin was tested to induce resistance against virulent Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) in Arabidopsis. Results showed that riboflavin induced disease resistance based on MAPK-dependent priming for the expression of PR1 gene. Riboflavin induced transient expression of PR1 gene. However, following Pst DC3000 inoculation, riboflavin potentiated stronger PR1 gene transcription. Further was suggested that the transcript levels of mitogen-activated protein kinases, MPK3 and MPK6, were primed under riboflavin. Upon infection by Pst DC3000, these two enzymes were more strongly activated. The elevated activation of both MPK3 and MPK6 was responsible for enhanced defense gene expression and resistance after riboflavin treatment. Moreover, riboflavin significantly reduced the transcript levels of MPK3 and MPK6 by application of AsA and BAPTA, an H2O2 scavenger and a calcium (Ca2+) scavenger, respectively. In conclusion, MPK3 and MPK6 were responsible for riboflavin-induced resistance, and played an important role in H2O2- and Ca2+-related signaling pathways, and this study could provide a new insight into the mechanistic study of riboflavin-induced defense responses.
Collapse
Affiliation(s)
- Shengjun Nie
- International Nature Farming Research Center, Hata 5632, Matsumoto-city, Nagano 390–1401, Japan
| | - Huilian Xu
- International Nature Farming Research Center, Hata 5632, Matsumoto-city, Nagano 390–1401, Japan
- * E-mail:
| |
Collapse
|
93
|
Transcriptome Profiling of Resistance to Fusarium oxysporum f. sp. conglutinans in Cabbage (Brassica oleracea) Roots. PLoS One 2016; 11:e0148048. [PMID: 26849436 PMCID: PMC4744058 DOI: 10.1371/journal.pone.0148048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. conglutinans (FOC) is a destructive disease of Brassica crops, which results in severe yield losses. There is little information available about the mechanism of disease resistance. To obtain an overview of the transcriptome profiles in roots of R4P1, a Brassica oleracea variety that is highly resistant to fusarium wilt, we compared the transcriptomes of samples inoculated with FOC and samples inoculated with distilled water. RNA-seq analysis generated more than 136 million 100-bp clean reads, which were assembled into 62,506 unigenes (mean size = 741 bp). Among them, 49,959 (79.92%) genes were identified based on sequence similarity searches, including SwissProt (29,050, 46.47%), Gene Ontology (GO) (33,767, 54.02%), Clusters of Orthologous Groups (KOG) (14,721, 23.55%) and Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) (12,974, 20.76%) searches; digital gene expression analysis revealed 885 differentially expressed genes (DEGs) between infected and control samples at 4, 12, 24 and 48 hours after inoculation. The DEGs were assigned to 31 KEGG pathways. Early defense systems, including the MAPK signaling pathway, calcium signaling and salicylic acid-mediated hypersensitive response (SA-mediated HR) were activated after pathogen infection. SA-dependent systemic acquired resistance (SAR), ethylene (ET)- and jasmonic (JA)-mediated pathways and the lignin biosynthesis pathway play important roles in plant resistance. We also analyzed the expression of defense-related genes, such as genes encoding pathogenesis-related (PR) proteins, UDP-glycosyltransferase (UDPG), pleiotropic drug resistance, ATP-binding cassette transporters (PDR-ABC transporters), myrosinase, transcription factors and kinases, which were differentially expressed. The results of this study may contribute to efforts to identify and clone candidate genes associated with disease resistance and to uncover the molecular mechanism underlying FOC resistance in cabbage.
Collapse
|
94
|
OsGF14e positively regulates panicle blast resistance in rice. Biochem Biophys Res Commun 2016; 471:247-52. [DOI: 10.1016/j.bbrc.2016.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 11/30/2022]
|
95
|
Jin JH, Zhang HX, Tan JY, Yan MJ, Li DW, Khan A, Gong ZH. A New Ethylene-Responsive Factor CaPTI1 Gene of Pepper (Capsicum annuum L.) Involved in the Regulation of Defense Response to Phytophthora capsici. FRONTIERS IN PLANT SCIENCE 2016; 6:1217. [PMID: 26779241 PMCID: PMC4705296 DOI: 10.3389/fpls.2015.01217] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/17/2015] [Indexed: 05/18/2023]
Abstract
Ethylene-responsive factors (ERF) are usually considered to play diverse roles in plant response to biotic and abiotic stresses. In this study, an ERF gene CaPTI1 was isolated from pepper transcriptome database. CaPTI1 contains an open reading frame (ORF) of 543 bp, which encodes a putative polypeptide of 180 amino acids with a theoretical molecular weight of 20.30 kDa. Results of expression profile showed that CaPTI1 had a highest expression level in roots and this gene could not only response to the infection of Phytophthora capsici and the stresses of cold and drought, but also be induced by the signaling molecule (salicylic acid, Methyl Jasmonate, Ethephon, and hydogen peroxide). Furthermore, virus-induce gene silencing (VIGS) of CaPTI1 in pepper weakened the defense response significantly by reducing the expression of defense related genes CaPR1, CaDEF1 and CaSAR82 and also the root activity. These results suggested that CaPTI1 is involved in the regulation of defense response to P. capsici in pepper.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F UniversityYangling, China
| |
Collapse
|
96
|
Hu Z, Lv X, Xia X, Zhou J, Shi K, Yu J, Zhou Y. Genome-Wide Identification and Expression Analysis of Calcium-dependent Protein Kinase in Tomato. FRONTIERS IN PLANT SCIENCE 2016; 7:469. [PMID: 27092168 PMCID: PMC4824780 DOI: 10.3389/fpls.2016.00469] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/24/2016] [Indexed: 05/04/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) play critical roles in regulating growth, development and stress response in plants. Information about CDPKs in tomato, however, remains obscure although it is one of the most important model crops in the world. In this study, we performed a bioinformatics analysis of the entire tomato genome and identified 29 CDPK genes. These CDPK genes are found to be located in 12 chromosomes, and could be divided into four groups. Analysis of the gene structure and splicing site reflected high structure conservation within different CDPK gene groups both in the exon-intron pattern and mRNA splicing. Transcripts of most CDPK genes varied with plant organs and developmental stages and their transcripts could be differentially induced by abscisic acid (ABA), brassinosteroids (BRs), methyl jasmonate (MeJA), and salicylic acid (SA), as well as after exposure to heat, cold, and drought, respectively. To our knowledge, this is the first report about the genome-wide analysis of the CDPK gene family in tomato, and the findings obtained offer a clue to the elaborated regulatory role of CDPKs in plant growth, development and stress response in tomato.
Collapse
Affiliation(s)
- Zhangjian Hu
- Department of Horticulture, Zhejiang University Hangzhou, China
| | - Xiangzhang Lv
- Department of Horticulture, Zhejiang University Hangzhou, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University Hangzhou, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang UniversityHangzhou, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang UniversityHangzhou, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| |
Collapse
|
97
|
Zschiesche W, Barth O, Daniel K, Böhme S, Rausche J, Humbeck K. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 207:1084-1096. [PMID: 25913773 DOI: 10.1111/nph.13419] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
Biotic and abiotic stress responses of plants are linked to developmental programs. Proteins involved in different signaling pathways are the molecular basis of this concerted interplay. In our study, we show that Arabidopsis thaliana HEAVY METAL-ASSOCIATED ISOPRENYLATED PLANT PROTEIN3 (HIPP3; At5g60800) acts as an upstream regulator of stress- and development-related regulatory networks. Localization, metal-binding and stress-responsive gene expression of HIPP3 were analyzed via microscopy, protein and inductively coupled plasma (ICP)-MS analyses and quantitative real-time PCR. In addition, transcriptome and phenotype analyses of plants overexpressing HIPP3 were used to unravel its function. Our data show that HIPP3 is a nuclear, zinc-binding protein. It is repressed during drought stress and abscisic acid (ABA) treatment and, similar to other pathogen-related genes, is induced after infection with Pseudomonas syringae pv. tomato. HIPP3 overexpression affects the regulation of > 400 genes. Strikingly, most of these genes are involved in pathogen response, especially in the salicylate pathway. In addition, many genes of abiotic stress responses and seed and flower development are affected by HIPP3 overexpression. Plants overexpressing HIPP3 show delayed flowering. We conclude that HIPP3 acts via its bound zinc as an upstream regulator of the salicylate-dependent pathway of pathogen response and is also involved in abiotic stress responses and seed and flower development.
Collapse
Affiliation(s)
- Wiebke Zschiesche
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Olaf Barth
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Katharina Daniel
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Sandra Böhme
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Juliane Rausche
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Klaus Humbeck
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| |
Collapse
|
98
|
Ayyappan V, Kalavacharla V, Thimmapuram J, Bhide KP, Sripathi VR, Smolinski TG, Manoharan M, Thurston Y, Todd A, Kingham B. Genome-Wide Profiling of Histone Modifications (H3K9me2 and H4K12ac) and Gene Expression in Rust (Uromyces appendiculatus) Inoculated Common Bean (Phaseolus vulgaris L.). PLoS One 2015; 10:e0132176. [PMID: 26167691 PMCID: PMC4500563 DOI: 10.1371/journal.pone.0132176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/10/2015] [Indexed: 01/12/2023] Open
Abstract
Histone modifications such as methylation and acetylation play a significant role in controlling gene expression in unstressed and stressed plants. Genome-wide analysis of such stress-responsive modifications and genes in non-model crops is limited. We report the genome-wide profiling of histone methylation (H3K9me2) and acetylation (H4K12ac) in common bean (Phaseolus vulgaris L.) under rust (Uromyces appendiculatus) stress using two high-throughput approaches, chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq). ChIP-Seq analysis revealed 1,235 and 556 histone methylation and acetylation responsive genes from common bean leaves treated with the rust pathogen at 0, 12 and 84 hour-after-inoculation (hai), while RNA-Seq analysis identified 145 and 1,763 genes differentially expressed between mock-inoculated and inoculated plants. The combined ChIP-Seq and RNA-Seq analyses identified some key defense responsive genes (calmodulin, cytochrome p450, chitinase, DNA Pol II, and LRR) and transcription factors (WRKY, bZIP, MYB, HSFB3, GRAS, NAC, and NMRA) in bean-rust interaction. Differential methylation and acetylation affected a large proportion of stress-responsive genes including resistant (R) proteins, detoxifying enzymes, and genes involved in ion flux and cell death. The genes identified were functionally classified using Gene Ontology (GO) and EuKaryotic Orthologous Groups (KOGs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified a putative pathway with ten key genes involved in plant-pathogen interactions. This first report of an integrated analysis of histone modifications and gene expression involved in the bean-rust interaction as reported here provides a comprehensive resource for other epigenomic regulation studies in non-model species under stress.
Collapse
Affiliation(s)
- Vasudevan Ayyappan
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, Delaware, United States of America
| | - Venu Kalavacharla
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, Delaware, United States of America
- Center for Integrated Biological and Environmental Research (CIBER), Delaware State University, Dover, Delaware, United States of America
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, Indiana, United States of America
| | - Ketaki P. Bhide
- Bioinformatics Core, Purdue University, West Lafayette, Indiana, United States of America
| | - Venkateswara R. Sripathi
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, Delaware, United States of America
| | - Tomasz G. Smolinski
- Computational Intelligence and Bio(logical)informatics Laboratory (CIBiL), Delaware State University, Dover, Delaware, United States of America
| | - Muthusamy Manoharan
- Department of Agriculture, University of Arkansas, Pine Bluff, Arkansas, United States of America
| | - Yaqoob Thurston
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, Delaware, United States of America
| | - Antonette Todd
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, Delaware, United States of America
| | - Bruce Kingham
- Sequencing and Genotyping Center, Delaware Biotechnology Institute, Newark, Delaware, United States of America
| |
Collapse
|
99
|
Li X, Bi Y, Wang J, Dong B, Li H, Gong D, Zhao Y, Tang Y, Yu X, Shang Q. BTH treatment caused physiological, biochemical and proteomic changes of muskmelon (Cucumis melo L.) fruit during ripening. J Proteomics 2015; 120:179-93. [DOI: 10.1016/j.jprot.2015.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/24/2015] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
|
100
|
Wan J, Vuong T, Jiao Y, Joshi T, Zhang H, Xu D, Nguyen HT. Whole-genome gene expression profiling revealed genes and pathways potentially involved in regulating interactions of soybean with cyst nematode (Heterodera glycines Ichinohe). BMC Genomics 2015; 16:148. [PMID: 25880563 PMCID: PMC4351908 DOI: 10.1186/s12864-015-1316-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/03/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the most devastating pathogen of soybean. Many gene expression profiling studies have been conducted to investigate the responses of soybean to the infection by this pathogen using primarily the first-generation soybean genome array that covered approximately 37,500 soybean transcripts. However, no study has been reported yet using the second-generation Affymetrix soybean whole-genome transcript array (Soybean WT array) that represents approximately 66,000 predicted soybean transcripts. RESULTS In the present work, the gene expression profiles of two soybean plant introductions (PIs) PI 437654 and PI 567516C (both resistant to multiple SCN HG Types) and cultivar Magellan (susceptible to SCN) were compared in the presence or absence of the SCN inoculum at 3 and 8 days post-inoculation using the Soybean WT array. Data analysis revealed that the two resistant soybean lines showed distinctive gene expression profiles from each other and from Magellan not only in response to the SCN inoculation, but also in the absence of SCN. Overall, 1,413 genes and many pathways were revealed to be differentially regulated. Among them, 297 genes were constitutively regulated in the two resistant lines (compared with Magellan) and 1,146 genes were responsive to the SCN inoculation in the three lines, with 30 genes regulated both constitutively and by SCN. In addition to the findings similar to those in the published work, many genes involved in ethylene, protein degradation, and phenylpropanoid pathways were also revealed differentially regulated in the present study. GC-rich elements (e.g., GCATGC) were found over-represented in the promoter regions of certain groups of genes. These have not been observed before, and could be new defense-responsive regulatory elements. CONCLUSIONS Different soybean lines showed different gene expression profiles in the presence and absence of the SCN inoculum. Both inducible and constitutive gene expression may contribute to resistance to multiple SCN HG Types in the resistant soybean PI lines. Ethylene, protein degradation, and phenylpropanoid pathways, as well as many other pathways reported previously, may play important roles in mediating the soybean-SCN interactions. The revealed genes, pathways, and promoter elements can be further explored to regulate or engineer soybean for resistance to SCN.
Collapse
Affiliation(s)
- Jinrong Wan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Tri Vuong
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Yongqing Jiao
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
- Current address: Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China.
| | - Trupti Joshi
- Department of Computer Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Hongxin Zhang
- Department of Computer Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Dong Xu
- Department of Computer Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|