51
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
52
|
Li R, Wen Y, Yang L, Liu A, Wang F, He P. Dual quantum dot nanobeads-based fluorescence-linked immunosorbent assay for simultaneous detection of aflatoxin B1 and zearalenone in feedstuffs. Food Chem 2021; 366:130527. [PMID: 34284186 DOI: 10.1016/j.foodchem.2021.130527] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 01/20/2023]
Abstract
A novel dual quantum dot nanobeads-based fluorescence-linked immunosorbent assay (QBs-FLISA) was successfully developed for simultaneously detecting aflatoxin B1 (AFB1) and zearalenone (ZEN) in feedstuffs. Dual CdSe/ZnS quantum dot nanobeads with different diameters that emit red and green fluorescence were conjugated with anti-AFB1 and anti-ZEN monoclonal antibodies to prepare fluorescent probes, which greatly enhance analytical performance. Under the optimal conditions, the limits of detection for AFB1 and ZEN were 9.3 and 102.1 pg mL-1, respectively. The recoveries ranged from 82.50% to 116.21% with relative standard deviation less than 11.3%. Compared with traditional enzyme-linked immunosorbent assay, detection sensitivities of AFB1 and ZEN using QBs-FLISA were increased 20 and 5 folds, respectively. In addition, results of feedstuff samples analyzed by QBs-FLISA and liquid chromatography tandem mass spectrometry showed a good agreement (R2 = 0.99).
Collapse
Affiliation(s)
- Runxian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yang Wen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Luqing Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Anguo Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
53
|
Xiang X, Ye Q, Shang Y, Li F, Zhou B, Shao Y, Wang C, Zhang J, Xue L, Chen M, Ding Y, Wu Q. Quantitative detection of aflatoxin B 1 using quantum dots-based immunoassay in a recyclable gravity-driven microfluidic chip. Biosens Bioelectron 2021; 190:113394. [PMID: 34118762 DOI: 10.1016/j.bios.2021.113394] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 12/29/2022]
Abstract
To achieve rapid and sensitive detection of aflatoxin B1 (AFB1), we developed a polydimethylsiloxane gravity-driven cyclic microfluidic chip using the two-signal mode strategy. The structural design of the chip, together with the two-wavelength quantum dot ratio fluorescence, effectively eliminates the influence of environmental factors, improves the signal stability, and ensures that the final detection result positively correlates with the target concentration. Moreover, the theoretical analysis performed for the established physical model of the three-dimensional reaction interface inside the chip confirmed the improved reaction rate of immune adsorption in the microfluidic strategy. Overall, the method exhibited a wide analytic range (0.2-500 ng mL-1), low detection limit (0.06 ng mL-1), high specificity, good precision (coefficient of variation < 5%), excellent reusability (20 times, 89.1%) and satisfactory practical sample analysis capacity. Furthermore, the reusability and designability of this chip provide a reliable scheme for field detection of AFB1, analysis of other small molecules, and establishment of high-throughput detection systems under different conditions.
Collapse
Affiliation(s)
- Xinran Xiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuting Shang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Baoqing Zhou
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yanna Shao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Chufang Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Department of Food Science and Technology, Jinan University, Guangzhou, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
54
|
Charlermroj R, Phuengwas S, Makornwattana M, Sooksimuang T, Sahasithiwat S, Panchan W, Sukbangnop W, Elliott CT, Karoonuthaisiri N. Development of a microarray lateral flow strip test using a luminescent organic compound for multiplex detection of five mycotoxins. Talanta 2021; 233:122540. [PMID: 34215043 DOI: 10.1016/j.talanta.2021.122540] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022]
Abstract
While lateral flow immunoassay (LFIA) is a simple technique that offers a rapid, robust, user friendly, and point-of-care test, its capacity for multiplex detection is rather limited. This study therefore combined the multiplexity of microarray technique and the simple and rapid characteristics of LFIA to enable simultaneous and quantitative detection of five mycotoxins, namely aflatoxin B1 (AFB1), deoxynivalenol (DON), fumonisin B1 (FUMB1), T-2 toxin (T-2), and zearalenone (ZON). In addition, we have synthesized a novel extra-large Stokes shift and strong fluorescence organic compound to be used as a reporter molecule which can be detected under UV light without light filter requirement. Many parameters including microarray spotting buffer, blocking buffer, and concentrations of mycotoxin antibodies were optimized for the microarray LFIA (μLFIA) construction. With the optimal conditions, the μLFIA could accurately and quantitatively detect multiple mycotoxins at the same time. The limits of detection of AFB1, DON, FUMB1, T-2, and ZON were 1.3, 0.5, 0.4, 0.4, and 0.9 ppb, respectively. The recoveries of these five mycotoxins were 70.7%-119.5% and 80.4%-124.8% for intra-assay and inter-assay, respectively. Combining the advantages of the novel reporter molecule and the multiplex capability of μLFIA test, this system could simultaneously detect multiple mycotoxins in one sample with high specificity and high sensitivity. Moreover, this system presents a promising affordable point-of-care platform to detect other analytes as well.
Collapse
Affiliation(s)
- Ratthaphol Charlermroj
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Sudtida Phuengwas
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Manlika Makornwattana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Thanasat Sooksimuang
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Somboon Sahasithiwat
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Waraporn Panchan
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Wannee Sukbangnop
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Biological Sciences Building, 19 Chlorine Gardens, Queen's University, Belfast, BT9 5DL, United Kingdom
| | - Nitsara Karoonuthaisiri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand.
| |
Collapse
|
55
|
Zhou S, Xu L, Kuang H, Xiao J, Xu C. Immunoassays for rapid mycotoxin detection: state of the art. Analyst 2021; 145:7088-7102. [PMID: 32990695 DOI: 10.1039/d0an01408g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The widespread presence of mycotoxins in nature not only poses a huge health risk to people in terms of food but also causes incalculable losses to the agricultural economy. As a rapidly developing technology in recent years, the mycotoxin immunoassay technology has approached or even surpassed the traditional chromatography technology in some aspects. Using this approach, the lateral flow immunoassay (LFIA) has attracted the interest of researchers due to its user-friendly operation, short time consumption, little interference, low cost, and ability to process a large number of samples at the same time. This paper provides an overview of the immunogens commonly used for mycotoxins, the development of antibodies, and the use of gold nanoparticles, quantum dots, carbon nanoparticles, enzymes, and fluorescent microsphere labeling materials for the construction of LFIAs to improve detection sensitivity. The analytical performance, detection substrates, detection limits or detection ranges of LFIA for mycotoxins have been listed in recent years. Finally, we describe the future outlook for the field, predicting that portable mobile detection devices and simultaneous quantitative detection of multiple mycotoxins is one of the important directions for future development.
Collapse
Affiliation(s)
- Shengyang Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, China.
| | | | | | | | | |
Collapse
|
56
|
Wang L, He K, Wang X, Wang Q, Quan H, Wang P, Xu X. Recent progress in visual methods for aflatoxin detection. Crit Rev Food Sci Nutr 2021; 62:7849-7865. [PMID: 33955294 DOI: 10.1080/10408398.2021.1919595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aflatoxins (AFs) contamination in food and agricultural products poses a significant threat to human health. Sensitive and accurate detection of AFs provides a strong guarantee for ensuring food safety. Conventional chromatographic-based or mass spectrum methods, which rely on bulky instrument and skilled personnel, are not suitable for on-site surveillance. By contrast, visual detections which possess the merits of rapidity and sophisticated instrument-free present an excellent potential for the on-site detection of AFs. This review intends to summarize the latest development of visual methods for AFs detection, including paper-based tests, chromogenic reactions, and luminescent methods. Emerging technologies, like nanotechnology, DNAzymes, and aptamers combined with these visual methods are introduced. The basic principles, features, and application advantages of each type of visual methods are discussed. The biggest challenges and perspectives on their future trends are also addressed.
Collapse
Affiliation(s)
- Liu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kaiyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haoran Quan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
57
|
A novel α-Fe2O3 nanocubes-based multiplex immunochromatographic assay for simultaneous detection of deoxynivalenol and aflatoxin B1 in food samples. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
58
|
Zhang Z, Wu Y, Chen Q, Huang X, Xiong Y. Hyperbranched Gold Plasmonic Blackbodies Enhanced Immunochromatographic Test Strip for the Sensitive Detection of Aflatoxin B1 in Maize Sample. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
59
|
Rapid, simultaneous detection of mycotoxins with smartphone recognition-based immune microspheres. Anal Bioanal Chem 2021; 413:3683-3693. [PMID: 33825917 DOI: 10.1007/s00216-021-03316-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/10/2021] [Accepted: 03/30/2021] [Indexed: 01/02/2023]
Abstract
How to achieve simultaneous and rapid detection of various mycotoxins in food has important practical significance in the field of food processing and safety. In this paper, a smartphone immunoassay system based on hydrogel microspheres has been constructed to quickly detect two mycotoxins at the same time. The rapid detection system was reflected in the following three processes: (1) rapid separation of free matter after direct competition reaction based on hydrogel solid-phase carrier particles; (2) rapid detection process based on efficient catalytic function of enzymes; (3) fast capture and analysis of images based on smartphone software. Ochratoxin A (OTA) and zearalenone (ZEN) are secondary toxic metabolites of fungi that can contaminate a wide range of foods and feeds. OTA and ZEN were used as detection model molecules to verify the feasibility of the intelligent rapid detection system. The entire detection process was within 30 min, and the results were analyzed in only 10 s. Detection limits of mycotoxins OTA and ZEN are 0.7711 ng L-1 and 1.0391 ng L-1. The recoveries of both mycotoxins ranged from 76.72 to 122.05%. This study provides a universal rapid detection method for on-site application of large-scale food security testing. Schematic diagram of the construction of the smartphone detection system: The system is divided into three parts: detection, image capture and analysis, and result.
Collapse
|
60
|
|
61
|
Hu J, Zhou S, Zeng L, Chen Q, Duan H, Chen X, Li X, Xiong Y. Hydrazide mediated oriented coupling of antibodies on quantum dot beads for enhancing detection performance of immunochromatographic assay. Talanta 2021; 223:121723. [DOI: 10.1016/j.talanta.2020.121723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
|
62
|
Development of a quantum dot-based lateral flow immunoassay with high reaction consistency to total aflatoxins in botanical materials. Anal Bioanal Chem 2021; 413:1629-1637. [PMID: 33495847 DOI: 10.1007/s00216-020-03123-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/22/2023]
Abstract
Total aflatoxins (AFTs) are an important safety indicator for botanical materials, but at present, rapid detection technology for AFTs is seldom reported. In this study, the monoclonal antibody with similar reactivity to total aflatoxins was produced, and the quantum dot-based lateral flow immunoassay (QD-LFIA) coupled with a portable device was developed to rapidly determine AFT residues in botanical materials. The half maximal inhibitory concentrations (IC50) of the QD-LFIA for AFB1, AFB2, AFG1, AFG2, AFM1, and AFM2 were 10.57, 12.64, 11.34, 12.67, 10.13, and 12.75 μg kg-1, respectively, which show high reaction consistency to total aflatoxins. For different botanical materials, the sample was simply extracted with methanol-water and diluted with PBS, and the sample solution was directly loaded onto the QD-LFIA strip for determination. To overcome interference from the matrix effects, specific standard curves were established for each kind of botanical material. The detection limit of AFTs in 6 different botanical materials was 0.95~2.03 μg kg-1 with a linear range of 2~120 μg kg-1. The spiked recoveries of AFTs in botanical materials of different species and localities of growth were 75~105% with a coefficient of variation below 15%. The test results of the actual samples are consistent with the Chinese national standard test method. This study provides an easy-to-use method to rapidly determine AFTs in different botanical materials. Graphical abstract.
Collapse
|
63
|
Direct and Competitive Optical Grating Immunosensors for Determination of Fusarium Mycotoxin Zearalenone. Toxins (Basel) 2021; 13:toxins13010043. [PMID: 33430121 PMCID: PMC7827007 DOI: 10.3390/toxins13010043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Novel optical waveguide lightmode spectroscopy (OWLS)-based immunosensor formats were developed for label-free detection of Fusarium mycotoxin zearalenone (ZON). To achieve low limits of detection (LODs), both immobilised antibody-based (direct) and immobilised antigen-based (competitive) assay setups were applied. Immunoreagents were immobilised on epoxy-, amino-, and carboxyl-functionalised sensor surfaces, and by optimising the immobilisation methods, standard sigmoid curves were obtained in both sensor formats. An outstanding LOD of 0.002 pg/mL was obtained for ZON in the competitive immunosensor setup with a dynamic detection range between 0.01 and 1 pg/mL ZON concentrations, depending on the covalent immobilisation method applied. This corresponds to a five orders of magnitude improvement in detectability of ZON relative to the previously developed enzyme-linked immonosorbent assay (ELISA) method. The selectivity of the immunosensor for ZON was demonstrated with structural analogues (α-zearalenol, α-zearalanol, and β-zearalanol) and structurally unrelated mycotoxins. The method was found to be applicable in maize extract using acetonitrile as the organic solvent, upon a dilution rate of 1:10,000 in buffer. Thus, the OWLS immunosensor method developed appears to be suitable for the quantitative determination of ZON in aqueous medium. The new technique can widen the range of sensoric detection methods of ZON for surveys in food and environmental safety assessment.
Collapse
|
64
|
Duan H, Chen X, Wu Y, Leng Y, Huang X, Xiong Y. Integrated nanoparticle size with membrane porosity for improved analytical performance in sandwich immunochromatographic assay. Anal Chim Acta 2021; 1141:136-143. [PMID: 33248647 DOI: 10.1016/j.aca.2020.10.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/04/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
The use of luminescent nanobeads to improve the sensitivity of sandwich immunochromatographic assay (ICA) has obtained increasing concern. Illustrating the relationship among luminescent intensity, nanobead size, nitrocellulose membrane aperture, and ICA sensitivity is important for achieving the optimal target detection. Thus, we synthesized six differently sized quantum dot beads (QBs) (95, 140, 180, 235, 325, and 405 nm) as ICA labels and applied them in three aperture membranes (10, 15, and 25 μm). Results indicate that increasing the QB size to less than an appropriate size of 235 nm is beneficial for ICA sensitivity because of the increased fluorescence. However, oversized QBs result in reduced sensitivity due to the decreased diffusion or settlement of the QB on the membrane that causes obvious background signal. The small aperture membrane perfectly matching the QB size contributes to ICA sensitivity by decreasing the migration velocity of the QB probe for increased binding of the QB@analyte complex at the T zone. Consequently, the best detection of hepatitis B surface antigen with a sensitivity of 0.156 ng/mL is achieved using 235 nm QBs in 15 μm membrane. Further performance evaluation of our QB235-ICACN95 demonstrates excellent accuracy, selectivity, and practicability. This work provides a new idea to manipulate the sensitivity of sandwich ICA by tuning the QB size and the membrane aperture, and a theoretical guidance for selecting the probe and membrane to achieve the best detection of target analytes.
Collapse
Affiliation(s)
- Hong Duan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Yuhao Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
65
|
Mahmoudi T, Pourhassan-Moghaddam M, Shirdel B, Baradaran B, Morales-Narváez E, Golmohammadi H. (Nano)tag-antibody conjugates in rapid tests. J Mater Chem B 2021; 9:5414-5438. [PMID: 34143173 DOI: 10.1039/d1tb00571e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antibodies (Abs) are naturally derived materials with favorable affinity, selectivity, and fast binding kinetics to the respective antigens, which enables their application as promising recognition elements in the development of various types of biosensors/bioassays, especially in rapid tests. These tests are low-cost and easy-to-use biosensing devices with broad applications including medical or veterinary diagnostics, environmental monitoring and industrial usages such as safety and quality analysis in food, providing on-site quick monitoring of various analytes, making it possible to save analysis costs and time. To reach such features, the conjugation of Abs with various nanomaterials (NMs) as tags is necessary, which range from conventional gold nanoparticles to other nanoparticles recently introduced, where magnetic, plasmonic, photoluminescent, or multi-modal properties play a critical role in the overall performance of the analytical device. In this context, to preserve the Ab affinity and provide a rapid response with long-term storage capability, the use of efficient bio-conjugation techniques is critical. Thanks to their prominent role in rapid tests, many studies have been devoted to the design and development of Abs-NMs conjugates with various chemistries including passive adsorption, covalent coupling, and affinity interactions. In this review, we present the state-of-the-art techniques allowing various Ab-NM conjugates with a special focus on the efficiency of the developed probes to be employed in in vitro rapid tests. Challenges and future perspectives on the development of Ab-conjugated nanotags in rapid diagnostic tests are highlighted along with a survey of the progress in commercially available Ab-NM conjugates.
Collapse
Affiliation(s)
- Tohid Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Pourhassan-Moghaddam
- ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Behnaz Shirdel
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C. Loma del Bosque 115, Lomas del Campestre, 37150 León, Guanajuato, Mexico.
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|
66
|
Mulvaney SP, Kidwell DA, Lanese JN, Lopez RP, Sumera ME, Wei E. Catalytic lateral flow immunoassays (cLFIA™): Amplified signal in a self-contained assay format. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
67
|
Xing KY, Shan S, Liu DF, Lai WH. Recent advances of lateral flow immunoassay for mycotoxins detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116087] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
68
|
Non-CTAB synthesized gold nanorods-based immunochromatographic assay for dual color and on-site detection of aflatoxins and zearalenones in maize. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
69
|
Hu WJ, Yan JX, You KH, Wei TL, Li YP, He QH. Streptococcal protein G based fluorescent universal probes and biosynthetic mimetics for Fumonisin B1 immunochromatographic assay. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
70
|
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. Quantum dot nanobead-based fluorescent immunochromatographic assay for simultaneous quantitative detection of fumonisin B1, dexyonivalenol, and zearalenone in grains. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107331] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
71
|
The Development of a Photothermal Immunochromatographic Lateral Flow Strip for Rapid and Sensitive Detection of Bisphenol A in Food Samples. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01841-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
72
|
Guo J, Wang Y, Niu S, Li H, Tian Y, Yu S, Yu F, Wu Y, Liu LE. Highly Sensitive Fluorescence-Linked Immunosorbent Assay for the Determination of Human IgG in Serum Using Quantum Dot Nanobeads and Magnetic Fe 3O 4 Nanospheres. ACS OMEGA 2020; 5:23229-23236. [PMID: 32954173 PMCID: PMC7495760 DOI: 10.1021/acsomega.0c02987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/13/2020] [Indexed: 05/17/2023]
Abstract
The aim of this study is to establish a new method with high sensitivity, accuracy, and stability for the determination of human IgG and then expand it to analyze severe acute respiratory syndrome corona virus 2 (SARS-CoV-2)-specific IgM and IgG, which is of great significance for the screening and diagnosis of COVID-19. In this study, the magnetic Fe3O4 nanospheres coupled with mouse antihuman IgG (Ab1IgG) were used as an immune capture probe (Fe3O4@Ab1IgG) to capture and separate the target, and rabbit antihuman IgG (Ab2IgG) coupled with highly luminescent quantum dot nanobeads (QBs) as a fluorescence detection probe (QBs@Ab2IgG) was used to realize high sensitivity detection. After the formation of a sandwich immunocomplex, the fluorescence intensity of the precipitate after magnetic separation was measured at the excitation wavelength of 370 nm. Under optimal conditions, a wide linear range varying from 0.005 to 40 ng·mL-1 was obtained for the detection of human IgG with a lower limit of detection at 4 pg·mL-1 (S/N = 3). The recoveries of intra- and interassays were 90.0-101.9 and 96.0-106.6%, respectively, and the relative standard deviations were 6.3-10.2 and 2.6-10.5%, respectively. Furthermore, the proposed method was successfully demonstrated to detect human IgG in serum samples, and the detection results were not statistically different (P > 0.05) from commercial enzyme-linked immunosorbent assay kits. This method is sensitive, fast, and accurate, which could be expanded to detect the specific IgM and IgG antibodies against SARS-CoV-2.
Collapse
Affiliation(s)
- Jiaping Guo
- College of Public
Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yameng Wang
- College of Public
Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shanshan Niu
- School of Chemical Engineering, Zhengzhou
University, Zhengzhou 450001, China
| | - Hongping Li
- School of Chemical Engineering, Zhengzhou
University, Zhengzhou 450001, China
| | - Yongmei Tian
- College of Public
Health, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory of Nanomedicine and
Health Inspection of Zhengzhou, Zhengzhou 450001, China
| | - Songcheng Yu
- College of Public
Health, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory of Nanomedicine and
Health Inspection of Zhengzhou, Zhengzhou 450001, China
| | - Fei Yu
- College of Public
Health, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory of Nanomedicine and
Health Inspection of Zhengzhou, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public
Health, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory of Nanomedicine and
Health Inspection of Zhengzhou, Zhengzhou 450001, China
| | - Li-e Liu
- College of Public
Health, Zhengzhou University, Zhengzhou 450001, China
- The Key Laboratory of Nanomedicine and
Health Inspection of Zhengzhou, Zhengzhou 450001, China
| |
Collapse
|
73
|
Contamination of Zearalenone from China in 2019 by a Visual and Digitized Immunochromatographic Assay. Toxins (Basel) 2020; 12:toxins12080521. [PMID: 32823857 PMCID: PMC7472730 DOI: 10.3390/toxins12080521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Zearalenone (ZEN) is a prevalent mycotoxin that needs intensive monitoring. A semi-quantitative and quantitative immunochromatographic assay (ICA) was assembled for investigating ZEN contamination in 187 samples of cereal and their products from China in 2019. The semi-quantitative detection model had a limit of detection (LOD) of 0.50 ng/mL with visual judgment and could be completely inhibited within 5 min at 3.0 ng/mL ZEN. The quantitative detection model had a lower LOD of 0.25 ng/mL, and ZEN could be accurately and digitally detected from 0.25-4.0 ng/mL. The ICA method had a high sensitivity, specificity, and accuracy for on-site ZEN detection. For investigation of the authentic samples, the ZEN-positive rate was 62.6%, and the ZEN-positive levels ranged from 2.7 to 867.0 ng/g, with an average ZEN-positive level being 85.0 ng/g. Of the ZEN-positive samples, 6.0% exceeded the values of the limit levels. The ZEN-positive samples were confirmed to be highly correlated using LC-MS/MS (R2 = 0.9794). This study could provide an efficiency and accuracy approach for ZEN in order to achieve visual and digitized on-site investigation. This significant information about the ZEN contamination levels might contribute to monitoring mycotoxin occurrence and for ensuring food safety.
Collapse
|
74
|
Prussian blue nanoparticles with peroxidase-mimicking properties in a dual immunoassays for glycocholic acid. J Pharm Biomed Anal 2020; 187:113317. [PMID: 32416340 DOI: 10.1016/j.jpba.2020.113317] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Prussian Blue nanoparticles (PBNPs) were utilized in a lateral flow immunoassay (LFA) and in an indirect competitive nanozyme-linked immunosorbent assay (icELISA), respectively, for their intense blue color and peroxidase (POx) -like activity. The PBNPs with good POx-like activity was linked to the antibody. Under the optimal parameters, both the PBNP-icELISA and PBNP-LFA perform very well. The icELISA has an IC50 value of 190 ng/mL, the working range extends from 29 to 1200 ng/mL, and the limit of detection is 22 ng/mL. The visual cut-off limit is 10 ng/mL. The dual immunoassay was used to quantify glycocholic acid in spiked human urine. Excellent recoveries and correlation between the two methods were observed.
Collapse
|
75
|
Dual fluorescent immunochromatographic assay for simultaneous quantitative detection of citrinin and zearalenone in corn samples. Food Chem 2020; 336:127713. [PMID: 32768909 DOI: 10.1016/j.foodchem.2020.127713] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/30/2022]
Abstract
The presence of multiple mycotoxins in the agricultural products poses a serious threat to the health of humans and animals. Citrinin (CIT) causes slow growth in animals and damages the kidney function. Zearalenone (ZEN) causes chronic poisoning, abnormal functioning and even death in animals. Herein, a dual fluorescent immunochromatographic assay (DF-ICA) based on europium nanoparticles (EuNPs) was developed for the simultaneous detection of CIT and ZEN in the corn samples. After optimization, the limits of detection (LODs), IC50 and average recoveries for the simultaneous determination of CIT and ZEN were 0.06 and 0.11 ng/mL, 0.35 and 0.76 ng/mL, from 86.3% to 111.6% and from 86.6% to 114.4%, respectively. Moreover, the DF-ICA was validated by high performance liquid chromatography (HPLC) analyses, and a satisfactory consistency was obtained. In brief, this work demonstrates the feasibility of DF-ICA for simultaneous monitoring of CIT and ZEN in the corn samples.
Collapse
|
76
|
Li R, Bu T, Zhao Y, Sun X, Wang Q, Tian Y, Bai F, Wang L. Polydopamine coated zirconium metal-organic frameworks-based immunochromatographic assay for highly sensitive detection of deoxynivalenol. Anal Chim Acta 2020; 1131:109-117. [PMID: 32928471 DOI: 10.1016/j.aca.2020.07.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022]
Abstract
Conventional immunochromatographic assays (ICAs) based on gold nanoparticles (GNPs) suffer from the disadvantage of low sensitivity. In this work, a highly sensitive ICA based on polydopamine coated zirconium metal-organic frameworks labeled antibodies (ZrPA-Ab) as a novel probe was developed for visual determination of deoxynivalenol (DON). The ZrPA was synthesized via an oxidative self-polymerized assembly (OPMA) strategy using porphyrin functionalized zirconium metal-organic frameworks (Zr-MOFs, MOF-525) and polydopamine (PDA). The Abs could directly attach to the ZrPA surface owing to the large specific surface area, excellent water-stability and bio-compatibility of the ZrPA, on this basis, a sensitive, precise and reliable immunoassay method can be developed for rapid and selective detection of DON. Under optimized conditions, a non-linear calibration curve was obtained in the range of 0-50 ng/mL DON concentration with an IC50 of 1.22 ng/mL, and the visual detection limit was 0.18 ng/mL, which was about 8-times more sensitive than that of the conventional GNPs-based ICA. Finally, the proposed ZrPA-ICA was successfully applied for the detection of DON in pig hind legs meat, green bean, maize and millet samples, revealing the feasible and reliable application of this biosensor in different food matrices. Thus, this work broadens the possibilities for the use of MOFs as a novel labeling carrier in immunoassays.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yijian Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qinzhi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yongming Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
77
|
Liu J, Wang B, Huang H, Jian D, Lu Y, Shan Y, Wang S, Liu F. Quantitative ciprofloxacin on-site rapid detections using quantum dot microsphere based immunochromatographic test strips. Food Chem 2020; 335:127596. [PMID: 32745840 DOI: 10.1016/j.foodchem.2020.127596] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
The ciprofloxacin (CIP) abuse has caused many problems threatening to human health. Here, we design the quantum dot microsphere (QDM) based immunochromatographic quantitative CIP test strip: when the sample under detection contains CIP, the QDM-monoclonal antibody (mAb) probes bound with the CIP and cannot be captured by CIP-bovine serum albumin (BSA) conjugation dispersed on the T lines, reducing the fluorescence intensities. These test strips can provide a low detection limit of 0.05 ng/mL and a wide linear detection range from 0.1 ng/mL to 100 ng/mL in high sensitivity and accuracy as well as good selectivity, reproducibility and stability. Moreover, a smartphone based test strip reader with the size of 85 mm × 48 mm × 44 mm is also fabricated using 3-D printing to automatically and quantitatively detect CIP. The whole process of CIP detection can be finished within 15 min, but only cost ~1 RMB (10 cents).
Collapse
Affiliation(s)
- Jing Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Bin Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huachuan Huang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Minstry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Dan Jian
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Computational Optics Laboratory, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yunan Lu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Computational Optics Laboratory, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
78
|
Li P, Yang C, Liu B, Wu Q, Wang Y, Dong S, Zhang H, Vasylieva N, Hammock BD, Zhang C. Sensitive Immunochromatographic Assay Using Highly Luminescent Quantum Dot Nanobeads as Tracer for the Detection of Cyproheptadine Hydrochloride in Animal-Derived Food. Front Chem 2020; 8:575. [PMID: 32760698 PMCID: PMC7372008 DOI: 10.3389/fchem.2020.00575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022] Open
Abstract
Cyproheptadine hydrochloride (CYP), used as human and veterinary drug, has been used illegally as feed additive for food-producing animals, which could remain in food and jeopardize human health. There is a need for on-site detection of CYP residue in animal-derived food. In this study, a hapten was designed, and a specific monoclonal antibody (mAb) was developed to detect CYP with an IC50 of 1.38 ng/mL and negligible cross-reactivity (CR) for other analogs. Forthermore, a high sensitive immunochromatographic assay (QBs-ICA) was developed using quantum dot nanobeads as reporters. The assay showed the linear detection range (IC20-IC80) of 0.03-0.52 ng/mL, the limit of detection (LOD) and visual detection limit (VDL) reached to 0.01 and 0.625 ng/mL, respectively. Spiked recovery study in pig urine and pork confirmed that the QBs-ICA was applicable for on-site testing. This assay showed better sensitivity and speedy than the reported instrumental analysis and immunoassays.
Collapse
Affiliation(s)
- Pan Li
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Cuifeng Yang
- Tourism Department, Taiyuan University, Taiyuan, China
| | - Beibei Liu
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qin Wu
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yulong Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Sa Dong
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hanxiaoya Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Cunzheng Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
79
|
Quantum Dot Submicrobead–Based Immunochromatographic Assay for the Determination of Parathion in Agricultural Products. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01796-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
80
|
Emerging design strategies for constructing multiplex lateral flow test strip sensors. Biosens Bioelectron 2020; 157:112168. [DOI: 10.1016/j.bios.2020.112168] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 11/18/2022]
|
81
|
Wang X, Wu X, Lu Z, Tao X. Comparative Study of Time-Resolved Fluorescent Nanobeads, Quantum Dot Nanobeads and Quantum Dots as Labels in Fluorescence Immunochromatography for Detection of Aflatoxin B 1 in Grains. Biomolecules 2020; 10:biom10040575. [PMID: 32283775 PMCID: PMC7226082 DOI: 10.3390/biom10040575] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 01/15/2023] Open
Abstract
Label selection is an essential procedure for improving the sensitivity of fluorescence immunochromatography assays (FICAs). Under optimum conditions, time-resolved fluorescent nanobeads (TRFN), quantum dots nanobeads (QB) and quantum dots (QD)-based immunochromatography assays (TRFN-FICA, QB-FICA and QD-FICA) were systematically and comprehensively compared for the quantitative detection of aflatoxin B1 (AFB1) in six grains (corn, soybeans, sorghum, wheat, rice and oat). All three FICAs can be applied as rapid, cost-effective and convenient qualitative tools for onsite screening of AFB1; TRFN-FICA exhibits the best performance with the least immune reagent consumption, shortest immunoassay duration and lowest limit of detection (LOD). The LODs for TRFN-FICA, QB-FICA and QD-FICA are 0.04, 0.30 and 0.80 μg kg−1 in six grains, respectively. Recoveries range from 83.64% to 125.61% at fortified concentrations of LOD, 2LOD and 4LOD, with the coefficient of variation less than 10.0%. Analysis of 60 field grain samples by three FICAs is in accordance with that of LC-MS/MS, and TRFN-FICA obtained the best fit. In conclusion, TRFN-FICA is more suitable for quantitative detection of AFB1 in grains when the above factors are taken into consideration.
Collapse
Affiliation(s)
- Xin Wang
- College of Food Science, Southwest University, Chongqing 400715, China;
| | - Xuan Wu
- Chongqing Animal Disease Prevention and Control Center, Chongqing 401120, China;
| | - Zhisong Lu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing 400715, China;
| | - Xiaoqi Tao
- College of Food Science, Southwest University, Chongqing 400715, China;
- Correspondence: ; Tel.: +86-18306008102
| |
Collapse
|
82
|
Zhang L, Ying Y, Li Y, Fu Y. Integration and synergy in protein-nanomaterial hybrids for biosensing: Strategies and in-field detection applications. Biosens Bioelectron 2020; 154:112036. [DOI: 10.1016/j.bios.2020.112036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
|
83
|
Liu Z, Hua Q, Wang J, Liang Z, Li J, Wu J, Shen X, Lei H, Li X. A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals. Biosens Bioelectron 2020; 158:112178. [PMID: 32275211 DOI: 10.1016/j.bios.2020.112178] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
Abstract
In this study, a smartphone-based quantitative dual detection mode device, integrated with gold nanoparticles (GNPs) and time-resolved fluorescence microspheres (TRFMs) lateral flow immunoassays (LFIA) for multiplex mycotoxins in cereals were established. The most frequently used visible light and fluorescence detection modes were integrated in one device. A user-friendly application was self-written to rapidly quantify results. GNPs-LFIA and TRFMs-LFIA were used to detect aflatoxin B1 (AFB1), zearalenone (ZEN), deoxynivalenol (DON), T-2 toxin (T-2), and fumonisin B1 (FB1). The visible limits of detection (vLODs) were 10/2.5/1.0/10/0.5, 2.5/0.5/0.5/2.5/0.5 μg/kg for the two methods, respectively. The quantitative limits of detection (qLODs) were 0.59/0.24/0.32/0.9/0.27, 0.42/0.10/0.05/0.75/0.04 μg/kg, respectively. The recoveries of both LFIAs ranged from 84.0%-110.0%. A parallel analysis in 30 naturally contaminated cereal samples was conducted by liquid chromatography-tandem mass spectrometry (LC-MS/MS), the results showed good consistency, indicating the practical reliability of the established methods. The developed two smartphone-based LFIAs provide a promising technique for multiplex, highly sensitive, and on-site detection of mycotoxins.
Collapse
Affiliation(s)
- Zhiwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qicheng Hua
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zaoqing Liang
- College of Mathematics and Infromatics, College of Software Engineering, South China Agricultural University, Guangzhou, 510642, China
| | - Jiahao Li
- College of Mathematics and Infromatics, College of Software Engineering, South China Agricultural University, Guangzhou, 510642, China
| | - Jinxiao Wu
- Shanxi Institute of Feed and Veterinary Drug control, Taiyuan, 030000, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
84
|
Chen X, Leng Y, Hao L, Duan H, Yuan J, Zhang W, Huang X, Xiong Y. Self-assembled colloidal gold superparticles to enhance the sensitivity of lateral flow immunoassays with sandwich format. Theranostics 2020; 10:3737-3748. [PMID: 32206119 PMCID: PMC7069069 DOI: 10.7150/thno.42364] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Traditional lateral flow immunoassay (LFIA) based on 20-40 nm gold nanoparticles (AuNPs) as signal reporter always suffers from relatively low detection sensitivity due to its insufficient brightness, severely restricting its wide-ranging application in the detection of target analytes with trace concentration. Methods: To address this problem, the self-assembled colloidal gold superparticles (GSPs) were synthesized as an improved absorption-dominated labeling probe for improving the sensitivity of sandwich LFIA. Five kinds of GSPs with the size ranging from 100 nm to 400 nm were synthesized by embedding hydrophobic AuNPs of size 12 nm as building blocks into the polymer nanobeads. The as-prepared GSPs were suggested as novel labeling probes of LFIA. The effects of the size of assembled GSPs on the sensitivity of sandwich LFIA was assessed, and the detection performance of GSPs-LFIA was further compared with traditional AuNPs-LFIA. Results: The resultant GSPs showed extremely high light absorption but very low light scattering, which favor the absorption-dominated signal output in LFIA. Among them, the GSP270-LFIA (size 270 nm) exhibits the highest sensitivity for human chorionic gonadotropin and hepatitis B surface antigen detection in real serum sample, which are approximate 39.79- and 13.8-fold higher than that of traditional AuNP40-LFIA. Conclusions: The proposed research demonstrated that the current GSPs can provide an ultrasensitive and quantitative detection for disease biomarkers in real serum samples as promising reporters of sandwich LFIA platform.
Collapse
|
85
|
Yan JX, Hu WJ, You KH, Ma ZE, Xu Y, Li YP, He QH. Biosynthetic Mycotoxin Conjugate Mimetics-Mediated Green Strategy for Multiplex Mycotoxin Immunochromatographic Assay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2193-2200. [PMID: 31976658 DOI: 10.1021/acs.jafc.9b06383] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various mycotoxins widely co-exist in agro-products, and their combined effects cause toxicity and potential carcinogenicity to humans and animals. In this work, we developed an economical and sensitive quantum dots (QDs)/QD microbead (QDs/QB)-based multiplex immunochromatographic assay (mICA) for the rapid detection of fumonisin B1 (FB1), zearalenone (ZEN), and ochratoxin A (OTA) without the building-up process of mycotoxin conjugates. QDs and QBs were selected as fluorescent reporters and conjugated with antimycotoxin monoclonal antibodies for improving sensitivity. Furthermore, phage-displayed FB1, ZEN, and OTA mimotope peptide-based soluble and monovalent fusions to maltose-binding protein (MBP) were applied onto the test line of the mICA as the mimetic coating antigen. Under the optimized conditions, the visual detection limits (vLODs) of peptide-MBP-based mICA could be obtained as 0.25 ng/mL for FB1, 3.0 ng/mL for ZEN, and 0.5 ng/mL for OTA within 10 min. The results for spiked real sample detection indicate good accuracy, reproducibility, and practicability. In addition, the proposed mICA was comparable with ultraperformance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) in terms of reliability in detecting FB1, ZEN, and OTA using natural samples. From the point of promoting commercial production, these time-saving and low-cost peptide-MBP antigens applied in ICA might provide promising potential for promoting productivity and decreasing the cost of production.
Collapse
Affiliation(s)
- Jia-Xiang Yan
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , China
- Sino-German Joint Research Institute , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , China
- School of Food Science and Technology , Nanchang University , No. 999 Xuefu Avenue , Nanchang 330031 , China
| | - Wen-Jin Hu
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , China
- Sino-German Joint Research Institute , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , China
- School of Food Science and Technology , Nanchang University , No. 999 Xuefu Avenue , Nanchang 330031 , China
| | - Kai-Hao You
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , China
- Sino-German Joint Research Institute , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , China
- School of Food Science and Technology , Nanchang University , No. 999 Xuefu Avenue , Nanchang 330031 , China
| | - Zhen-E Ma
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , China
- Sino-German Joint Research Institute , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , China
- School of Food Science and Technology , Nanchang University , No. 999 Xuefu Avenue , Nanchang 330031 , China
| | - Yang Xu
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , China
- Sino-German Joint Research Institute , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , China
- School of Food Science and Technology , Nanchang University , No. 999 Xuefu Avenue , Nanchang 330031 , China
| | - Yan-Ping Li
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , China
- Sino-German Joint Research Institute , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , China
- School of Food Science and Technology , Nanchang University , No. 999 Xuefu Avenue , Nanchang 330031 , China
| | - Qing-Hua He
- State Key Laboratory of Food Science and Technology , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , China
- Sino-German Joint Research Institute , Nanchang University , No. 235 Nanjing East Road , Nanchang 330047 , China
- School of Food Science and Technology , Nanchang University , No. 999 Xuefu Avenue , Nanchang 330031 , China
- Jiangxi Province Key Laboratory of Modern Analytical Science , Nanchang University , Nanchang 330047 , Jiangxi , China
| |
Collapse
|
86
|
Liu J, Yu Q, Zhao G, Dou W. A novel immunochromatographic assay using ultramarine blue particles as visible label for quantitative detection of hepatitis B virus surface antigen. Anal Chim Acta 2019; 1098:140-147. [PMID: 31948577 DOI: 10.1016/j.aca.2019.11.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
Abstract
Ultramarine blue particles as a novel visible label has been used to develop immunochromatographic assay (ICA). The ultramarine blue particles, as a sodalite mineral with formula: (Na,Ca)8[(S,Cl,SO4,OH)2(Al6Si6O24)], can generate a blue visible signal were used as a label for ICA. Ultramarine blue particles were applied to a sandwich immunoassay to detect hepatitis B virus surface antigen (HBsAg). Ultramarine blue particles were separated from ultramarine blue industrial product by centrifugation. The polyacrylic acid (PAA) was used to modify the carboxyl group on the surface of ultramarine blue particles. The goat anti-HBsAg monoclonal antibody was modified on ultramarine blue particles by EDC/NHS activation of the carboxyl groups. In the presence of HBsAg, the immune ultramarine blue particles were bound on test line zone and forming a blue line on ICA strip which was directly readout by naked eye and quantitatively measured by Image J software. Under optimal conditions, the color depth of test line was linearly correlated with the concentration of HBsAg in concentration range from 1 to 50 ng mL-1. The calibration equation was y = 385.796 + 97.2298x (R2 = 0.9872), with limit of detection (LOD) of 0.37 ng mL -1(S/N = 3). The sensitivity of this novel ICA was better than that of ICA based on traditional gold nanoparticles as reporter probe. The ultramarine blue particles offer an alternative type of visible label nanomaterial for the development of ICA.
Collapse
Affiliation(s)
- Jing Liu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qiongqiong Yu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
87
|
Fluorometric lateral flow immunoassay for simultaneous determination of three mycotoxins (aflatoxin B 1, zearalenone and deoxynivalenol) using quantum dot microbeads. Mikrochim Acta 2019; 186:748. [PMID: 31696359 DOI: 10.1007/s00604-019-3879-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/29/2019] [Indexed: 10/25/2022]
Abstract
A fluorometric lateral flow immunoassay (LFA) is described for the simultaneous determination of the mycotoxins aflatoxin B1 (AFB1), zearalenone (ZEN) and deoxynivalenol (DON). The method is based on the use of CdSe/SiO2 quantum dot microbeads (QBs) with a mean diameter of 106 nm. These have strong red luminescence (with excitation/emission peaks at 365/622 nm) which results in enhanced sensitivity. The QBs binding with monoclonal antibodies (mAbs) as the signal probes can react specifically with AFB1, ZEN and DON, respectively. There is an inverse correlation between the fluorescence signal intensity of test line and the analyte content, which can realize the quantitative analysis of analytes within 15 min. The limits of detection in solution are 10, 80 and 500 pg mL-1 for AFB1, ZEN and DON, respectively. Besides, the average recoveries from spiked feed range from 85.5 to 119.0%, and the relative standard deviations are less than 16.4% for both intra- and inter-day assays. The method was used to analyze naturally contaminated feedstuff, and this resulted in a good agreement with data obtained by LC-MS/MS. Graphical abstractSchematic representation of a fluorometric method for the simultaneous determination of three mycotoxins. Quantum dot microbeads (QBs) binding with monoclonal antibodies (mAbs) are signal probes. There is an inverse correlation between the fluorescence intensity of test line and the analyte concentration.
Collapse
|
88
|
Tang X, Zhang Q, Zhang Z, Ding X, Jiang J, Zhang W, Li P. Rapid, on-site and quantitative paper-based immunoassay platform for concurrent determination of pesticide residues and mycotoxins. Anal Chim Acta 2019; 1078:142-150. [PMID: 31358212 DOI: 10.1016/j.aca.2019.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 02/02/2023]
Abstract
Mycotoxins and pesticides are prevalent in cereal food. It is difficult to detect these two kinds of hazard factors simultaneously in rapid assay. In order to find a solution to the problem, carbamates and aflatoxins were selected in this study to establish a rapid, on-site, and quantitative paper sensor. Two novel monoclonal antibodies (mAbs) against carbaryl and carbofuran (1D2 and G11) were developed. The IC50 values (half maximal inhibitory concentration) were 0.8 ng/mL and 217.6 ng/mL for carbaryl and carbofuran, respectively. Based on the sensitive and specific mAbs, a multi-TRFICA (time-resolved fluorescence) paper sensor was developed, which simultaneously detected six types of hazardous chemicals, including AFB1, AFB2, AFG1, AFG2, carbaryl, and carbofuran. A universal sample pretreatment method for mycotoxins and pesticides was explored to apply on established competitive indirect enzyme-linked immunosorbent assay (icELISA) and multi-TRFICA-paper sensor. The established paper sensor can be easily observed with naked eyes, qualitatively under a UV lamp, and quantitated using a home-made device. It exhibited a calculated limit of quantity for AFTs, carbaryl, and carbofuran of 0.03, 0.02, and 60.2 ng/mL in corn samples, respectively. The spiking-recoveries and real sample studies proved that multi-TRFICA-paper sensor is an accurate, sensitive, and high throughput detection method for simple and low-cost analysis in corn samples.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China; Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan, 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, China; Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, 430062, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan, 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, China
| | - Zhaowei Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China; Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, 430062, China
| | - Xiaoxia Ding
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan, 430062, China
| | - Jun Jiang
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, 430062, China
| | - Wen Zhang
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, 430062, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China; Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan, 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, China; Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, 430062, China.
| |
Collapse
|
89
|
Khan IM, Niazi S, Yu Y, Mohsin A, Mushtaq BS, Iqbal MW, Rehman A, Akhtar W, Wang Z. Aptamer Induced Multicolored AuNCs-WS 2 "Turn on" FRET Nano Platform for Dual-Color Simultaneous Detection of AflatoxinB 1 and Zearalenone. Anal Chem 2019; 91:14085-14092. [PMID: 31585033 DOI: 10.1021/acs.analchem.9b03880] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycotoxins posit serious threats to human and animal health, and numerous efforts have been performed to detect the multiple toxins by a single diagnostic approach. To best of our knowledge, for the first time, we synthesized an aptamer induced "turn on" fluorescence resonance energy transfer (FRET) biosensor using dual-color gold nanoclusters (AuNCs), l-proline, and BSA synthesized AuNCs (Lp-AuNCs and BSA-AuNCs), with WS2 nanosheet for simultaneous recognition of aflatoxinB1 (AFB1) and zearalenone (ZEN) by single excitation. Here, AFB1 aptamer stabilized blue-emitting AuNCs (AFB1-apt-Lp-AuNCs) (at 442 nm) and ZEN aptamer functionalized with red-colored AuNCs (ZEN-apt-BSA-AuNCs) (at 650 nm) were employed as an energy donor and WS2 nanosheet as a fluorescence quencher. With the addition of AFB1 and ZEN, the change in fluorescence intensity (F.I) was recorded at 442 and 650 nm and can be used for simultaneous recognition with a detection limit of 0.34 pg mL-1 (R2 = 0.9931) and 0.53 pg mL-1 (R2 = 0.9934), respectively. Most importantly, the semiquantitative determination of AFB1 and ZEN can also be realized through photovisualization. The current approach paves a new way to develop sensitive, selective, and convenient metal nanocluster-based fluorescent "switch-on" probes with potential applications in multipurpose biosensing.
Collapse
Affiliation(s)
- Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , 214122 , China.,Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province , Wuxi 214122 , China
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , 214122 , China.,Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province , Wuxi 214122 , China
| | - Ye Yu
- Technology Center of Zhangjiagang Entry-Exit Inspection and Quarantine Bureau , Zhangjiagang , 214114 , China
| | - Ali Mohsin
- East China University of Science and Technology , Shanghai , 200000 , China
| | - Bilal Sajid Mushtaq
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China
| | - Muhammad Waheed Iqbal
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China
| | - Wasim Akhtar
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,School of Food Science and Technology , Jiangnan University , Wuxi , 214122 , China.,International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , 214122 , China.,Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province , Wuxi 214122 , China
| |
Collapse
|
90
|
Li Y, Zhou Y, Chen X, Huang X, Xiong Y. Comparison of three sample addition methods in competitive and sandwich colloidal gold immunochromatographic assay. Anal Chim Acta 2019; 1094:90-98. [PMID: 31761051 DOI: 10.1016/j.aca.2019.09.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 01/08/2023]
Abstract
Immunochromatographic assays (ICAs) are mainstream point-of-care diagnostic tools in disease control, food safety, and environmental monitoring. However, the important issue pertaining to the influence of sample addition methods on the detection performance of ICAs has not been addressed, and related information is still lacking. Herein, we selected the well-accepted gold nanoparticles (AuNPs) as visual labels. AuNP-based ICA was then used to explore the effects of three sample addition methods (i.e., dry, wet, and insert) on the analytical performance of ICAs by using competitive and sandwich models. Under optimized conditions, the competitive ICA with clenbuterol as an analyte showed a negligible difference (p > 0.05) in the detection performance of the three methods in ideal phosphate buffered saline solution. However, the wet method demonstrated the worst performance in pork samples (p < 0.05). The sandwich ICA strip with human chorionic gonadotropin as an analyte revealed the significantly different analytical performances of the three approaches in phosphate buffer (PB) solution and spiked serum (p < 0.05). Two independent linear correlations were observed with the increase in target concentration. However, for the wet method in the PB solution and serum, the first linear correlation was at a relatively narrow target concentration range, and the second linear correlation was at a wider concentration range compared with those for the dry and insert methods. Our findings demonstrated that sample addition methods slightly influence competitive ICAs (p > 0.05) but remarkably affect sandwich ICAs (p < 0.05). We believe that this study can further explain the differences in detection results for the same target analyte in actual ICA detection. The results may serve as a reference in the rational selection of the appropriate sample addition method for succeeding ICA works.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
91
|
Xue Z, Zhang Y, Yu W, Zhang J, Wang J, Wan F, Kim Y, Liu Y, Kou X. Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials-A review. Anal Chim Acta 2019; 1069:1-27. [DOI: 10.1016/j.aca.2019.04.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 02/02/2023]
|
92
|
Xu S, Zhang G, Fang B, Xiong Q, Duan H, Lai W. Lateral Flow Immunoassay Based on Polydopamine-Coated Gold Nanoparticles for the Sensitive Detection of Zearalenone in Maize. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31283-31290. [PMID: 31389683 DOI: 10.1021/acsami.9b08789] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, polydopamine-coated gold nanoparticles (Au@PDAs) were synthesized by the oxidative self-polymerization of dopamine (DA) on the surface of AuNPs and applied for the first time as a signal-amplification label in lateral flow immunoassays (LFIAs) for the sensitive detection of zearalenone (ZEN) in maize. The PDA layer functioned as a linker between AuNPs and anti-ZEN monoclonal antibody (mAb) to form a probe (Au@PDA-mAb). Compared with AuNPs, Au@PDA had excellent color intensity, colloidal stability, and mAb coupling efficiency. The limit of detection of the Au@PDA-based LFIA (Au@PDA-LFIA) was 7.4 pg/mL, which was 10-fold lower than that of the traditional AuNP-based LFIA (AuNP-LFIA) (76.1 pg/mL). The recoveries of Au@PDA-LFIA were 93.80-111.82%, with the coefficient of variation of 1.08-9.04%. In addition, the reliability of Au@PDA-LFIA was further confirmed by the high-performance liquid chromatography method. Overall, our study showed that PDA coating can chemically modify the surface of AuNPs through a simple method and can thus significantly improve the detection sensitivity of LFIA.
Collapse
Affiliation(s)
- Shaolan Xu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Ganggang Zhang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Bolong Fang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| |
Collapse
|
93
|
Shao Y, Duan H, Zhou S, Ma T, Guo L, Huang X, Xiong Y. Biotin-Streptavidin System-Mediated Ratiometric Multiplex Immunochromatographic Assay for Simultaneous and Accurate Quantification of Three Mycotoxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9022-9031. [PMID: 31339724 DOI: 10.1021/acs.jafc.9b03222] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The quantitative multiplex immunochromatographic assay (mICA) has received an increasing amount of attention in multitarget detection. However, the quantitative results in the reported mICAs were obtained by recording the signals on the test lines that with which various analyte-independent factors readily interfere, resulting in inaccurate quantitation. The ratiometric strategy using the T/C value (ratios of signals on the test line to those of the control line) for signal correction can effectively circumvent these issues to enable more accurate detection. Herein, we present for the first time a novel ratiometric mICA strip with multiple T lines for the simultaneous quantitative detection of aflatoxin B1 (AFB1), fumonisin B1 (FB1), and ochratoxin A (OTA) using highly luminescent quantum dot nanobeads (QBs) as enhanced signal reporters. To achieve reliable ratiometric signal output, a biotin-streptavidin system was introduced to replace the conventional anti-mouse IgG antibody for reliable reference signals on the control line that are completely independent of the signal probe and analyte. By using stable T/C values as quantitative signals, our proposed QB-mICA method can successfully detect three mycotoxins with concentrations as low as 1.65 pg/mL for AFB1, 1.58 ng/mL for FB1, and 0.059 ng/mL for OTA. The detection performance of the developed QB-mICA strip, including precision, specificity, and reliability, was further evaluated using artificially contaminated cereal samples. The results demonstrate the improved accuracy and reliability of quantitative determination by comparison with the anti-mouse IgG antibody. Thus, this work provides a promising strategy for developing a ratiometric mICA method for accurately quantifying multiple analytes using the biotin-SA system, opening up a new direction in quantitative mICAs.
Collapse
Affiliation(s)
- Yanna Shao
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| | - Hong Duan
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| | - Shu Zhou
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| | - Tongtong Ma
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- School of Food Science and Technology , Nanchang University , Nanchang 330031 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- School of Food Science and Technology , Nanchang University , Nanchang 330031 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| |
Collapse
|
94
|
Wu Q, Wu P, Duan H, Liu B, Shao Y, Li P, Zhang C, Xiong Y. Quantum dot bead-based immunochromatographic assay for the quantitative detection of triazophos. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1649638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Qin Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Peiman Wu
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Hong Duan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Beibei Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Yanna Shao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Pan Li
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Cunzheng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
- School of Food and Biological Engineering, Jiangshu University, Zhenjiang, People’s Republic of China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
95
|
Liu L, Yang D, Liu G. Signal amplification strategies for paper-based analytical devices. Biosens Bioelectron 2019; 136:60-75. [DOI: 10.1016/j.bios.2019.04.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 12/26/2022]
|
96
|
Qie Z, Liu Q, Yan W, Gao Z, Meng W, Xiao R, Wang S. Universal and Ultrasensitive Immunochromatographic Assay by Using an Antigen as a Bifunctional Element and Antialbumin Antibody on a Test Line. Anal Chem 2019; 91:9530-9537. [DOI: 10.1021/acs.analchem.9b00673] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zhiwei Qie
- Beijing Institute of Radiation Medicine, Beijing 100850, People’s Republic of China
| | - Qiqi Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, People’s Republic of China
| | - Wenliang Yan
- Beijing Institute of Radiation Medicine, Beijing 100850, People’s Republic of China
| | - Zichen Gao
- Beijing Institute of Radiation Medicine, Beijing 100850, People’s Republic of China
| | - Wu Meng
- Beijing Institute of Radiation Medicine, Beijing 100850, People’s Republic of China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing 100850, People’s Republic of China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, People’s Republic of China
| |
Collapse
|
97
|
Zhang GG, Xu SL, Xiong YH, Duan H, Chen WY, Li XM, Yuan MF, Lai WH. Ultrabright fluorescent microsphere and its novel application for improving the sensitivity of immunochromatographic assay. Biosens Bioelectron 2019; 135:173-180. [PMID: 31022594 DOI: 10.1016/j.bios.2019.04.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 02/08/2023]
Abstract
Fluorescent microsphere (FM) is widely used as probe in immunochromatographic assay (ICA). However, the performance of conventional FM is limited because of the aggregation-caused quenching effect. Herein, we compared a kind of conventional FM (DMFFM, loading DMF) with novel aggregation-induced emission FM (AIEFM, loading TCBPE). The fluorescence intensity of DMFFM initially increased and then decreased as the concentrations of the loading DMF increased. The fluorescence intensity of AIEFM increased as the concentrations of the loading TCBPE increased and retained a high value. AIEFM was compared with two commercial FMs purchased from Ocean (OFM) and Merk (MFM). The maximum fluorescence intensity and relative quantum yield of AIEFM was approximately 5 and 4.5 times higher than those of two commercial FMs. We used the novel AIEFM as a probe to improve the sensitivity of ICA. When Escherichia coli O157:H7 was detected as the target, the limit of detection of ICA based on AIEFM, OFM and MFM were 3.98 × 103 CFU/mL, 4.48 × 104 and 2.78 × 104 CFU/mL, respectively. The ICA of AIEFM had 11 and 7 times improvement in sensitivity compared with that of OFM and MFM. Our results could be used as a basis for novel probes in practical ICA applications.
Collapse
Affiliation(s)
- Gang-Gang Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Shao-Lan Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yong-Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Hong Duan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Wen-Yao Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xiang-Min Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Mei-Fang Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Wei-Hua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
98
|
Guo L, Shao Y, Duan H, Ma W, Leng Y, Huang X, Xiong Y. Magnetic Quantum Dot Nanobead-Based Fluorescent Immunochromatographic Assay for the Highly Sensitive Detection of Aflatoxin B 1 in Dark Soy Sauce. Anal Chem 2019; 91:4727-4734. [PMID: 30840438 DOI: 10.1021/acs.analchem.9b00223] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein, we synthesized bifunctional magnetic fluorescent beads (MFBs) with a distinct core/shell structure by encapsulating octadecylamine-coated CdSe/ZnS QDs (OC-QDs) and oleic acid-modified iron oxide nanoparticles (OA-IONPs) into two polymer matrixes with different hydrophobic properties. The OC-QDs and OA-IONPs were mainly distributed in the outer layer of MFBs. The resultant MFBs displayed ca. 226-fold stronger fluorescence emission relative to the corresponding OC-QDs and retained ca. 45.4% of the saturation magnetization of the OA-IONPs. The MFBs were used to purify and enrich aflatoxin B1 (AFB1) from dark soy sauce and then utilized as a fluorescent reporter of immunochromatographic assay (ICA) for the sensitive detection of AFB1. Under the optimal detection conditions, the MFB-based ICA (MFB-ICA) displayed a dynamic linear detection of AFB1 in sauce extract over the range of 5-150 pg/mL with a half maximal inhibitory concentration of 27 ± 3 pg/mL ( n = 3). The detection limits for AFB1 in sauce extract and real dark soy sauce were 3 and 51 pg/mL, respectively, which are considerably better than those of the previously reported fluorescent bead-based ICA methods. The analytical performance of the proposed MFB-ICA in terms of selectivity and accuracy was investigated by analyzing AFB1-spiked dark soy sauce samples. The reliability of the proposed method was further confirmed by ultraperformance liquid chromatography with fluorescence detection. With the combined advantages of QDs and IONPs, the resultant MFBs offer great potential as reporters of ICA for the sensitive detection of trace pollutants in complex matrix samples.
Collapse
Affiliation(s)
- Liang Guo
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| | - Yanna Shao
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
| | - Hong Duan
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| | - Wei Ma
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Gaoping Center for Comprehensive Inspection and Testing , Gaoping 048411 , P. R. China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| |
Collapse
|
99
|
Zhou Y, Xiong S, Zhang K, Feng L, Chen X, Wu Y, Huang X, Xiong Y. Quantum bead-based fluorescence-linked immunosorbent assay for ultrasensitive detection of aflatoxin M 1 in pasteurized milk, yogurt, and milk powder. J Dairy Sci 2019; 102:3985-3993. [PMID: 30879825 DOI: 10.3168/jds.2018-16109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/23/2019] [Indexed: 01/08/2023]
Abstract
Herein, we reported a novel direct competitive fluorescence-linked immunosorbent assay (dcFLISA) for the ultrasensitive detection of aflatoxin M1 (AFM1) in pasteurized milk, yogurt, and milk powder using 150-nm quantum dot beads (QB) as the carrier of competing antigen. Large QB were applied to decrease the binding affinity of the competing antigen to antibody and enhance the fluorescent signal intensity. The aflatoxin B1 molecule was used as the surrogate of AFM1 to label with BSA on the surface of QB because of its 63% cross reaction to anti-AFM1 mAb. The binding affinity of the competing antigen to mAb was tuned by changing the labeled molar ratios of aflatoxin B1 to BSA. Through combining the advantages of QB as the carrier of the competing antigen, including low binding affinity to mAb and highly fluorescent signal output, the proposed dcFLISA exhibited an ultrahigh sensitivity for AFM1 detection, with a half-maximal inhibitory concentration of 3.15 pg/mL in 0.01 M phosphate-buffered saline solution (pH 7.4), which is substantially lower than that of the traditional horseradish peroxidase-based ELISA. The proposed method also exhibited very low detection limitations of 0.5, 0.6, and 0.72 pg/mL for real pasteurized milk, yogurt, and milk powder, respectively. These values are considerably below the maximum permissible level of the European Commission standard for AFM1 in dairy products. In summary, the proposed dcFLISA offers a novel strategy with an ultrahigh sensitivity for the routine monitoring of AFM1 in various dairy products.
Collapse
Affiliation(s)
- Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Sicheng Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - KangKang Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Lin Feng
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R., China
| | - Xuelan Chen
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R., China.
| | - Yuhao Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| |
Collapse
|
100
|
Effect of different-sized gold nanoflowers on the detection performance of immunochromatographic assay for human chorionic gonadotropin detection. Talanta 2019; 194:604-610. [DOI: 10.1016/j.talanta.2018.10.080] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022]
|