51
|
Ivanov AS, Pershina LV, Nikolaev KG, Skorb EV. Recent Progress of Layer-by-layer Assembly, Free-Standing Film and Hydrogel Based on Polyelectrolytes. Macromol Biosci 2021; 21:e2100117. [PMID: 34272830 DOI: 10.1002/mabi.202100117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/10/2021] [Indexed: 12/29/2022]
Abstract
Nowadays, polyelectrolytes play an essential role in the development of new materials. Their use allows creating new properties of materials and surfaces and vary them in a wide range. Basically, modern methods are divided into three areas-the process of layer-by-layer deposition, free-standing films, and hydrogels based on polyelectrolytes. Layer-by-layer assembly of polyelectrolytes on various surfaces is a powerful technique. It allows giving surfaces new properties, for example, protect them from corrosion. Free-standing films are essential tools for the design of membranes and sensors. Hydrogels based on polyelectrolytes have recently shown their applicability in electrical and materials science. The creation of new materials and components with controlled properties can be achieved using polyelectrolytes. This review focuses on new technologies that have been developed with polyelectrolytes over the last five years.
Collapse
Affiliation(s)
- Artemii S Ivanov
- Infochemistry Scientific Center of ITMO University, Lomonosova str. 9, Saint Petersburg, 191002, Russia
| | - Lyubov V Pershina
- Infochemistry Scientific Center of ITMO University, Lomonosova str. 9, Saint Petersburg, 191002, Russia
| | - Konstantin G Nikolaev
- Infochemistry Scientific Center of ITMO University, Lomonosova str. 9, Saint Petersburg, 191002, Russia
| | - Ekaterina V Skorb
- Infochemistry Scientific Center of ITMO University, Lomonosova str. 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
52
|
pH-Responsive Chitosan/Alginate Polyelectrolyte Complexes on Electrospun PLGA Nanofibers for Controlled Drug Release. NANOMATERIALS 2021; 11:nano11071850. [PMID: 34361236 PMCID: PMC8308421 DOI: 10.3390/nano11071850] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022]
Abstract
The surface functionalization of electrospun nanofibers allows for the introduction of additional functionalities while at the same time retaining the membrane properties of high porosity and surface-to-volume ratio. In this work, we sequentially deposited layers of chitosan and alginate to form a polyelectrolyte complex via layer-by-layer assembly on PLGA nanofibers to introduce pH-responsiveness for the controlled release of ibuprofen. The deposition of the polysaccharides on the surface of the fibers was revealed using spectroscopy techniques and ζ-potential measurements. The presence of polycationic chitosan resulted in a positive surface charge (16.2 ± 4.2 mV, pH 3.0) directly regulating the interactions between a model drug (ibuprofen) loaded within the polyelectrolyte complex and the layer-by-layer coating. The release of ibuprofen was slowed down in acidic pH (1.0) compared to neutral pH as a result of the interactions between the drug and the coating. The provided mesh acts as a promising candidate for the design of drug delivery systems required to bypass the acidic environment of the digestive tract.
Collapse
|
53
|
Omidvar M, Zdarta J, Sigurdardóttir SB, Pinelo M. Mimicking natural strategies to create multi-environment enzymatic reactors: From natural cell compartments to artificial polyelectrolyte reactors. Biotechnol Adv 2021; 54:107798. [PMID: 34265377 DOI: 10.1016/j.biotechadv.2021.107798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/09/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
Engineering microenvironments for sequential enzymatic reactions has attracted specific interest within different fields of research as an effective strategy to improve the catalytic performance of enzymes. While in industry most enzymatic reactions occur in a single compartment carrier, living cells are however able to conduct multiple reactions simultaneously within confined sub-compartments, or organelles. Engineering multi-compartments with regulated environments and transformation properties enhances enzyme activity and stability and thus increases the overall yield of final products. In this review, we discuss current and potential methods to fabricate artificial cells for sequential enzymatic reactions, which are inspired by mechanisms and metabolic pathways developed by living cells. We aim to advance the understanding of living cell complexity and its compartmentalization and present solutions to mimic these processes in vitro. Particular attention has been given to layer-by-layer assembly of polyelectrolytes for developing multi-compartments. We hope this review paves the way for the next steps toward engineering of smart artificial multi-compartments with adoptive stimuli-responsive properties, mimicking living cells to improve catalytic properties and efficiency of the enzymes and enhance their stability.
Collapse
Affiliation(s)
- Maryam Omidvar
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark
| | - Jakub Zdarta
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark; Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965 Poznan, Poland
| | - Sigyn Björk Sigurdardóttir
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark
| | - Manuel Pinelo
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
54
|
Schoeller J, Itel F, Wuertz-Kozak K, Fortunato G, Rossi RM. pH-Responsive Electrospun Nanofibers and Their Applications. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1939372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jean Schoeller
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
| | - Fabian Itel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
| | - Karin Wuertz-Kozak
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, New York, USA
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
55
|
Muslimov AR, Antuganov DO, Tarakanchikova YV, Zhukov MV, Nadporojskii MA, Zyuzin MV, Timin AS. Calcium Carbonate Core-Shell Particles for Incorporation of 225Ac and Their Application in Local α-Radionuclide Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25599-25610. [PMID: 34028266 DOI: 10.1021/acsami.1c02155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Actinium-225 (225Ac) radiolabeled submicrometric core-shell particles (SPs) made of calcium carbonate (CaCO3) coated with biocompatible polymers [tannic acid-human serum albumin (TA/HSA)] have been developed to improve the efficiency of local α-radionuclide therapy in melanoma models (B16-F10 tumor-bearing mice). The developed 225Ac-SPs possess radiochemical stability and demonstrate effective retention of 225Ac and its daughter isotopes. The SPs have been additionally labeled with zirconium-89 (89Zr) to perform the biodistribution studies using positron emission tomography-computerized tomography (PET/CT) imaging for 14 days after intratumoral injection. According to the PET/CT analysis, a significant accumulation of 89Zr-SPs in the tumor area is revealed for the whole investigation period, which correlates with the direct radiometry analysis after intratumoral administration of 225Ac-SPs. The histological analysis has revealed no abnormal changes in healthy tissue organs after treatment with 225Ac-SPs (e.g., no acute pathologic findings are detected in the liver and kidneys). At the same time, the inhibition of tumor growth has been observed as compared with control samples [nonradiolabeled SPs and phosphate-buffered saline (PBS)]. The treatment of mice with 225Ac-SPs has resulted in prolonged survival compared to the control samples. Thus, our study validates the application of 225Ac-doped core-shell submicron CaCO3 particles for local α-radionuclide therapy.
Collapse
Affiliation(s)
- Albert R Muslimov
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
- Nanobiotechnology Laboratory, St. Petersburg Academic University, 194021 St. Petersburg, Russian Federation
| | - Dmitrii O Antuganov
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
| | - Yana V Tarakanchikova
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
- Nanobiotechnology Laboratory, St. Petersburg Academic University, 194021 St. Petersburg, Russian Federation
- Peter The Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russian Federation
| | - Mikhail V Zhukov
- Department of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Michail A Nadporojskii
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
| | - Mikhail V Zyuzin
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
- Department of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Alexander S Timin
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
- Peter The Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russian Federation
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| |
Collapse
|
56
|
Nikitina AA, Milichko VA, Novikov AS, Larin AO, Nandi P, Mirsaidov U, Andreeva DV, Rybin MV, Kivshar YS, Skorb EV. All-Dielectric Nanostructures with a Thermoresponsible Dynamic Polymer Shell. Angew Chem Int Ed Engl 2021; 60:12737-12741. [PMID: 33949056 DOI: 10.1002/anie.202101188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/25/2021] [Indexed: 11/05/2022]
Abstract
We suggest a new strategy for creating stimuli-responsive bio-integrated optical nanostructures based on Mie-resonant silicon nanoparticles covered by an ensemble of similarity negatively charged polyelectrolytes (heparin and sodium polystyrene sulfonate). The dynamic tuning of the nanostructures' optical response is due to light-induced heating of the nanoparticles and swelling of the polyelectrolyte shell. The resulting hydrophilic/hydrophobic transitions significantly change the shell thickness and reversible shift of the scattering spectra for individual nanoparticles up to 60 nm. Our findings bring novel opportunities for the application of smart nanomaterials in nanomedicine and bio-integrated nanophotonics.
Collapse
Affiliation(s)
- Anna A Nikitina
- ITMO University, 9 Lomonosova street, 191002, St. Petersburg, Russia
| | - Valentin A Milichko
- ITMO University, 9 Lomonosova street, 191002, St. Petersburg, Russia.,Université de Lorraine, Institut Jean Lamour, UMR CNRS 7198, 54011, Nancy, France
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, 199034, St. Petersburg, Russia
| | - Artem O Larin
- ITMO University, 9 Lomonosova street, 191002, St. Petersburg, Russia
| | - Proloy Nandi
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore
| | - Utkur Mirsaidov
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore
| | - Daria V Andreeva
- Department of Materials Science and Engineering, National University of Singapore, Singapore
| | - Mikhail V Rybin
- ITMO University, 9 Lomonosova street, 191002, St. Petersburg, Russia.,Ioffe Institute, 194021, St Petersburg, Russia
| | - Yuri S Kivshar
- ITMO University, 9 Lomonosova street, 191002, St. Petersburg, Russia.,Research School of Physics, Australian National University, Canberra ACT, 2601, Australia
| | - Ekaterina V Skorb
- ITMO University, 9 Lomonosova street, 191002, St. Petersburg, Russia
| |
Collapse
|
57
|
Nikitina AA, Milichko VA, Novikov AS, Larin AO, Nandi P, Mirsaidov U, Andreeva DV, Rybin MV, Kivshar YS, Skorb EV. All‐Dielectric Nanostructures with a Thermoresponsible Dynamic Polymer Shell. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anna A. Nikitina
- ITMO University 9 Lomonosova street 191002 St. Petersburg Russia
| | - Valentin A. Milichko
- ITMO University 9 Lomonosova street 191002 St. Petersburg Russia
- Université de Lorraine Institut Jean Lamour, UMR CNRS 7198 54011 Nancy France
| | - Alexander S. Novikov
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab., 7/9 199034 St. Petersburg Russia
| | - Artem O. Larin
- ITMO University 9 Lomonosova street 191002 St. Petersburg Russia
| | - Proloy Nandi
- Centre for BioImaging Sciences Department of Biological Sciences National University of Singapore Singapore
| | - Utkur Mirsaidov
- Centre for BioImaging Sciences Department of Biological Sciences National University of Singapore Singapore
- Department of Materials Science and Engineering National University of Singapore Singapore
| | - Daria V. Andreeva
- Department of Materials Science and Engineering National University of Singapore Singapore
| | - Mikhail V. Rybin
- ITMO University 9 Lomonosova street 191002 St. Petersburg Russia
- Ioffe Institute 194021 St Petersburg Russia
| | - Yuri S. Kivshar
- ITMO University 9 Lomonosova street 191002 St. Petersburg Russia
- Research School of Physics Australian National University Canberra ACT 2601 Australia
| | | |
Collapse
|
58
|
Choi KW, Kim JW, Kwon TS, Kang SW, Song JI, Park YT. Mechanically Sustainable Starch-Based Flame-Retardant Coatings on Polyurethane Foams. Polymers (Basel) 2021; 13:polym13081286. [PMID: 33920820 PMCID: PMC8071101 DOI: 10.3390/polym13081286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022] Open
Abstract
The use of halogen-based materials has been regulated since toxic substances are released during combustion. In this study, polyurethane foam was coated with cationic starch (CS) and montmorillonite (MMT) nano-clay using a spray-assisted layer-by-layer (LbL) assembly to develop an eco-friendly, high-performance flame-retardant coating agent. The thickness of the CS/MMT coating layer was confirmed to have increased uniformly as the layers were stacked. Likewise, a cone calorimetry test confirmed that the heat release rate and total heat release of the coated foam decreased by about 1/2, and a flame test showed improved fire retardancy based on the analysis of combustion speed, flame size, and residues of the LbL-coated foam. More importantly, an additional cone calorimeter test was performed after conducting more than 1000 compressions to assess the durability of the flame-retardant coating layer when applied in real life, confirming the durability of the LbL coating by the lasting flame retardancy.
Collapse
Affiliation(s)
- Kyung-Who Choi
- School of Aerospace and Mechanical Engineering, Korea Aerospace University, 76 Hanggongdaehak-ro, Deogyang-gu, Goyang-si 10540, Gyeonggi-do, Korea;
| | - Jun-Woo Kim
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin 17058, Gyeonggi-do, Korea;
| | - Tae-Soon Kwon
- Korea Railroad Research Institute, 176 Cheoldo bangmulgwan-ro, Uiwang-si 16105, Gyeonggi-do, Korea;
| | - Seok-Won Kang
- Department of Automotive Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
| | - Jung-Il Song
- Department of Mechanical Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon 51140, Gyeongsangnam-do, Korea;
| | - Yong-Tae Park
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin 17058, Gyeonggi-do, Korea;
- Correspondence: ; Tel.: +82-31-330-6343
| |
Collapse
|
59
|
Kienle DF, Schwartz DK. Single molecule characterization of anomalous transport in a thin, anisotropic film. Anal Chim Acta 2021; 1154:338331. [PMID: 33736806 DOI: 10.1016/j.aca.2021.338331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/01/2021] [Accepted: 02/14/2021] [Indexed: 01/07/2023]
Abstract
The diffusion of small, charged molecules incorporated in an anisotropic polyelectrolyte multilayer (PEM) was tracked in three dimensions by combining single-molecule fluorescence localization (to characterize lateral diffusion) with Förster resonance energy transfer (FRET) between diffusing molecules and the supporting surface (to measure diffusion in the surface-normal direction). Analysis of the surface-normal diffusion required model-based statistical analysis to account for the inherently noisy FRET signal. Combining these distinct single-molecule methods, which are inherently sensitive to different length-scales, permitted simultaneous characterization of severely anisotropic diffusion, which was more than three orders of magnitude slower in the surface-normal direction. We hypothesize that the anomalously slow surface-normal diffusion was related to the periodic distribution of charge in the PEM, which created electrostatic barriers. The motion was strongly subdiffusive, with anomalous temporal scaling exponents in lateral and normal directions, suggesting a connection to the transient, random fractal conformation of polymer chains in the film's matrix.
Collapse
Affiliation(s)
- Daniel F Kienle
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
60
|
Al Thaher Y. Tailored gentamicin release from silica nanocarriers coated with polyelectrolyte multilayers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
61
|
Optical Platform to Analyze a Model Drug-Loading and Releasing Profile Based on Nanoporous Anodic Alumina Gradient Index Filters. NANOMATERIALS 2021; 11:nano11030730. [PMID: 33799415 PMCID: PMC7998892 DOI: 10.3390/nano11030730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/03/2022]
Abstract
In this work, a methodology that exploits the optical properties of the nanoporous anodic alumina gradient index filters (NAA-GIFs) has been developed and applied to evaluate in real time the release dynamics of a cargo molecule, acting as a model drug, filling the pores. NAA-GIFs with two photonic stopbands (PSBs) were prepared with one of its stop bands in the same absorption wavelength range of the cargo molecule, whereas the second stopband away from this absorption range. Numerical simulation and experiments confirm that the relative height of the high reflectance bands in the reflectance spectra of NAA-GIFs filled with the drug can be related to the relative amount of drug filling the pores. This property has been applied in a flow cell setup to measure in real-time the release dynamics of NAA-GIFs with the inner pore surface modified by layer-by-layer deposition of polyelectrolytes and loaded with the cargo molecule. The methodology developed in this work acts as a tool for the study of drug delivery from porous nanostructures.
Collapse
|
62
|
Zharkov MN, Brodovskaya EP, Kulikov OA, Gromova EV, Ageev VP, Atanova AV, Kozyreva ZV, Tishin AM, Pyatakov AP, Pyataev NA, Sukhorukov GB. Enhanced cytotoxicity caused by AC magnetic field for polymer microcapsules containing packed magnetic nanoparticles. Colloids Surf B Biointerfaces 2021; 199:111548. [DOI: 10.1016/j.colsurfb.2020.111548] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/28/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
|
63
|
Linnik DS, Tarakanchikova YV, Zyuzin MV, Lepik KV, Aerts JL, Sukhorukov G, Timin AS. Layer-by-Layer technique as a versatile tool for gene delivery applications. Expert Opin Drug Deliv 2021; 18:1047-1066. [DOI: 10.1080/17425247.2021.1879790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dmitrii S. Linnik
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Yana V. Tarakanchikova
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Nanobiotechnology Laboratory, St. Petersburg Academic University, St. Petersburg, Russia
| | - Mikhail V. Zyuzin
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Kirill V. Lepik
- Department of Hematology, Transfusion, and Transplantation, First I. P. Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Joeri L. Aerts
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Neuro-Aging & Viro-Immunotherapy Lab (NAVI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Gleb Sukhorukov
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- School of Engineering and Material Science, Queen Mary University of London, London, UK
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Alexander S. Timin
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
64
|
Aflori M. Smart Nanomaterials for Biomedical Applications-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:396. [PMID: 33557177 PMCID: PMC7913901 DOI: 10.3390/nano11020396] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
Recent advances in nanotechnology have forced the obtaining of new materials with multiple functionalities. Due to their reduced dimensions, nanomaterials exhibit outstanding physio-chemical functionalities: increased absorption and reactivity, higher surface area, molar extinction coefficients, tunable plasmonic properties, quantum effects, and magnetic and photo properties. However, in the biomedical field, it is still difficult to use tools made of nanomaterials for better therapeutics due to their limitations (including non-biocompatible, poor photostabilities, low targeting capacity, rapid renal clearance, side effects on other organs, insufficient cellular uptake, and small blood retention), so other types with controlled abilities must be developed, called "smart" nanomaterials. In this context, the modern scientific community developed a kind of nanomaterial which undergoes large reversible changes in its physical, chemical, or biological properties as a consequence of small environmental variations. This systematic mini-review is intended to provide an overview of the newest research on nanosized materials responding to various stimuli, including their up-to-date application in the biomedical field.
Collapse
Affiliation(s)
- Magdalena Aflori
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
65
|
Muslimov AR, Antuganov D, Tarakanchikova YV, Karpov TE, Zhukov MV, Zyuzin MV, Timin AS. An investigation of calcium carbonate core-shell particles for incorporation of 225Ac and sequester of daughter radionuclides: in vitro and in vivo studies. J Control Release 2021; 330:726-737. [DOI: 10.1016/j.jconrel.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
|
66
|
Chernozem RV, Surmeneva MA, Abalymov AA, Parakhonskiy BV, Rigole P, Coenye T, Surmenev RA, Skirtach AG. Piezoelectric hybrid scaffolds mineralized with calcium carbonate for tissue engineering: Analysis of local enzyme and small-molecule drug delivery, cell response and antibacterial performance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111909. [PMID: 33641905 DOI: 10.1016/j.msec.2021.111909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
As the next generation of materials for bone reconstruction, we propose a multifunctional bioactive platform based on biodegradable piezoelectric polyhydroxybutyrate (PHB) fibrous scaffolds for tissue engineering with drug delivery capabilities. To use the entire surface area for local drug delivery, the scaffold surface was uniformly biomineralized with biocompatible calcium carbonate (CaCO3) microparticles in a vaterite-calcite polymorph mixture. CaCO3-coated PHB scaffolds demonstrated a similar elastic modulus compared to that of pristine one. However, reduced tensile strength and failure strain of 31% and 67% were observed, respectively. The biomimetic immobilization of enzyme alkaline phosphatase (ALP) and glycopeptide antibiotic vancomycin (VCM) preserved the CaCO3-mineralized PHB scaffold morphology and resulted in partial recrystallization of vaterite to calcite. In comparison to pristine scaffolds, the loading efficiency of CaCO3-mineralized PHB scaffolds was 4.6 and 3.5 times higher for VCM and ALP, respectively. Despite the increased number of cells incubated with ALP-immobilized scaffolds (up to 61% for non-mineralized and up to 36% for mineralized), the CaCO3-mineralized PHB scaffolds showed cell adhesion; those containing both VCM and ALP molecules had the highest cell density. Importantly, no toxicity for pre-osteoblastic cells was detected, even in the VCM-immobilized scaffolds. In contrast with antibiotic-free scaffolds, the VCM-immobilized ones had a pronounced antibacterial effect against gram-positive bacteria Staphylococcus aureus. Thus, piezoelectric hybrid PHB scaffolds modified with CaCO3 layers and immobilized VCM/ALP are promising materials in bone tissue engineering.
Collapse
Affiliation(s)
- Roman V Chernozem
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Maria A Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anatolii A Abalymov
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; Department of Nano- and Biomedical Technologies, Saratov State University, Saratov 410012, Russia
| | | | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Andre G Skirtach
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
67
|
Wang Y, Desroches GJ, Macfarlane RJ. Ordered polymer composite materials: challenges and opportunities. NANOSCALE 2021; 13:426-443. [PMID: 33367442 DOI: 10.1039/d0nr07547g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer nanocomposites containing nanoscale fillers are an important class of materials due to their ability to access a wide variety of properties as a function of their composition. In order to take full advantage of these properties, it is critical to control the distribution of nanofillers within the parent polymer matrix, as this structural organization affects how the two constituent components interact with one another. In particular, new methods for generating ordered arrays of nanofillers represent a key underexplored research area, as emergent properties arising from nanoscale ordering can be used to introduce novel functionality currently inaccessible in random composites. The knowledge gained from developing such methods will provide important insight into the thermodynamics and kinetics associated with nanomaterial and polymer assembly. These insights will not only benefit researchers working on new composite materials, but will also deepen our understanding of soft matter systems in general. In this review, we summarize contemporary research efforts in manipulating nanofiller organization in polymer nanocomposites and highlight future challenges and opportunities for constructing ordered nanocomposite materials.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | - Griffen J Desroches
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
68
|
Liu Y, Yang Y, Yang X, Yang L, Shen Y, Shang W. Multi-functionalized micro-helical capsule robots with superior loading and releasing capabilities. J Mater Chem B 2021; 9:1441-1451. [PMID: 33469640 DOI: 10.1039/d0tb02329a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The functionalization of microrobots is essential for realizing their biomedical application in targeted cargo delivery, but the multifunctional integration of microrobots and controllable cargo delivery remains an enormous challenge at present. This work reports a kind of multi-functionalized micro-helical robot with superior loading capabilities for the controlled release of encapsulants. The magnetic microrobot, with a multilayer capsule helical structure, was developed via multifunctional strategies, including microfluidic synthesis, polyelectrolyte complexation, and surface coating with magnetic nanoparticles. The microrobot is constructed of a helical structure from a calcium alginate microfiber via a co-axial capillary microfluidic system. Then, it is coated with a polyelectrolyte complexation membrane and decorated with magnetic nanoparticles. After multi-step layer-by-layer (LbL) assembly with functionalized units, the structure is converted to a helical capsule possessing a soft and biocompatible polysaccharide alginate/chitosan/alginate shell with Fe3O4 nanoparticles decorated on the surface. The functionalized microrobot not only enables wireless steering with rotational locomotion under the control of a six degrees of freedoms (6-DOFs) electromagnetic system at different frequencies, but it also possesses stimuli-responsive abilities owing to the semi-permeable membrane, which can trigger the controllable release of encapsulants in response to ions in the environment. This work provides an efficient strategy for the superior multi-functionalization of microrobots to achieve enhanced locomotion and encapsulation performance for the loading, transport, and targeted delivery of cargo.
Collapse
Affiliation(s)
- Yanting Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China. and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077 SAR, People's Republic of China
| | - Yuanyuan Yang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077 SAR, People's Republic of China
| | - Xiong Yang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077 SAR, People's Republic of China
| | - Liu Yang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077 SAR, People's Republic of China
| | - Yajing Shen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077 SAR, People's Republic of China
| | - Wanfeng Shang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.
| |
Collapse
|
69
|
Erokhina S, Pastorino L, Lisa DD, Kiiamov A, Tayurskii D, Iannotta S, Erokhin V, Faizullina A. 3D structure reconstruction of nanoengineered polymeric capsules using Coherent X-Ray diffraction imaging. MethodsX 2021; 8:101230. [PMID: 34434753 PMCID: PMC8374185 DOI: 10.1016/j.mex.2021.101230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/09/2021] [Indexed: 11/29/2022] Open
Abstract
Nanoengineered polymeric capsules (NPCs) are smart objects that can be filled in with some desired chemical substance. They are considered among the most versatile tools in biology, pharmacy, medicine etc. Most often they have been used as containers for drug delivery. Main tools for studying their structure are electron (SEM, TEM) and fluorescence microscopies. In the case of electron microscopies, the main peculiarity was connected to the necessity of dried samples usage. In the case of fluorescence microscopy, the possible resolution is restricted by diffraction limits. The natural environment of the NPCs is liquid medium. In this paper we have developed a method of NPCs' structure investigation in liquid medium using coherent X-ray diffraction imaging (CXDI). The main points of this article are summarized as:•The procedure of NPCs' synthesis using layer-by-layer technique including gold nanoparticles;•Coherent X-ray diffraction imaging of the samples in liquid medium;•Imaging of objects without freezing of the sample.
Collapse
Affiliation(s)
- S. Erokhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University 420012 Kazan, Russia
| | | | | | - A.G. Kiiamov
- Institute of Physics, Kazan Federal University 420008 Kazan, Russia
| | - D.A. Tayurskii
- Institute of Physics, Kazan Federal University 420008 Kazan, Russia
| | - S. Iannotta
- IMEM-CNR Istituto dei Materiali per l'Elettronica ed il Magnetismo – Consiglio Nazionale delle Ricerche 43123 Parma, Italy
| | - V. Erokhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University 420012 Kazan, Russia
- IMEM-CNR Istituto dei Materiali per l'Elettronica ed il Magnetismo – Consiglio Nazionale delle Ricerche 43123 Parma, Italy
| | - A.R. Faizullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University 420012 Kazan, Russia
- Institute of Physics, Kazan Federal University 420008 Kazan, Russia
- IMEM-CNR Istituto dei Materiali per l'Elettronica ed il Magnetismo – Consiglio Nazionale delle Ricerche 43123 Parma, Italy
| |
Collapse
|
70
|
Zhou L, Wang G, Du J, Zhao Q, Pei X. 1,1′-Ferrocenedicarboxylic acid/tetrahydrofuran induced precipitation of calcium carbonate with a multi-level structure in water. CrystEngComm 2021. [DOI: 10.1039/d1ce00763g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-molecules co-regulate the orderly morphology and structure of CaCO3 precipitates and the influence of ether bonds on the formation of CaCO3 precipitates.
Collapse
Affiliation(s)
- Lihong Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Environment & Civil Engineering, Chengdu University of Technology, Chengdu 610059, China
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China
| | - Guanghui Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Environment & Civil Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Jie Du
- Jiuzhaigou Administrative Bureau, Zhangzha Town, Jiuzhaigou County, Sichuan Province 623402, China
| | - Qinjiang Zhao
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China
| | - Xiang Pei
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China
- School of materials Science and engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| |
Collapse
|
71
|
Abstract
Nanotechnology has been widely applied to medical interventions for prevention, diagnostics, and therapeutics of diseases, and the application of nanotechnology for medical purposes, which is called as a term "nanomedicine" has received tremendous attention. In particular, the design and development of nanoparticle for biosensors have received a great deal of attention, since those are most impactful area of clinical translation showing potential breakthrough in early diagnosis of diseases such as cancers and infections. For example, the nanoparticles that have intrinsic unique features such as magnetic responsive characteristics or photoluminescence can be utilized for noninvasive visualization of inner body. Drug delivery that makes use of drug-containing nanoparticles as a carrier is another field of study, in which the particulate form nanomedicine is given by parenteral administration for further systemic targeting to pathological tissues. In addition, encapsulation into nanoparticles gives the opportunity to secure the sensitive therapeutic payloads that are readily degraded or deactivated until reached to the target in biological environments, or to provide sufficient solubilization (e.g., to deliver compounds which have physicochemical properties that strongly limit their aqueous solubility and therefore systemic bioavailability). The nanomedicine is further intended to enhance the targeting index such as increased specificity and reduced false binding, thus improve the diagnostic and therapeutic performances. In this chapter, principles of nanomaterials for medicine will be thoroughly covered with applications for imaging-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
72
|
Kozlovskaya V, Alford A, Dolmat M, Ducharme M, Caviedes R, Radford L, Lapi SE, Kharlampieva E. Multilayer Microcapsules with Shell-Chelated 89Zr for PET Imaging and Controlled Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56792-56804. [PMID: 33306342 DOI: 10.1021/acsami.0c17456] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Radionuclide-functionalized drug delivery vehicles capable of being imaged via positron emission tomography (PET) are of increasing interest in the biomedical field as they can reveal the in vivo behavior of encapsulated therapeutics with high sensitivity. However, the majority of current PET-guided theranostic agents suffer from poor retention of radiometal over time, low drug loading capacities, and time-limited PET imaging capability. To overcome these challenges, we have developed hollow microcapsules with a thin (<100 nm) multilayer shell as advanced theranostic delivery systems for multiday PET tracking in vivo. The 3 μm capsules were fabricated via the aqueous multilayer assembly of a natural antioxidant, tannic acid (TA), and a poly(N-vinylpyrrolidone) (PVPON) copolymer containing monomer units functionalized with deferoxamine (DFO) to chelate the 89Zr radionuclide, which has a half-life of 3.3 days. We have found using radiochromatography that (TA/PVPON-DFO)6 capsules retained on average 17% more 89Zr than their (TA/PVPON)6 counterparts, which suggests that the covalent attachment of the DFO to PVPON provides stable 89Zr chelation. In vivo PET imaging studies performed in mice demonstrated that excellent stability and imaging contrast were still present 7 days postinjection. Animal biodistribution analyses showed that capsules primarily accumulated in the spleen, liver, and lungs with negligible accumulation in the femur, with the latter confirming the stable binding of the radiotracer to the capsule walls. The application of therapeutic ultrasound (US) (60 s of 20 kHz US at 120 W cm-2) to Zr-functionalized capsules could release the hydrophilic anticancer drug doxorubicin from the capsules in the therapeutic amounts. Polymeric capsules with the capability of extended in vivo PET-based tracking and US-induced drug release provide an advanced platform for development of precision-targeted therapeutic carriers and could aid in the development of more effective drug delivery systems.
Collapse
Affiliation(s)
- Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Center for Nanomaterials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Aaron Alford
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Maksim Dolmat
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Maxwell Ducharme
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Racquel Caviedes
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Lauren Radford
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Center for Nanomaterials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
73
|
Kumari S, Tiyyagura HR, Pottathara YB, Sadasivuni KK, Ponnamma D, Douglas TEL, Skirtach AG, Mohan MK. Surface functionalization of chitosan as a coating material for orthopaedic applications: A comprehensive review. Carbohydr Polym 2020; 255:117487. [PMID: 33436247 DOI: 10.1016/j.carbpol.2020.117487] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/01/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Metallic implants have dominated the biomedical implant industries for the past century for load-bearing applications, while the polymeric implants have shown great promise for tissue engineering applications. The surface properties of such implants are critical as the interaction of implant surfaces, and the body tissues may lead to unfavourable reactions. Desired implant properties are biocompatibility, corrosion resistance, and antibacterial activity. A polymer coating is an efficient and economical way to produce such surfaces. A lot of research has been carried out on chitosan (CS)-modified metallic and polymer scaffolds in the last decade. Different methods such as electrophoretic deposition, sol-gel methods, dip coating and spin coating, electrospinning, etc. have been utilized to produce CS coatings. However, a systematic review of chitosan coatings on scaffolds focussing on widely employed techniques is lacking. This review surveys literature concerning the current status of orthopaedic applications of CS for the purpose of coatings. In this review, the various preparation methods of coating, and the role of the surface functionalities in determining the efficiency of coatings are discussed. Effect of nanoparticle additions on the polymeric interfaces and in regulating the properties of surface coatings are also investigated in detail.
Collapse
Affiliation(s)
- Suman Kumari
- Department of Metallurgical and Materials Engineering, National Institute of Technology, Warangal, Telangana, 506004, India; Department of Biotechnology, Coupure Links 653, 9000 Gent, Belgium
| | - Hanuma Reddy Tiyyagura
- Alterno Labs d.o.o, Brnčičeva ulica 29, 1231 Ljubljana, Slovenia; Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, Maribor SI-2000, Slovenia.
| | - Yasir Beeran Pottathara
- Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, Maribor SI-2000, Slovenia
| | | | | | | | - Andre G Skirtach
- Department of Biotechnology, Coupure Links 653, 9000 Gent, Belgium
| | - M K Mohan
- Department of Metallurgical and Materials Engineering, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
74
|
Modification of the porous glass filter with LbL technique for variable filtration applications. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
75
|
Yaneva Z, Ivanova D. Catechins within the Biopolymer Matrix-Design Concepts and Bioactivity Prospects. Antioxidants (Basel) 2020; 9:E1180. [PMID: 33256098 PMCID: PMC7761086 DOI: 10.3390/antiox9121180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Epidemiological studies and clinical investigations proposed that catechins extracts alone may not provide a sufficient level of bioactivities and promising therapeutic effects to achieve health benefits due to a number of constraints related to poor oral absorption, limited bioavailability, sensitivity to oxidation, etc. Modern scientific studies have reported numerous techniques for the design of micro- and nano-bio-delivery systems as novel and promising strategies to overcome these obstacles and to enhance catechins' therapeutic activity. The objective assessment of their benefits, however, requires a critical comparative estimation of the advantages and disadvantages of the designed catechins-biocarrier systems, their biological activities and safety administration aspects. In this respect, the present review objectively outlines, compares and assesses the recent advances related to newly developed design concepts of catechins' encapsulation into various biopolymer carriers and their release behaviour, with a special emphasis on the specific physiological biofunctionalities of the innovative bioflavonoid/biopolymer delivery systems.
Collapse
Affiliation(s)
- Zvezdelina Yaneva
- Chemistry Unit, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria;
| | | |
Collapse
|
76
|
Nanoparticles in Polyelectrolyte Multilayer Layer-by-Layer (LbL) Films and Capsules—Key Enabling Components of Hybrid Coatings. COATINGS 2020. [DOI: 10.3390/coatings10111131] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Originally regarded as auxiliary additives, nanoparticles have become important constituents of polyelectrolyte multilayers. They represent the key components to enhance mechanical properties, enable activation by laser light or ultrasound, construct anisotropic and multicompartment structures, and facilitate the development of novel sensors and movable particles. Here, we discuss an increasingly important role of inorganic nanoparticles in the layer-by-layer assembly—effectively leading to the construction of the so-called hybrid coatings. The principles of assembly are discussed together with the properties of nanoparticles and layer-by-layer polymeric assembly essential in building hybrid coatings. Applications and emerging trends in development of such novel materials are also identified.
Collapse
|
77
|
Abstract
A scaling model for the structure of coacervates is presented for mixtures of oppositely-charged polyelectrolytes of both symmetric and asymmetric charge-densities for different degrees of electrostatic strength and levels of added salt. At low electrostatic strengths, weak coacervates, with the energy of electrostatic interactions between charges less than the thermal energy, k B T, are liquid. At higher electrostatic strengths, strong coacervates are gels with crosslinks formed by ion pairs of opposite charges bound to each other with energy higher than k B T. Charge-symmetric coacervates are formed for mixtures of oppositely-charged polyelectrolytes with equal and opposite charge-densities. While charge-symmetric weak coacervates form a semidilute polymer solution with a correlation length equal to the electrostatic blob size, charge-symmetric strong coacervates form reversible gels with a correlation length on the order of the distance between bound ion pairs. Charge-asymmetric coacervates are formed from mixtures of oppositely-charged polyelectrolytes with different charge-densities. While charge-asymmetric weak coacervates form double solutions with two correlation lengths and qualitatively different chain conformations of polycations and polyanions, charge-asymmetric strong coacervates form bottlebrush and star-like gels. Unlike liquid coacervates, for which an increase in the concentration of added salt screens electrostatic interactions, causing structural rearrangement and eventually leads to their dissolution, the salt does not affect the structure of strong coacervates until ion pairs dissociate and the gel disperses.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States
| | - Sergey Panyukov
- P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow 117924, Russia
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States
- Departments of Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, NC 27708, United States
| |
Collapse
|
78
|
Seitz S, Tsujimoto M, Chanthaset N, Yoshida H, Ajiro H. Novel approach to recover copper ions using poly(ethylene imine) based layer‐by‐layer coatings on icosane particles. J Appl Polym Sci 2020. [DOI: 10.1002/app.50202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Steffen Seitz
- Division of Materials Science Nara Institute of Science and Technology Nara Japan
| | - Masaya Tsujimoto
- Division of Materials Science Nara Institute of Science and Technology Nara Japan
| | - Nalinthip Chanthaset
- Division of Materials Science Nara Institute of Science and Technology Nara Japan
| | - Hiroaki Yoshida
- Division of Materials Science Nara Institute of Science and Technology Nara Japan
| | - Hiroharu Ajiro
- Division of Materials Science Nara Institute of Science and Technology Nara Japan
- Institute for Research Initiatives Nara Institute of Science and Technology Nara Japan
| |
Collapse
|
79
|
Otto DP, de Villiers MM. Coarse-Grained Molecular Dynamics (CG-MD) Simulation of the Encapsulation of Dexamethasone in PSS/PDDA Layer-by-Layer Assembled Polyelectrolyte Nanocapsules. AAPS PharmSciTech 2020; 21:292. [PMID: 33090318 DOI: 10.1208/s12249-020-01843-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/07/2020] [Indexed: 01/28/2023] Open
Abstract
Experimental studies have reported the fundamental and applied science aspects of polyelectrolyte (PE) layer-by-layer (LbL) self-assembly. LbL nanocoating is a simple and robust technique that can be used to modify the surface properties of nearly any material. These modifications take place by adsorption of mere nanometers of PE to impart previously absent properties to the nanocoated substrate. Paper manufacturing, drug delivery, and antimicrobial applications have since been developed. LbL self-assembly has become a very lucrative field of research. Computational modeling of LbL nanocoating has received limited attention. PE simulations often require significant computational resources and make computational modeling studies challenging. In this study, atomic-level PE and dexamethasone models are developed and then converted into coarse-grained (CG) models. This modeling study is based on experimental results that were previously reported. The CG models showed the effect of salt concentration and the number of PE layers on the LbL drug nanocapsule. The suitability of the model was evaluated and showed that this model can serve as a predictive tool for an LbL-nanocoated drug delivery system. It is suggested that this model can be used to simulate LbL drug delivery systems before the experimental evaluation of the real systems take place.
Collapse
|
80
|
Yılmaz Aykut D, Yolaçan Ö, Deligöz H. pH stimuli drug loading/release platforms from LbL single/blend films: QCM-D and in-vitro studies. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
81
|
Kurshanov DA, Khavlyuk PD, Baranov MA, Dubavik A, Rybin AV, Fedorov AV, Baranov AV. Magneto-Fluorescent Hybrid Sensor CaCO 3-Fe 3O 4-AgInS 2/ZnS for the Detection of Heavy Metal Ions in Aqueous Media. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4373. [PMID: 33008133 PMCID: PMC7579003 DOI: 10.3390/ma13194373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Heavy metal ions are not subject to biodegradation and could cause the environmental pollution of natural resources and water. Many of the heavy metals are highly toxic and dangerous to human health, even at a minimum amount. This work considered an optical method for detecting heavy metal ions using colloidal luminescent semiconductor quantum dots (QDs). Over the past decade, QDs have been used in the development of sensitive fluorescence sensors for ions of heavy metal. In this work, we combined the fluorescent properties of AgInS2/ZnS ternary QDs and the magnetism of superparamagnetic Fe3O4 nanoparticles embedded in a matrix of porous calcium carbonate microspheres for the detection of toxic ions of heavy metal: Co2+, Ni2+, and Pb2+. We demonstrate a relationship between the level of quenching of the photoluminescence of sensors under exposure to the heavy metal ions and the concentration of these ions, allowing their detection in aqueous solutions at concentrations of Co2+, Ni2+, and Pb2+ as low as ≈0.01 ppm, ≈0.1 ppm, and ≈0.01 ppm, respectively. It also has importance for application of the ability to concentrate and extract the sensor with analytes from the solution using a magnetic field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexander V. Baranov
- Center of Information Optical Technology, ITMO University, 49 Kronverksky Prospekt, 197101 St. Petersburg, Russia; (D.A.K.); (P.D.K.); (M.A.B.); (A.D.); (A.V.R.); (A.V.F.)
| |
Collapse
|
82
|
Kastania G, Campbell J, Mitford J, Volodkin D. Polyelectrolyte Multilayer Capsule (PEMC)-Based Scaffolds for Tissue Engineering. MICROMACHINES 2020; 11:E797. [PMID: 32842692 PMCID: PMC7570195 DOI: 10.3390/mi11090797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022]
Abstract
Tissue engineering (TE) is a highly multidisciplinary field that focuses on novel regenerative treatments and seeks to tackle problems relating to tissue growth both in vitro and in vivo. These issues currently involve the replacement and regeneration of defective tissues, as well as drug testing and other related bioapplications. The key approach in TE is to employ artificial structures (scaffolds) to support tissue development; these constructs should be capable of hosting, protecting and releasing bioactives that guide cellular behaviour. A straightforward approach to integrating bioactives into the scaffolds is discussed utilising polyelectrolyte multilayer capsules (PEMCs). Herein, this review illustrates the recent progress in the use of CaCO3 vaterite-templated PEMCs for the fabrication of functional scaffolds for TE applications, including bone TE as one of the main targets of PEMCs. Approaches for PEMC integration into scaffolds is addressed, taking into account the formulation, advantages, and disadvantages of such PEMCs, together with future perspectives of such architectures.
Collapse
Affiliation(s)
| | | | | | - Dmitry Volodkin
- School of Science and Technology, Department of Chemistry and Forensics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK; (G.K.); (J.C.); (J.M.)
| |
Collapse
|
83
|
Navi M, Kieda J, Tsai SSH. Magnetic polyelectrolyte microcapsules via water-in-water droplet microfluidics. LAB ON A CHIP 2020; 20:2851-2860. [PMID: 32555881 DOI: 10.1039/d0lc00387e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polyelectrolyte microcapsules (PEMCs) have biocompatible microcompartments. Therefore, PEMCs are useful for applications in cosmetics, food, pharmaceutics, and other industries. The fabrication of PEMCs often involves the use of harsh chemicals or cytotoxic organic phases that make biomedical applications of the microcapsules challenging. In this report, we present an all-aqueous droplet microfluidics platform for the generation of magnetic PEMCs. In the platform, we use an aqueous-two-phase system (ATPS) of polyethylene glycol (PEG) and dextran (Dex), to generate water-in-water droplets, which are magnetically functionalized with ferrofluid. Strong polyelectrolytes (PEs) with opposite charges are used in each ATPS phase. We make emulsion templates of magnetic Dex, containing the polycations, in a continuous phase of PEG. We then apply a magnetic field to move the magnetic droplets to a second PEG phase, which contains the polyanions. By careful tuning of the fluxes of the two PEs in their respective phases, we trigger the formation of a shell at the droplet interface. Owing to the presence of the ferrofluid, the resulting microcapsules are magnetically responsive. We show that the magnetic PEMCs are capable of passive release of large pseudo-drugs as well as triggered release using external stimuli such as osmotic shock and pH change. We expect that magnetic PEMCs from this biocompatible all-aqueous platform will find utility in the fabrication of functionalized drug carriers for targeted drug delivery.
Collapse
Affiliation(s)
- Maryam Navi
- Graduate Program in Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Canada.
| | | | | |
Collapse
|
84
|
Nikolaev K, Kalmykov EV, Shavronskaya DO, Nikitina AA, Stekolshchikova AA, Kosareva EA, Zenkin AA, Pantiukhin IS, Orlova OY, Skalny AV, Skorb EV. ElectroSens Platform with a Polyelectrolyte-Based Carbon Fiber Sensor for Point-of-Care Analysis of Zn in Blood and Urine. ACS OMEGA 2020; 5:18987-18994. [PMID: 32775900 PMCID: PMC7408235 DOI: 10.1021/acsomega.0c02279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we describe an electrochemical sensing platform-ElectroSens-for the detection of Zn based on self-assembled polyelectrolyte multilayers on the carbon fiber (CF) electrode surface. The CF-extended surface facilitates the usage of a small volume electrochemical cell (1 mL) without stirring. This approach allows making a low-cost three-electrode platform. Working electrode modification with layer-by-layer assembly of polyethyleneimine (PEI), poly(sodium 4-styrenesulfonate) (PSS), and mercury nitrate layers eliminates solution toxicity and provides stable stripping voltammetry measurements. The stable, robust, sustainable, and even reusable Ag/AgCl reference electrode consists of adsorbed 32 PEI-KCl/PSS-KCl bilayers on the CF/silver paste separated from the outer solution by a polyvinyl chloride membrane. The polyelectrolyte-based sensor interface prevents adsorption of protein molecules from biological liquids on the CF surface that leads to a sensitivity increase of up to 2.2 μA/M for Zn2+ detection and provides a low limit of detection of 4.6 × 10-8 M. The linear range for Zn detection is 1 × 10-7 to 1 × 10-5 M. A portable potentiostat connected via wireless to a smartphone with an android-based software is also provided. The ElectroSens demonstrates reproducibility and repeatability of data for the detection of Zn in blood and urine without the digestion step.
Collapse
|
85
|
Feng P, Cao Z, Wang X, Li J, Liu J. On-Demand Bacterial Reactivation by Restraining within a Triggerable Nanocoating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002406. [PMID: 32686247 DOI: 10.1002/adma.202002406] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Bacteria have been widely exploited as bioagents for applications in diagnosis and treatment, benefitting from their living characteristics including colonization, rapid proliferation, and facile genetic manipulation. As such, bacteria being tailored to perform precisely in the right place at the right time to avoid potential side effects would be of great importance but has proven to be difficult. Here, a strategy of on-demand bacterial reactivation is described by individually restraining within a triggerable nanocoating. Upon reaching at a location of interest, nanocoatings can be triggered to dissolution in situ and subsequently decoat the bacteria which are able to recover their bioactivities as needed. It is demonstrated that gut microbiota coated with an enteric nanocoating can respond to gastrointestinal environments and reactivate in the intestine by a pH-triggered decoating. In virtue of this unique, coated bacteria remain inactive following oral administration to exempt acidic insults, while revive to restore therapeutic effects after gastric emptying. Consequently, improved oral availability and treatment efficacy are achieved in two mouse models of intestinal infection. Bacteria restrained by a triggerable nanocoating represent a smart therapeutic that can take effect when necessary. On-demand bacterial reactivation suggests a robust platform for the development of precision bacterial-mediated bioagents.
Collapse
Affiliation(s)
- Pingping Feng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinyue Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Juanjuan Li
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
86
|
Popova NR, Popov AL, Ermakov AM, Reukov VV, Ivanov VK. Ceria-Containing Hybrid Multilayered Microcapsules for Enhanced Cellular Internalisation with High Radioprotection Efficiency. Molecules 2020; 25:E2957. [PMID: 32605031 PMCID: PMC7411955 DOI: 10.3390/molecules25132957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022] Open
Abstract
Cerium oxide nanoparticles (nanoceria) are believed to be the most versatile nanozyme, showing great promise for biomedical applications. At the same time, the controlled intracellular delivery of nanoceria remains an unresolved problem. Here, we have demonstrated the radioprotective effect of polyelectrolyte microcapsules modified with cerium oxide nanoparticles, which provide controlled loading and intracellular release. The optimal (both safe and uptake efficient) concentrations of ceria-containing microcapsules for human mesenchymal stem cells range from 1:10 to 1:20 cell-to-capsules ratio. We have revealed the molecular mechanisms of nanoceria radioprotective action on mesenchymal stem cells by assessing the level of intracellular reactive oxygen species (ROS), as well as by a detailed 96-genes expression analysis, featuring genes responsible for oxidative stress, mitochondrial metabolism, apoptosis, inflammation etc. Hybrid ceria-containing microcapsules have been shown to provide an indirect genoprotective effect, reducing the number of cytogenetic damages in irradiated cells. These findings give new insight into cerium oxide nanoparticles' protective action for living beings against ionising radiation.
Collapse
Affiliation(s)
- N. R. Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; (N.R.P.); (A.L.P.); (A.M.E.)
| | - A. L. Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; (N.R.P.); (A.L.P.); (A.M.E.)
| | - A. M. Ermakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; (N.R.P.); (A.L.P.); (A.M.E.)
| | - V. V. Reukov
- University of Georgia, 315 Dawson Hall, Athens, GA 30602, USA;
| | - V. K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
87
|
Škugor Rončević I, Krivić D, Buljac M, Vladislavić N, Buzuk M. Polyelectrolytes Assembly: A Powerful Tool for Electrochemical Sensing Application. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3211. [PMID: 32517055 PMCID: PMC7313698 DOI: 10.3390/s20113211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
The development of sensing coatings, as important sensor elements that integrate functionality, simplicity, chemical stability, and physical stability, has been shown to play a major role in electrochemical sensing system development trends. Simple and versatile assembling procedures and scalability make polyelectrolytes highly convenient for use in electrochemical sensing applications. Polyelectrolytes are mainly used in electrochemical sensor architectures for entrapping (incorporation, immobilization, etc.) various materials into sensing layers. These materials can often increase sensitivity, selectivity, and electronic communications with the electrode substrate, and they can mediate electron transfer between an analyte and transducer. Analytical performance can be significantly improved by the synergistic effect of materials (sensing material, transducer, and mediator) present in these composites. As most reported methods for the preparation of polyelectrolyte-based sensing layers are layer-by-layer and casting/coating methods, this review focuses on the use of the latter methods in the development of electrochemical sensors within the last decade. In contrast to many reviews related to electrochemical sensors that feature polyelectrolytes, this review is focused on architectures of sensing layers and the role of polyelectrolytes in the development of sensing systems. Additionally, the role of polyelectrolytes in the preparation and modification of various nanoparticles, nanoprobes, reporter probes, nanobeads, etc. that are used in electrochemical sensing systems is also reviewed.
Collapse
Affiliation(s)
- Ivana Škugor Rončević
- Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.Š.R.); (N.V.)
| | - Denis Krivić
- Division of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria;
| | - Maša Buljac
- Department of Environmental Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia;
| | - Nives Vladislavić
- Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.Š.R.); (N.V.)
| | - Marijo Buzuk
- Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.Š.R.); (N.V.)
| |
Collapse
|
88
|
Abstract
Controlled drug delivery formulations have revolutionized treatments for a range of health conditions. Over decades of innovation, layer-by-layer (LbL) self-assembly has emerged as one of the most versatile fabrication methods used to develop multifunctional controlled drug release coatings. The numerous advantages of LbL include its ability to incorporate and preserve biological activity of therapeutic agents; coat multiple substrates of all scales (e.g., nanoparticles to implants); and exhibit tuned, targeted, and/or responsive drug release behavior. The functional behavior of LbL films can be related to their physicochemical properties. In this review, we highlight recent advances in the development of LbL-engineered biomaterials for drug delivery, demonstrating their potential in the fields of cancer therapy, microbial infection prevention and treatment, and directing cellular responses. We discuss the various advantages of LbL biomaterial design for a given application as demonstrated through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Dahlia Alkekhia
- School of Engineering and Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Anita Shukla
- School of Engineering and Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, USA
- Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
89
|
Van der Meeren L, Li J, Konrad M, Skirtach AG, Volodkin D, Parakhonskiy BV. Temperature Window for Encapsulation of an Enzyme into Thermally Shrunk, CaCO
3
Templated Polyelectrolyte Multilayer Capsules. Macromol Biosci 2020; 20:e2000081. [DOI: 10.1002/mabi.202000081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
| | - Jie Li
- Department of BiotechnologyGhent University Ghent 9000 Belgium
| | - Manfred Konrad
- Max Planck Institute for Biophysical Chemistry Göttingen 37077 Germany
| | | | - Dmitry Volodkin
- School of Science and TechnologyNottingham Trent University Nottingham NG11 8NS UK
| | | |
Collapse
|
90
|
Facile preparation of pH/reduction dual-stimuli responsive dextran nanogel as environment-sensitive carrier of doxorubicin. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122585] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
91
|
Wang S, Battigelli A, Alkekhia D, Fairman A, Antoci V, Yang W, Moore D, Shukla A. Controlled delivery of a protein tyrosine phosphatase inhibitor, SHP099, using cyclodextrin-mediated host-guest interactions in polyelectrolyte multilayer films for cancer therapy. RSC Adv 2020; 10:20073-20082. [PMID: 35520441 PMCID: PMC9054207 DOI: 10.1039/d0ra03864d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 11/21/2022] Open
Abstract
The Src homology 2 domain containing protein tyrosine phosphatase-2 (SHP2) is a key enzyme in pathways regulating tumor growth signaling, and recently gained interest as a promising anticancer drug target. Many SHP2 inhibitors are currently under development, including SHP099, which has shown potent anticancer activity at low concentrations in vivo. In this work, we developed multilayer coatings for localized delivery of SHP099 to improve upon current cancer therapies. Layer-by-layer self-assembly was used to develop films composed of chitosan and poly-carboxymethyl-β-cyclodextrin (PβCD) for the delivery of SHP099. SHP099 was successfully loaded into multilayer films via host-guest interactions with PβCD. Nuclear magnetic resonance spectroscopy confirmed the occurrence of this supramolecular assembly by identifying the interaction of specific terminal SHP099 protons with the protons of the CD. SHP099 release from assembled films was detected over 96 hours, and was found to inhibit colony formation of human breast adenocarcinoma cells in vitro. These multilayer films have the potential to be used in a range of anticancer applications and overcome common complications of systemic chemotherapeutic administration, while maximizing SHP099 efficacy.
Collapse
Affiliation(s)
- Soobin Wang
- School of Engineering, Brown University Providence RI 02912 USA
| | - Alessia Battigelli
- School of Engineering, Brown University Providence RI 02912 USA
- Center for Biomedical Engineering, Brown University Providence RI 02912 USA
| | - Dahlia Alkekhia
- School of Engineering, Brown University Providence RI 02912 USA
- Center for Biomedical Engineering, Brown University Providence RI 02912 USA
| | - Alexis Fairman
- School of Engineering, Brown University Providence RI 02912 USA
- Center for Biomedical Engineering, Brown University Providence RI 02912 USA
- Department of Orthopaedics, Warren Alpert Medical School, Rhode Island Hospital, Brown University Providence RI 02912 USA
| | - Valentin Antoci
- Department of Orthopaedics, Warren Alpert Medical School, Rhode Island Hospital, Brown University Providence RI 02912 USA
| | - Wentian Yang
- Department of Orthopaedics, Warren Alpert Medical School, Rhode Island Hospital, Brown University Providence RI 02912 USA
| | - Douglas Moore
- Department of Orthopaedics, Warren Alpert Medical School, Rhode Island Hospital, Brown University Providence RI 02912 USA
| | - Anita Shukla
- School of Engineering, Brown University Providence RI 02912 USA
- Center for Biomedical Engineering, Brown University Providence RI 02912 USA
- Institute for Molecular and Nanoscale Innovation, Brown University Providence RI 02912 USA
| |
Collapse
|
92
|
Kienle DF, Chaparro Sosa AF, Kaar JL, Schwartz DK. Polyelectrolyte Multilayers Enhance the Dry Storage and pH Stability of Physically Entrapped Enzymes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22640-22649. [PMID: 32352745 DOI: 10.1021/acsami.0c04964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyelectrolyte multilayers (PEMs) are attractive materials for immobilizing enzymes due to their unique ionic environment, which can prevent unfolding. Here, we demonstrated that the stability to dry storage and elevated pH were significantly enhanced when negatively charged nitroreductase (NfsB) was embedded in a PEM by depositing alternating layers of the enzyme and polycation (PC) onto porous silica particles. The PC strength (i.e., pKa) and the surface charge of the film were varied to probe the effects that internal and surface chemistry had on the pH stability of the entrapped NfsB. All films showed enhanced activity retention at elevated pH (>6), and inactivation at reduced pH (<6) similar to NfsB in solution, indicating that the primary stabilizing effect of immobilization was achieved through ionic interactions between NfsB and the PC and not through changes to the surface charge of the NfsB. Additionally, films that were stored dry at 4 °C for 1 month retained full activity, while those stored at room temperature lost 30% activity. Remarkably, at 50 °C, above the NfsB melting temperature, 40% activity was retained after 1 month of dry storage. Our results suggest that internal film properties are significantly more important than surface charge, which had minor effects on activity. Specifically, immobilization with the weak PC, poly(l-lysine), increased the optimal pH and the activity of immobilized NfsB (which we attribute to greater permeability), relative to immobilization with the strong PC, poly(diallyldimethylammonium chloride). However, NfsB was leached from the PLL film to a greater extent. Overall, these observations demonstrate that internal ionic cross-linking is key to the stabilizing effects of PEMs and that the pH response can be tuned by controlling the number of cross-links (e.g., by changing the strength of the PC). However, this may be at the cost of reduced loading, illustrating the necessity of simultaneously optimizing enzyme loading, internal ionic cross-linking, and substrate transport.
Collapse
Affiliation(s)
- Daniel F Kienle
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Andres F Chaparro Sosa
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
93
|
Ali I, Mukhtar SD, Ali HS, Scotti MT, Scotti L. Advances in Nanoparticles as Anticancer Drug Delivery Vector: Need of this Century. Curr Pharm Des 2020; 26:1637-1649. [DOI: 10.2174/1381612826666200203124330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
Abstract
Background:
Nanotechnology has contributed a great deal to the field of medical science. Smart drugdelivery
vectors, combined with stimuli-based characteristics, are becoming increasingly important. The use of
external and internal stimulating factors can have enormous benefits and increase the targeting efficiency of
nanotechnology platforms. The pH values of tumor vascular tissues are acidic in nature, allowing the improved
targeting of anticancer drug payloads using drug-delivery vectors. Nanopolymers are smart drug-delivery vectors
that have recently been developed and recommended for use by scientists because of their potential targeting
capabilities, non-toxicity and biocompatibility, and make them ideal nanocarriers for personalized drug delivery.
Method:
The present review article provides an overview of current advances in the use of nanoparticles (NPs) as
anticancer drug-delivery vectors.
Results:
This article reviews the molecular basis for the use of NPs in medicine, including personalized medicine,
personalized therapy, emerging vistas in anticancer therapy, nanopolymer targeting, passive and active targeting
transports, pH-responsive drug carriers, biological barriers, computer-aided drug design, future challenges and
perspectives, biodegradability and safety.
Conclusions:
This article will benefit academia, researchers, clinicians, and government authorities by providing a
basis for further research advancements.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara – 41477, Saudi Arabia
| | - Sofi D. Mukhtar
- Department of Chemistry, Jamia Millia Islamia (Central University) New Delhi-110025, India
| | - Heyam S. Ali
- Department of Pharmaceutics, University of Khartoum, Khartoum, Sudan
| | - Marcus T. Scotti
- Cheminformatics Laboratory- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I 58051-970, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Teaching and Research Management - University Hospital, Cheminformatics Laboratory- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I, 58051-970, João Pessoa, PB, Brazil
| |
Collapse
|
94
|
Jamshidzadeh F, Mohebali A, Abdouss M. Three-ply biocompatible pH-responsive nanocarriers based on HNT sandwiched by chitosan/pectin layers for controlled release of phenytoin sodium. Int J Biol Macromol 2020; 150:336-343. [DOI: 10.1016/j.ijbiomac.2020.02.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 11/27/2022]
|
95
|
Nanostructured Polyelectrolyte Complexes Based on Water-Soluble Thiacalix[4]Arene and Pillar[5]Arene: Self-Assembly in Micelleplexes and Polyplexes at Packaging DNA. NANOMATERIALS 2020; 10:nano10040777. [PMID: 32316551 PMCID: PMC7221682 DOI: 10.3390/nano10040777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/27/2023]
Abstract
Controlling the self-assembly of polyfunctional compounds in interpolyelectrolyte aggregates is an extremely challenging task. The use of macrocyclic compounds offers new opportunities in design of a new generation of mixed nanoparticles. This approach allows creating aggregates with multivalent molecular recognition, improved binding efficiency and selectivity. In this paper, we reported a straightforward approach to the synthesis of interpolyelectrolytes by co-assembling of the thiacalix[4]arene with four negatively charged functional groups on the one side of macrocycle, and pillar[5]arene with 10 ammonium groups located on both sides. Nanostructured polyelectrolyte complexes show effective packaging of high-molecular DNA from calf thymus. The interaction of co-interpolyelectrolytes with the DNA is completely different from the interaction of the pillar[5]arene with the DNA. Two different complexes with DNA, i.e., micelleplex- and polyplex-type, were formed. The DNA in both cases preserved its secondary structure in native B form without distorting helicity. The presented approach provides important advantage for the design of effective biomolecular gene delivery systems.
Collapse
|
96
|
Seidi F, Zhao W, Xiao H, Jin Y, Zhao C. Layer‐by‐Layer Assembly for Surface Tethering of Thin‐Hydrogel Films: Design Strategies and Applications. CHEM REC 2020; 20:857-881. [DOI: 10.1002/tcr.202000007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Farzad Seidi
- Provincial Key Lab of Pulp & Paper Sci and Tech, and Joint International Research Lab of Lignocellulosic Functional MaterialsNanjing Forestry University Nanjing 210037 China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 China
| | - Huining Xiao
- Department of Chemical EngineeringUniversity of New Brunswick Fredericton NB E3B 5 A3 Canada
| | - Yongcan Jin
- Provincial Key Lab of Pulp & Paper Sci and Tech, and Joint International Research Lab of Lignocellulosic Functional MaterialsNanjing Forestry University Nanjing 210037 China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 China
| |
Collapse
|
97
|
Huang J, Zajforoushan Moghaddam S, Maroni P, Thormann E. Swelling Behavior, Interaction, and Electrostatic Properties of Chitosan/Alginate Dialdehyde Multilayer Films with Different Outermost Layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3782-3791. [PMID: 32212609 DOI: 10.1021/acs.langmuir.0c00330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, self-cross-linked chitosan/alginate dialdehyde multilayer films, capped with either alginate dialdehyde (6 layers) or chitosan (7 layers), were fabricated using the layer-by-layer method. The disruption of the electrostatic equilibrium when exposing the fabricated layers to acidic and alkaline conditions causes swelling within the film and independently in the outermost layer, showing dependence on the ionic strength. Spectroscopic ellipsometry and quartz crystal microbalance with dissipation monitoring were employed to examine the swelling behavior. Atomic force microscopy colloidal probe measurements were conducted to assess the surface forces between the multilayer films at different pH and ionic strengths. Finally, the electrostatic properties of the multilayer films were examined at different pH and ionic strengths using zeta potential measurements. The results suggest that stimuli-responsiveness and overall swelling behavior of the polysaccharide multilayer films significantly depend on the outermost layer, an effect that should expectedly become more pronounced the thinner the film becomes.
Collapse
Affiliation(s)
- Junhao Huang
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | - Plinio Maroni
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
98
|
Viswanathan P, Kim YJ, Hong JD. Nanoporous Silver Submicrocubes Layer by Layer Encapsulated with Polyelectrolyte Films: Nonenzymatic Catalysis for Glucose Monitoring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3452-3460. [PMID: 32202428 DOI: 10.1021/acs.langmuir.9b03972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article describes the synthesis of nanoporous silver submicrocubes (Np-Ag) capped with poly(allylamine hydrochloride) PAH/poly(styrenesulfonate) PSS bilayers (Np-Ag(PAH/PSS)n, 1 ≤ n ≤ 4) via layer-by-layer (LBL) assembly for the electrochemical glucose sensing. The consecutive LBL encapsulation of Np-Ag (average size ≈530 nm) with positively charged PAH and negatively charged PSS layers was monitored by using ζ-potential analyses, which showed that the sign of the ζ-potential became positive (+10 mV) or negative (-22 mV) depending on the charge of the encapsulating species. The thickness of two PAH/PSS bilayers on the Np-Ag was estimated to be ∼4 nm (consistent with a literature value of ∼1 nm per PAH or PSS layer) on the basis of a high-resolution transmission electron microscopy image of the Np-Ag(PAH/PSS)2. Moreover, the high quality of the polyelectrolyte capping on Np-Ag was evidenced by the elemental mapping analysis of particles (obtained by using high-angle annular dark-field scanning transmission electron microscopy), which showed a uniform spatial distribution of C, N, and S (derived from PAH and PSS layers). Among the four different Np-Ag(PAH/PSS)n (1 ≤ n ≤ 4) electrodes, Np-Ag(PAH/PSS)2 exhibited the highest electrocatalytic activity toward glucose because of the optimal thickness and density of its polyelectrolyte films (fabricated onto Np-Ag). The (Np-Ag(PAH/PSS)2 electrode demonstrated a detection limit of 20 μM, a sensitivity limit of 472.15 μA mM-1 cm-2, and a wide range of detection for glucose at concentrations as high as 23.3 mM along with good selectivity toward glucose. The findings of this study are expected to contribute to improvements in the fabrication and stability of various particle-type catalysts on an electrode surface and to efforts to optimize the device performance using the LBL encapsulation technique.
Collapse
Affiliation(s)
- Perumal Viswanathan
- Department of Chemistry, Incheon National University, 119 Academy-roYeonsu-gu, Incheon 22012, Republic of Korea
| | - Young Jin Kim
- Department of Chemistry, Incheon National University, 119 Academy-roYeonsu-gu, Incheon 22012, Republic of Korea
| | - Jong Dal Hong
- Department of Chemistry, Incheon National University, 119 Academy-roYeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
99
|
Xiao Y, Han C, Yang H, Liu M, Meng X, Liu B. Layer (whey protein isolate) -by-layer (xanthan gum) microencapsulation enhances survivability of L. bulgaricus and L. paracasei under simulated gastrointestinal juice and thermal conditions. Int J Biol Macromol 2020; 148:238-247. [DOI: 10.1016/j.ijbiomac.2020.01.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/30/2019] [Accepted: 01/11/2020] [Indexed: 01/02/2023]
|
100
|
Kubiak T, Banaszak J, Józefczak A, Rozynek Z. Direction-Specific Release from Capsules with Homogeneous or Janus Shells Using an Ultrasound Approach. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15810-15822. [PMID: 32186360 DOI: 10.1021/acsami.9b21484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A variety of approaches have been developed to release contents from capsules, including techniques that use electric or magnetic fields, light, or ultrasound as a stimulus. However, in the majority of the known approaches, capsules are disintegrated in violent way and the liberation of the encapsulated material is often in a random direction. Thus, the controllable and direction-specific release from microcapsules in a simple and effective way is still a great challenge. This greatly limits the use of microcapsules in applications where targeted and directional release is desirable. Here, we present a convenient ultrasonic method for controllable and unidirectional release of an encapsulated substance. The release is achieved by using MHz-frequency ultrasound that enables the inner liquid stretching, which imposes mechanical stress on the capsule's shell. This leads to the puncturing of the shell and enables smooth liberation of the liquid payload in one direction. We demonstrate that 1-4.3 MHz acoustic waves with the intensity of a few W/cm2 are capable of puncturing of particle capsules with diameters ranging from around 300 μm to 5 mm and the release of the encapsulated liquid in a controlled manner. Various aspects of our route, including the role of the capsule size, ultrasound wavelength, and intensity in the performance of the method, are studied in detail. We also show that the additional control of the release can be achieved by using capsules having patchy shells. The presented method can be used to facilitate chemical reactions in micro- and nanolitre droplets and various small-scale laboratory operations carried in bulk liquids in microenvironment. Our results may also serve as an entry point for testing other uses of the method and formulation of theoretical modeling of the presented ultrasound mechanism.
Collapse
Affiliation(s)
- Tomasz Kubiak
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
- Hipolit Cegielski State University of Applied Sciences, Stefana Wyszyńskiego 38, 62-200 Gniezno, Poland
| | - Joanna Banaszak
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Arkadiusz Józefczak
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Zbigniew Rozynek
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|