51
|
Testa U, Pelosi E, Castelli G. Endothelial Progenitors in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:85-115. [PMID: 32588325 DOI: 10.1007/978-3-030-44518-8_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor vascularization refers to the formation of new blood vessels within a tumor and is considered one of the hallmarks of cancer. Tumor vessels supply the tumor with oxygen and nutrients, required to sustain tumor growth and progression, and provide a gateway for tumor metastasis through the blood or lymphatic vasculature. Blood vessels display an angiocrine capacity of supporting the survival and proliferation of tumor cells through the production of growth factors and cytokines. Although tumor vasculature plays an essential role in sustaining tumor growth, it represents at the same time an essential way to deliver drugs and immune cells to the tumor. However, tumor vasculature exhibits many morphological and functional abnormalities, thus resulting in the formation of hypoxic areas within tumors, believed to represent a mechanism to maintain tumor cells in an invasive state.Tumors are vascularized through a variety of modalities, mainly represented by angiogenesis, where VEGF and other members of the VEGF family play a key role. This has represented the basis for the development of anti-VEGF blocking agents and their use in cancer therapy: however, these agents failed to induce significant therapeutic effects.Much less is known about the cellular origin of vessel network in tumors. Various cell types may contribute to tumor vasculature in different tumors or in the same tumor, such as mature endothelial cells, endothelial progenitor cells (EPCs), or the same tumor cells through a process of transdifferentiation. Early studies have suggested a role for bone marrow-derived EPCs; these cells do not are true EPCs but myeloid progenitors differentiating into monocytic cells, exerting a proangiogenic effect through a paracrine mechanism. More recent studies have shown the existence of tissue-resident endothelial vascular progenitors (EVPs) present at the level of vessel endothelium and their possible involvement as cells of origin of tumor vasculature.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
52
|
Kikuchi H, Maishi N, Annan DA, Alam MT, Dawood RIH, Sato M, Morimoto M, Takeda R, Ishizuka K, Matsumoto R, Akino T, Tsuchiya K, Abe T, Osawa T, Miyajima N, Maruyama S, Harabayashi T, Azuma M, Yamashiro K, Ameda K, Kashiwagi A, Matsuno Y, Hida Y, Shinohara N, Hida K. Chemotherapy-Induced IL8 Upregulates MDR1/ABCB1 in Tumor Blood Vessels and Results in Unfavorable Outcome. Cancer Res 2020; 80:2996-3008. [PMID: 32536602 DOI: 10.1158/0008-5472.can-19-3791] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/10/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022]
Abstract
Tumor endothelial cells (TEC) lining tumor blood vessels actively contribute to tumor progression and metastasis. In addition to tumor cells, TEC may develop drug resistance during cancer treatment, allowing the tumor cells to survive chemotherapy and metastasize. We previously reported that TECs resist paclitaxel treatment via upregulation of ABCB1. However, whether TEC phenotypes are altered by anticancer drugs remains to be clarified. Here, we show that ABCB1 expression increases after chemotherapy in urothelial carcinoma cases. The ratio of ABCB1-positive TEC before and after first-line chemotherapy in urothelial carcinoma tissues (n = 66) was analyzed by ABCB1 and CD31 immunostaining. In 42 cases (64%), this ratio increased after first-line chemotherapy. Chemotherapy elevated ABCB1 expression in endothelial cells by increasing tumor IL8 secretion. In clinical cases, ABCB1 expression in TEC correlated with IL8 expression in tumor cells after first-line chemotherapy, leading to poor prognosis. In vivo, the ABCB1 inhibitor combined with paclitaxel reduced tumor growth and metastasis compared with paclitaxel alone. Chemotherapy is suggested to cause inflammatory changes in tumors, inducing ABCB1 expression in TEC and conferring drug resistance. Overall, these findings indicate that TEC can survive during chemotherapy and provide a gateway for cancer metastasis. Targeting ABCB1 in TEC represents a novel strategy to overcome cancer drug resistance. SIGNIFICANCE: These findings show that inhibition of ABCB1 in tumor endothelial cells may improve clinical outcome, where ABCB1 expression contributes to drug resistance and metastasis following first-line chemotherapy.
Collapse
Affiliation(s)
- Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Dorcas A Annan
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Mohammad Towfik Alam
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan.,Department of Dental Radiology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Randa Ibrahim Hassan Dawood
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masumi Sato
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masahiro Morimoto
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Ryo Takeda
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Keita Ishizuka
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryuji Matsumoto
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan.,Department of Urology, Teine Keijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Tomoshige Akino
- Department of Urology, Sapporo City General Hospital, Sapporo, Hokkaido, Japan.,Department of Urology, Tonan Hospital, Sapporo, Hokkaido, Japan
| | - Kunihiko Tsuchiya
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan.,Department of Urology, KKR Sapporo Medical Center, Sapporo, Hokkaido, Japan
| | - Takashige Abe
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Takahiro Osawa
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Naoto Miyajima
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan.,Department of Urology, Teine Keijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Satoru Maruyama
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan.,Department of Urology, Hokkaido Cancer Center, Sapporo, Hokkaido, Japan
| | - Toru Harabayashi
- Department of Urology, Hokkaido Cancer Center, Sapporo, Hokkaido, Japan
| | - Manabu Azuma
- Department of Pathology, Hokkaido Cancer Center, Sapporo, Hokkaido, Japan
| | | | - Kaname Ameda
- Hokkaido Hinyokika Kinen Hospital, Sapporo, Hokkaido, Japan
| | - Akira Kashiwagi
- Department of Urology, Teine Keijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan. .,Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
53
|
Ma G, Jiang Y, Liang M, Li J, Wang J, Mao X, Veeramootoo JS, Xia T, Liu X, Wang S. Dynamic monitoring of CD45-/CD31+/DAPI+ circulating endothelial cells aneuploid for chromosome 8 during neoadjuvant chemotherapy in locally advanced breast cancer. Ther Adv Med Oncol 2020; 12:1758835920918470. [PMID: 32489429 PMCID: PMC7238307 DOI: 10.1177/1758835920918470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Neoadjuvant chemotherapy (NCT) is the standard treatment for patients with
locally advanced breast cancer (LABC). The aim of this study was to verify
this relationship, and to estimate the clinical value of aneuploid
circulating endothelial cells (CECs) in LABC patients with different NCT
responses. Methods: Breast cancer patients received an EC4-T4 NCT regimen. Peripheral blood
mononuclear cells were obtained before NCT, and after the first and last NCT
courses. A novel subtraction enrichment and immunostaining fluorescence
in situ hybridization (SE-iFISH) strategy was applied
for detection of circulating rare cells (CRCs). CECs (CD45–/CD31+/DAPI+) and
circulating tumor cells (CTCs) with different cytogenetic abnormalities
related to chromosome 8 aneuploidy were analyzed in LABC patients subjected
to NCT. Results: A total of 41 patients were enrolled. Firstly, CD31+/EpCAM+ aneuploid
endothelial-epithelial fusion cells were observed in LABC patients. Further,
aneuploid CECs in the peripheral blood showed a biphasic response during
NCT, as they initially increased and then decreased, whereas a strong
positive correlation was observed between aneuploid CECs and CTC
numbers. Conclusion: We determined that aneuploid CEC dynamics vary in patients with different
response to chemotherapy. Elucidating the potential cross-talk between CTCs
and aneuploid CECs may help characterize the process associated with the
development of chemotherapy resistance and metastasis.
Collapse
Affiliation(s)
- Ge Ma
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yi Jiang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Mengdi Liang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - JiaYing Li
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jingyi Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xinrui Mao
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | | | - Tiansong Xia
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| |
Collapse
|
54
|
Tumor Endothelial Cell-A Biological Tool for Translational Cancer Research. Int J Mol Sci 2020; 21:ijms21093238. [PMID: 32375250 PMCID: PMC7247330 DOI: 10.3390/ijms21093238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
Going from bench to bedside is a simplified description of translational research, with the ultimate goal being to improve the health status of mankind. Tumor endothelial cells (TECs) perform angiogenesis to support the growth, establishment, and dissemination of tumors to distant organs. TECs have various features that distinguish them from normal endothelial cells, which include alterations in gene expression patterns, higher angiogenic and metabolic activities, and drug resistance tendencies. The special characteristics of TECs enhance the vulnerability of tumor blood vessels toward antiangiogenic therapeutic strategies. Therefore, apart from being a viable therapeutic target, TECs would act as a better mediator between the bench (i.e., angiogenesis research) and the bedside (i.e., clinical application of drugs discovered through research). Exploitation of TEC characteristics could reveal unidentified strategies of enhancing and monitoring antiangiogenic therapy in the treatment of cancer, which are discussed in this review.
Collapse
|
55
|
Ciesielski O, Biesiekierska M, Panthu B, Vialichka V, Pirola L, Balcerczyk A. The Epigenetic Profile of Tumor Endothelial Cells. Effects of Combined Therapy with Antiangiogenic and Epigenetic Drugs on Cancer Progression. Int J Mol Sci 2020; 21:ijms21072606. [PMID: 32283668 PMCID: PMC7177242 DOI: 10.3390/ijms21072606] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Tumors require a constant supply of nutrients to grow which are provided through tumor blood vessels. To metastasize, tumors need a route to enter circulation, that route is also provided by tumor blood vessels. Thus, angiogenesis is necessary for both tumor progression and metastasis. Angiogenesis is tightly regulated by a balance of angiogenic and antiangiogenic factors. Angiogenic factors of the vascular endothelial growth factor (VEGF) family lead to the activation of endothelial cells, proliferation, and neovascularization. Significant VEGF-A upregulation is commonly observed in cancer cells, also due to hypoxic conditions, and activates endothelial cells (ECs) by paracrine signaling stimulating cell migration and proliferation, resulting in tumor-dependent angiogenesis. Conversely, antiangiogenic factors inhibit angiogenesis by suppressing ECs activation. One of the best-known anti-angiogenic factors is thrombospondin-1 (TSP-1). In pathological angiogenesis, the balance shifts towards the proangiogenic factors and an angiogenic switch that promotes tumor angiogenesis. Here, we review the current literature supporting the notion of the existence of two different endothelial lineages: normal endothelial cells (NECs), representing the physiological form of vascular endothelium, and tumor endothelial cells (TECs), which are strongly promoted by the tumor microenvironment and are biologically different from NECs. The angiogenic switch would be also important for the explanation of the differences between NECs and TECs, as angiogenic factors, cytokines and growth factors secreted into the tumor microenvironment may cause genetic instability. In this review, we focus on the epigenetic differences between the two endothelial lineages, which provide a possible window for pharmacological targeting of TECs.
Collapse
Affiliation(s)
- Oskar Ciesielski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marta Biesiekierska
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
| | - Baptiste Panthu
- INSERM Unit 1060, CarMeN Laboratory, Lyon 1 University, 165 Chemin du Grand Revoyet—BP12, F-69495 Pierre Bénite CEDEX, France; (B.P.); (L.P.)
| | - Varvara Vialichka
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
| | - Luciano Pirola
- INSERM Unit 1060, CarMeN Laboratory, Lyon 1 University, 165 Chemin du Grand Revoyet—BP12, F-69495 Pierre Bénite CEDEX, France; (B.P.); (L.P.)
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
- Correspondence: ; Tel.: +48-42-635-45-10
| |
Collapse
|
56
|
Bittner KR, Jiménez JM, Peyton SR. Vascularized Biomaterials to Study Cancer Metastasis. Adv Healthc Mater 2020; 9:e1901459. [PMID: 31977160 PMCID: PMC7899188 DOI: 10.1002/adhm.201901459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/07/2019] [Indexed: 12/15/2022]
Abstract
Cancer metastasis, the spread of cancer cells to distant organs, is responsible for 90% of cancer-related deaths. Cancer cells need to enter and exit circulation in order to form metastases, and the vasculature and endothelial cells are key regulators of this process. While vascularized 3D in vitro systems have been developed, few have been used to study cancer, and many lack key features of vessels that are necessary to study metastasis. This review focuses on current methods of vascularizing biomaterials for the study of cancer, and three main factors that regulate intravasation and extravasation: endothelial cell heterogeneity, hemodynamics, and the extracellular matrix of the perivascular niche.
Collapse
Affiliation(s)
- Katharine R Bittner
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| | - Juan M Jiménez
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Shelly R Peyton
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
57
|
Orso F, Quirico L, Dettori D, Coppo R, Virga F, Ferreira LC, Paoletti C, Baruffaldi D, Penna E, Taverna D. Role of miRNAs in tumor and endothelial cell interactions during tumor progression. Semin Cancer Biol 2020; 60:214-224. [DOI: 10.1016/j.semcancer.2019.07.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 12/18/2022]
|
58
|
Lopes-Coelho F, Martins F, Serpa J. Endothelial Cells (ECs) Metabolism: A Valuable Piece to Disentangle Cancer Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:143-159. [PMID: 32130698 DOI: 10.1007/978-3-030-34025-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Effective therapies to fight cancer should not be focused specifically on cancer cells, but it should consider the various components of the TME. Non-cancerous cells cooperate with cancer cells by sharing signaling and organic molecules, accounting for cancer progression. Most of the anti-angiogenic therapy clinically approved for the treatment of human diseases relies on targeting vascular endothelial growth factor (VEGF) signaling pathway. Unexpectedly and unfortunately, the results of anti-angiogenic therapies in the treatment of human diseases are not so effective, showing an insufficient efficacy and resistance.This chapter will give some insights on showing that targeting endothelial cell metabolism is a missing piece to revolutionize cancer therapy. Only recently endothelial cell (EC) metabolism has been granted as an important inducer of angiogenesis. Metabolic studies in EC demonstrated that targeting EC metabolism can be an alternative to overcome the failure of anti-angiogenic therapies. Hence, it is urgent to increase the knowledge on how ECs alter their metabolism during human diseases, in order to open new therapeutic perspectives in the treatment of pathophysiological angiogenesis, as in cancer.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Filipa Martins
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
59
|
Carbonic anhydrase 2 (CAII) supports tumor blood endothelial cell survival under lactic acidosis in the tumor microenvironment. Cell Commun Signal 2019; 17:169. [PMID: 31847904 PMCID: PMC6918655 DOI: 10.1186/s12964-019-0478-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Background Tumor endothelial cells (TECs) perform tumor angiogenesis, which is essential for tumor growth and metastasis. Tumor cells produce large amounts of lactic acid from glycolysis; however, the mechanism underlying the survival of TECs to enable tumor angiogenesis under high lactic acid conditions in tumors remains poorly understood. Methodology The metabolomes of TECs and normal endothelial cells (NECs) were analyzed by capillary electrophoresis time-of-flight mass spectrometry. The expressions of pH regulators in TECs and NECs were determined by quantitative reverse transcription-PCR. Cell proliferation was measured by the MTS assay. Western blotting and ELISA were used to validate monocarboxylate transporter 1 and carbonic anhydrase 2 (CAII) protein expression within the cells, respectively. Human tumor xenograft models were used to access the effect of CA inhibition on tumor angiogenesis. Immunohistochemical staining was used to observe CAII expression, quantify tumor microvasculature, microvessel pericyte coverage, and hypoxia. Results The present study shows that, unlike NECs, TECs proliferate in lactic acidic. TECs showed an upregulated CAII expression both in vitro and in vivo. CAII knockdown decreased TEC survival under lactic acidosis and nutrient-replete conditions. Vascular endothelial growth factor A and vascular endothelial growth factor receptor signaling induced CAII expression in NECs. CAII inhibition with acetazolamide minimally reduced tumor angiogenesis in vivo. However, matured blood vessel number increased after acetazolamide treatment, similar to bevacizumab treatment. Additionally, acetazolamide-treated mice showed decreased lung metastasis. Conclusion These findings suggest that due to their effect on blood vessel maturity, pH regulators like CAII are promising targets of antiangiogenic therapy. Video Abstract
Graphical abstract ![]()
Collapse
|
60
|
Chen WZ, Jiang JX, Yu XY, Xia WJ, Yu PX, Wang K, Zhao ZY, Chen ZG. Endothelial cells in colorectal cancer. World J Gastrointest Oncol 2019; 11:946-956. [PMID: 31798776 PMCID: PMC6883186 DOI: 10.4251/wjgo.v11.i11.946] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/18/2019] [Accepted: 09/26/2019] [Indexed: 02/05/2023] Open
Abstract
The dependence of tumor growth on neovascularization has become an important aspect of cancer biology. Tumor angiogenesis is one of the key mechanisms of tumorigenesis, growth and metastasis. The key events involved in this process are endothelial cell proliferation, migration, and vascular formation. Recent studies have revealed the importance of tumor-associated endothelial cells (TECs) in the development and progression of colorectal cancer (CRC), including epithelial proliferation, stem cell maintenance, angiogenesis, and immune remodeling. Decades of research have identified that the molecular basis of tumor angiogenesis includes vascular endothelial growth factors (VEGFs) and their receptor family, which are the main targets of antiangiogenesis therapy. VEGFs and their receptors play key roles in the pathology of angiogenesis, and their overexpression indicates poor prognosis in CRC. This article reviews the characteristics of the tumor vasculature and the role of TECs in different stages of CRC and immune remodeling. We also discuss the biological effects of VEGFs and their receptor family as angiogenesis regulators and emphasize the clinical implications of TECs in clinical treatment.
Collapse
Affiliation(s)
- Wu-Zhen Chen
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jing-Xin Jiang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Xiu-Yan Yu
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Wen-Jie Xia
- Department of Breast Surgery, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Peng-Xin Yu
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Ke Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Zhi-Yong Zhao
- Department of Administrative Office, the First People’s Hospital of Jiande, Hangzhou 310000, Zhejiang Province, China
| | - Zhi-Gang Chen
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
61
|
Lu RM, Chiu CY, Liu IJ, Chang YL, Liu YJ, Wu HC. Novel human Ab against vascular endothelial growth factor receptor 2 shows therapeutic potential for leukemia and prostate cancer. Cancer Sci 2019; 110:3773-3787. [PMID: 31578782 PMCID: PMC6890446 DOI: 10.1111/cas.14208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) is highly expressed in tumor‐associated endothelial cells, where it modulates tumor‐promoting angiogenesis, and it is also found on the surface of tumor cells. Currently, there are no Ab therapeutics targeting VEGFR2 approved for the treatment of prostate cancer or leukemia. Therefore, development of novel efficacious anti‐VEGFR2 Abs will benefit cancer patients. We used the Institute of Cellular and Organismic Biology human Ab library and affinity maturation to develop a fully human Ab, anti‐VEGFR2‐AF, which shows excellent VEGFR2 binding activity. Anti‐VEGFR2‐AF bound Ig‐like domain 3 of VEGFR2 extracellular region to disrupt the interaction between VEGF‐A and VEGFR2, neutralizing downstream signaling of the receptor. Moreover, anti‐VEGFR2‐AF inhibited capillary structure formation and exerted Ab‐dependent cell‐mediated cytotoxicity and complement‐dependent cytotoxicity in vitro. We found that VEGFR2 is expressed in PC‐3 human prostate cancer cell line and associated with malignancy and metastasis of human prostate cancer. In a PC‐3 xenograft mouse model, treatment with anti‐VEGFR2‐AF repressed tumor growth and angiogenesis as effectively and safely as US FDA‐approved anti‐VEGFR2 therapeutic, ramucirumab. We also report for the first time that addition of anti‐VEGFR2 Ab can enhance the efficacy of docetaxel in the treatment of a prostate cancer mouse model. In HL‐60 human leukemia‐xenografted mice, anti‐VEGFR2‐AF showed better efficacy than ramucirumab with prolonged survival and reduced metastasis of leukemia cells to ovaries and lymph nodes. Our findings suggest that anti‐VEGFR2‐AF has strong potential as a cancer therapy that could directly target VEGFR2‐expressing tumor cells in addition to its anti‐angiogenic action.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chiung-Yi Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Ling Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yaw-Jen Liu
- Research and Development Center, United Biopharma Inc., Hsinshu, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
62
|
Maishi N, Kikuchi H, Sato M, Nagao-Kitamoto H, Annan DA, Baba S, Hojo T, Yanagiya M, Ohba Y, Ishii G, Masutomi K, Shinohara N, Hida Y, Hida K. Development of Immortalized Human Tumor Endothelial Cells from Renal Cancer. Int J Mol Sci 2019; 20:ijms20184595. [PMID: 31533313 PMCID: PMC6770423 DOI: 10.3390/ijms20184595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022] Open
Abstract
Tumor angiogenesis research and antiangiogenic drug development make use of cultured endothelial cells (ECs) including the human microvascular ECs among others. However, it has been reported that tumor ECs (TECs) are different from normal ECs (NECs). To functionally validate antiangiogenic drugs, cultured TECs are indispensable tools, but are not commercially available. Primary human TECs are available only in small quantities from surgical specimens and have a short life span in vitro due to their cellular senescence. We established immortalized human TECs (h-imTECs) and their normal counterparts (h-imNECs) by infection with lentivirus producing simian virus 40 large T antigen and human telomerase reverse transcriptase to overcome the replication barriers. These ECs exhibited an extended life span and retained their characteristic endothelial morphology, expression of endothelial marker, and ability of tube formation. Furthermore, h-imTECs showed their specific characteristics as TECs, such as increased proliferation and upregulation of TEC markers. Treatment with bevacizumab, an antiangiogenic drug, dramatically decreased h-imTEC survival, whereas the same treatment failed to alter immortalized NEC survival. Hence, these h-imTECs could be a valuable tool for drug screening to develop novel therapeutic agents specific to TECs or functional biological assays in tumor angiogenesis research.
Collapse
Affiliation(s)
- Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Masumi Sato
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Hiroko Nagao-Kitamoto
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Dorcas A Annan
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Shogo Baba
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Takayuki Hojo
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Department of Dental Anesthesiology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Misa Yanagiya
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan.
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.
| |
Collapse
|
63
|
Akatsu Y, Takahashi N, Yoshimatsu Y, Kimuro S, Muramatsu T, Katsura A, Maishi N, Suzuki HI, Inazawa J, Hida K, Miyazono K, Watabe T. Fibroblast growth factor signals regulate transforming growth factor-β-induced endothelial-to-myofibroblast transition of tumor endothelial cells via Elk1. Mol Oncol 2019; 13:1706-1724. [PMID: 31094056 PMCID: PMC6670013 DOI: 10.1002/1878-0261.12504] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/31/2019] [Accepted: 05/14/2019] [Indexed: 02/04/2023] Open
Abstract
The tumor microenvironment contains various components, including cancer cells, tumor vessels, and cancer-associated fibroblasts, the latter of which are comprised of tumor-promoting myofibroblasts and tumor-suppressing fibroblasts. Multiple lines of evidence indicate that transforming growth factor-β (TGF-β) induces the formation of myofibroblasts and other types of mesenchymal (non-myofibroblastic) cells from endothelial cells. Recent reports show that fibroblast growth factor 2 (FGF2) modulates TGF-β-induced mesenchymal transition of endothelial cells, but the molecular mechanisms behind the signals that control transcriptional networks during the formation of different groups of fibroblasts remain largely unclear. Here, we studied the roles of FGF2 during the regulation of TGF-β-induced mesenchymal transition of tumor endothelial cells (TECs). We demonstrated that auto/paracrine FGF signals in TECs inhibit TGF-β-induced endothelial-to-myofibroblast transition (End-MyoT), leading to suppressed formation of contractile myofibroblast cells, but on the other hand can also collaborate with TGF-β in promoting the formation of active fibroblastic cells which have migratory and proliferative properties. FGF2 modulated TGF-β-induced formation of myofibroblastic and non-myofibroblastic cells from TECs via transcriptional regulation of various mesenchymal markers and growth factors. Furthermore, we observed that TECs treated with TGF-β were more competent in promoting in vivo tumor growth than TECs treated with TGF-β and FGF2. Mechanistically, we showed that Elk1 mediated FGF2-induced inhibition of End-MyoT via inhibition of TGF-β-induced transcriptional activation of α-smooth muscle actin promoter by myocardin-related transcription factor-A. Our data suggest that TGF-β and FGF2 oppose and cooperate with each other during the formation of myofibroblastic and non-myofibroblastic cells from TECs, which in turn determines the characteristics of mesenchymal cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Yuichi Akatsu
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Biomedicine Group, Pharmaceutical Research Laboratories, Pharmaceutical Group, Nippon Kayaku Co., Ltd., Tokyo, Japan
| | - Naoya Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Yasuhiro Yoshimatsu
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Shiori Kimuro
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| | - Tomoki Muramatsu
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Japan
| | - Akihiro Katsura
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi I Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Japan
| |
Collapse
|
64
|
Izumi Y, Takagi S. Vascular disrupting effect of combretastatin A-4 phosphate with inhibition of vascular endothelial cadherin in canine osteosarcoma-xenografted mice. Res Vet Sci 2019; 122:1-6. [DOI: 10.1016/j.rvsc.2018.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 11/24/2022]
|
65
|
Zhao W, Yang L, Chen X, Qian H, Zhang S, Chen Y, Luo R, Shao J, Liu H, Chen J. Phenotypic and functional characterization of tumor-derived endothelial cells isolated from primary human hepatocellular carcinoma. Hepatol Res 2018; 48:1149-1162. [PMID: 29956443 DOI: 10.1111/hepr.13225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/31/2018] [Accepted: 06/23/2018] [Indexed: 02/08/2023]
Abstract
AIMS Tumor endothelial cells (TECs) have been investigated using human tumor xenografts in mice models. In order to provide pure human TECs for the updating of clinical anti-angiogenic cancer therapy, in the present study we established a protocol of purification of TECs derived from clinical hepatocellular carcinoma (HCC) and revealed the TEC features by in vitro and in vivo assays. METHODS We isolated TECs from fresh surgical resections of HCC by magnetic-activated cell sorting and purified by flow cytometry sorting upon CD31 expression, referred to as ECDHCCs. Next, we identified cultured ECDHCCs by morphology, phenotype, genotype, and functional assays. RESULTS The ECDHCCs appeared as Weibel-Palade bodies under electron microscopy. They expressed endothelial markers, such as CD31, CD105, and vascular endothelial growth factor receptor 2, and expressed the genes that are associated with pro-angiogenesis, especially vascular endothelial growth factor, epiregulin, and programmed cell death 10. Functionally, ECDHCCs were capable of tube formation, wound healing, and Transwell migration in vitro. These in vitro behaviors were validated by in vivo Matrigel plug assay in mice. Finally, comparison of ECDHCC with the Hep-G2 liver cancer cell line showed there was no similarity of phenotype or function between these two types of cells. CONCLUSIONS Tumor endothelial cells derived from human HCC can be isolated and purified from clinical samples by flow cytometer. They have the endothelial phenotype and morphologic features and are capable of tube formation and migration. This study provides a useful model for researchers to study tumor angiogenesis and screening of candidate targets.
Collapse
Affiliation(s)
- Wenjing Zhao
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Liping Yang
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Xudong Chen
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Hongyan Qian
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Suqing Zhang
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China.,Department of Hepatobiliary Surgery, Nantong Tumor Hospital, Nantong, China
| | - Yali Chen
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Runhua Luo
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Jingjing Shao
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Huanliang Liu
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Jianguo Chen
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China.,Qidong Cancer Registry, Qidong Liver Cancer Institute, Qidong, China
| |
Collapse
|
66
|
Giri TK. Breaking the Barrier of Cancer Through Liposome Loaded with Phytochemicals. Curr Drug Deliv 2018; 16:3-17. [DOI: 10.2174/1567201815666180918112139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/20/2018] [Accepted: 09/11/2018] [Indexed: 11/22/2022]
Abstract
Currently, the most important cause of death is cancer. To treat the cancer there are a number of drugs existing in the market but no drug is found to be completely safe and effective. The toxicity of the drugs is the key problem in the cancer chemotherapy. However, plants and plant derived bioactive molecule have proved safe and effective in the treatment of cancers. Phytochemicals that are found in fruits, vegetables, herbs, and plant extract have been usually used for treating cancer. It has been established that several herbal drug have a strong anticancer activity. However, their poor bioavailability, solubility, and stability have severely restricted their use. These problems can be overcome by incorporating the herbal drug in nanolipolomal vesicles. In last few decades, researcher have used herbal drug loaded nanoliposome for the treatment and management of a variety of cancers. Presently, a number of liposomal formulations are on the market for the treatment of cancer and many more are in pipe line. This review discusses about the tumor microenvironment, targeting mechanism of bioactive phytochemicals to the tumor tissue, background of nanoliposome, and the potential therapeutic applications of different bioactive phytochemicals loaded nanoliposome in cancer therapy.
Collapse
Affiliation(s)
- Tapan Kumar Giri
- NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| |
Collapse
|
67
|
Taguchi K, Onoe T, Yoshida T, Yamashita Y, Taniyama K, Ohdan H. Isolation of tumor endothelial cells from murine cancer. J Immunol Methods 2018; 464:105-113. [PMID: 30395818 DOI: 10.1016/j.jim.2018.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 10/27/2022]
Abstract
Tumor endothelial cells (TECs), which constitute the lining of the tumor blood vessels, have various characteristics as tumor constituent cells. In this study, we describe a novel method for the isolation of highly pure, fresh TECs, which form a small population within the tumor. Tumors were first dissected from tumor-bearing mice and digested to a single cell suspension with Collagenase Type II; the single cells were then separated by density gradient centrifugation. TECs were enriched by CD31-positive selection using magnetic activated cell sorting and subsequently purified by fluorescence activated cell sorting. The high purity of the obtained cells was verified by flow cytometry. Upon cell culture, the isolated cells showed a polygonal shape and a cobblestone appearance, which are features of the endothelial cells. Furthermore, a functional assay revealed that the TECs suppressed the proliferation of CD8+ T cells in vitro. We believe that the isolation method described in this study will enable the further elucidation of the characteristics of TECs.
Collapse
Affiliation(s)
- Kazuhiro Taguchi
- National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, Institute for Clinical Research, 3-1, Aoyamacho, Kure City, Hiroshima 737-0023, Japan; Department of Gastroenterological and Transplant Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8551, Japan
| | - Takashi Onoe
- National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, Institute for Clinical Research, 3-1, Aoyamacho, Kure City, Hiroshima 737-0023, Japan; Department of Gastroenterological and Transplant Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8551, Japan.
| | - Tomoaki Yoshida
- National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, Institute for Clinical Research, 3-1, Aoyamacho, Kure City, Hiroshima 737-0023, Japan.
| | - Yoshinori Yamashita
- National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, Institute for Clinical Research, 3-1, Aoyamacho, Kure City, Hiroshima 737-0023, Japan.
| | - Kiyomi Taniyama
- National Hospital Organization, Kure Medical Center/Chugoku Cancer Center, Institute for Clinical Research, 3-1, Aoyamacho, Kure City, Hiroshima 737-0023, Japan.
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
68
|
Klein D. The Tumor Vascular Endothelium as Decision Maker in Cancer Therapy. Front Oncol 2018; 8:367. [PMID: 30250827 PMCID: PMC6139307 DOI: 10.3389/fonc.2018.00367] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Genetic and pathophysiologic criteria prearrange the uncontrolled growth of neoplastic cells that in turn initiates new vessel formation, which is prerequisite for further tumor growth and progression. This first endothelial lining is patchy, disordered in structure and thus, angiogenic tumor vessels were proven to be functionally inferior. As a result, tumors were characterized by areas with an apparent oversupply in addition to areas with an undersupply of vessels, which complicates an efficient administration of intravenous drugs in cancer therapy and might even lower the response e.g. of radiotherapy (RT) because of the inefficient oxygen supply. In addition to the vascular dysfunction, tumor blood vessels contribute to the tumor escape from immunity by the lack of response to inflammatory activation (endothelial anergy) and by repression of leukocyte adhesion molecule expression. However, tumor vessels can remodel by the association with and integration of pericytes and smooth muscle cells which stabilize these immature vessels resulting in normalization of the vascular structures. This normalization of the tumor vascular bed could improve the efficiency of previously established therapeutic approaches, such as chemo- or radiotherapy by a more homogenous drug and oxygen distribution, and/or by overcoming endothelial anergy. This review highlights the current investigations that take advantage of a proper vascular function for improving cancer therapy with a special focus on the endothelial-immune system interplay.
Collapse
Affiliation(s)
- Diana Klein
- Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
69
|
Marsboom G, Rehman J. Hypoxia Signaling in Vascular Homeostasis. Physiology (Bethesda) 2018; 33:328-337. [PMID: 30109825 PMCID: PMC6230550 DOI: 10.1152/physiol.00018.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 01/10/2023] Open
Abstract
Hypoxia signaling in the vasculature controls vascular permeability, inflammation, vascular growth, and repair of vascular injury. In this review, we summarize recent insights in this burgeoning field and highlight the importance of studying the heterogeneity of hypoxia responses among individual patients, distinct vascular beds, and even individual vascular cells.
Collapse
Affiliation(s)
- Glenn Marsboom
- Department of Pharmacology, University of Illinois College of Medicine , Chicago, Illinois
| | - Jalees Rehman
- Department of Pharmacology, University of Illinois College of Medicine , Chicago, Illinois
- Department of Medicine, Section of Cardiology, University of Illinois College of Medicine , Chicago, Illinois
| |
Collapse
|
70
|
Klymenko Y, Nephew KP. Epigenetic Crosstalk between the Tumor Microenvironment and Ovarian Cancer Cells: A Therapeutic Road Less Traveled. Cancers (Basel) 2018; 10:E295. [PMID: 30200265 PMCID: PMC6162502 DOI: 10.3390/cancers10090295] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Metastatic dissemination of epithelial ovarian cancer (EOC) predominantly occurs through direct cell shedding from the primary tumor into the intra-abdominal cavity that is filled with malignant ascitic effusions. Facilitated by the fluid flow, cells distribute throughout the cavity, broadly seed and invade through peritoneal lining, and resume secondary tumor growth in abdominal and pelvic organs. At all steps of this unique metastatic process, cancer cells exist within a multidimensional tumor microenvironment consisting of intraperitoneally residing cancer-reprogramed fibroblasts, adipose, immune, mesenchymal stem, mesothelial, and vascular cells that exert miscellaneous bioactive molecules into malignant ascites and contribute to EOC progression and metastasis via distinct molecular mechanisms and epigenetic dysregulation. This review outlines basic epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA regulators, and summarizes current knowledge on reciprocal interactions between each participant of the EOC cellular milieu and tumor cells in the context of aberrant epigenetic crosstalk. Promising research directions and potential therapeutic strategies that may encompass epigenetic tailoring as a component of complex EOC treatment are discussed.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
| | - Kenneth P Nephew
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Cellular and Integrative Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
71
|
Qian H, Yang L, Zhao W, Chen H, He S. A comparison of CD105 and CD31 expression in tumor vessels of hepatocellular carcinoma by tissue microarray and flow cytometry. Exp Ther Med 2018; 16:2881-2888. [PMID: 30214510 PMCID: PMC6125829 DOI: 10.3892/etm.2018.6553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/19/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor endothelial cells (TECs) have been isolated from solid tumors by using immunological magnetic beads and magnetic active cell sorting, and lead to a more precise way to investigate tumor angiogenesis as well as screening of vascular targeting drugs. However, the question of which endothelial marker is a stable molecular signature in TECs and can be used for the isolation of TECs from tumor tissues remains unclear. In this study, we investigated the endothelial markers CD105 and CD31 in the tumor vessels from 90 patients with hepatocellular carcinoma (HCC) by tissue microarray, in addition to their expression in TECs isolated from fresh tissues resected from 11 patients with HCC by flow cytometry and confocal microscopy. The results revealed that among 90 cases of TMA, all tumor vessels were CD31 positive whereas 39 cases (43.3%) had little or no CD105 expression in tumors and their vessels but not peritumoral tissue spots, and that among these 39, 29 cases (74.4%) were poor-differentiated HCC. These findings were further verified by flow cytometry and confocal analysis of TECs isolated from HCC. Overall, the results suggested that CD105 may not be expressed in TECs derived from poor-differentiated HCC cases. In addition, combined with previous studies in which CD105 is not only expressed in TECs, but also in tumor cells, the results indicated a high risk of contamination with CD105+ tumor cells. Thus, there is a limitation to the use CD105 as an endothelial marker for the isolation of TECs.
Collapse
Affiliation(s)
- Hongyan Qian
- Key Laboratory of Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Liping Yang
- Key Laboratory of Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Wenjing Zhao
- Key Laboratory of Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Haizhen Chen
- Key Laboratory of Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Song He
- Key Laboratory of Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226361, P.R. China
| |
Collapse
|
72
|
Stromal cells in breast cancer as a potential therapeutic target. Oncotarget 2018; 9:23761-23779. [PMID: 29805773 PMCID: PMC5955086 DOI: 10.18632/oncotarget.25245] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer in the United States is the second most commonly diagnosed cancer in women. About 1 in 8 women will develop invasive breast cancer over the course of her lifetime and breast cancer remains the second leading cause of cancer-related death. In pursuit of novel therapeutic strategies, researchers have examined the tumor microenvironment as a potential anti-cancer target. In addition to neoplastic cells, the tumor microenvironment is composed of several critical normal cell types, including fibroblasts, vascular and lymph endothelial cells, osteoclasts, adipocytes, and immune cells. These cells have important roles in healthy tissue stasis, which frequently are altered in tumors. Indeed, tumor-associated stromal cells often contribute to tumorigenesis, tumor progression, and metastasis. Consequently, these host cells may serve as a possible target in anti-tumor and anti-metastatic therapeutic strategies. Targeting the tumor associated host cells offers the benefit that such cells do not mutate and develop resistance in response to treatment, a major cause of failure in cancer therapeutics targeting neoplastic cells. This review discusses the role of host cells in the tumor microenvironment during tumorigenesis, progression, and metastasis, and provides an overview of recent developments in targeting these cell populations to enhance cancer therapy efficacy.
Collapse
|
73
|
Hida K, Maishi N, Annan DA, Hida Y. Contribution of Tumor Endothelial Cells in Cancer Progression. Int J Mol Sci 2018; 19:ijms19051272. [PMID: 29695087 PMCID: PMC5983794 DOI: 10.3390/ijms19051272] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Tumor progression depends on the process of angiogenesis, which is the formation of new blood vessels. These newly formed blood vessels supply oxygen and nutrients to the tumor, supporting its progression and providing a gateway for tumor metastasis. Tumor angiogenesis is regulated by the balance between angiogenic activators and inhibitors within the tumor microenvironment. Because the newly formed tumor blood vessels originate from preexisting normal vessels, tumor blood vessels, and tumor endothelial cells (TECs) have historically been considered to be the same as normal blood vessels and endothelial cells; however, evidence of TECs’ distinctive abnormal phenotypes has increased. In addition, it has been revealed that TECs constitute a heterogeneous population. Thus, TECs that line tumor blood vessels are important targets in cancer therapy. We have previously reported that TECs induce cancer metastasis. In this review, we describe recent studies on TEC abnormalities related to cancer progression to provide insight into new anticancer therapies.
Collapse
Affiliation(s)
- Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Dorcas A Annan
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-0815, Japan.
| |
Collapse
|
74
|
Hojo T, Maishi N, Towfik AM, Akiyama K, Ohga N, Shindoh M, Hida Y, Minowa K, Fujisawa T, Hida K. ROS enhance angiogenic properties via regulation of NRF2 in tumor endothelial cells. Oncotarget 2018; 8:45484-45495. [PMID: 28525375 PMCID: PMC5542202 DOI: 10.18632/oncotarget.17567] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are unstable molecules that activate oxidative stress. Because of the insufficient blood flow in tumors, the tumor microenvironment is often exposed to hypoxic condition and nutrient deprivation, which induces ROS accumulation. We isolated tumor endothelial cells (TECs) and found that they have various abnormalities, although the underlying mechanisms are not fully understood. Here we showed that ROS were accumulated in tumor blood vessels and ROS enhanced TEC migration with upregulation of several angiogenesis related gene expressions. It was also demonstrated that these genes were upregulated by regulation of Nuclear factor erythroid 2-related factor 2 (NRF2). Among these genes, we focused on Biglycan, a small leucine-rich proteoglycan. Inhibition of Toll-like receptors 2 and 4, known BIGLYCAN (BGN) receptors, cancelled the TEC motility stimulated by ROS. ROS inhibited NRF2 expression in TECs but not in NECs, and NRF2 inhibited phosphorylation of SMAD2/3, which activates transcription of BGN. These results indicated that ROS-induced BGN caused the pro-angiogenic phenotype in TECs via NRF2 dysregulation.
Collapse
Affiliation(s)
- Takayuki Hojo
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Department of Dental Anesthesiology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Alam Mohammad Towfik
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Department of Dental Radiology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Kosuke Akiyama
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Noritaka Ohga
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Masanobu Shindoh
- Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Kazuyuki Minowa
- Department of Dental Radiology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Toshiaki Fujisawa
- Department of Dental Anesthesiology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
75
|
Wagner SC, Ichim TE, Bogin V, Min WP, Silva F, Patel AN, Kesari S. Induction and characterization of anti-tumor endothelium immunity elicited by ValloVax therapeutic cancer vaccine. Oncotarget 2018; 8:28595-28613. [PMID: 28404894 PMCID: PMC5438675 DOI: 10.18632/oncotarget.15563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
ValloVax is a placental endothelium derived vaccine which induces tissue-nonspecific antitumor immunity by blocking tumor angiogesis. To elucidate mechanisms of action, we showed that production of ValloVax, which involves treating placental endothelial cells with IFN-gamma, results in upregulation of HLA and costimulatory molecules. It was shown that in mixed lymphocyte reaction, ValloVax induces Type I cytokines and allo-proliferative responses. Plasma from ValloVax immunized mice was capable of killing in vitro tumor-like endothelium but not control endothelium. Using defined antigens associated with tumor endothelial cells, specific molecular entities were identified as being targeted by ValloVax induced antibodies. Binding of predominantly IgG antibodies to ValloVax cells was confirmed by flow cytometry. Further suggesting direct killing of tumor endothelial cells was expression of TUNEL positive cells, as well as, reduction in tumor oxygenation. Supporting a role for antibody mediated responses, cell depletion experiments suggested a predominant role of B cells in maintaining an intact anti-tumor endothelial response. Adoptive transfer experiments suggested that infusion of CD3+ T cells from immunized mice was sufficient to transfer tumor protection. Generation of memory T cells selective to tumor endothelial specific markers was observed. Functional confirmation of memory responses was observed in tumor rechallenge experiments. Furthermore, we observed that both PD-1 or CTLA-4 blockade augmented antitumor effects of ValloVax. These data suggest a T cell induced B cell mediated anti-tumor endothelial response and set the framework clinical trials through elucidation of mechanism of action.
Collapse
Affiliation(s)
| | | | | | - Wei-Ping Min
- Department of Immunology, University of Western Ontario, London, Ontario, Canada
| | - Francisco Silva
- Department of Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Amit N Patel
- Department of Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Santosh Kesari
- John Wayne Cancer Institute and Pacific Neuroscience Institute, Santa Monica, CA, USA
| |
Collapse
|
76
|
Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial Cell Metabolism. Physiol Rev 2018; 98:3-58. [PMID: 29167330 PMCID: PMC5866357 DOI: 10.1152/physrev.00001.2017] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are more than inert blood vessel lining material. Instead, they are active players in the formation of new blood vessels (angiogenesis) both in health and (life-threatening) diseases. Recently, a new concept arose by which EC metabolism drives angiogenesis in parallel to well-established angiogenic growth factors (e.g., vascular endothelial growth factor). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3-driven glycolysis generates energy to sustain competitive behavior of the ECs at the tip of a growing vessel sprout, whereas carnitine palmitoyltransferase 1a-controlled fatty acid oxidation regulates nucleotide synthesis and proliferation of ECs in the stalk of the sprout. To maintain vascular homeostasis, ECs rely on an intricate metabolic wiring characterized by intracellular compartmentalization, use metabolites for epigenetic regulation of EC subtype differentiation, crosstalk through metabolite release with other cell types, and exhibit EC subtype-specific metabolic traits. Importantly, maladaptation of EC metabolism contributes to vascular disorders, through EC dysfunction or excess angiogenesis, and presents new opportunities for anti-angiogenic strategies. Here we provide a comprehensive overview of established as well as newly uncovered aspects of EC metabolism.
Collapse
Affiliation(s)
- Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Brian W Wong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|
77
|
Tsuru M, Sata M, Tanaka M, Umeyama H, Kodera Y, Shiwa M, Aoyagi N, Yasuda K, Matsuoka K, Fukuda T, Yamana H, Nagata K. Retrospective Proteomic Analysis of a Novel, Cancer Metastasis-Promoting RGD-Containing Peptide. Transl Oncol 2017; 10:998-1007. [PMID: 29096248 PMCID: PMC5671418 DOI: 10.1016/j.tranon.2017.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022] Open
Abstract
Patients who undergo surgical extirpation of a primary liver carcinoma followed by radiotherapy and chemotherapy leading to complete remission are nevertheless known to develop cancerous metastases 3-10 years later. We retrospectively examined the blood sera collected over 8 years from 30 patients who developed bone metastases after the complete remission of liver cancer to identify serum proteins showing differential expression compared to patients without remission. We detected a novel RGD (Arg-Gly-Asp)-containing peptide derived from the C-terminal portion of fibrinogen in the sera of metastatic patients that appeared to control the EMT (epithelial-mesenchymal transition) of cancer cells, in a process associated with miR-199a-3p. The RGD peptide enhanced new blood vessel growth and increased vascular endothelial growth factor levels when introduced into fertilized chicken eggs. The purpose of this study was to enable early detection of metastatic cancer cells using the novel RGD peptide as a biomarker, and thereby develop new drugs for the treatment of metastatic cancer.
Collapse
Affiliation(s)
- Michiyo Tsuru
- Clinical Proteomics and Gene Therapy Laboratory, Kurume University, Kurume, Japan; Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan; Department of Orthopedic Surgery, Kurume University School of Medicine, Kurume, Japan.
| | - Michio Sata
- Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan; Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Maki Tanaka
- Department of Surgery, Kurume General Hospital, Kurume, Japan
| | - Hideaki Umeyama
- Department of Biological Science, Chuo University, Tokyo, Japan
| | - Yoshio Kodera
- Department of Physics, School of Science, Kitasato University, Kanagawa, Japan
| | - Mieko Shiwa
- Life Science Division, Bio-Rad Laboratories K.K., Tokyo, Japan
| | - Norikazu Aoyagi
- Life Science Division, Bio-Rad Laboratories K.K., Tokyo, Japan
| | | | - Kei Matsuoka
- Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan; Department of Urology, Kurume University, Kurume, Japan
| | - Takaaki Fukuda
- Center for Rheumatology, Kurume University School of Medicine, Kurume, Japan
| | - Hideaki Yamana
- Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan; Center for Multidisciplinary Treatment of Cancer, Kurume University School of Medicine, Kurume, Japan
| | - Kensei Nagata
- Clinical Proteomics and Gene Therapy Laboratory, Kurume University, Kurume, Japan; Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan; Department of Orthopedic Surgery, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
78
|
Tan J, Yang N, Zhong L, Tan J, Hu Z, Zhao Q, Gong W, Zhang Z, Zheng R, Lai Z, Li Y, Zhou C, Zhang G, Zheng D, Zhang Y, Wu S, Jiang X, Zhong J, Huang Y, Zhou S, Zhao Y. A New Theranostic System Based on Endoglin Aptamer Conjugated Fluorescent Silica Nanoparticles. Am J Cancer Res 2017; 7:4862-4876. [PMID: 29187909 PMCID: PMC5706105 DOI: 10.7150/thno.19101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Tumor vessels can potentially serve as diagnostic, prognostic and therapeutic targets for solid tumors. Fluorescent dyes are commonly used as biological indicators, while photobleaching seriously hinders their application. In this study, we aim to generate a fluorescent silica nanoparticles (FSiNPs) theranostic system marked by the mouse endgolin (mEND) aptamer, YQ26. Methods: A highly specific YQ26 was selected by using gene-modified cell line-based SELEX technique. FSiNPs were prepared via the reverse microemulsion method. The YQ26-FSiNPs theranostic system was developed by combining YQ26 with the FSiNPs for in vivo tumor imaging, treatment and monitoring. Results: Both in vitro experiments (i.e. cellular and tumor tissue targeting assays) and in vivo animal studies (i.e. in vivo imaging and antitumor efficacy of YQ26-FSiNPs) clearly demonstrated that YQ26-FSiNPs could achieve prominently high targeting efficiency and therapeutic effects via aptamer YQ26-mediated binding to endoglin (END) molecule. Conclusion: This simple, sensitive, and specific YQ26-FSiNPs theranostic system has a great potential for clinical tumor targeting imaging and treatment.
Collapse
|
79
|
Hida K, Kawamoto T, Maishi N, Morimoto M, Akiyama K, Ohga N, Shindoh M, Shinohara N, Hida Y. miR-145 promoted anoikis resistance in tumor endothelial cells. J Biochem 2017; 162:81-84. [PMID: 28510655 DOI: 10.1093/jb/mvx033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/01/2017] [Indexed: 11/14/2022] Open
Abstract
Tumor progression is dependent on tumor angiogenesis. We previously reported that the phenotype of tumor endothelial cells (TECs) is distinct from normal endothelial cells (NECs). Herein, we conducted a pathway analysis using a public TEC microarray database and identified several putative TEC-specific miRNAs. We found that miR-145 expression was upregulated in TECs and that miR-145 enhanced cell adhesion and anoikis resistance and upregulated Bcl-2 and Bcl-xl via ERK1/2 in human microvascular endothelial cells. These findings suggested that miR-145 is involved in the acquisition of the TEC phenotype, partially. Therefore, miR-145 and its target genes may be molecular targets for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Taisuke Kawamoto
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Masahiro Morimoto
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-0815, Japan
| | - Kosuke Akiyama
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Noritaka Ohga
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-0815, Japan
| | - Masanobu Shindoh
- Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | | | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
80
|
Hida K, Maishi N, Akiyama K, Ohmura-Kakutani H, Torii C, Ohga N, Osawa T, Kikuchi H, Morimoto H, Morimoto M, Shindoh M, Shinohara N, Hida Y. Tumor endothelial cells with high aldehyde dehydrogenase activity show drug resistance. Cancer Sci 2017; 108:2195-2203. [PMID: 28851003 PMCID: PMC5666026 DOI: 10.1111/cas.13388] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 01/11/2023] Open
Abstract
Tumor blood vessels play an important role in tumor progression and metastasis. We previously reported that tumor endothelial cells (TEC) exhibit several altered phenotypes compared with normal endothelial cells (NEC). For example, TEC have chromosomal abnormalities and are resistant to several anticancer drugs. Furthermore, TEC contain stem cell‐like populations with high aldehyde dehydrogenase (ALDH) activity (ALDHhighTEC). ALDHhighTEC have proangiogenic properties compared with ALDHlowTEC. However, the association between ALDHhighTEC and drug resistance remains unclear. In the present study, we found that ALDH mRNA expression and activity were higher in both human and mouse TEC than in NEC. Human NEC:human microvascular endothelial cells (HMVEC) were treated with tumor‐conditioned medium (tumor CM). The ALDHhigh population increased along with upregulation of stem‐related genes such as multidrug resistance 1, CD90, ALP, and Oct‐4. Tumor CM also induced sphere‐forming ability in HMVEC. Platelet‐derived growth factor (PDGF)‐A in tumor CM was shown to induce ALDH expression in HMVEC. Finally, ALDHhighTEC were resistant to fluorouracil (5‐FU) in vitro and in vivo. ALDHhighTEC showed a higher grade of aneuploidy compared with that in ALDHlowTEC. These results suggested that tumor‐secreting factor increases ALDHhighTEC populations that are resistant to 5‐FU. Therefore, ALDHhighTEC in tumor blood vessels might be an important target to overcome or prevent drug resistance.
Collapse
Affiliation(s)
- Kyoko Hida
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Nako Maishi
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kosuke Akiyama
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Hitomi Ohmura-Kakutani
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Chisaho Torii
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Noritaka Ohga
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Takahiro Osawa
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kikuchi
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hirofumi Morimoto
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Department of Gastroenterological Surgery II, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Morimoto
- Vascular Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Masanobu Shindoh
- Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
81
|
Zubatkina I, Ivanov P. Early imaging radioresponsiveness of melanoma brain metastases as a predictor of patient prognosis. J Neurosurg 2017; 129:354-365. [PMID: 28841116 DOI: 10.3171/2017.1.jns162075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The aim of this study was to analyze the early radiological response of melanoma brain metastases to single high-dose irradiation and to reveal possible correlations between tumor radioresponsiveness and patient clinical outcomes. METHODS The authors performed a retrospective analysis of the medical data for all patients with melanoma brain metastases who had undergone Gamma Knife radiosurgery (GKRS) and follow-up MRI examinations with standard protocols at regular 2- to 3-month intervals. Volumetric measurements of the metastases on pretreatment and initial posttreatment images were performed to assess the rate of early radiological response. Patients were divided into 2 groups according to the rate of response, and overall survival, local control, and the appearance of new metastases in the brain were compared in these groups using the long-rank test. Univariate and multivariate analyses were performed to identify predictors of clinical outcomes. RESULTS After retrospective analysis of 298 melanoma brain metastases in 78 patients, the authors determined that early radiological responses of these metastases to GKRS differ considerably and can be divided into 2 distinct groups. One group of tumors underwent rapid shrinkage after radiosurgery, whereas the other showed minor fluctuations in size (rapid- and slow-response groups, respectively). Median survival for patients with a slow response was 15.2 months compared with 6.3 months for those with a rapid response (p < 0.0001). In the multivariate analysis, improved overall survival was associated with a slow response to radiosurgery (p < 0.0001), stable systemic disease (p = 0.001), and a higher Karnofsky Performance Scale score (p = 0.001). Stratification by Recursive Partitioning Analysis, score index for radiosurgery, and diagnosis-specific Graded Prognostic Assessment classes further confirmed the difference in overall survival for patients with a slow versus rapid radiation response. Local recurrence was observed in 11% of patients with a rapid response and in 6% of patients with a slow response, at a median of more than 8 months after radiosurgery. New brain metastases were diagnosed in 67% of patients with a slow response at a median of 8.6 months after radiosurgery and in 82% of patients with a rapid response at a considerably earlier median time of 2.7 months. In the multivariate analysis, a longer time to the development of new brain metastases was associated with a slow response (p = 0.012), stable systemic disease (p = 0.034), and a single brain metastasis (p = 0.030). CONCLUSIONS Melanoma brain metastases show different early radioresponsiveness to radiosurgery. Rapid shrinkage of brain metastases is associated with poor patient prognosis, which may indicate more aggressive biological behavior of this tumor phenotype.
Collapse
Affiliation(s)
- Irina Zubatkina
- 1Department of Radiosurgery, Stereotactic Radiotherapy and General Oncology Clinic MIBS; and
| | - Pavel Ivanov
- 1Department of Radiosurgery, Stereotactic Radiotherapy and General Oncology Clinic MIBS; and.,2Department of Neurooncology, Polenov Russian Scientific Research Institute of Neurosurgery, Branch of Federal Almazov North-West Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
82
|
Maishi N, Hida K. Tumor endothelial cells accelerate tumor metastasis. Cancer Sci 2017; 108:1921-1926. [PMID: 28763139 PMCID: PMC5623747 DOI: 10.1111/cas.13336] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022] Open
Abstract
Tumor metastasis is the main cause of cancer-related death. Understanding the molecular mechanisms underlying tumor metastasis is crucial to control this fatal disease. Several molecular pathways orchestrate the complex biological cell events during a metastatic cascade. It is now well known that bidirectional interaction between tumor cells and their microenvironment, including tumor stroma, is important for tumor progression and metastasis. Tumor stromal cells, which acquire their specific characteristics in the tumor microenvironment, accelerate tumor malignancy. The formation of new blood vessels, termed as tumor angiogenesis, is a requirement for tumor progression. Tumor blood vessels supply nutrients and oxygen and also provide the route for metastasis. Tumor endothelial cells, which line tumor blood vessels, also exhibit several altered phenotypes compared with those of their normal counterparts. Recent studies have emphasized "angiocrine factors" that are released from tumor endothelial cells and promote tumor progression. During intravasation, tumor cells physically contact tumor endothelial cells and interact with them by juxtacrine and paracrine signaling. Recently, we observed that in highly metastatic tumors, tumor endothelial cells interact with tumor cells by secretion of a small leucine-rich repeat proteoglycan known as biglycan. Biglycan from tumor endothelial cells stimulates the tumor cells to metastasize. In the present review, we highlight the role of tumor stromal cells, particularly endothelial cells, in the initial steps of tumor metastasis.
Collapse
Affiliation(s)
- Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
83
|
Izumi Y, Aoshima K, Hoshino Y, Takagi S. Effects of combretastatin A-4 phosphate on canine normal and tumor tissue-derived endothelial cells. Res Vet Sci 2017; 112:222-228. [DOI: 10.1016/j.rvsc.2017.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/19/2017] [Accepted: 05/12/2017] [Indexed: 12/09/2022]
|
84
|
Pautu V, Leonetti D, Lepeltier E, Clere N, Passirani C. Nanomedicine as a potent strategy in melanoma tumor microenvironment. Pharmacol Res 2017; 126:31-53. [PMID: 28223185 DOI: 10.1016/j.phrs.2017.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Melanoma originated from melanocytes is the most aggressive type of skin cancer. Despite considerable progresses in clinical treatment with the discovery of BRAF or MEK inhibitors and monoclonal antibodies, the durability of response to treatment is often limited to the development of acquired resistance and systemic toxicity. The limited success of conventional treatment highlights the importance of understanding the role of melanoma tumor microenvironment in tumor developement and drug resistance. Nanoparticles represent a promising strategy for the development of new cancer treatments able to improve the bioavailability of drugs and increase their penetration by targeting specifically tumors cells and/or tumor environment. In this review, we will discuss the main influence of tumor microenvironment in melanoma growth and treatment outcome. Furthermore, third generation loaded nanotechnologies represent an exciting tool for detection, treatment, and escape from possible mechanism of resistance mediated by tumor microenvironment, and will be highlighted in this review.
Collapse
Affiliation(s)
- Vincent Pautu
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | | | - Elise Lepeltier
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Nicolas Clere
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Catherine Passirani
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| |
Collapse
|
85
|
Hida K, Kikuchi H, Maishi N, Hida Y. ATP-binding cassette transporters in tumor endothelial cells and resistance to metronomic chemotherapy. Cancer Lett 2017; 400:305-310. [PMID: 28216371 DOI: 10.1016/j.canlet.2017.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Abstract
Drug resistance is a major problem in anticancer therapy. ATP-binding cassette (ABC) transporters have a role in the multidrug resistance. A new regimen of chemotherapy has been proposed, called "metronomic chemotherapy". Metronomic chemotherapy is the frequent, regular administration of drug doses designed to maintain low, but active, concentrations of chemotherapeutic drugs over prolonged periods of time, without causing serious toxicities. Metronomic chemotherapy regimens were developed to optimize the antitumor efficacy of agents that target the tumor vasculature instead of tumor cells, and to reduce toxicity of antineoplastic drugs [1]. Nevertheless, recent studies revealed that ABC transporters are expressed at a higher level in the endothelium in the tumor. To avoid resistance to metronomic anti-angiogenic chemotherapy, ABC transporter inhibition of tumor endothelial cells may be a promising strategy. In this mini-review, we discuss the possible mechanism of resistance to metronomic chemotherapy from the viewpoint of tumor endothelial cell biology, focusing on ABC transporters.
Collapse
Affiliation(s)
- Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan; Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
86
|
Aneuploidy of a murine immortalized endothelial cell line, MS1. J Oral Biosci 2017. [DOI: 10.1016/j.job.2016.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
87
|
Lupo G, Caporarello N, Olivieri M, Cristaldi M, Motta C, Bramanti V, Avola R, Salmeri M, Nicoletti F, Anfuso CD. Anti-angiogenic Therapy in Cancer: Downsides and New Pivots for Precision Medicine. Front Pharmacol 2017; 7:519. [PMID: 28111549 PMCID: PMC5216034 DOI: 10.3389/fphar.2016.00519] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
Primary solid tumors originate close to pre-existing tissue vasculature, initially growing along such tissue blood vessels, and this phenomenon is important for the metastatic potential which frequently occurs in highly vascularized tissues. Unfortunately, preclinic and clinic anti-angiogenic approaches have not been very successful, and multiple factors have been found to contribute to toxicity and tumor resistance. Moreover, tumors can highlight intrinsic or acquired resistances, or show adaptation to the VEGF-targeted therapies. Furthermore, different mechanisms of vascularization, activation of alternative signaling pathways, and increased tumor aggressiveness make this context even more complex. On the other hand, it has to be considered that the transitional restoration of normal, not fenestrated, microvessels allows the drug to reach the tumor and act with the maximum efficiency. However, these effects are time-limited and different, depending on the various types of cancer, and clearly define a specific “normalization window.” So, new horizons in the therapeutic approaches consist on the treatment of the tumor with pro- (instead of anti-) angiogenic therapies, which could strengthen a network of well-structured blood vessels that facilitate the transport of the drug.
Collapse
Affiliation(s)
- Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Nunzia Caporarello
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Melania Olivieri
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Martina Cristaldi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Carla Motta
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Vincenzo Bramanti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Roberto Avola
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Carmelina D Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| |
Collapse
|
88
|
Shaikh MV, Kala M, Nivsarkar M. CD90 a potential cancer stem cell marker and a therapeutic target. Cancer Biomark 2016; 16:301-7. [PMID: 27062695 DOI: 10.3233/cbm-160590] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer Stem Cells (CSCs) have been recently identified and their role in carcinogenesis has been ascertained. CSCs have been correlated with high relapse in certain cancers, multiple drug resistance against chemotherapy and metastasis. Several markers such as CD133, CD24, CD44, EpCAM, and CD26 have been identified to isolate and characterize CSCs. None of these markers or their combinations are universal in nature and can be used to isolate CSCs from all types of cancer. CD90 is one such marker whose expression has been extensively studied in recent years. CD90+ cells have been isolated from several types of tumors and shown to exhibit cardinal properties of CSCs such as proliferation, differentiation, spheroid formation, metastasis and ability to form tumor xenograft in immunodeficient mice. It is also found to be co-expressed with several other CSC markers. CD90 is therefore, suggested as a candidate marker as well as a potential therapeutic target for elimination of CSCs.
Collapse
Affiliation(s)
- Muhammad Vaseem Shaikh
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development Centre, S. G. Highway, Thaltej, Ahmedabad, Gujarat, India.,Faculty of Pharmacy, NIRMA University, Sarkhej-Gandhinagar Highway, Gota, Ahmedabad, Gujarat, India
| | - Manika Kala
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development Centre, S. G. Highway, Thaltej, Ahmedabad, Gujarat, India.,Faculty of Pharmacy, NIRMA University, Sarkhej-Gandhinagar Highway, Gota, Ahmedabad, Gujarat, India
| | - Manish Nivsarkar
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development Centre, S. G. Highway, Thaltej, Ahmedabad, Gujarat, India
| |
Collapse
|
89
|
Meng M, Liao H, Zhang B, Pan Y, Kong Y, Liu W, Yang P, Huo Z, Cao Z, Zhou Q. Cigarette smoke extracts induce overexpression of the proto-oncogenic gene interleukin-13 receptor α2 through activation of the PKA-CREB signaling pathway to trigger malignant transformation of lung vascular endothelial cells and angiogenesis. Cell Signal 2016; 31:15-25. [PMID: 27986643 DOI: 10.1016/j.cellsig.2016.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/03/2016] [Accepted: 12/12/2016] [Indexed: 01/23/2023]
Abstract
Cigarette smoking is a major cause of lung cancer. Tumor-associated endothelial cells (TAECs) play important roles in tumor angiogenesis and metastasis. However, whether cigarette smoking can trigger genesis of lung TAECs has not been reported yet. In the current study, we used lung endothelial cell (EC) lines as a model to study the pathological effect of cigarette smoke extracts (CSEs) on human lung ECs, and found that a lower dose of 4% CSEs obviously caused abnormal morphological changes in ECs, increased the permeability of endothelial monolayer, while a higher concentration of 8% CSEs caused EC apoptosis. Strikingly, CSEs induced a 117-fold overexpression of a pro-tumorigenic interleukin-13 receptor α2 gene (IL-13Rα2, also named as CT-19) through activation of the protein kinase A (PKA) and cAMP response element-binding protein (CREB) signaling pathway. A PKA specific inhibitor H89 completely abolished CSEs-induced IL-13Rα2 overexpression. The overexpression of IL-13Rα2 in lung ECs significantly increased the tumorigenic, migratory, and angiogenic capabilities of the cells, suggesting that IL-13Rα2 promotes genesis of lung TAECs. Together, our data show that CSEs activate the PKA, CREB, and IL-13Rα2 axis in lung ECs, and IL-13Rα2 promotes the malignant transformation of lung ECs and genesis of TAECs with robust angiogenic and oncogenic capabilities. Our study provides new insight into the mechanism of CSEs-triggered lung cancer angiogenesis and tumorigenesis, suggesting that the PKA-CREB-IL-13Rα2 axis is a potential target for novel anti-lung tumor angiogenesis and anti-lung cancer drug discovery.
Collapse
Affiliation(s)
- Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huaidong Liao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bin Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanyan Pan
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ying Kong
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenming Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ping Yang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zihe Huo
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhifei Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
90
|
Naschberger E, Liebl A, Schellerer VS, Schütz M, Britzen-Laurent N, Kölbel P, Schaal U, Haep L, Regensburger D, Wittmann T, Klein-Hitpass L, Rau TT, Dietel B, Méniel VS, Clarke AR, Merkel S, Croner RS, Hohenberger W, Stürzl M. Matricellular protein SPARCL1 regulates tumor microenvironment-dependent endothelial cell heterogeneity in colorectal carcinoma. J Clin Invest 2016; 126:4187-4204. [PMID: 27721236 PMCID: PMC5096916 DOI: 10.1172/jci78260] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/06/2016] [Indexed: 12/13/2022] Open
Abstract
Different tumor microenvironments (TMEs) induce stromal cell plasticity that affects tumorigenesis. The impact of TME-dependent heterogeneity of tumor endothelial cells (TECs) on tumorigenesis is unclear. Here, we isolated pure TECs from human colorectal carcinomas (CRCs) that exhibited TMEs with either improved (Th1-TME CRCs) or worse clinical prognosis (control-TME CRCs). Transcriptome analyses identified markedly different gene clusters that reflected the tumorigenic and angiogenic activities of the respective TMEs. The gene encoding the matricellular protein SPARCL1 was most strongly upregulated in Th1-TME TECs. It was also highly expressed in ECs in healthy colon tissues and Th1-TME CRCs but low in control-TME CRCs. In vitro, SPARCL1 expression was induced in confluent, quiescent ECs and functionally contributed to EC quiescence by inhibiting proliferation, migration, and sprouting, whereas siRNA-mediated knockdown increased sprouting. In human CRC tissues and mouse models, vessels with SPARCL1 expression were larger and more densely covered by mural cells. SPARCL1 secretion from quiescent ECs inhibited mural cell migration, which likely led to stabilized mural cell coverage of mature vessels. Together, these findings demonstrate TME-dependent intertumoral TEC heterogeneity in CRC. They further indicate that TEC heterogeneity is regulated by SPARCL1, which promotes the cell quiescence and vessel homeostasis contributing to the favorable prognoses associated with Th1-TME CRCs.
Collapse
Affiliation(s)
- Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Andrea Liebl
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Vera S. Schellerer
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Manuela Schütz
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Patrick Kölbel
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Ute Schaal
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Lisa Haep
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Daniela Regensburger
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Thomas Wittmann
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Ludger Klein-Hitpass
- Institute of Cell Biology, Faculty of Medicine, University Medical Center Essen, Essen, Germany
| | - Tilman T. Rau
- Institute of Pathology, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Barbara Dietel
- Department of Cardiology and Angiology, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Valérie S. Méniel
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Alan R. Clarke
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Susanne Merkel
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Roland S. Croner
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Werner Hohenberger
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| |
Collapse
|
91
|
Tumour endothelial cells in high metastatic tumours promote metastasis via epigenetic dysregulation of biglycan. Sci Rep 2016; 6:28039. [PMID: 27295191 PMCID: PMC4904795 DOI: 10.1038/srep28039] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/27/2016] [Indexed: 11/15/2022] Open
Abstract
Tumour blood vessels are gateways for distant metastasis. Recent studies have revealed that tumour endothelial cells (TECs) demonstrate distinct phenotypes from their normal counterparts. We have demonstrated that features of TECs are different depending on tumour malignancy, suggesting that TECs communicate with surrounding tumour cells. However, the contribution of TECs to metastasis has not been elucidated. Here, we show that TECs actively promote tumour metastasis through a bidirectional interaction between tumour cells and TECs. Co-implantation of TECs isolated from highly metastatic tumours accelerated lung metastases of low metastatic tumours. Biglycan, a small leucine-rich repeat proteoglycan secreted from TECs, activated tumour cell migration via nuclear factor-κB and extracellular signal–regulated kinase 1/2. Biglycan expression was upregulated by DNA demethylation in TECs. Collectively, our results demonstrate that TECs are altered in their microenvironment and, in turn, instigate tumour cells to metastasize, which is a novel mechanism for tumour metastasis.
Collapse
|
92
|
Hida K, Maishi N, Sakurai Y, Hida Y, Harashima H. Heterogeneity of tumor endothelial cells and drug delivery. Adv Drug Deliv Rev 2016; 99:140-147. [PMID: 26626622 DOI: 10.1016/j.addr.2015.11.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/21/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
To date anti-angiogenic therapy has been used for cancer therapy widely, yielding promising results. However, it has been elucidated that current anti-angiogenic drug has several issues to be solved, such as side-effects and drug resistance. It has been reported that tumor endothelial cells (TECs) differ from normal counterparts. In addition, it was shown that the TECs are heterogeneous according to the malignancy status of tumor. The development of novel strategy for targeting tumor vasculature is required. Recently, we have developed an active targeting system, which targets TECs specifically. In this review, we will discuss how TECs in tumor vasculature are heterogeneous and offer new perspectives on a drug delivery system, which can target heterogeneous tumor blood vessels from a viewpoint of personalized medicine.
Collapse
|
93
|
Tumor angiogenesis--characteristics of tumor endothelial cells. Int J Clin Oncol 2016; 21:206-212. [PMID: 26879652 DOI: 10.1007/s10147-016-0957-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/25/2016] [Indexed: 12/13/2022]
Abstract
Tumor blood vessels provide nutrition and oxygen to the tumor, resulting in tumor progression. They also act as gatekeepers, inducing tumor metastasis. Thus, targeting tumor blood vessels is an important strategy in cancer therapy. Tumor endothelial cells (TECs), which line the inner layer of blood vessels of the tumor stromal tissue, are the main targets of anti-angiogenic therapy. Because new tumor blood vessels generally sprout from pre-existing vasculature, they have been considered to be the same as normal blood vessels. However, tumor blood vessels demonstrate a markedly abnormal phenotype that includes several important morphological changes. The degree of angiogenesis is determined by the balance between the angiogenic stimulators and inhibitors released by the tumor and host cells. Recent studies have revealed that TECs also exhibit altered characteristics which depend on the tumor microenvironment. Here, we review recent studies on TEC abnormalities and heterogeneity with respect to tumor progression and consider their therapeutic implications.
Collapse
|
94
|
Afonso J, Santos LL, Morais A, Amaro T, Longatto-Filho A, Baltazar F. Metabolic coupling in urothelial bladder cancer compartments and its correlation to tumor aggressiveness. Cell Cycle 2015; 15:368-80. [PMID: 26636903 DOI: 10.1080/15384101.2015.1121329] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Monocarboxylate transporters (MCTs) are vital for intracellular pH homeostasis by extruding lactate from highly glycolytic cells. These molecules are key players of the metabolic reprogramming of cancer cells, and evidence indicates a potential contribution in urothelial bladder cancer (UBC) aggressiveness and chemoresistance. However, the specific role of MCTs in the metabolic compartmentalization within bladder tumors, namely their preponderance on the tumor stroma, remains to be elucidated. Thus, we evaluated the immunoexpression of MCTs in the different compartments of UBC tissue samples (n = 111), assessing the correlations among them and with the clinical and prognostic parameters. A significant decrease in positivity for MCT1 and MCT4 occurred from normoxic toward hypoxic regions. Significant associations were found between the expression of MCT4 in hypoxic tumor cells and in the tumor stroma. MCT1 staining in normoxic tumor areas, and MCT4 staining in hypoxic regions, in the tumor stroma and in the blood vessels were significantly associated with UBC aggressiveness. MCT4 concomitant positivity in hypoxic tumor cells and in the tumor stroma, as well as positivity in each of these regions concomitant with MCT1 positivity in normoxic tumor cells, was significantly associated with an unfavourable clinicopathological profile, and predicted lower overall survival rates among patients receiving platinum-based chemotherapy. Our results point to the existence of a multi-compartment metabolic model in UBC, providing evidence of a metabolic coupling between catabolic stromal and cancer cells' compartments, and the anabolic cancer cells. It is urgent to further explore the involvement of this metabolic coupling in UBC progression and chemoresistance.
Collapse
Affiliation(s)
- Julieta Afonso
- a Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga , Portugal.,b ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães , Portugal
| | - Lúcio L Santos
- c Department of Surgical Oncology , Portuguese Institute of Oncology (IPO) , Porto , Portugal.,d Faculty of Health Sciences, University Fernando Pessoa (UFP) , Porto , Portugal
| | - António Morais
- e Department of Urology , Portuguese Institute of Oncology (IPO) , Porto , Portugal
| | - Teresina Amaro
- f Experimental Pathology and Therapeutics Research Center, Portuguese Institute of Oncology (IPO) , Porto , Portugal
| | - Adhemar Longatto-Filho
- a Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga , Portugal.,b ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães , Portugal.,g Laboratory of Medical Investigation (LIM 14), Faculty of Medicine, São Paulo State University , São Paulo , Brazil.,h Molecular Oncology Research Center, Barretos Cancer Hospital , São Paulo , Brazil
| | - Fátima Baltazar
- a Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga , Portugal.,b ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães , Portugal
| |
Collapse
|
95
|
van Beijnum JR, Nowak-Sliwinska P, Huijbers EJM, Thijssen VL, Griffioen AW. The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol Rev 2015; 67:441-61. [PMID: 25769965 DOI: 10.1124/pr.114.010215] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The concept of antiangiogenic therapy in cancer treatment has led to the approval of different agents, most of them targeting the well known vascular endothelial growth factor pathway. Despite promising results in preclinical studies, the efficacy of antiangiogenic therapy in the clinical setting remains limited. Recently, awareness has emerged on resistance to antiangiogenic therapies. It has become apparent that the intricate complex interplay between tumors and stromal cells, including endothelial cells and associated mural cells, allows for escape mechanisms to arise that counteract the effects of these targeted therapeutics. Here, we review and discuss known and novel mechanisms that contribute to resistance against antiangiogenic therapy and provide an outlook to possible improvements in therapeutic approaches.
Collapse
Affiliation(s)
- Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands (J.R.v.B., E.J.M.H., V.L.T., A.W.G.); and Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland (P.N.-S.)
| | - Patrycja Nowak-Sliwinska
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands (J.R.v.B., E.J.M.H., V.L.T., A.W.G.); and Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland (P.N.-S.)
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands (J.R.v.B., E.J.M.H., V.L.T., A.W.G.); and Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland (P.N.-S.)
| | - Victor L Thijssen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands (J.R.v.B., E.J.M.H., V.L.T., A.W.G.); and Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland (P.N.-S.)
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands (J.R.v.B., E.J.M.H., V.L.T., A.W.G.); and Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland (P.N.-S.)
| |
Collapse
|
96
|
Tokumoto MW, Tanaka H, Tauchi Y, Kasashima H, Kurata K, Yashiro M, Sakurai K, Toyokawa T, Kubo N, Amano R, Kimura K, Muguruma K, Maeda K, Ohira M, Hirakawa K. Identification of tumour-reactive lymphatic endothelial cells capable of inducing progression of gastric cancer. Br J Cancer 2015; 113:1046-54. [PMID: 26355233 PMCID: PMC4651131 DOI: 10.1038/bjc.2015.282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/26/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022] Open
Abstract
Background: Tumour cells and stromal cells interact in the tumour microenvironment; moreover, stromal cells can acquire abnormalities that contribute to tumour progression. However, interactions between lymphatic endothelial cells (LECs) and tumour cells are largely unexamined. In this study, we aimed to determine whether tumour-specific LECs inhabit the tumour microenvironment and examine their influence on this microenvironment. Methods: We isolated normal LECs (NLECs) from a non-metastatic lymph node and tumour-associated LECs (TLECs) from cancerous lymph nodes. We examined proliferative and migratory potency, growth factor production, and gene expression of each type of LEC. Moreover, we developed a co-culture system to investigate the interactions between gastric cancer cells and LECs. Results: When compared with NLEC, TLECs had an abnormal shape, high proliferative and migratory abilities, and elevated expression of genes associated with inflammation, cell growth, and cell migration. NLECs co-cultured with gastric cancer cells from the OCUM12 cell line acquired TLEC-like phenotypes. Also, OCUM12 cells co-cultured with TLECs expressed high levels of genes responsible for metastasis. Conclusions: Our results demonstrated that LECs interacted with tumour cells and obtained abnormal phenotypes that could have important roles in tumour progression.
Collapse
Affiliation(s)
- Mao Watanabe Tokumoto
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Hiroaki Tanaka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Yukie Tauchi
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Hiroaki Kasashima
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kento Kurata
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Katsunobu Sakurai
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Takahiro Toyokawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Naoshi Kubo
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Ryosuke Amano
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kenjiro Kimura
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kazuya Muguruma
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kiyoshi Maeda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
97
|
Blazejczyk A, Papiernik D, Porshneva K, Sadowska J, Wietrzyk J. Endothelium and cancer metastasis: Perspectives for antimetastatic therapy. Pharmacol Rep 2015; 67:711-8. [DOI: 10.1016/j.pharep.2015.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/27/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023]
|
98
|
Ouaret D, Larsen AK. Protein kinase C β inhibition by enzastaurin leads to mitotic missegregation and preferential cytotoxicity toward colorectal cancer cells with chromosomal instability (CIN). Cell Cycle 2015; 13:2697-706. [PMID: 25486357 DOI: 10.4161/15384101.2015.945383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Enzastaurin is a selective inhibitor of protein kinase C β and a potent inhibitor of tumor angiogenesis. In addition, enzastaurin shows direct cytotoxic activity toward a subset of tumor cells including colorectal cancer cells (CRC). In spite of promising results in animal models, the clinical activity of enzastaurin in CRC patients has been disappointing although a subset of patients seems to derive benefit. In the present study we investigated the biological and cytotoxic activities of enzastaurin toward a panel of well-characterized CRC cell lines in order to clarify the mechanistic basis for the cytotoxic activity. Our results show that enzastaurin is significantly more cytotoxic toward CRC cells with chromosome instability (CIN) compared to cells with microsatellite instability (MSI). Since CIN is usually attributed to mitotic dysfunction, the influence of enzastaurin on cell cycle progression and mitotic transit was characterized for representative CIN and MSI cell lines. Enzastaurin exposure was accompanied by prolonged metaphase arrest in CIN cells followed by the appearance of tetraploid and micronuclei-containing cells as well as by increased apoptosis, whereas no detectable mitotic dysfunctions were observed in MSI cells exposed to isotoxic doses of enzastaurin. Our study identifies enzastaurin as a new, context dependent member of a heterogeneous group of anticancer compounds that induce "mitotic catastrophe," that is mitotic dysfunction accompanied by cell death. These data provide novel insight into the mechanism of action of enzastaurin and may allow the identification of biomarkers useful to identify CRC patients particularly likely, or not, to benefit from treatment with enzastaurin.
Collapse
Key Words
- CIN, chromosome instability
- CRC, colorectal cancer
- DMSO, Dimethyl sulfoxide
- MAP, mitogen-activated protein
- MEK, mitogen-activated protein kinase kinase
- MMC, mitomycin C
- MN, micronuclei
- MSI, microsatellite instability
- PKC, protein kinase C
- RACK, receptor of activated protein kinase C
- TP53, tumor protein p53
- VEGF, vascular endothelial cell growth factor
- VEGFR, vascular endothelial cell growth factor receptor
- chromosome instability (CIN)
- colorectal cancer (CRC)
- enzastaurin
- mitotic catastrophe
- protein kinase C (PKC) β inhibition
Collapse
Affiliation(s)
- Djamila Ouaret
- a Laboratory of Cancer Biology and Therapeutics; Center de Recherche Saint-Antoine ; Paris , France
| | | |
Collapse
|
99
|
Shinohara N, Abe T. Prognostic factors and risk classifications for patients with metastatic renal cell carcinoma. Int J Urol 2015; 22:888-97. [DOI: 10.1111/iju.12858] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/02/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Nobuo Shinohara
- Department of Renal and Genitourinary Surgery; Hokkaido University Graduate School of Medicine; Sapporo Hokkaido Japan
| | - Takashige Abe
- Department of Renal and Genitourinary Surgery; Hokkaido University Graduate School of Medicine; Sapporo Hokkaido Japan
| |
Collapse
|
100
|
Yamada K, Maishi N, Akiyama K, Towfik Alam M, Ohga N, Kawamoto T, Shindoh M, Takahashi N, Kamiyama T, Hida Y, Taketomi A, Hida K. CXCL12-CXCR7 axis is important for tumor endothelial cell angiogenic property. Int J Cancer 2015; 137:2825-36. [PMID: 26100110 DOI: 10.1002/ijc.29655] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/29/2015] [Accepted: 06/11/2015] [Indexed: 12/27/2022]
Abstract
We reported that tumor endothelial cells (TECs) differ from normal endothelial cells (NECs) in many aspects, such as gene expression profiles. Although CXCR7 is reportedly highly expressed in blood vessels of several tumors, its function in TECs is still unknown. To investigate this role, we isolated TECs from mouse tumor A375SM xenografts, and compared them with NECs from normal mouse dermis. After confirming CXCR7 upregulation in TECs, we analyzed its function using CXCR7 siRNA and CXCR7 inhibitor; CCX771. CXCR7 siRNA and CCX771 inhibited migration, tube formation and resistance to serum starvation in TECs but not in NECs. ERK1/2 phosphorylation was inhibited by CXCR7 knockdown in TECs. These results suggest that CXCR7 promotes angiogenesis in TECs via ERK1/2 phosphorylation. Using ELISA, we also detected CXCL12, a ligand of CXCR7, in conditioned medium from TECs, but not from NECs. CXCL12 neutralizing antibody significantly inhibited TEC random motility. VEGF stimulation upregulated CXCR7 expression in NECs, implying that VEGF mediates CXCR7 expression in endothelial cells. A CXCR7 inhibitor, CCX771 also inhibited tumor growth, lung metastasis and tumor angiogenesis in vivo. Taken together, the CXCL12-CXCR7 autocrine loop affects TEC proangiogenic properties, and could be the basis for an antiangiogenic therapy that specifically targets tumor blood vessels rather than normal vessels.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nako Maishi
- Department of Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Kosuke Akiyama
- Department of Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Mohammad Towfik Alam
- Department of Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Noritaka Ohga
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Taisuke Kawamoto
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Masanobu Shindoh
- Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Norihiko Takahashi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshiya Kamiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kyoko Hida
- Department of Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| |
Collapse
|