51
|
Sinha S, Verma S, Chaturvedi MM. Differential Expression of SWI/SNF Chromatin Remodeler Subunits Brahma and Brahma-Related Gene During Drug-Induced Liver Injury and Regeneration in Mouse Model. DNA Cell Biol 2016; 35:373-84. [PMID: 27097303 DOI: 10.1089/dna.2015.3155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The chromatin remodeling activity of mammalian SWI/SNF complex is carried out by either Brahma (BRM) or Brahma-related gene (BRG-1). The BRG-1 regulates genes involved in cell proliferation, whereas BRM is associated with cell differentiation, and arrest of cell growth. Global modifications of histones and expression of genes of chromatin-remodeling subunits have not been studied in in vivo model systems. In the present study, we investigate epigenetic modifications of histones and the expression of genes in thioacetamide (TAA)-induced liver injury and regeneration in a mouse model. In the present study, we report that hepatocyte proliferation and H3S10 phosphorylation occur during 60 to 72 h post TAA treatment in mice. Furthermore, there was change in the H3K9 acetylation and H3K9 trimethylation pattern with respect to liver injury and regeneration phase. Looking into the expression pattern of Brg-1 and Brm, it is evident that they contribute substantially to the process of liver regeneration. The SWI/SNF remodeler might contain BRG-1 as its ATPase subunit during injury phase. Whereas, BRM-associated SWI/SNF remodeler might probably be predominant during decline of injury phase and initiation of regeneration phase. Furthermore, during the regeneration phase, BRG-1-containing remodeler again predominates. Considering all these observations, the present study depicts an interplay between chromatin interacting machineries in different phases of thioacetamide-induced liver injury and regeneration.
Collapse
Affiliation(s)
- Sonal Sinha
- 1 Laboratory for Chromatin Biology, Department of Zoology, University of Delhi , New Delhi, India
| | - Sudhir Verma
- 1 Laboratory for Chromatin Biology, Department of Zoology, University of Delhi , New Delhi, India
| | - Madan M Chaturvedi
- 1 Laboratory for Chromatin Biology, Department of Zoology, University of Delhi , New Delhi, India .,2 Cluster Innovation Center, Delhi University , Delhi, India
| |
Collapse
|
52
|
Gao S, Yang Z, Shi R, Xu D, Li H, Xia Z, Wu QP, Yao S, Wang T, Yuan S. Diabetes blocks the cardioprotective effects of sevoflurane postconditioning by impairing Nrf2/Brg1/HO-1 signaling. Eur J Pharmacol 2016; 779:111-21. [PMID: 26973173 DOI: 10.1016/j.ejphar.2016.03.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/15/2022]
Abstract
Sevofluane postconditioning (SPostC) protects heart against ischemia/reperfusion injury. However, SPostC cardioprotection is lost in diabetes whose cardiac heme oxygenase-1 (HO-1) is reduced. Brahma-related gene 1 (Brg1) facilitates nuclear factor-erythroid-2-related factor-2 (Nrf2) to activate HO-1 to increase myocardial antioxidant capacity in response to oxidative stress. However, cardiac Brg1 is reduced in diabetes. We hypothesized that SPostC confers cardioprotection by activating HO-1 through Nrf2/Brg1 and that impaired Nrf2/Brg1/HO-1 in diabetes is responsible for the loss of SPostC. Control and streptozotocin-induced diabetic mice were subjected to 45min coronary artery occlusion followed by 2h reperfusion with or without SPostC achieved by exposing the mice to 2% sevoflurane for 15min at the onset of reperfusion. In invitro study, H9c2 cells were exposed to normal or high glucose and subjected to 3h hypoxia followed by 6h reoxygenation. Diabetic mice displayed larger post-ischemic infarct size, severer cardiomyocytes apoptosis, and increased oxidative stress concomitant with reduced HO-1, nuclear Nrf2 and Brg1 protein expression. These changes were prevented/reversed by SPostC in control but not in diabetic mice, and these beneficial effects of SPostC were abolished by HO-1 inhibition. In H9c2 cells exposed to normal glucose but not high glucose, SPostC significantly attenuated hypoxia/reoxygenation-induced cellular injury and oxidative stress with increased HO-1 and nuclear Nrf2. These SPostC beneficial effects were canceled by HO-1 inhibition. In conclusion, SPostC protects against myocardial ischemia/reperfusion injury through activation of Nrf2/Brg1/HO-1 signaling and impairment of this signaling may be responsible for the loss of SPostC cardioprotection in diabetes.
Collapse
Affiliation(s)
- Sumin Gao
- Department of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengchao Yang
- Department of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruili Shi
- Department of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Xu
- Department of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haobo Li
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Qing-Ping Wu
- Department of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Wang
- Department of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shiying Yuan
- Department of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
53
|
Krajewski WA. On the role of inter-nucleosomal interactions and intrinsic nucleosome dynamics in chromatin function. Biochem Biophys Rep 2016; 5:492-501. [PMID: 28955857 PMCID: PMC5600426 DOI: 10.1016/j.bbrep.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 01/10/2023] Open
Abstract
Evidence is emerging that many diseases result from defects in gene functions, which, in turn, depend on the local chromatin environment of a gene. However, it still remains not fully clear how chromatin activity code is 'translated' to the particular 'activating' or 'repressing' chromatin structural transition. Commonly, chromatin remodeling in vitro was studied using mononucleosomes as a model. However, recent data suggest that structural reorganization of a single mononucleosome is not equal to remodeling of a nucleosome particle under multinucleosomal content - such as, interaction of nucleosomes via flexible histone termini could significantly alter the mode (and the resulting products) of nucleosome structural transitions. It is becoming evident that a nucleosome array does not constitute just a 'polymer' of individual 'canonical' nucleosomes due to multiple inter-nucleosomal interactions which affect nucleosome dynamics and structure. It could be hypothesized, that inter-nucleosomal interactions could act in cooperation with nucleosome inherent dynamics to orchestrate DNA-based processes and promote formation and stabilization of highly-dynamic, accessible structure of a nucleosome array. In the proposed paper we would like to discuss the nucleosome dynamics within the chromatin fiber mainly as it pertains to the roles of the structural changes mediated by inter-nucleosomal interactions.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- Institute of Developmental Biology of Russian Academy of Sciences, ul. Vavilova 26, Moscow, 119334 Russia
| |
Collapse
|
54
|
Haokip DT, Goel I, Arya V, Sharma T, Kumari R, Priya R, Singh M, Muthuswami R. Transcriptional Regulation of Atp-Dependent Chromatin Remodeling Factors: Smarcal1 and Brg1 Mutually Co-Regulate Each Other. Sci Rep 2016; 6:20532. [PMID: 26843359 PMCID: PMC4740806 DOI: 10.1038/srep20532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/06/2016] [Indexed: 11/09/2022] Open
Abstract
The ATP-dependent chromatin remodeling factors regulate gene expression. However, it is not known whether these factors regulate each other. Given the ability of these factors to regulate the accessibility of DNA to transcription factors, we postulate that one ATP-dependent chromatin remodeling factor should be able to regulate the transcription of another ATP-dependent chromatin remodeling factor. In this paper, we show that BRG1 and SMARCAL1, both members of the ATP-dependent chromatin remodeling protein family, regulate each other. BRG1 binds to the SMARCAL1 promoter, while SMARCAL1 binds to the brg1 promoter. During DNA damage, the occupancy of SMARCAL1 on the brg1 promoter increases coinciding with an increase in BRG1 occupancy on the SMARCAL1 promoter, leading to increased brg1 and SMARCAL1 transcripts respectively. This is the first report of two ATP-dependent chromatin remodeling factors regulating each other.
Collapse
Affiliation(s)
| | - Isha Goel
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067
| | - Vijendra Arya
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067
| | - Tapan Sharma
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067
| | - Reshma Kumari
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067
| | - Rashmi Priya
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067
| | - Manpreet Singh
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067
| | - Rohini Muthuswami
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067
| |
Collapse
|
55
|
Liu XF, Jie C, Zhang Z, Yan S, Wang JJ, Wang X, Kurian S, Salomon DR, Abecassis M, Hummel M. Transplant-induced reactivation of murine cytomegalovirus immediate early gene expression is associated with recruitment of NF-κB and AP-1 to the major immediate early promoter. J Gen Virol 2016; 97:941-954. [PMID: 26795571 DOI: 10.1099/jgv.0.000407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reactivation of latent human cytomegalovirus is a significant infectious complication of organ transplantation and current therapies target viral replication once reactivation of latent virus has already occurred. The specific molecular pathways that activate viral gene expression in response to transplantation are not well understood. Our studies aim to identify these factors, with the goal of developing novel therapies that prevent transcriptional reactivation in transplant recipients. Murine cytomegalovirus (MCMV) is a valuable model for studying latency and reactivation of CMV in vivo. We previously demonstrated that transplantation of MCMV-latently infected kidneys into allogeneic recipients induces reactivation of immediate early (IE) gene expression and epigenetic reprogramming of the major immediate early promoter (MIEP) within 48 h. We hypothesize that these events are mediated by activation of signalling pathways that lead to binding of transcription factors to the MIEP, including AP-1 and NF-κB. Here we show that transplantation induces rapid activation of several members of the AP-1 and NF-κB transcription factor family and we demonstrate that canonical NF-κB (p65/p50), the junD component of AP-1, and nucleosome remodelling complexes are recruited to the MIEP following transplantation. Proteomic analysis of recipient plasma and transcriptome analysis of kidney RNA identified five extracellular ligands, including TNF, IL-1β, IL-18, CD40L and IL-6, and three intracellular signalling pathways associated with reactivation of IE gene expression. Identification of the factors that mediate activation of these signalling pathways may eventually lead to new therapies to prevent reactivation of CMV and its sequelae.
Collapse
Affiliation(s)
- Xue-Feng Liu
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chunfa Jie
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zheng Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shixian Yan
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xueqiong Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sunil Kurian
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, LaJolla, CA, USA
| | - Daniel R Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, LaJolla, CA, USA
| | - Michael Abecassis
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mary Hummel
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
56
|
Naftelberg S, Schor IE, Ast G, Kornblihtt AR. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu Rev Biochem 2015; 84:165-98. [PMID: 26034889 DOI: 10.1146/annurev-biochem-060614-034242] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative precursor messenger RNA (pre-mRNA) splicing plays a pivotal role in the flow of genetic information from DNA to proteins by expanding the coding capacity of genomes. Regulation of alternative splicing is as important as regulation of transcription to determine cell- and tissue-specific features, normal cell functioning, and responses of eukaryotic cells to external cues. Its importance is confirmed by the evolutionary conservation and diversification of alternative splicing and the fact that its deregulation causes hereditary disease and cancer. This review discusses the multiple layers of cotranscriptional regulation of alternative splicing in which chromatin structure, DNA methylation, histone marks, and nucleosome positioning play a fundamental role in providing a dynamic scaffold for interactions between the splicing and transcription machineries. We focus on evidence for how the kinetics of RNA polymerase II (RNAPII) elongation and the recruitment of splicing factors and adaptor proteins to chromatin components act in coordination to regulate alternative splicing.
Collapse
Affiliation(s)
- Shiran Naftelberg
- Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel;
| | | | | | | |
Collapse
|
57
|
Krajewski WA. Mobilization of hyperacetylated mononucleosomes by purified yeast ISW2 in vitro. Arch Biochem Biophys 2015; 591:1-6. [PMID: 26692330 DOI: 10.1016/j.abb.2015.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/02/2015] [Accepted: 12/10/2015] [Indexed: 11/26/2022]
Abstract
Catalytic activity of ISWI chromatin remodelers, which regulate nucleosome positioning on the DNA, depends on interactions of the putative acidic patch in ISWI helicase domain with the N-termini of nucleosomal H4--such, that removal of H4 termini abolishes ISWI remodeling. Acetylation of H4 termini is also known to disrupt H4 interactions with acidic protein surfaces, and thus, histone acetylation could potentially impede ISWI functions. Since active chromatin in vivo is hyperacetylated, it is important to clarify if ISWI activities can function on the in vivo hyperacetylated nucleosomes. We evaluated if purified yeast ISW2 can act on mononucleosomes in which all four core histones are highly acetylated. Mononucleosomes were assembled using purified histones from mammalian CV1 cells grown in the presence of deacetylase inhibitor Trichostatin A (TSA). The CV1 cell line is characterized by fast kinetic of accumulation of highly acetylated histone isoforms in response to TSA treatment. However, such 'native' histone hyperacetylation had no apparent effects on the nucleosome remodeling propensities, suggesting that histone hyperacetylation does not necessarily block ISWI functions and that ISWI enzymes can function on active chromatin as well.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
58
|
Takeda T, Banno K, Okawa R, Yanokura M, Iijima M, Irie-Kunitomi H, Nakamura K, Iida M, Adachi M, Umene K, Nogami Y, Masuda K, Kobayashi Y, Tominaga E, Aoki D. ARID1A gene mutation in ovarian and endometrial cancers (Review). Oncol Rep 2015; 35:607-13. [PMID: 26572704 PMCID: PMC4689482 DOI: 10.3892/or.2015.4421] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022] Open
Abstract
The AT-rich interacting domain-containing protein 1A gene (ARID1A) encodes ARID1A, a member of the SWI/SNF chromatin remodeling complex. Mutation of ARID1A induces changes in expression of multiple genes (CDKN1A, SMAD3, MLH1 and PIK3IP1) via chromatin remodeling dysfunction, contributes to carcinogenesis, and has been shown to cause transformation of cells in association with the PI3K/AKT pathway. Information on ARID1A has emerged from comprehensive genome-wide analyses with next-generation sequencers. ARID1A mutations have been found in various types of cancer and occur at high frequency in endometriosis-associated ovarian cancer, including clear cell adenocarcinoma and endometrioid adenocarcinoma, and also occur at endometrial cancer especially in endometrioid adenocarcinoma. It has also been suggested that ARID1A mutation occurs at the early stage of canceration from endometriosis to endometriosis-associated carcinoma in ovarian cancer and also from atypical endo-metrial hyperplasia to endometrioid adenocarcinoma in endometrial cancer. Therefore, development of a screening method that can detect mutations of ARID1A and activation of the PI3K/AKT pathway might enable early diagnosis of endometriosis-associated ovarian cancers and endometrial cancers. Important results may also emerge from a current clinical trial examining a multidrug regimen of temsirolimus, a small molecule inhibitor of the PI3K/AKT pathway, for treatment of advanced ovarian clear cell adenocarcinoma with ARID1A mutation and PI3K/AKT pathway activation. Also administration of sorafenib, a multikinase inhibitor, can inhibit cancer proliferation with PIK3CA mutation and resistance to mTOR inhibitors and GSK126, a molecular-targeted drug can inhibit proliferation of ARID1A-mutated ovarian clear cell adenocarcinoma cells by targeting and inhibiting EZH2. Further studies are needed to determine the mechanism of chromatin remodeling dysregulation initiated by ARID1A mutation, to develop methods for early diagnosis, to investigate new cancer therapy targeting ARID1A, and to examine the involvement of ARID1A mutations in development, survival and progression of cancer cells.
Collapse
Affiliation(s)
- Takashi Takeda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Ryuichiro Okawa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Megumi Yanokura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Moito Iijima
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Haruko Irie-Kunitomi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Kanako Nakamura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Miho Iida
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Masataka Adachi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Kiyoko Umene
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Yuya Nogami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Kenta Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Eiichiro Tominaga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| |
Collapse
|
59
|
Niimi A, Hopkins SR, Downs JA, Masutani C. The BAH domain of BAF180 is required for PCNA ubiquitination. Mutat Res 2015; 779:16-23. [PMID: 26117423 DOI: 10.1016/j.mrfmmm.2015.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/03/2015] [Accepted: 06/14/2015] [Indexed: 06/04/2023]
Abstract
Monoubiquitination of proliferating cell nuclear antigen (PCNA) is a critical regulator of post replication repair (PRR). The depletion of BAF180, a unique subunit of the PBAF chromatin remodeling complex in human cells results in reduced PCNA ubiquitination leading to less efficient fork progression following DNA damage, but little is known about the mechanism. Here, we report that the expression of exogenous BAF180 in cells promotes PCNA ubiquitination during S-phase after UV irradiation and it persists for many hours. No correlation was observed between the protein level of ubiquitin-specific protease 1 (USP1) and ubiquitinated PCNA in BAF180 expressing cells. Analysis of cells expressing BAF180 deletion mutants showed that the bromo-adjacent homology (BAH) domains are responsible for this effect. Surprisingly, a deletion construct encoding only the BAH domain region is able to increase the level of ubiquitinated PCNA, even though it is unable to be assembled into the PBAF complex. These results suggest that the ATPase-dependent chromatin remodeling activity of PBAF is not necessary, but instead the BAH domains are sufficient to promote PCNA ubiquitination.
Collapse
Affiliation(s)
- Atsuko Niimi
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Suzanna R Hopkins
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Jessica A Downs
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
60
|
Khajuria C, Vélez AM, Rangasamy M, Wang H, Fishilevich E, Frey MLF, Carneiro NP, Gandra P, Narva KE, Siegfried BD. Parental RNA interference of genes involved in embryonic development of the western corn rootworm, Diabrotica virgifera virgifera LeConte. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:54-62. [PMID: 26005118 DOI: 10.1016/j.ibmb.2015.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/09/2015] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
RNA interference (RNAi) is being developed as a potential tool for insect pest management and one of the most likely target pest species for transgenic plants that express double stranded RNA (dsRNA) is the western corn rootworm. Thus far, most genes proposed as targets for RNAi in rootworm cause lethality in the larval stage. In this study, we describe RNAi-mediated knockdown of two developmental genes, hunchback (hb) and brahma (brm), in the western corn rootworm delivered via dsRNA fed to adult females. dsRNA feeding caused a significant decrease in hb and brm transcripts in the adult females. Although total oviposition was not significantly affected, there was almost complete absence of hatching in the eggs collected from females exposed to dsRNA for either gene. These results confirm that RNAi is systemic in nature for western corn rootworms. These results also indicate that hunchback and brahma play important roles in rootworm embryonic development and could provide useful RNAi targets in adult rootworms to prevent crop injury by impacting the population of larval progeny of exposed adults. The ability to deliver dsRNA in a trans-generational manner by feeding to adult rootworms may offer an additional approach to utilizing RNAi for rootworm pest management. The potential to develop parental RNAi technology targeting progeny of adult rootworms in combination with Bt proteins or dsRNA lethal to larvae may increase opportunities to develop sustainable approaches to rootworm management involving RNAi technologies for rootworm control.
Collapse
Affiliation(s)
- Chitvan Khajuria
- University of Nebraska, Department of Entomology, 103 Entomology Hall, Lincoln, NE 68583-0816, United States
| | - Ana M Vélez
- University of Nebraska, Department of Entomology, 103 Entomology Hall, Lincoln, NE 68583-0816, United States
| | - Murugesan Rangasamy
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, United States
| | - Haichuan Wang
- University of Nebraska, Department of Entomology, 103 Entomology Hall, Lincoln, NE 68583-0816, United States
| | - Elane Fishilevich
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, United States
| | - Meghan L F Frey
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, United States
| | | | - Premchand Gandra
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, United States
| | - Kenneth E Narva
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, United States
| | - Blair D Siegfried
- University of Nebraska, Department of Entomology, 103 Entomology Hall, Lincoln, NE 68583-0816, United States.
| |
Collapse
|
61
|
Glucocorticoid Receptor Transcriptional Activation via the BRG1-Dependent Recruitment of TOP2β and Ku70/86. Mol Cell Biol 2015; 35:2799-817. [PMID: 26055322 DOI: 10.1128/mcb.00230-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022] Open
Abstract
BRG1, the central ATPase of the human SWI/SNF complex, is critical for biological functions, including nuclear receptor (NR)-regulated transcription. Analysis of BRG1 mutants demonstrated that functional motifs outside the ATPase domain are important for transcriptional activity. In the course of experiments examining protein interactions mediated through these domains, Ku70 (XRCC6) was found to associate with a BRG1 fragment encompassing the conserved helicase-SANT-associated (HSA) and BRK domains of BRG1. Subsequent transcriptional activation assays and chromatin immunoprecipitation studies showed that Ku70/86 and components of the topoisomerase IIβ (TOP2β)/poly(ADP ribose) polymerase 1 (PARP1) complex are necessary for NR-mediated SWI/SNF-dependent transcriptional activation from endogenous promoters. In addition to establishing Ku-BRG1 binding and TOP2β/PARP1 recruitment by nuclear receptor transactivation, we demonstrate that the transient appearance of glucocorticoid receptor (GR)/BRG1-dependent, TOP2β-mediated double-strand DNA breaks is required for efficient GR-stimulated transcription. Taken together, these results suggest that a direct interaction between Ku70/86 and BRG1 brings together SWI/SNF remodeling capabilities and TOP2β activity to enhance the transcriptional response to hormone stimulation.
Collapse
|
62
|
Travers A, Muskhelishvili G. DNA structure and function. FEBS J 2015; 282:2279-95. [PMID: 25903461 DOI: 10.1111/febs.13307] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/26/2015] [Accepted: 04/21/2015] [Indexed: 12/11/2022]
Abstract
The proposal of a double-helical structure for DNA over 60 years ago provided an eminently satisfying explanation for the heritability of genetic information. But why is DNA, and not RNA, now the dominant biological information store? We argue that, in addition to its coding function, the ability of DNA, unlike RNA, to adopt a B-DNA structure confers advantages both for information accessibility and for packaging. The information encoded by DNA is both digital - the precise base specifying, for example, amino acid sequences - and analogue. The latter determines the sequence-dependent physicochemical properties of DNA, for example, its stiffness and susceptibility to strand separation. Most importantly, DNA chirality enables the formation of supercoiling under torsional stress. We review recent evidence suggesting that DNA supercoiling, particularly that generated by DNA translocases, is a major driver of gene regulation and patterns of chromosomal gene organization, and in its guise as a promoter of DNA packaging enables DNA to act as an energy store to facilitate the passage of translocating enzymes such as RNA polymerase.
Collapse
Affiliation(s)
- Andrew Travers
- MRC Laboratory of Molecular Biology, Cambridge, UK.,Department of Biochemistry, University of Cambridge, UK
| | | |
Collapse
|
63
|
Dupont CA, Dardalhon-Cuménal D, Kyba M, Brock HW, Randsholt NB, Peronnet F. Drosophila Cyclin G and epigenetic maintenance of gene expression during development. Epigenetics Chromatin 2015; 8:18. [PMID: 25995770 PMCID: PMC4438588 DOI: 10.1186/s13072-015-0008-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/01/2015] [Indexed: 12/31/2022] Open
Abstract
Background Cyclins and cyclin-dependent kinases (CDKs) are essential for cell cycle regulation and are functionally associated with proteins involved in epigenetic maintenance of transcriptional patterns in various developmental or cellular contexts. Epigenetic maintenance of transcription patterns, notably of Hox genes, requires the conserved Polycomb-group (PcG), Trithorax-group (TrxG), and Enhancer of Trithorax and Polycomb (ETP) proteins, particularly well studied in Drosophila. These proteins form large multimeric complexes that bind chromatin and appose or recognize histone post-translational modifications. PcG genes act as repressors, counteracted by trxG genes that maintain gene activation, while ETPs interact with both, behaving alternatively as repressors or activators. Drosophila Cyclin G negatively regulates cell growth and cell cycle progression, binds and co-localizes with the ETP Corto on chromatin, and participates with Corto in Abdominal-B Hox gene regulation. Here, we address further implications of Cyclin G in epigenetic maintenance of gene expression. Results We show that Cyclin G physically interacts and extensively co-localizes on chromatin with the conserved ETP Additional sex combs (ASX), belonging to the repressive PR-DUB complex that participates in H2A deubiquitination and Hox gene silencing. Furthermore, Cyclin G mainly co-localizes with RNA polymerase II phosphorylated on serine 2 that is specific to productive transcription. CycG interacts with Asx, PcG, and trxG genes in Hox gene maintenance, and behaves as a PcG gene. These interactions correlate with modified ectopic Hox protein domains in imaginal discs, consistent with a role for Cyclin G in PcG-mediated Hox gene repression. Conclusions We show here that Drosophila CycG is a Polycomb-group gene enhancer, acting in epigenetic maintenance of the Hox genes Sex combs reduced (Scr) and Ultrabithorax (Ubx). However, our data suggest that Cyclin G acts alternatively as a transcriptional activator or repressor depending on the developmental stage, the tissue or the target gene. Interestingly, since Cyclin G interacts with several CDKs, Cyclin G binding to the ETPs ASX or Corto suggests that their activity could depend on Cyclin G-mediated phosphorylation. We discuss whether Cyclin G fine-tunes transcription by controlling H2A ubiquitination and transcriptional elongation via interaction with the ASX subunit of PR-DUB. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0008-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camille A Dupont
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR 7622, Developmental Biology, 9, quai Saint-Bernard, F-75005 Paris, France ; CNRS, IBPS, UMR 7622, Developmental Biology, 9, quai Saint-Bernard, F-75005 Paris, France
| | - Delphine Dardalhon-Cuménal
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR 7622, Developmental Biology, 9, quai Saint-Bernard, F-75005 Paris, France ; CNRS, IBPS, UMR 7622, Developmental Biology, 9, quai Saint-Bernard, F-75005 Paris, France
| | - Michael Kyba
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455 USA
| | - Hugh W Brock
- Department of Zoology, University of British Columbia, 6270 University Boulevard, V6T 1Z4 Vancouver, BC Canada
| | - Neel B Randsholt
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR 7622, Developmental Biology, 9, quai Saint-Bernard, F-75005 Paris, France ; CNRS, IBPS, UMR 7622, Developmental Biology, 9, quai Saint-Bernard, F-75005 Paris, France
| | - Frédérique Peronnet
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR 7622, Developmental Biology, 9, quai Saint-Bernard, F-75005 Paris, France ; CNRS, IBPS, UMR 7622, Developmental Biology, 9, quai Saint-Bernard, F-75005 Paris, France
| |
Collapse
|
64
|
Shao F, Guo T, Chua PJ, Tang L, Thike AA, Tan PH, Bay BH, Baeg GH. Clinicopathological significance of ARID1B in breast invasive ductal carcinoma. Histopathology 2015; 67:709-18. [PMID: 25817822 DOI: 10.1111/his.12701] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/25/2015] [Indexed: 01/31/2023]
Abstract
AIMS Identification of prognostic and predictive biomarkers for breast cancer is essential to better stratify patients for treatment and evaluate patient outcome. AT-rich interactive domain-containing protein 1B (ARID1B) is implicated in cell proliferation, but its role in tumorigenesis remains unclear. METHODS AND RESULTS Immunohistochemical analysis of ARID1B expression using breast cancer tissue microarrays containing 156 breast invasive ductal carcinoma patient samples and subsequent statistical data analysis based on ARID1B immunoreactivity score were performed to examine the correlation between clinicopathological parameters in breast cancer and ARID1B expression. In-vitro assays were also performed to study the role of ARID1B in cell cycle progression. Univariate analysis revealed that high ARID1B expression is correlated closely with histological grade (P = 0.045) and size (P = 0.043) of invasive breast cancer. These findings were confirmed by multivariate analysis. Notably, increased ARID1B expression was frequently detected in the aggressive triple-negative breast cancer subtypes (P = 0.039) and associated with decreased 5-year disease-free survival rate. Lastly, MDA-MB-231 cells with reduced ARID1B activity displayed a delay in G1 to S phase cell cycle transition and consequently showed a decrease in cell proliferation compared with controls (P < 0.001). CONCLUSIONS ARID1B potentially serves as a valuable prognostic and predictive biomarker as well as a therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Fei Shao
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tiantian Guo
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Pei Jou Chua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lili Tang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Aye Aye Thike
- Department of Pathology, Singapore General Hospital, Singapore
| | - Puay-Hoon Tan
- Department of Pathology, Singapore General Hospital, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
65
|
Makkonen H, Palvimo JJ. Androgen receptor: acting in the three-dimensional chromatin landscape of prostate cancer cells. Horm Mol Biol Clin Investig 2015; 5:17-26. [PMID: 25961240 DOI: 10.1515/hmbci.2010.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 01/08/2023]
Abstract
Androgen receptor (AR) acts as a hormone-controlled transcription factor that conveys the messages of both natural and synthetic androgens to the level of genes and gene programs. Defective AR signaling leads to a wide array of androgen insensitivity disorders, and deregulated AR function, in particular overexpression of AR, is involved in the growth and progression of prostate cancer. Classic models of AR action view AR-binding sites as upstream regulatory elements in gene promoters or their proximity. However, recent wider genomic screens indicate that AR target genes are commonly activated through very distal chromatin-binding sites. This highlights the importance of long-range chromatin regulation of transcription by the AR, shifting the focus from the linear gene models to three-dimensional models of AR target genes and gene programs. The capability of AR to regulate promoters from long distances in the chromatin is particularly important when evaluating the role of AR in the regulation of genes in malignant prostate cells that frequently show striking genomic aberrations, especially gene fusions. Therefore, in addition to the mechanisms of DNA loop formation between the enhancer bound ARs and the transcription apparatus at the target core promoter, the mechanisms insulating distally bound ARs from promiscuously making contacts and activating other than their normal target gene promoters are critical for proper physiological regulation and thus currently under intense investigation. This review discusses the current knowledge about the AR action in the context of gene aberrations and the three-dimensional chromatin landscape of prostate cancer cells.
Collapse
|
66
|
Greco CM, Condorelli G. Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure. Nat Rev Cardiol 2015; 12:488-97. [DOI: 10.1038/nrcardio.2015.71] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
67
|
SWI/SNF chromatin remodeling regulates alcohol response behaviors in Caenorhabditis elegans and is associated with alcohol dependence in humans. Proc Natl Acad Sci U S A 2015; 112:3032-7. [PMID: 25713357 DOI: 10.1073/pnas.1413451112] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alcohol abuse is a widespread and serious problem. Understanding the factors that influence the likelihood of abuse is important for the development of effective therapies. There are both genetic and environmental influences on the development of abuse, but it has been difficult to identify specific liability factors, in part because of both the complex genetic architecture of liability and the influences of environmental stimuli on the expression of that genetic liability. Epigenetic modification of gene expression can underlie both genetic and environmentally sensitive variation in expression, and epigenetic regulation has been implicated in the progression to addiction. Here, we identify a role for the switching defective/sucrose nonfermenting (SWI/SNF) chromatin-remodeling complex in regulating the behavioral response to alcohol in the nematode Caenorhabditis elegans. We found that SWI/SNF components are required in adults for the normal behavioral response to ethanol and that different SWI/SNF complexes regulate different aspects of the acute response to ethanol. We showed that the SWI/SNF subunits SWSN-9 and SWSN-7 are required in neurons and muscle for the development of acute functional tolerance to ethanol. Examination of the members of the SWI/SNF complex for association with a diagnosis of alcohol dependence in a human population identified allelic variation in a member of the SWI/SNF complex, suggesting that variation in the regulation of SWI/SNF targets may influence the propensity to develop abuse disorders. Together, these data strongly implicate the chromatin remodeling associated with SWI/SNF complex members in the behavioral responses to alcohol across phyla.
Collapse
|
68
|
Montel F, Faivre-Moskalenko C, Castelnovo M. Dynamical DNA accessibility induced by chromatin remodeling and protein binding. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052717. [PMID: 25493826 DOI: 10.1103/physreve.90.052717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Indexed: 06/04/2023]
Abstract
Chromatin remodeling factors are enzymes being able to alter locally chromatin structure at the nucleosomal level and they actively participate in the regulation of gene expression. Using simple rules for individual nucleosome motion induced by a remodeling factor, we designed simulations of the remodeling of oligomeric chromatin, in order to address quantitatively collective effects in DNA accessibility upon nucleosome mobilization. Our results suggest that accessibility profiles are inhomogeneous thanks to borders effects like protein binding. Remarkably, we show that the accessibility lifetime of DNA sequence is roughly doubled in the vicinity of borders as compared to its value in bulk regions far from the borders. These results are quantitatively interpreted as resulting from the confined diffusion of a large nucleosome depleted region.
Collapse
Affiliation(s)
- F Montel
- Matière et Systèmes Complexes, Université Paris Diderot & CNRS (UMR 7057), 75205 Paris Cedex 13, France
| | - C Faivre-Moskalenko
- Laboratoire de Physique, Ecole Normale Supérieure de Lyon, Université de Lyon and CNRS, 69364 Lyon Cedex, France
| | - M Castelnovo
- Laboratoire de Physique, Ecole Normale Supérieure de Lyon, Université de Lyon and CNRS, 69364 Lyon Cedex, France
| |
Collapse
|
69
|
Masliah-Planchon J, Bièche I, Guinebretière JM, Bourdeaut F, Delattre O. SWI/SNF chromatin remodeling and human malignancies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 10:145-71. [PMID: 25387058 DOI: 10.1146/annurev-pathol-012414-040445] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The SWI/SNF complexes, initially identified in yeast 20 years ago, are a family of multi-subunit complexes that use the energy of adenosine triphosphate (ATP) hydrolysis to remodel nucleosomes. Chromatin remodeling processes mediated by the SWI/SNF complexes are critical to the modulation of gene expression across a variety of cellular processes, including stemness, differentiation, and proliferation. The first evidence of the involvement of these complexes in carcinogenesis was provided by the identification of biallelic, truncating mutations of the SMARCB1 gene in malignant rhabdoid tumors, a highly aggressive childhood cancer. Subsequently, genome-wide sequencing technologies have identified mutations in genes encoding different subunits of the SWI/SNF complexes in a large number of tumors. SWI/SNF mutations, and the subsequent abnormal function of SWI/SNF complexes, are among the most frequent gene alterations in cancer. The mechanisms by which perturbation of the SWI/SNF complexes promote oncogenesis are not fully elucidated; however, alterations of SWI/SNF genes obviously play a major part in cancer development, progression, and/or resistance to therapy.
Collapse
|
70
|
Kingston RE, Tamkun JW. Transcriptional regulation by trithorax-group proteins. Cold Spring Harb Perspect Biol 2014; 6:a019349. [PMID: 25274705 DOI: 10.1101/cshperspect.a019349] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The trithorax group of genes (trxG) was identified in mutational screens that examined developmental phenotypes and suppression of Polycomb mutant phenotypes. The protein products of these genes are primarily involved in gene activation, although some can also have repressive effects. There is no central function for these proteins. Some move nucleosomes about on the genome in an ATP-dependent manner, some covalently modify histones such as methylating lysine 4 of histone H3, and some directly interact with the transcription machinery or are a part of that machinery. It is interesting to consider why these specific members of large families of functionally related proteins have strong developmental phenotypes.
Collapse
Affiliation(s)
- Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - John W Tamkun
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
71
|
Disruption of hSWI/SNF complexes in T cells by WAS mutations distinguishes X-linked thrombocytopenia from Wiskott-Aldrich syndrome. Blood 2014; 124:3409-19. [PMID: 25253772 DOI: 10.1182/blood-2014-07-587642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS), an immunodeficiency disorder, and X-linked thrombocytopenia (XLT), a bleeding disorder, both arise from nonsynonymous mutations in WAS, which encodes a hematopoietic-specific WASp. Intriguingly, XLT evolves into WAS in some patients but not in others; yet the biological basis for this cross-phenotype (CP) effect remains unclear. Using human T-helper (TH) cells expressing different disease-causing WAS mutations, we demonstrated that hSWI/SNF-like complexes require nuclear-WASp to execute their chromatin-remodeling activity at promoters of WASp-target, immune function genes during TH1 differentiation. Hot-spot WAS mutations Thr45Met and Arg86Cys, which result in XLT-to-WAS disease progression, impair recruitment of hBRM- but not BRG1-enriched BAF complexes to IFNG and TBX21 promoters. Moreover, promoter enrichment of histone H2A.Z and its catalyzing enzyme EP400 are both impaired. Consequently, activation of Notch signaling, a hBRM-regulated event, and its downstream effector NF-κB are both compromised, along with decreased accessibility of nucleosomal DNA and inefficient transcription-elongation of WASp-target TH1 genes. In contrast, patient mutations Ala236Gly and Arg477Lys that manifest in XLT without progressing to WAS do not disrupt chromatin remodeling or transcriptional reprogramming of TH1 genes. Our study defines an indispensable relationship between nuclear-WASp- and hSWI/SNF-complexes in gene activation and reveals molecular distinctions in TH cells that might contribute to disease severity in the XLT/WAS clinical spectrum.
Collapse
|
72
|
Hepp MI, Alarcon V, Dutta A, Workman JL, Gutiérrez JL. Nucleosome remodeling by the SWI/SNF complex is enhanced by yeast high mobility group box (HMGB) proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:764-72. [PMID: 24972368 DOI: 10.1016/j.bbagrm.2014.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 12/01/2022]
Abstract
The regulation of gene expression at the level of transcription involves the concerted action of several proteins and protein complexes committed to dynamically alter the surrounding chromatin environment of a gene being activated or repressed. ATP-dependent chromatin remodeling complexes are key factors in chromatin remodeling, and the SWI/SNF complex is the founding member. While many studies have linked the action of these complexes to specific transcriptional regulation of a large number of genes and much is known about their catalytic activity, less is known about the nuclear elements that can enhance or modulate their activity. A number of studies have found that certain High Mobility Group (HMG) proteins are able to stimulate ATP-dependent chromatin remodeling activity, but their influence on the different biochemical outcomes of this activity is still unknown. In this work we studied the influence of the yeast Nhp6A, Nhp6B and Hmo1 proteins (HMGB family members) on different biochemical outcomes of yeast SWI/SNF remodeling activity. We found that all these HMG proteins stimulate the sliding activity of ySWI/SNF, while transient exposure of nucleosomal DNA and octamer transfer catalyzed by this complex are only stimulated by Hmo1. Consistently, only Hmo1 stimulates SWI/SNF binding to the nucleosome. Additionally, the sliding activity of another chromatin remodeling complex, ISW1a, is only stimulated by Hmo1. Further analyses show that these differential stimulatory effects of Hmo1 are dependent on the presence of its C-terminal tail, which contains a stretch of acidic and basic residues.
Collapse
Affiliation(s)
- Matias I Hepp
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción 4070043, Chile
| | - Valentina Alarcon
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción 4070043, Chile
| | - Arnob Dutta
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City 64110, MO, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City 64110, MO, USA
| | - José L Gutiérrez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción 4070043, Chile.
| |
Collapse
|
73
|
Cadet JL, Brannock C, Jayanthi S, Krasnova IN. Transcriptional and epigenetic substrates of methamphetamine addiction and withdrawal: evidence from a long-access self-administration model in the rat. Mol Neurobiol 2014; 51:696-717. [PMID: 24939695 PMCID: PMC4359351 DOI: 10.1007/s12035-014-8776-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/01/2014] [Indexed: 01/06/2023]
Abstract
Methamphetamine use disorder is a chronic neuropsychiatric disorder characterized by recurrent binge episodes, intervals of abstinence, and relapses to drug use. Humans addicted to methamphetamine experience various degrees of cognitive deficits and other neurological abnormalities that complicate their activities of daily living and their participation in treatment programs. Importantly, models of methamphetamine addiction in rodents have shown that animals will readily learn to give themselves methamphetamine. Rats also accelerate their intake over time. Microarray studies have also shown that methamphetamine taking is associated with major transcriptional changes in the striatum measured within a short or longer time after cessation of drug taking. After a 2-h withdrawal time, there was increased expression of genes that participate in transcription regulation. These included cyclic AMP response element binding (CREB), ETS domain-containing protein (ELK1), and members of the FOS family of transcription factors. Other genes of interest include brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor, type 2 (TrkB), and synaptophysin. Methamphetamine-induced transcription was found to be regulated via phosphorylated CREB-dependent events. After a 30-day withdrawal from methamphetamine self-administration, however, there was mostly decreased expression of transcription factors including junD. There was also downregulation of genes whose protein products are constituents of chromatin-remodeling complexes. Altogether, these genome-wide results show that methamphetamine abuse might be associated with altered regulation of a diversity of gene networks that impact cellular and synaptic functions. These transcriptional changes might serve as triggers for the neuropsychiatric presentations of humans who abuse this drug. Better understanding of the way that gene products interact to cause methamphetamine addiction will help to develop better pharmacological treatment of methamphetamine addicts.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA,
| | | | | | | |
Collapse
|
74
|
Brechalov AV, Georgieva SG, Soshnikova NV. Mammalian cells contain two functionally distinct PBAF complexes incorporating different isoforms of PHF10 signature subunit. Cell Cycle 2014; 13:1970-9. [PMID: 24763304 PMCID: PMC4111760 DOI: 10.4161/cc.28922] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The PBAF subtype of the mammalian chromatin remodeling SWI/SNF complex has wide and diverse functions in transcription regulation and development, being both transcription activator and repressor. However, a mechanism accounting for such functional diversity remains unclear. Human PHF10/BAF45a subunit of the PBAF complex plays an important role in brain development but has not been studied sufficiently. We have shown that the PHF10 gene encodes 2 types of evolutionarily conserved, ubiquitously expressed isoforms that are incorporated into the PBAF complex in a mutually exclusive manner. One isoform contains C-terminal tandem PHD fingers, which in the other isoform are replaced by the consensus sequence for phosphorylation-dependent SUMO 1 conjugation (PDSM). PBAF complexes containing different PHF10 isoforms can bind to the promoters of the same genes but produce different effects on the recruitment of Pol II to the promoter and on the level of gene transcription. In addition, it is only the PBAF with PHD-containing isoform that activates proliferation. Our study demonstrates the existence of functionally different PBAF complexes in mammalian cell. It also provides an insight into the molecular structure and role of human PHF10/BAF45a and characterizes it as an essential PBAF subunit.
Collapse
Affiliation(s)
- Alexander V Brechalov
- Department of Eukaryote Transcription Factors; Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia; Department of Transcription Factors; Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Sofia G Georgieva
- Department of Eukaryote Transcription Factors; Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia; Department of Transcription Factors; Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Nataliya V Soshnikova
- Department of Eukaryote Transcription Factors; Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia
| |
Collapse
|
75
|
Folta A, Severing EI, Krauskopf J, van de Geest H, Verver J, Nap JP, Mlynarova L. Over-expression of Arabidopsis AtCHR23 chromatin remodeling ATPase results in increased variability of growth and gene expression. BMC PLANT BIOLOGY 2014; 14:76. [PMID: 24666886 PMCID: PMC3987066 DOI: 10.1186/1471-2229-14-76] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/17/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plants are sessile organisms that deal with their -sometimes adverse- environment in well-regulated ways. Chromatin remodeling involving SWI/SNF2-type ATPases is thought to be an important epigenetic mechanism for the regulation of gene expression in different developmental programs and for integrating these programs with the response to environmental signals. In this study, we report on the role of chromatin remodeling in Arabidopsis with respect to the variability of growth and gene expression in relationship to environmental conditions. RESULTS Already modest (2-fold) over-expression of the AtCHR23 ATPase gene in Arabidopsis results in overall reduced growth compared to the wild-type. Detailed analyses show that in the root, the reduction of growth is due to reduced cell elongation. The reduced-growth phenotype requires sufficient light and is magnified by applying deliberate abiotic (salt, osmotic) stress. In contrast, the knockout mutation of AtCHR23 does not lead to such visible phenotypic effects. In addition, we show that over-expression of AtCHR23 increases the variability of growth in populations of genetically identical plants. These data indicate that accurate and controlled expression of AtCHR23 contributes to the stability or robustness of growth. Detailed RNAseq analyses demonstrate that upon AtCHR23 over-expression also the variation of gene expression is increased in a subset of genes that associate with environmental stress. The larger variation of gene expression is confirmed in individual plants with the help of independent qRT-PCR analysis. CONCLUSIONS Over-expression of AtCHR23 gives Arabidopsis a phenotype that is markedly different from the growth arrest phenotype observed upon over-expression of AtCHR12, the paralog of AtCHR23, in response to abiotic stress. This demonstrates functional sub-specialization of highly similar ATPases in Arabidopsis. Over-expression of AtCHR23 increases the variability of growth among genetically identical individuals in a way that is consistent with increased variability of expression of a distinct subset of genes that associate with environmental stress. We propose that ATCHR23-mediated chromatin remodeling is a potential component of a buffer system in plants that protects against environmentally-induced phenotypic and transcriptional variation.
Collapse
Affiliation(s)
- Adam Folta
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Edouard I Severing
- Laboratory of Genetics, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Julian Krauskopf
- Applied Bioinformatics, Bioscience, Plant Research International, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
- Present address: Department of Toxigenomics, Maastricht University, Maastricht, The Netherlands
| | - Henri van de Geest
- Applied Bioinformatics, Bioscience, Plant Research International, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Jan Verver
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Jan-Peter Nap
- Applied Bioinformatics, Bioscience, Plant Research International, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
- Expertise Centre ALIFE, Institute for Life Science & Technology, Hanze University of Applied Sciences, Groningen, The Netherlands
| | - Ludmila Mlynarova
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| |
Collapse
|
76
|
Caenorhabditis elegans SWI/SNF subunits control sequential developmental stages in the somatic gonad. G3-GENES GENOMES GENETICS 2014; 4:471-83. [PMID: 24402584 PMCID: PMC3962486 DOI: 10.1534/g3.113.009852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Caenorhabditis elegans somatic gonadal precursors (SGPs) are multipotent progenitors that give rise to all somatic tissues of the adult reproductive system. The hunchback and Ikaros-like gene ehn-3 is expressed specifically in SGPs and is required for their development into differentiated tissues of the somatic gonad. To find novel genes involved in SGP development, we used a weak allele of ehn-3 as the basis for a reverse genetic screen. Feeding RNAi was used to screen ∼2400 clones consisting of transcription factors, signaling components, and chromatin factors. The screen identified five members of the C. elegans SWI/SNF chromatin remodeling complex as genetic enhancers of ehn-3. We characterized alleles of 10 SWI/SNF genes and found that SWI/SNF subunits are required for viability and gonadogenesis. Two conserved SWI/SNF complexes, PBAF and BAF, are defined by their unique array of accessory subunits around a common enzymatic core that includes a catalytic Swi2/Snf2-type ATPase. Tissue-specific RNAi experiments suggest that C. elegans PBAF and BAF complexes control different processes during somatic gonadal development: PBRM-1, a signature subunit of PBAF, is important for normal SGP development, whereas LET-526, the distinguishing subunit of BAF, is required for development of a differentiated cell type, the distal tip cell (DTC). We found that the SWSN-4 ATPase subunit is required for SGP and DTC development. Finally, we provide evidence that C. elegans PBAF subunits and hnd-1/dHand are important for the cell fate decision between SGPs and their differentiated sisters, the head mesodermal cells.
Collapse
|
77
|
Eroglu E, Burkard TR, Jiang Y, Saini N, Homem CCF, Reichert H, Knoblich JA. SWI/SNF complex prevents lineage reversion and induces temporal patterning in neural stem cells. Cell 2014; 156:1259-1273. [PMID: 24630726 DOI: 10.1016/j.cell.2014.01.053] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 11/11/2013] [Accepted: 01/16/2014] [Indexed: 12/22/2022]
Abstract
Members of the SWI/SNF chromatin-remodeling complex are among the most frequently mutated genes in human cancer, but how they suppress tumorigenesis is currently unclear. Here, we use Drosophila neuroblasts to demonstrate that the SWI/SNF component Osa (ARID1) prevents tumorigenesis by ensuring correct lineage progression in stem cell lineages. We show that Osa induces a transcriptional program in the transit-amplifying population that initiates temporal patterning, limits self-renewal, and prevents dedifferentiation. We identify the Prdm protein Hamlet as a key component of this program. Hamlet is directly induced by Osa and regulates the progression of progenitors through distinct transcriptional states to limit the number of transit-amplifying divisions. Our data provide a mechanistic explanation for the widespread tumor suppressor activity of SWI/SNF. Because the Hamlet homologs Evi1 and Prdm16 are frequently mutated in cancer, this mechanism could well be conserved in human stem cell lineages. PAPERCLIP:
Collapse
Affiliation(s)
- Elif Eroglu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Thomas R Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Yanrui Jiang
- Biozentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Nidhi Saini
- Biozentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Catarina C F Homem
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Heinrich Reichert
- Biozentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
78
|
Yu S, Waldholm J, Böhm S, Visa N. Brahma regulates a specific trans-splicing event at the mod(mdg4) locus of Drosophila melanogaster. RNA Biol 2014; 11:134-45. [PMID: 24526065 DOI: 10.4161/rna.27866] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mod(mdg4) locus of Drosophila melanogaster contains several transcription units encoded on both DNA strands. The mod(mdg4) pre-mRNAs are alternatively spliced, and a very significant fraction of the mature mod(mdg4) mRNAs are formed by trans-splicing. We have studied the transcripts derived from one of the anti-sense regions within the mod(mdg4) locus in order to shed light on the expression of this complex locus. We have characterized the expression of anti-sense mod(mdg4) transcripts in S2 cells, mapped their transcription start sites and cleavage sites, identified and quantified alternatively spliced transcripts, and obtained insight into the regulation of the mod(mdg4) trans-splicing. In a previous study, we had shown that the alternative splicing of some mod(mdg4) transcripts was regulated by Brahma (BRM), the ATPase subunit of the SWI/SNF chromatin-remodeling complex. Here we show, using RNA interference and overexpression of recombinant BRM proteins, that the levels of BRM affect specifically the abundance of a trans-spliced mod(mdg4) mRNA isoform in both S2 cells and larvae. This specific effect on trans-splicing is accompanied by a local increase in the density of RNA polymerase II and by a change in the phosphorylation state of the C-terminal domain of the large subunit of RNA polymerase II. Interestingly, the regulation of the mod(mdg4) splicing by BRM is independent of the ATPase activity of BRM, which suggests that the mechanism by which BRM modulates trans-splicing is independent of its chromatin-remodeling activity.
Collapse
Affiliation(s)
- Simei Yu
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm, Sweden
| | - Johan Waldholm
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm, Sweden
| | - Stefanie Böhm
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm, Sweden
| | - Neus Visa
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm, Sweden
| |
Collapse
|
79
|
Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol Cell Biol 2014; 34:1136-44. [PMID: 24421395 DOI: 10.1128/mcb.01372-13] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Collectively, genes encoding subunits of the SWI/SNF (BAF) chromatin remodeling complex are mutated in 20% of all human cancers, with the SMARCA4 (BRG1) subunit being one of the most frequently mutated. The SWI/SNF complex modulates chromatin remodeling through the activity of two mutually exclusive catalytic subunits, SMARCA4 and SMARCA2 (BRM). Here, we show that a SMARCA2-containing residual SWI/SNF complex underlies the oncogenic activity of SMARCA4 mutant cancers. We demonstrate that a residual SWI/SNF complex exists in SMARCA4 mutant cell lines and plays essential roles in cellular proliferation. Further, using data from loss-of-function screening of 165 cancer cell lines, we identify SMARCA2 as an essential gene in SMARCA4 mutant cancer cell lines. Mechanistically, we reveal that Smarca4 inactivation leads to greater incorporation of the nonessential SMARCA2 subunit into the SWI/SNF complex. Collectively, these results reveal a role for SMARCA2 in oncogenesis caused by SMARCA4 loss and identify the ATPase and bromodomain-containing SMARCA2 as a potential therapeutic target in these cancers.
Collapse
|
80
|
Singh AP, Archer TK. Analysis of the SWI/SNF chromatin-remodeling complex during early heart development and BAF250a repression cardiac gene transcription during P19 cell differentiation. Nucleic Acids Res 2013; 42:2958-75. [PMID: 24335282 PMCID: PMC3950667 DOI: 10.1093/nar/gkt1232] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The regulatory networks of differentiation programs and the molecular mechanisms of lineage-specific gene regulation in mammalian embryos remain only partially defined. We document differential expression and temporal switching of BRG1-associated factor (BAF) subunits, core pluripotency factors and cardiac-specific genes during post-implantation development and subsequent early organogenesis. Using affinity purification of BRG1 ATPase coupled to mass spectrometry, we characterized the cardiac-enriched remodeling complexes present in E8.5 mouse embryos. The relative abundance and combinatorial assembly of the BAF subunits provides functional specificity to Switch/Sucrose NonFermentable (SWI/SNF) complexes resulting in a unique gene expression profile in the developing heart. Remarkably, the specific depletion of the BAF250a subunit demonstrated differential effects on cardiac-specific gene expression and resulted in arrhythmic contracting cardiomyocytes in vitro. Indeed, the BAF250a physically interacts and functionally cooperates with Nucleosome Remodeling and Histone Deacetylase (NURD) complex subunits to repressively regulate chromatin structure of the cardiac genes by switching open and poised chromatin marks associated with active and repressed gene expression. Finally, BAF250a expression modulates BRG1 occupancy at the loci of cardiac genes regulatory regions in P19 cell differentiation. These findings reveal specialized and novel cardiac-enriched SWI/SNF chromatin-remodeling complexes, which are required for heart formation and critical for cardiac gene expression regulation at the early stages of heart development.
Collapse
Affiliation(s)
- Ajeet Pratap Singh
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
81
|
Chambers AL, Pearl LH, Oliver AW, Downs JA. The BAH domain of Rsc2 is a histone H3 binding domain. Nucleic Acids Res 2013; 41:9168-82. [PMID: 23907388 PMCID: PMC3799432 DOI: 10.1093/nar/gkt662] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 07/07/2013] [Indexed: 12/25/2022] Open
Abstract
Bromo-adjacent homology (BAH) domains are commonly found in chromatin-associated proteins and fall into two classes; Remodels the Structure of Chromatin (RSC)-like or Sir3-like. Although Sir3-like BAH domains bind nucleosomes, the binding partners of RSC-like BAH domains are currently unknown. The Rsc2 subunit of the RSC chromatin remodeling complex contains an RSC-like BAH domain and, like the Sir3-like BAH domains, we find Rsc2 BAH also interacts with nucleosomes. However, unlike Sir3-like BAH domains, we find that Rsc2 BAH can bind to recombinant purified H3 in vitro, suggesting that the mechanism of nucleosome binding is not conserved. To gain insight into the Rsc2 BAH domain, we determined its crystal structure at 2.4 Å resolution. We find that it differs substantially from Sir3-like BAH domains and lacks the motifs in these domains known to be critical for making contacts with histones. We then go on to identify a novel motif in Rsc2 BAH that is critical for efficient H3 binding in vitro and show that mutation of this motif results in defective Rsc2 function in vivo. Moreover, we find this interaction is conserved across Rsc2-related proteins. These data uncover a binding target of the Rsc2 family of BAH domains and identify a novel motif that mediates this interaction.
Collapse
Affiliation(s)
- Anna L. Chambers
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK and Cancer Research UK DNA Repair Enzymes Research Group, Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Laurence H. Pearl
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK and Cancer Research UK DNA Repair Enzymes Research Group, Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Antony W. Oliver
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK and Cancer Research UK DNA Repair Enzymes Research Group, Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Jessica A. Downs
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK and Cancer Research UK DNA Repair Enzymes Research Group, Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| |
Collapse
|
82
|
Dorighi KM, Tamkun JW. The trithorax group proteins Kismet and ASH1 promote H3K36 dimethylation to counteract Polycomb group repression in Drosophila. Development 2013; 140:4182-92. [PMID: 24004944 DOI: 10.1242/dev.095786] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the Polycomb group of repressors and trithorax group of activators maintain heritable states of transcription by modifying nucleosomal histones or remodeling chromatin. Although tremendous progress has been made toward defining the biochemical activities of Polycomb and trithorax group proteins, much remains to be learned about how they interact with each other and the general transcription machinery to maintain on or off states of gene expression. The trithorax group protein Kismet (KIS) is related to the SWI/SNF and CHD families of chromatin remodeling factors. KIS promotes transcription elongation, facilitates the binding of the trithorax group histone methyltransferases ASH1 and TRX to active genes, and counteracts repressive methylation of histone H3 on lysine 27 (H3K27) by Polycomb group proteins. Here, we sought to clarify the mechanism of action of KIS and how it interacts with ASH1 to antagonize H3K27 methylation in Drosophila. We present evidence that KIS promotes transcription elongation and counteracts Polycomb group repression via distinct mechanisms. A chemical inhibitor of transcription elongation, DRB, had no effect on ASH1 recruitment or H3K27 methylation. Conversely, loss of ASH1 function had no effect on transcription elongation. Mutations in kis cause a global reduction in the di- and tri-methylation of histone H3 on lysine 36 (H3K36) - modifications that antagonize H3K27 methylation in vitro. Furthermore, loss of ASH1 significantly decreases H3K36 dimethylation, providing further evidence that ASH1 is an H3K36 dimethylase in vivo. These and other findings suggest that KIS antagonizes Polycomb group repression by facilitating ASH1-dependent H3K36 dimethylation.
Collapse
Affiliation(s)
- Kristel M Dorighi
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
83
|
Lim PS, Li J, Holloway AF, Rao S. Epigenetic regulation of inducible gene expression in the immune system. Immunology 2013; 139:285-93. [PMID: 23521628 DOI: 10.1111/imm.12100] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/07/2013] [Accepted: 03/13/2013] [Indexed: 01/12/2023] Open
Abstract
T cells are exquisitely poised to respond rapidly to pathogens and have proved an instructive model for exploring the regulation of inducible genes. Individual genes respond to antigenic stimulation in different ways, and it has become clear that the interplay between transcription factors and the chromatin platform of individual genes governs these responses. Our understanding of the complexity of the chromatin platform and the epigenetic mechanisms that contribute to transcriptional control has expanded dramatically in recent years. These mechanisms include the presence/absence of histone modification marks, which form an epigenetic signature to mark active or inactive genes. These signatures are dynamically added or removed by epigenetic enzymes, comprising an array of histone-modifying enzymes, including the more recently recognized chromatin-associated signalling kinases. In addition, chromatin-remodelling complexes physically alter the chromatin structure to regulate chromatin accessibility to transcriptional regulatory factors. The advent of genome-wide technologies has enabled characterization of the chromatin landscape of T cells in terms of histone occupancy, histone modification patterns and transcription factor association with specific genomic regulatory regions, generating a picture of the T-cell epigenome. Here, we discuss the multi-layered regulation of inducible gene expression in the immune system, focusing on the interplay between transcription factors, and the T-cell epigenome, including the role played by chromatin remodellers and epigenetic enzymes. We will also use IL2, a key inducible cytokine gene in T cells, as an example of how the different layers of epigenetic mechanisms regulate immune responsive genes during T-cell activation.
Collapse
Affiliation(s)
- Pek Siew Lim
- Discipline of Biomedical Sciences, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, Australia.
| | | | | | | |
Collapse
|
84
|
Das S, Banerjee B, Hossain M, Thangamuniyandi M, Dasgupta S, Chongdar N, Kumar GS, Basu G. Characterization of DNA binding property of the HIV-1 host factor and tumor suppressor protein Integrase Interactor 1 (INI1/hSNF5). PLoS One 2013; 8:e66581. [PMID: 23861745 PMCID: PMC3701577 DOI: 10.1371/journal.pone.0066581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 05/07/2013] [Indexed: 11/19/2022] Open
Abstract
Integrase Interactor 1 (INI1/hSNF5) is a component of the hSWI/SNF chromatin remodeling complex. The INI1 gene is either deleted or mutated in rhabdoid cancers like ATRT (Atypical terratoid and rhabdoid tumor). INI1 is also a host factor for HIV-1 replication. INI1 binds DNA non-specifically. However, the mechanism of DNA binding and its biological role are unknown. From agarose gel retardation assay (AGRA), Ni-NTA pull-down and atomic force microscopy (AFM) studies we show that amino acids 105-183 of INI1 comprise the minimal DNA binding domain (DBD). The INI1 DBD is absent in plants and in yeast SNF5. It is present in Caenorhabditis elegans SNF5, Drosophila melanogaster homologue SNR1 and is a highly conserved domain in vertebrates. The DNA binding property of this domain in SNR1, that is only 58% identical to INI1/hSNF5, is conserved. Analytical ultracentrifugation studies of INI1 DBD and INI1 DBD:DNA complexes at different concentrations show that the DBD exists as a monomer at low protein concentration and two molecules of monomer binds one molecule of DNA. At high protein concentration, it exists as a dimer and binds two DNA molecules. Furthermore, isothermal calorimetry (ITC) experiments demonstrate that the DBD monomer binds DNA with a stoichiometry (N) of ∼0.5 and Kd = 0.94 µM whereas the DBD dimer binds two DNA molecules sequentially with K'd1 = 222 µM and K'd2 = 1.16 µM. Monomeric DBD binding to DNA is enthalpy driven (ΔH = -29.9 KJ/mole). Dimeric DBD binding to DNA is sequential with the first binding event driven by positive entropy (ΔH'1 = 115.7 KJ/mole, TΔS'1 = 136.8 KJ/mole) and the second binding event driven by negative enthalpy (ΔH'2 = -106.3 KJ/mole, TΔS'2 = -75.7 KJ/mole). Our model for INI1 DBD binding to DNA provides new insights into the mechanism of DNA binding by INI1.
Collapse
Affiliation(s)
- Supratik Das
- Department of Biochemistry, University of Calcutta, Kolkata, India.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
SMARCA3, a chromatin-remodeling factor, is required for p11-dependent antidepressant action. Cell 2013; 152:831-43. [PMID: 23415230 DOI: 10.1016/j.cell.2013.01.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/14/2012] [Accepted: 01/08/2013] [Indexed: 02/02/2023]
Abstract
p11, through unknown mechanisms, is required for behavioral and cellular responses to selective serotonin reuptake inhibitors (SSRIs). We show that SMARCA3, a chromatin-remodeling factor, is a target for the p11/annexin A2 heterotetrameric complex. Determination of the crystal structure indicates that SMARCA3 peptide binds to a hydrophobic pocket in the heterotetramer. Formation of this complex increases the DNA-binding affinity of SMARCA3 and its localization to the nuclear matrix fraction. In the dentate gyrus, both p11 and SMARCA3 are highly enriched in hilar mossy cells and basket cells. The SSRI fluoxetine induces expression of p11 in both cell types and increases the amount of the ternary complex of p11/annexin A2/SMARCA3. SSRI-induced neurogenesis and behavioral responses are abolished by constitutive knockout of SMARCA3. Our studies indicate a central role for a chromatin-remodeling factor in the SSRI/p11 signaling pathway and suggest an approach to the development of improved antidepressant therapies. PAPERCLIP:
Collapse
|
86
|
Xu J, Lei S, Liu Y, Gao X, Irwin MG, Xia ZY, Hei Z, Gan X, Wang T, Xia Z. Antioxidant N-acetylcysteine attenuates the reduction of Brg1 protein expression in the myocardium of type 1 diabetic rats. J Diabetes Res 2013; 2013:716219. [PMID: 23853776 PMCID: PMC3703332 DOI: 10.1155/2013/716219] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 06/01/2013] [Indexed: 02/07/2023] Open
Abstract
Brahma-related gene 1 (Brg1) is a key gene in inducing the expression of important endogenous antioxidant enzymes, including heme oxygenase-1 (HO-1) which is central to cardioprotection, while cardiac HO-1 expression is reduced in diabetes. It is unknown whether or not cardiac Brg1 expression is reduced in diabetes. We hypothesize that cardiac Brg1 expression is reduced in diabetes which can be restored by antioxidant treatment with N-acetylcysteine (NAC). Control (C) and streptozotocin-induced diabetic (D) rats were treated with NAC in drinking water or placebo for 4 weeks. Plasma and cardiac free15-F2t-isoprostane in diabetic rats were increased, accompanied with increased plasma levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin 6 (IL-6), while cardiac Brg1, p-STAT3 and HO-1 protein expression levels were significantly decreased. Left ventricle weight/body weight ratio was higher, while the peak velocities of early (E) and late (A) flow ratio was lower in diabetic than in C rats. NAC normalized tissue and plasma levels of 15-F2t-isoprostane, significantly increased cardiac Brg1, HO-1 and p-STAT3 protein expression levels and reduced TNF-alpha and IL-6, resulting in improved cardiac function. In conclusion, myocardial Brg1 is reduced in diabetes and enhancement of cardiac Brg1 expression may represent a novel mechanism whereby NAC confers cardioprotection.
Collapse
Affiliation(s)
- Jinjin Xu
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
| | - Shaoqing Lei
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanan Liu
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
| | - Xia Gao
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
| | - Michael G. Irwin
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
| | - Zhong-yuan Xia
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ziqing Hei
- Department of Anesthesiology, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaoliang Gan
- Department of Anesthesiology, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tingting Wang
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
- Department of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
- *Tingting Wang: and
| | - Zhengyuan Xia
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
- *Zhengyuan Xia:
| |
Collapse
|
87
|
Barrero MJ, Malik S. The RNA polymerase II transcriptional machinery and its epigenetic context. Subcell Biochem 2013; 61:237-259. [PMID: 23150254 DOI: 10.1007/978-94-007-4525-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RNA polymerase II (Pol II) is the main engine that drives transcription of protein-encoding genes in eukaryotes. Despite its intrinsic subunit complexity, Pol II is subject to a host of factors that regulate the multistep transcription process. Indeed, the hallmark of the transcription cycle is the dynamic association of Pol II with initiation, elongation and other factors. In addition, Pol II transcription is regulated by a series of cofactors (coactivators and corepressors). Among these, the Mediator has emerged as one of the key regulatory factors for Pol II. Transcription by Pol II takes place in the context of chromatin, which is subject to numerous epigenetic modifications. This chapter mainly summarizes the various biochemical mechanisms that determine formation and function of a Pol II preinitiation complex (PIC) and those that affect its progress along the gene body (elongation). It further examines the various epigenetic modifications that the Pol II machinery encounters, especially in certain developmental contexts, and highlights newer evidence pointing to a likely close interplay between this machinery and factors responsible for the chromatin modifications.
Collapse
Affiliation(s)
- Maria J Barrero
- Center for Regenerative Medicine, Dr Aiguader 88, Barcelona, Spain,
| | | |
Collapse
|
88
|
Beyer DC, Ghoneim MK, Spies M. Structure and Mechanisms of SF2 DNA Helicases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:47-73. [PMID: 23161006 DOI: 10.1007/978-1-4614-5037-5_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Effective transcription, replication, and maintenance of the genome require a diverse set of molecular machines to perform the many chemical transactions that constitute these processes. Many of these machines use single-stranded nucleic acids as templates, and their actions are often regulated by the participation of nucleic acids in multimeric structures and macromolecular assemblies that restrict access to chemical information. Superfamily II (SF2) DNA helicases and translocases are a group of molecular machines that remodel nucleic acid lattices and enable essential cellular processes to use the information stored in the duplex DNA of the packaged genome. Characteristic accessory domains associated with the subgroups of the superfamily direct the activity of the common motor core and expand the repertoire of activities and substrates available to SF2 DNA helicases, translocases, and large multiprotein complexes containing SF2 motors. In recent years, single-molecule studies have contributed extensively to the characterization of this ubiquitous and essential class of enzymes.
Collapse
Affiliation(s)
- David C Beyer
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | |
Collapse
|
89
|
Abstract
In eukaryotic cells, introns are spliced from pre-mRNAs by the spliceosome. Both the composition and the structure of the spliceosome are highly dynamic, and eight DExD/H RNA helicases play essential roles in controlling conformational rearrangements. There is evidence that the various helicases are functionally and physically connected with each other and with many other factors in the spliceosome. Understanding the dynamics of those interactions is essential to comprehend the mechanism and regulation of normal as well as of pathological splicing. This review focuses on recent advances in the characterization of the splicing helicases and their interactions, and highlights the deep integration of splicing helicases in global mRNP biogenesis pathways.
Collapse
Affiliation(s)
- Olivier Cordin
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
90
|
Snider AC, Leong D, Wang QT, Wysocka J, Yao MWM, Scott MP. The chromatin remodeling factor Chd1l is required in the preimplantation embryo. Biol Open 2012; 2:121-31. [PMID: 23429299 PMCID: PMC3575647 DOI: 10.1242/bio.20122949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/17/2012] [Indexed: 01/07/2023] Open
Abstract
During preimplantation development, the embryo must establish totipotency and enact the earliest differentiation choices, processes that involve extensive chromatin modification. To identify novel developmental regulators, we screened for genes that are preferentially transcribed in the pluripotent inner cell mass (ICM) of the mouse blastocyst. Genes that encode chromatin remodeling factors were prominently represented in the ICM, including Chd1l, a member of the Snf2 gene family. Chd1l is developmentally regulated and expressed in embryonic stem (ES) cells, but its role in development has not been investigated. Here we show that inhibiting Chd1l protein production by microinjection of antisense morpholinos causes arrest prior to the blastocyst stage. Despite this important function in vivo, Chd1l is non-essential for cultured ES cell survival, pluripotency, or differentiation, suggesting that Chd1l is vital for events in embryos that are distinct from events in ES cells. Our data reveal a novel role for the chromatin remodeling factor Chd1l in the earliest cell divisions of mammalian development.
Collapse
Affiliation(s)
- Alyssa C Snider
- Departments of Developmental Biology, Genetics, and Bioengineering, University School of Medicine , Stanford, CA 94305-5101 , USA
| | | | | | | | | | | |
Collapse
|
91
|
Abstract
p53 is an important tumor suppressor, functioning as a transcriptional activator and repressor. Upon receiving signals from multiple stress related pathways, p53 regulates numerous activities such as cell cycle arrest, senescence, and cell death. When p53 activities are not required, the protein is held in check by interacting with 2 key homologous regulators, Mdm2 and MdmX, and a search for inhibitors of these interactions is well underway. However, it is now recognized that Mdm2 and MdmX function beyond simple inhibition of p53, and a complete understanding of Mdm2 and MdmX functions is ever more important. Indeed, increasing evidence suggests that Mdm2 and MdmX affect p53 target gene specificity and influence the activity of other transcription factors, and Mdm2 itself may even function as a transcription co-factor through post-translational modification of chromatin. Additionally, Mdm2 affects post-transcriptional activities such as mRNA stability and translation of a variety of transcripts. Thus, Mdm2 and MdmX influence the expression of many genes through a wide variety of mechanisms, which are discussed in this review.
Collapse
Affiliation(s)
- Lynn Biderman
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
92
|
The emerging roles of ATP-dependent chromatin remodeling enzymes in nucleotide excision repair. Int J Mol Sci 2012; 13:11954-11973. [PMID: 23109894 PMCID: PMC3472786 DOI: 10.3390/ijms130911954] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 12/14/2022] Open
Abstract
DNA repair in eukaryotic cells takes place in the context of chromatin, where DNA, including damaged DNA, is tightly packed into nucleosomes and higher order chromatin structures. Chromatin intrinsically restricts accessibility of DNA repair proteins to the damaged DNA and impacts upon the overall rate of DNA repair. Chromatin is highly responsive to DNA damage and undergoes specific remodeling to facilitate DNA repair. How damaged DNA is accessed, repaired and restored to the original chromatin state, and how chromatin remodeling coordinates these processes in vivo, remains largely unknown. ATP-dependent chromatin remodelers (ACRs) are the master regulators of chromatin structure and dynamics. Conserved from yeast to humans, ACRs utilize the energy of ATP to reorganize packing of chromatin and control DNA accessibility by sliding, ejecting or restructuring nucleosomes. Several studies have demonstrated that ATP-dependent remodeling activity of ACRs plays important roles in coordination of spatio-temporal steps of different DNA repair pathways in chromatin. This review focuses on the role of ACRs in regulation of various aspects of nucleotide excision repair (NER) in the context of chromatin. We discuss current understanding of ATP-dependent chromatin remodeling by various subfamilies of remodelers and regulation of the NER pathway in vivo.
Collapse
|
93
|
Dastidar RG, Hooda J, Shah A, Cao TM, Henke RM, Zhang L. The nuclear localization of SWI/SNF proteins is subjected to oxygen regulation. Cell Biosci 2012; 2:30. [PMID: 22932476 PMCID: PMC3489556 DOI: 10.1186/2045-3701-2-30] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/17/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hypoxia is associated with many disease conditions in humans, such as cancer, stroke and traumatic injuries. Hypoxia elicits broad molecular and cellular changes in diverse eukaryotes. Our recent studies suggest that one likely mechanism mediating such broad changes is through changes in the cellular localization of important regulatory proteins. Particularly, we have found that over 120 nuclear proteins with important functions ranging from transcriptional regulation to RNA processing exhibit altered cellular locations under hypoxia. In this report, we describe further experiments to identify and evaluate the role of nuclear protein relocalization in mediating hypoxia responses in yeast. RESULTS To identify regulatory proteins that play a causal role in mediating hypoxia responses, we characterized the time courses of relocalization of hypoxia-altered nuclear proteins in response to hypoxia and reoxygenation. We found that 17 nuclear proteins relocalized in a significantly shorter time period in response to both hypoxia and reoxygenation. Particularly, several components of the SWI/SNF complex were fast responders, and analysis of gene expression data show that many targets of the SWI/SNF proteins are oxygen regulated. Furthermore, confocal fluorescent live cell imaging showed that over 95% of hypoxia-altered SWI/SNF proteins accumulated in the cytosol in hypoxic cells, while over 95% of the proteins were nuclear in normoxic cells, as expected. CONCLUSIONS SWI/SNF proteins relocalize in response to hypoxia and reoxygenation in a quick manner, and their relocalization likely accounts for, in part or in whole, oxygen regulation of many SWI/SNF target genes.
Collapse
Affiliation(s)
- Ranita Ghosh Dastidar
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11 800 W Campbell Road, Richardson, TX, 75080, USA
| | - Jagmohan Hooda
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11 800 W Campbell Road, Richardson, TX, 75080, USA
| | - Ajit Shah
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11 800 W Campbell Road, Richardson, TX, 75080, USA
| | - Thai M Cao
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11 800 W Campbell Road, Richardson, TX, 75080, USA
| | - Robert Michael Henke
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11 800 W Campbell Road, Richardson, TX, 75080, USA
| | - Li Zhang
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11 800 W Campbell Road, Richardson, TX, 75080, USA
| |
Collapse
|
94
|
Ryan MM, Ryan B, Kyrke-Smith M, Logan B, Tate WP, Abraham WC, Williams JM. Temporal profiling of gene networks associated with the late phase of long-term potentiation in vivo. PLoS One 2012; 7:e40538. [PMID: 22802965 PMCID: PMC3393663 DOI: 10.1371/journal.pone.0040538] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 06/08/2012] [Indexed: 01/02/2023] Open
Abstract
Long-term potentiation (LTP) is widely accepted as a cellular mechanism underlying memory processes. It is well established that LTP persistence is strongly dependent on activation of constitutive and inducible transcription factors, but there is limited information regarding the downstream gene networks and controlling elements that coalesce to stabilise LTP. To identify these gene networks, we used Affymetrix RAT230.2 microarrays to detect genes regulated 5 h and 24 h (n = 5) after LTP induction at perforant path synapses in the dentate gyrus of awake adult rats. The functional relationships of the differentially expressed genes were examined using DAVID and Ingenuity Pathway Analysis, and compared with our previous data derived 20 min post-LTP induction in vivo. This analysis showed that LTP-related genes are predominantly upregulated at 5 h but that there is pronounced downregulation of gene expression at 24 h after LTP induction. Analysis of the structure of the networks and canonical pathways predicted a regulation of calcium dynamics via G-protein coupled receptors, dendritogenesis and neurogenesis at the 5 h time-point. By 24 h neurotrophin-NFKB driven pathways of neuronal growth were identified. The temporal shift in gene expression appears to be mediated by regulation of protein synthesis, ubiquitination and time-dependent regulation of specific microRNA and histone deacetylase expression. Together this programme of genomic responses, marked by both homeostatic and growth pathways, is likely to be critical for the consolidation of LTP in vivo.
Collapse
Affiliation(s)
- Margaret M. Ryan
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Anatomy, Otago School of Medical Sciences, Dunedin, New Zealand
- Department of Biochemistry, Otago School of Medical Sciences, Dunedin, New Zealand
| | - Brigid Ryan
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Anatomy, Otago School of Medical Sciences, Dunedin, New Zealand
| | - Madeleine Kyrke-Smith
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Anatomy, Otago School of Medical Sciences, Dunedin, New Zealand
| | - Barbara Logan
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Warren P. Tate
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, Otago School of Medical Sciences, Dunedin, New Zealand
| | - Wickliffe C. Abraham
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Joanna M. Williams
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Department of Anatomy, Otago School of Medical Sciences, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
95
|
He L, Liu H, Tang L. SWI/SNF chromatin remodeling complex: a new cofactor in reprogramming. Stem Cell Rev Rep 2012; 8:128-36. [PMID: 21655945 DOI: 10.1007/s12015-011-9285-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Induced pluripotent stem (iPS) cells can be derived from somatic cells. Four key factors are required in this process including Oct4, Sox2, Klf4 and c-Myc. Ectopic expression of these four factors in somatic cells leads to reprogramming. Recent studies show that the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex plays critical roles in reprogramming of somatic cells and maintaining the pluripotency of stem cells. The possible mechanism is that SWI/SNF enhances the binding activity of reprogramming factors to pluripotent gene promoters and thus increases the reprogramming efficiency. Here, we review these recent advances and discuss how SWI/SNF plays a role in reprogramming. Understanding this mechanism will be helpful to find out the detail of reprogramming, which may provide a new therapy in medical science by generating patient-specific pluripotent stem cells.
Collapse
Affiliation(s)
- Ling He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | | | | |
Collapse
|
96
|
Niimi A, Chambers AL, Downs JA, Lehmann AR. A role for chromatin remodellers in replication of damaged DNA. Nucleic Acids Res 2012; 40:7393-403. [PMID: 22638582 PMCID: PMC3424576 DOI: 10.1093/nar/gks453] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In eukaryotic cells, replication past damaged sites in DNA is regulated by the ubiquitination of proliferating cell nuclear antigen (PCNA). Little is known about how this process is affected by chromatin structure. There are two isoforms of the Remodels the Structure of Chromatin (RSC) remodelling complex in yeast. We show that deletion of RSC2 results in a dramatic reduction in the level of PCNA ubiquitination after DNA-damaging treatments, whereas no such effect was observed after deletion of RSC1. Similarly, depletion of the BAF180 component of the corresponding PBAF (Polybromo BRG1 (Brahma-Related Gene 1) Associated Factor) complex in human cells led to a similar reduction in PCNA ubiquitination. Remarkably, we found that depletion of BAF180 resulted after UV-irradiation, in a reduction not only of ubiquitinated PCNA but also of chromatin-associated unmodified PCNA and Rad18 (the E3 ligase that ubiquitinates PCNA). This was accompanied by a modest decrease in fork progression. We propose a model to account for these findings that postulates an involvement of PBAF in repriming of replication downstream from replication forks blocked at sites of DNA damage. In support of this model, chromatin immunoprecipitation data show that the RSC complex in yeast is present in the vicinity of the replication forks, and by extrapolation, this is also likely to be the case for the PBAF complex in human cells.
Collapse
Affiliation(s)
- Atsuko Niimi
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | | | | | | |
Collapse
|
97
|
Lange M, Demajo S, Jain P, Di Croce L. Combinatorial assembly and function of chromatin regulatory complexes. Epigenomics 2012; 3:567-80. [PMID: 22126247 DOI: 10.2217/epi.11.83] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The introduction of new methods for genome-wide analyses of the chromatin state, together with the power of refined techniques for mass spectrometry and biochemistry, has provided an unprecedented view on the complexity of eukaryotic gene regulation. Chromatin structure, the state of histone modifications and DNA methylation are highly dynamic and subject to various levels of regulation. In addition, the subunit compositions of the protein complexes that bring about these changes appear to be assembled in a combinatorial manner that is specific for the cell type and developmental stage, providing increased specificity to these complexes. Here we discuss recent evidence regarding the combinatorial control of chromatin regulatory complexes.
Collapse
Affiliation(s)
- Martin Lange
- Center for Genomic Regulation & UPF, Barcelona, Spain
| | | | | | | |
Collapse
|
98
|
Zraly CB, Dingwall AK. The chromatin remodeling and mRNA splicing functions of the Brahma (SWI/SNF) complex are mediated by the SNR1/SNF5 regulatory subunit. Nucleic Acids Res 2012; 40:5975-87. [PMID: 22467207 PMCID: PMC3401471 DOI: 10.1093/nar/gks288] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nucleosome remodeling catalyzed by the ATP-dependent SWI/SNF complex is essential for regulated gene expression. Transcriptome profiling studies in flies and mammals identified cell cycle and hormone responsive genes as important targets of remodeling complex activities. Loss of chromatin remodeling function has been linked to developmental abnormalities and aggressive cancers. The Drosophila Brahma (Brm) SWI/SNF complex assists in reprogramming and coordinating gene expression in response to ecdysone hormone signaling at critical points during development. We used RNAi knockdown in cultured cells and transgenic flies, and conditional mutant alleles to identify unique and important functions of two conserved Brm complex core subunits, SNR1/SNF5 and BRM/SNF2-SWI2, on target gene regulation. Unexpectedly, we found that incorporation of a loss of function SNR1 subunit led to alterations in RNA polymerase elongation, pre-mRNA splicing regulation and chromatin accessibility of ecdysone hormone regulated genes, revealing that SNR1 functions to restrict BRM-dependent nucleosome remodeling activities downstream of the promoter region. Our results reveal critically important roles of the SNR1/SNF5 subunit and the Brm chromatin remodeling complex in transcription regulation during elongation by RNA Polymerase II and completion of pre-mRNA transcripts that are dependent on hormone signaling in late development.
Collapse
Affiliation(s)
- Claudia B Zraly
- Cardinal Bernardin Cancer Center, Oncology Institute, Stritch School of Medicine, Loyola University of Chicago, 2160 S. First Avenue, Maywood, IL 60153, USA
| | | |
Collapse
|
99
|
Nowak SJ, Aihara H, Gonzalez K, Nibu Y, Baylies MK. Akirin links twist-regulated transcription with the Brahma chromatin remodeling complex during embryogenesis. PLoS Genet 2012; 8:e1002547. [PMID: 22396663 PMCID: PMC3291577 DOI: 10.1371/journal.pgen.1002547] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 01/04/2012] [Indexed: 11/19/2022] Open
Abstract
The activities of developmentally critical transcription factors are regulated via interactions with cofactors. Such interactions influence transcription factor activity either directly through protein–protein interactions or indirectly by altering the local chromatin environment. Using a yeast double-interaction screen, we identified a highly conserved nuclear protein, Akirin, as a novel cofactor of the key Drosophila melanogaster mesoderm and muscle transcription factor Twist. We find that Akirin interacts genetically and physically with Twist to facilitate expression of some, but not all, Twist-regulated genes during embryonic myogenesis. akirin mutant embryos have muscle defects consistent with altered regulation of a subset of Twist-regulated genes. To regulate transcription, Akirin colocalizes and genetically interacts with subunits of the Brahma SWI/SNF-class chromatin remodeling complex. Our results suggest that, mechanistically, Akirin mediates a novel connection between Twist and a chromatin remodeling complex to facilitate changes in the chromatin environment, leading to the optimal expression of some Twist-regulated genes during Drosophila myogenesis. We propose that this Akirin-mediated link between transcription factors and the Brahma complex represents a novel paradigm for providing tissue and target specificity for transcription factor interactions with the chromatin remodeling machinery. The proper development of the diverse array of cell types in an organism depends upon the induction and repression of specific genes at particular times and places. This gene regulation requires both the activity of tissue-specific transcriptional regulators and the modulation of the chromatin environment. To date, a complete picture of the interplay between these two processes remains unclear. To address this, we examined the activity of the evolutionarily conserved transcription factor Twist during embryogenesis of Drosophila melanogaster. While Twist has multiple activities and roles during development, a direct link between Twist and chromatin remodeling is unknown. We identified a highly conserved protein, Akirin, as a link between Twist and chromatin remodeling factors. Akirin is required for optimal expression of a Twist-dependent target during muscle development via interactions with the Drosophila SWI/SNF chromatin remodeling complex. Interestingly, Akirin is not required for activation of all Twist-dependent enhancers, suggesting that Akirin refines Twist activity outputs and that different Twist-dependent targets have different requirements for chromatin remodeling during development. Our data further suggests that Akirin similarly links the SWI/SNF chromatin remodeling complex with other transcription factors during development. This work has important ramifications for understanding both normal development and diseases such as cancer.
Collapse
Affiliation(s)
- Scott J. Nowak
- Program in Developmental Biology, Sloan Kettering Institute, New York, New York, United States of America
| | - Hitoshi Aihara
- Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, United States of America
| | - Katie Gonzalez
- Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, New York, United States of America
| | - Yutaka Nibu
- Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, United States of America
- Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, New York, United States of America
| | - Mary K. Baylies
- Program in Developmental Biology, Sloan Kettering Institute, New York, New York, United States of America
- Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
100
|
Chambers AL, Brownlee PM, Durley SC, Beacham T, Kent NA, Downs JA. The two different isoforms of the RSC chromatin remodeling complex play distinct roles in DNA damage responses. PLoS One 2012; 7:e32016. [PMID: 22359657 PMCID: PMC3281108 DOI: 10.1371/journal.pone.0032016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/17/2012] [Indexed: 12/22/2022] Open
Abstract
The RSC chromatin remodeling complex has been implicated in contributing to DNA double-strand break (DSB) repair in a number of studies. Both survival and levels of H2A phosphorylation in response to damage are reduced in the absence of RSC. Importantly, there is evidence for two isoforms of this complex, defined by the presence of either Rsc1 or Rsc2. Here, we investigated whether the two isoforms of RSC provide distinct contributions to DNA damage responses. First, we established that the two isoforms of RSC differ in the presence of Rsc1 or Rsc2 but otherwise have the same subunit composition. We found that both rsc1 and rsc2 mutant strains have intact DNA damage-induced checkpoint activity and transcriptional induction. In addition, both strains show reduced non-homologous end joining activity and have a similar spectrum of DSB repair junctions, suggesting perhaps that the two complexes provide the same functions. However, the hypersensitivity of a rsc1 strain cannot be complemented with an extra copy of RSC2, and likewise, the hypersensitivity of the rsc2 strain remains unchanged when an additional copy of RSC1 is present, indicating that the two proteins are unable to functionally compensate for one another in DNA damage responses. Rsc1, but not Rsc2, is required for nucleosome sliding flanking a DNA DSB. Interestingly, while swapping the domains from Rsc1 into the Rsc2 protein does not compromise hypersensitivity to DNA damage suggesting they are functionally interchangeable, the BAH domain from Rsc1 confers upon Rsc2 the ability to remodel chromatin at a DNA break. These data demonstrate that, despite the similarity between Rsc1 and Rsc2, the two different isoforms of RSC provide distinct functions in DNA damage responses, and that at least part of the functional specificity is dictated by the BAH domains.
Collapse
Affiliation(s)
- Anna L. Chambers
- Medical Research Council Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom
| | - Peter M. Brownlee
- Medical Research Council Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom
| | - Samuel C. Durley
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Tracey Beacham
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Nicholas A. Kent
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jessica A. Downs
- Medical Research Council Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|