51
|
Abstract
The fundamental mechanisms of protein and lipid organization at the plasma membrane have continued to engage researchers for decades. Among proposed models, one idea has been particularly successful which assumes that sterol-dependent nanoscopic phases of different lipid chain order compartmentalize proteins, thereby modulating protein functionality. This model of membrane rafts has sustainably sparked the fields of membrane biophysics and biology, and shifted membrane lipids into the spotlight of research; by now, rafts have become an integral part of our terminology to describe a variety of cell biological processes. But is the evidence clear enough to continue supporting a theoretical concept which has resisted direct proof by observation for nearly twenty years? In this essay, we revisit findings that gave rise to and substantiated the raft hypothesis, discuss its impact on recent studies, and present alternative mechanisms to account for plasma membrane heterogeneity.
Collapse
Affiliation(s)
- Eva Sevcsik
- Institute of Applied Physics, Vienna University of Technology, Vienna, Austria
| | - Gerhard J Schütz
- Institute of Applied Physics, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
52
|
Fernández-Acero T, Rodríguez-Escudero I, Molina M, Cid VJ. The yeast cell wall integrity pathway signals from recycling endosomes upon elimination of phosphatidylinositol (4,5)-bisphosphate by mammalian phosphatidylinositol 3-kinase. Cell Signal 2015; 27:2272-84. [PMID: 26261079 DOI: 10.1016/j.cellsig.2015.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/05/2015] [Indexed: 11/29/2022]
Abstract
Phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] is essential for recognition of the plasma membrane inner leaf by protein complexes. We expressed mammalian class I phosphoinositide 3-kinase (PI3K) in Saccharomyces cerevisiae to eliminate PtdIns(4,5)P(2) by its conversion into PtdIns(3,4,5)P(3), a lipid naturally missing in this yeast. This led to loss of actin function and endocytosis defects, causing a blockage in polarized secretion. Also, the cell wall integrity (CWI) mitogen-activated protein kinase (MAPK) pathway was activated, triggering a typical transcriptional response. In the absence of PtdIns(4,5)P(2) at the plasma membrane, the Pkc1 protein kinase upstream the CWI MAPK module localized to post-Golgi endosomes marked by SNARE Snc1 and Rab GTPases Ypt31 and Ypt32. Other components at the head of the pathway, like the mechanosensor Wsc1, the GTPase Rho1 and its activator the GDP/GTP exchange factor Rom2, co-localized with Pkc1 in these compartments. Chemical inhibition of PI3K proved that both CWI activation and Pkc1 relocation to endosomes are reversible. These results suggest that the CWI pathway is able to respond to loss of plasma membrane identity from recycling endosomes.
Collapse
Affiliation(s)
- Teresa Fernández-Acero
- Dpto. de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain; Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Isabel Rodríguez-Escudero
- Dpto. de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain; Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - María Molina
- Dpto. de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain; Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain.
| | - Víctor J Cid
- Dpto. de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain; Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| |
Collapse
|
53
|
Novel actions of 2-deoxy-D-glucose: protection against Shiga toxins and changes in cellular lipids. Biochem J 2015; 470:23-37. [PMID: 26251444 DOI: 10.1042/bj20141562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/04/2015] [Indexed: 12/11/2022]
Abstract
2-Deoxy-D-glucose (2DG) is a structural analogue of glucose with well-established applications as an inhibitor of glycolysis and N-glycosylation. Importantly, 2DG has been shown to improve the efficacy of several cancer chemotherapeutic agents in vivo and thus it is in clinical studies in combination with chemotherapy and radiotherapy. However, although 2DG has been demonstrated to modulate many cellular functions, including autophagy, apoptosis and cell cycle control, little is known about the effects of 2DG on intracellular transport, which is of great importance when predicting the effects of 2DG on therapeutic agents. In addition to proteins, lipids play important roles in cellular signalling and in controlling cellular trafficking. We have, in the present study, investigated the effects of 2DG on cellular lipid composition and by use of protein toxins we have studied 2DG-mediated changes in intracellular trafficking. By quantifying more than 200 individual lipid species from 17 different lipid classes, we have found that 2DG treatment changes the levels and/or species composition of several lipids, such as phosphatidylinositol (PI), diacylglycerol (DAG), cholesteryl ester (CE), ceramide (Cer) and lysophospho-lipids. Moreover, 2DG becomes incorporated into the carbohydrate moiety of glycosphingolipids (GSLs). In addition, we have discovered that 2DG protects cells against Shiga toxins (Stxs) and inhibits release of the cytotoxic StxA1 moiety in the endoplasmic reticulum (ER). The data indicate that the 2DG-induced protection against Stx is independent of inhibition of glycolysis or N-glycosylation, but rather mediated via the depletion of Ca(2+) from cellular reservoirs by 2DG. In conclusion, our results reveal novel actions of 2DG on cellular lipids and Stx toxicity.
Collapse
|
54
|
Wada Y, Kusano H, Tsuge T, Aoyama T. Phosphatidylinositol phosphate 5-kinase genes respond to phosphate deficiency for root hair elongation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:426-37. [PMID: 25477067 DOI: 10.1111/tpj.12741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 05/07/2023]
Abstract
Plants drastically alter their root system architecture to adapt to different underground growth conditions. During phosphate (Pi) deficiency, most plants including Arabidopsis thaliana enhance the development of lateral roots and root hairs, resulting in bushy and hairy roots. To elucidate the signal pathway specific for the root hair elongation response to Pi deficiency, we investigated the expression of type-B phosphatidylinositol phosphate 5-kinase (PIP5K) genes, as a quantitative factor for root hair elongation in Arabidopsis. At young seedling stages, the PIP5K3 and PIP5K4 genes responded to Pi deficiency in steady-state transcript levels via PHR1-binding sequences (P1BSs) in their upstream regions. Both pip5k3 and pip5k4 single mutants, which exhibit short-root-hair phenotypes, remained responsive to Pi deficiency for root hair elongation; however the pip5k3pip5k4 double mutant exhibited shorter root hairs than the single mutants, and lost responsiveness to Pi deficiency at young seedling stages. In the tactical complementation line in which modified PIP5K3 and PIP5K4 genes with base substitutions in their P1BSs were co-introduced into the double mutant, root hairs of young seedlings had normal lengths under Pi-sufficient conditions, but were not responsive to Pi deficiency. From these results, we conclude that a Pi-deficiency signal is transferred to the pathway for root hair elongation via the PIP5K genes.
Collapse
Affiliation(s)
- Yukika Wada
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | | | | | | |
Collapse
|
55
|
Shisheva A, Sbrissa D, Ikonomov O. Plentiful PtdIns5P from scanty PtdIns(3,5)P2 or from ample PtdIns? PIKfyve-dependent models: Evidence and speculation (response to: DOI 10.1002/bies.201300012). Bioessays 2014; 37:267-77. [PMID: 25404370 DOI: 10.1002/bies.201400129] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recently, we have presented data supporting the notion that PIKfyve not only produces the majority of constitutive phosphatidylinositol 5-phosphate (PtdIns5P) in mammalian cells but that it does so through direct synthesis from PtdIns. Another group, albeit obtaining similar data, suggests an alternative pathway whereby the low-abundance PtdIns(3,5)P2 undergoes hydrolysis by unidentified 3-phosphatases, thereby serving as a precursor for most of PtdIns5P. Here, we review the experimental evidence supporting constitutive synthesis of PtdIns5P from PtdIns by PIKfyve. We further emphasize that the experiments presented in support of the alternative pathway are also compatible with a direct mechanism for PIKfyve-catalyzed synthesis of PtdIns5P. While agreeing with the authors that constitutive PtdIns5P could theoretically be produced from PtdIns(3,5)P2 by 3-dephosphorylation, we argue that until direct evidence for such an alternative pathway is obtained, we should adhere to the existing experimental evidence and quantitative considerations, which favor direct PIKfyve-catalyzed synthesis for most constitutive PtdIns5P.
Collapse
Affiliation(s)
- Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | |
Collapse
|
56
|
Phosphoinositides: Lipids with informative heads and mastermind functions in cell division. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:832-43. [PMID: 25449648 DOI: 10.1016/j.bbalip.2014.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 01/22/2023]
Abstract
Phosphoinositides are low abundant but essential phospholipids in eukaryotic cells and refer to phosphatidylinositol and its seven polyphospho-derivatives. In this review, we summarize our current knowledge on phosphoinositides in multiple aspects of cell division in animal cells, including mitotic cell rounding, longitudinal cell elongation, cytokinesis furrow ingression, intercellular bridge abscission and post-cytokinesis events. PtdIns(4,5)P₂production plays critical roles in spindle orientation, mitotic cell shape and bridge stability after furrow ingression by recruiting force generator complexes and numerous cytoskeleton binding proteins. Later, PtdIns(4,5)P₂hydrolysis and PtdIns3P production are essential for normal cytokinesis abscission. Finally, emerging functions of PtdIns3P and likely PtdIns(4,5)P₂have recently been reported for midbody remnant clearance after abscission. We describe how the multiple functions of phosphoinositides in cell division reflect their distinct roles in local recruitment of protein complexes, membrane traffic and cytoskeleton remodeling. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
|
57
|
Bergan J, Skotland T, Lingelem ABD, Simm R, Spilsberg B, Lindbäck T, Sylvänne T, Simolin H, Ekroos K, Sandvig K. The ether lipid precursor hexadecylglycerol protects against Shiga toxins. Cell Mol Life Sci 2014; 71:4285-300. [PMID: 24740796 PMCID: PMC11113769 DOI: 10.1007/s00018-014-1624-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/12/2014] [Accepted: 04/01/2014] [Indexed: 11/24/2022]
Abstract
Shiga toxin-producing Escherichia coli bacteria cause hemorrhagic colitis and hemolytic uremic syndrome in humans. Currently, only supportive treatment is available for diagnosed patients. We show here that 24-h pretreatment with an ether lipid precursor, the alkylglycerol sn-1-O-hexadecylglycerol (HG), protects HEp-2 cells against Shiga toxin and Shiga toxin 2. Also the endothelial cell lines HMEC-1 and HBMEC are protected against Shiga toxins after HG pretreatment. In contrast, the corresponding acylglycerol, DL-α-palmitin, has no effect on Shiga toxicity. Although HG treatment provides a strong protection (~30 times higher IC₅₀) against Shiga toxin, only a moderate reduction in toxin binding was observed, suggesting that retrograde transport of the toxin from the plasma membrane to the cytosol is perturbed. Furthermore, endocytosis of Shiga toxin and retrograde sorting from endosomes to the Golgi apparatus remain intact, but transport from the Golgi to the endoplasmic reticulum is inhibited by HG treatment. As previously described, HG reduces the total level of all quantified glycosphingolipids to 50-70% of control, including the Shiga toxin receptor globotriaosylceramide (Gb3), in HEp-2 cells. In accordance with this, we find that interfering with Gb3 biosynthesis by siRNA-mediated knockdown of Gb3 synthase for 24 h causes a similar cytotoxic protection and only a moderate reduction in toxin binding (to 70% of control cells). Alkylglycerols, including HG, have been administered to humans for investigation of therapeutic roles in disorders where ether lipid biosynthesis is deficient, as well as in cancer therapy. Further studies may reveal if HG can also have a therapeutic potential in Shiga toxin-producing E. coli infections.
Collapse
Affiliation(s)
- Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Tore Skotland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Anne Berit Dyve Lingelem
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Roger Simm
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Bjørn Spilsberg
- Section of Bacteriology-Food and GMO, Norwegian Veterinary Institute, Oslo, Norway
| | - Toril Lindbäck
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
| | | | | | | | - Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
58
|
Jaensch N, Corrêa IR, Watanabe R. Stable cell surface expression of GPI-anchored proteins, but not intracellular transport, depends on their fatty acid structure. Traffic 2014; 15:1305-29. [PMID: 25196094 DOI: 10.1111/tra.12224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 11/28/2022]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a class of lipid anchored proteins expressed on the cell surface of eukaryotes. The potential interaction of GPI-APs with ordered lipid domains enriched in cholesterol and sphingolipids has been proposed to function in the intracellular transport of these lipid anchored proteins. Here, we examined the biological importance of two saturated fatty acids present in the phosphatidylinositol moiety of GPI-APs. These fatty acids are introduced by the action of lipid remodeling enzymes and required for the GPI-AP association within ordered lipid domains. We found that the fatty acid remodeling is not required for either efficient Golgi-to-plasma membrane transport or selective endocytosis via GPI-enriched early endosomal compartment (GEEC)/ clathrin-independent carrier (CLIC) pathway, whereas cholesterol depletion significantly affects both pathways independent of their fatty acid structure. Therefore, the mechanism of cholesterol dependence does not appear to be related to the interaction with ordered lipid domains mediated by two saturated fatty acids. Furthermore, cholesterol extraction drastically releases the unremodeled GPI-APs carrying an unsaturated fatty acid from the cell surface, but not remodeled GPI-APs carrying two saturated fatty acids. This underscores the essential role of lipid remodeling to ensure a stable membrane association of GPI-APs particularly under potential membrane lipid perturbation.
Collapse
Affiliation(s)
- Nina Jaensch
- Department of Biochemistry, University of Geneva Sciences II, CH1-1211 Geneva, Switzerland
| | | | | |
Collapse
|
59
|
Martin TFJ. PI(4,5)P₂-binding effector proteins for vesicle exocytosis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:785-93. [PMID: 25280637 DOI: 10.1016/j.bbalip.2014.09.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/20/2014] [Accepted: 09/23/2014] [Indexed: 12/27/2022]
Abstract
PI(4,5)P₂participates directly in priming and possibly in fusion steps of Ca²⁺-triggered vesicle exocytosis. High concentration nanodomains of PI(4,5)P₂reside on the plasma membrane of neuroendocrine cells. A subset of vesicles that co-localize with PI(4,5)P₂ domains appear to undergo preferential exocytosis in stimulated cells. PI(4,5)P₂directly regulates vesicle exocytosis by recruiting and activating PI(4,5)P₂-binding proteins that regulate SNARE protein function including CAPS, Munc13-1/2, synaptotagmin-1, and other C2 domain-containing proteins. These PI(4,5)P₂effector proteins are coincidence detectors that engage in multiple interactions at vesicle exocytic sites. The SNARE protein syntaxin-1 also binds to PI(4,5)P₂, which promotes clustering, but an activating role for PI(4,5)P₂in syntaxin-1 function remains to be fully characterized. Similar principles underlie polarized constitutive vesicle fusion mediated in part by the PI(4,5)P₂-binding subunits of the exocyst complex (Sec3, Exo70). Overall, focal vesicle exocytosis occurs at sites landmarked by PI(4,5)P2, which serves to recruit and/or activate multifunctional PI(4,5)P₂-binding proteins. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Thomas F J Martin
- Biochemistry Department, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA.
| |
Collapse
|
60
|
Sugiura A, McLelland GL, Fon EA, McBride HM. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 2014; 33:2142-56. [PMID: 25107473 PMCID: PMC4282503 DOI: 10.15252/embj.201488104] [Citation(s) in RCA: 585] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/08/2014] [Accepted: 07/23/2014] [Indexed: 12/31/2022] Open
Abstract
The last decade has been marked by tremendous progress in our understanding of the cell biology of mitochondria, with the identification of molecules and mechanisms that regulate their fusion, fission, motility, and the architectural transitions within the inner membrane. More importantly, the manipulation of these machineries in tissues has provided links between mitochondrial dynamics and physiology. Indeed, just as the proteins required for fusion and fission were identified, they were quickly linked to both rare and common human diseases. This highlighted the critical importance of this emerging field to medicine, with new hopes of finding drugable targets for numerous pathologies, from neurodegenerative diseases to inflammation and cancer. In the midst of these exciting new discoveries, an unexpected new aspect of mitochondrial cell biology has been uncovered; the generation of small vesicular carriers that transport mitochondrial proteins and lipids to other intracellular organelles. These mitochondrial-derived vesicles (MDVs) were first found to transport a mitochondrial outer membrane protein MAPL to a subpopulation of peroxisomes. However, other MDVs did not target peroxisomes and instead fused with the late endosome, or multivesicular body. The Parkinson's disease-associated proteins Vps35, Parkin, and PINK1 are involved in the biogenesis of a subset of these MDVs, linking this novel trafficking pathway to human disease. In this review, we outline what has been learned about the mechanisms and functional importance of MDV transport and speculate on the greater impact of these pathways in cellular physiology.
Collapse
Affiliation(s)
- Ayumu Sugiura
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Edward A Fon
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Heidi M McBride
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
61
|
Zhu H, Han M. Exploring developmental and physiological functions of fatty acid and lipid variants through worm and fly genetics. Annu Rev Genet 2014; 48:119-48. [PMID: 25195508 DOI: 10.1146/annurev-genet-041814-095928] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipids are more than biomolecules for energy storage and membrane structure. With ample structural variation, lipids critically participate in nearly all aspects of cellular function. Lipid homeostasis and metabolism are closely related to major human diseases and health problems. However, lipid functional studies have been significantly underdeveloped, partly because of the difficulty in applying genetics and common molecular approaches to tackle the complexity associated with lipid biosynthesis, metabolism, and function. In the past decade, a number of laboratories began to analyze the roles of lipid metabolism in development and other physiological functions using animal models and combining genetics, genomics, and biochemical approaches. These pioneering efforts have not only provided valuable insights regarding lipid functions in vivo but have also established feasible methodology for future studies. Here, we review a subset of these studies using Caenorhabditis elegans and Drosophila melanogaster.
Collapse
Affiliation(s)
- Huanhu Zhu
- Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309;
| | | |
Collapse
|
62
|
Thieleke-Matos C, da Silva ML, Cabrita-Santos L, Pires CF, Ramalho JS, Ikonomov O, Seixas E, Shisheva A, Seabra MC, Barral DC. Host PI(3,5)P2 activity is required for Plasmodium berghei growth during liver stage infection. Traffic 2014; 15:1066-82. [PMID: 24992508 DOI: 10.1111/tra.12190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 01/18/2023]
Abstract
Malaria parasites go through an obligatory liver stage before they infect erythrocytes and cause disease symptoms. In the host hepatocytes, the parasite is enclosed by a parasitophorous vacuole membrane (PVM). Here, we dissected the interaction between the Plasmodium parasite and the host cell late endocytic pathway and show that parasite growth is dependent on the phosphoinositide 5-kinase (PIKfyve) that converts phosphatidylinositol 3-phosphate [PI(3)P] into phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2 ] in the endosomal system. We found that inhibition of PIKfyve by either pharmacological or non-pharmacological means causes a delay in parasite growth. Moreover, we show that the PI(3,5)P2 effector protein TRPML1 that is involved in late endocytic membrane fusion, is present in vesicles closely contacting the PVM and is necessary for parasite growth. Thus, our studies suggest that the parasite PVM is able to fuse with host late endocytic vesicles in a PI(3,5)P2 -dependent manner, allowing the exchange of material between the host and the parasite, which is essential for successful infection.
Collapse
Affiliation(s)
- Carolina Thieleke-Matos
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal; IGC, Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
McMahon D, Dinh A, Kurz D, Shah D, Han GS, Carman GM, Brasaemle DL. Comparative gene identification 58/α/β hydrolase domain 5 lacks lysophosphatidic acid acyltransferase activity. J Lipid Res 2014; 55:1750-61. [PMID: 24879803 DOI: 10.1194/jlr.m051151] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Indexed: 01/07/2023] Open
Abstract
Mutations in the gene encoding comparative gene identification 58 (CGI-58)/α/β hydrolase domain 5 (ABHD5) cause Chanarin-Dorfman syndrome, characterized by excessive triacylglycerol storage in cells and tissues. CGI-58 has been identified as a coactivator of adipose TG lipase (ATGL) and a lysophosphatidic acid acyltransferase (LPAAT). We developed a molecular model of CGI-58 structure and then mutated predicted active site residues and performed LPAAT activity assays of recombinant WT and mutated CGI-58. When mutations of predicted catalytic residues failed to reduce LPAAT activity, we determined that LPAAT activity was due to a bacterial contaminant of affinity purification procedures, plsC, the sole LPAAT in Escherichia coli Purification protocols were optimized to reduce plsC contamination, in turn reducing LPAAT activity. When CGI-58 was expressed in SM2-1(DE3) cells that lack plsC, lysates lacked LPAAT activity. Additionally, mouse CGI-58 expressed in bacteria as a glutathione-S-transferase fusion protein and human CGI-58 expressed in yeast lacked LPAAT activity. Previously reported lipid binding activity of CGI-58 was revisited using protein-lipid overlays. Recombinant CGI-58 failed to bind lysophosphatidic acid, but interestingly, bound phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 5-phosphate [PI(5)P]. Prebinding CGI-58 with PI(3)P or PI(5)P did not alter its coactivation of ATGL in vitro. In summary, purified recombinant CGI-58 that is functional as an ATGL coactivator lacks LPAAT activity.
Collapse
Affiliation(s)
- Derek McMahon
- Rutgers Center for Lipid Research and Department of Nutritional Sciences and Rutgers Center for Lipid Research and Department of Food Science
| | - Anna Dinh
- Rutgers Center for Lipid Research and Department of Nutritional Sciences and Rutgers Center for Lipid Research and Department of Food Science
| | - Daniel Kurz
- Rutgers Center for Lipid Research and Department of Nutritional Sciences and Rutgers Center for Lipid Research and Department of Food Science
| | - Dharika Shah
- Rutgers Center for Lipid Research and Department of Nutritional Sciences and Rutgers Center for Lipid Research and Department of Food Science
| | - Gil-Soo Han
- Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - George M Carman
- Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Dawn L Brasaemle
- Rutgers Center for Lipid Research and Department of Nutritional Sciences and Rutgers Center for Lipid Research and Department of Food Science
| |
Collapse
|
64
|
Kavaliauskiene S, Nymark CM, Bergan J, Simm R, Sylvänne T, Simolin H, Ekroos K, Skotland T, Sandvig K. Cell density-induced changes in lipid composition and intracellular trafficking. Cell Mol Life Sci 2014; 71:1097-116. [PMID: 23921715 PMCID: PMC11113877 DOI: 10.1007/s00018-013-1441-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 12/11/2022]
Abstract
Cell density is one of the extrinsic factors to which cells adapt their physiology when grown in culture. However, little is known about the molecular changes which occur during cell growth and how cellular responses are then modulated. In many cases, inhibitors, drugs or growth factors used for in vitro studies change the rate of cell proliferation, resulting in different cell densities in control and treated samples. Therefore, for a comprehensive data analysis, it is essential to understand the implications of cell density on the molecular level. In this study, we have investigated how lipid composition changes during cell growth, and the consequences it has for transport of Shiga toxin. By quantifying 308 individual lipid species from 17 different lipid classes, we have found that the levels and species distribution of several lipids change during cell growth, with the major changes observed for diacylglycerols, phosphatidic acids, cholesterol esters, and lysophosphatidylethanolamines. In addition, there is a reduced binding and retrograde transport of Shiga toxin in high density cells which lead to reduced intoxication by the toxin. In conclusion, our data provide novel information on how lipid composition changes during cell growth in culture, and how these changes can modulate intracellular trafficking.
Collapse
Affiliation(s)
- Simona Kavaliauskiene
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway
- Center for Cancer Biomedicine, Oslo University Hospital, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Carl-Martin Nymark
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway
- Center for Cancer Biomedicine, Oslo University Hospital, Oslo, Norway
| | - Jonas Bergan
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway
- Center for Cancer Biomedicine, Oslo University Hospital, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Roger Simm
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway
- Center for Cancer Biomedicine, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Tore Skotland
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway
- Center for Cancer Biomedicine, Oslo University Hospital, Oslo, Norway
| | - Kirsten Sandvig
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway
- Center for Cancer Biomedicine, Oslo University Hospital, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
65
|
Schulze U, Vollenbröker B, Braun DA, Van Le T, Granado D, Kremerskothen J, Fränzel B, Klosowski R, Barth J, Fufezan C, Wolters DA, Pavenstädt H, Weide T. The Vac14-interaction network is linked to regulators of the endolysosomal and autophagic pathway. Mol Cell Proteomics 2014; 13:1397-411. [PMID: 24578385 DOI: 10.1074/mcp.m113.034108] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The scaffold protein Vac14 acts in a complex with the lipid kinase PIKfyve and its counteracting phosphatase FIG4, regulating the interconversion of phosphatidylinositol-3-phosphate to phosphatidylinositol-3,5-bisphosphate. Dysfunctional Vac14 mutants, a deficiency of one of the Vac14 complex components, or inhibition of PIKfyve enzymatic activity results in the formation of large vacuoles in cells. How these vacuoles are generated and which processes are involved are only poorly understood. Here we show that ectopic overexpression of wild-type Vac14 as well as of the PIKfyve-binding deficient Vac14 L156R mutant causes vacuoles. Vac14-dependent vacuoles and PIKfyve inhibitor-dependent vacuoles resulted in elevated levels of late endosomal, lysosomal, and autophagy-associated proteins. However, only late endosomal marker proteins were bound to the membranes of these enlarged vacuoles. In order to decipher the linkage between the Vac14 complex and regulators of the endolysosomal pathway, a protein affinity approach combined with multidimensional protein identification technology was conducted, and novel molecular links were unraveled. We found and verified the interaction of Rab9 and the Rab7 GAP TBC1D15 with Vac14. The identified Rab-related interaction partners support the theory that the regulation of vesicular transport processes and phosphatidylinositol-modifying enzymes are tightly interconnected.
Collapse
Affiliation(s)
- Ulf Schulze
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Beate Vollenbröker
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Daniela A Braun
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Truc Van Le
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Daniel Granado
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Joachim Kremerskothen
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Benjamin Fränzel
- ‖Analytical Chemistry NC4/72, Biomolecular Mass Spectrometry/Proteincenter, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Rafael Klosowski
- ‖Analytical Chemistry NC4/72, Biomolecular Mass Spectrometry/Proteincenter, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Johannes Barth
- ‡‡Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, D-48143 Muenster, Germany
| | - Christian Fufezan
- ‡‡Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, D-48143 Muenster, Germany
| | - Dirk A Wolters
- ‖Analytical Chemistry NC4/72, Biomolecular Mass Spectrometry/Proteincenter, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Hermann Pavenstädt
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany;
| | - Thomas Weide
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany;
| |
Collapse
|
66
|
Chandler BD, Burkhardt AL, Foley K, Cullis C, Driscoll D, D’Amore NR, Miller SJ. A fully synthetic and biochemically validated phosphatidyl inositol-3-phosphate hapten via asymmetric synthesis and native chemical ligation. J Am Chem Soc 2014; 136:412-8. [PMID: 24344932 PMCID: PMC3919123 DOI: 10.1021/ja410750a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis and biochemical validation of a phosphatidyl inositol-3 phosphate (PI3P) immunogen. The inositol stereochemistry was secured through peptide-catalyzed asymmetric phosphorylation catalysis, and the subsequent incorporation of a cysteine residue was achieved by native chemical ligation (NCL). Conjugation of the PI3P hapten to maleimide-activated keyhole limpet hemocyanin (KLH) provided a PI3P immunogen, which was successfully used to generate selective PI3P antibodies. The incorporation of a sulfhydryl nucleophile into a phosphoinositide hapten demonstrates a general strategy to reliably access phosphoinositide immunogens.
Collapse
Affiliation(s)
| | - Anne L. Burkhardt
- Discovery, Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| | - Klaudia Foley
- Discovery, Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| | - Courtney Cullis
- Discovery, Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| | - Denise Driscoll
- Discovery, Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| | - Natalie Roy D’Amore
- Discovery, Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, USA
| |
Collapse
|
67
|
Fujimoto M, Tsutsumi N. Dynamin-related proteins in plant post-Golgi traffic. FRONTIERS IN PLANT SCIENCE 2014; 5:408. [PMID: 25237312 PMCID: PMC4154393 DOI: 10.3389/fpls.2014.00408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/31/2014] [Indexed: 05/21/2023]
Abstract
Membrane traffic between two organelles begins with the formation of transport vesicles from the donor organelle. Dynamin-related proteins (DRPs), which are large multidomain GTPases, play crucial roles in vesicle formation in post-Golgi traffic. Numerous in vivo and in vitro studies indicate that animal dynamins, which are members of DRP family, assemble into ring- or helix-shaped structures at the neck of a bud site on the donor membrane, where they constrict and sever the neck membrane in a GTP hydrolysis-dependent manner. While much is known about DRP-mediated trafficking in animal cells, little is known about it in plant cells. So far, two structurally distinct subfamilies of plant DRPs (DRP1 and DRP2) have been found to participate in various pathways of post-Golgi traffic. This review summarizes the structural and functional differences between these two DRP subfamilies, focusing on their molecular, cellular and developmental properties. We also discuss the molecular networks underlying the functional machinery centering on these two DRP subfamilies. Furthermore, we hope that this review will provide direction for future studies on the mechanisms of vesicle formation that are not only unique to plants but also common to eukaryotes.
Collapse
Affiliation(s)
- Masaru Fujimoto
- *Correspondence: Masaru Fujimoto, Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan e-mail:
| | | |
Collapse
|
68
|
Czogalla A, Grzybek M, Jones W, Coskun U. Validity and applicability of membrane model systems for studying interactions of peripheral membrane proteins with lipids. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:1049-59. [PMID: 24374254 DOI: 10.1016/j.bbalip.2013.12.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 12/11/2022]
Abstract
The cell membrane serves, at the same time, both as a barrier that segregates as well as a functional layer that facilitates selective communication. It is characterized as much by the complexity of its components as by the myriad of signaling process that it supports. And, herein lays the problems in its study and understanding of its behavior - it has a complex and dynamic nature that is further entangled by the fact that many events are both temporal and transient in their nature. Model membrane systems that bypass cellular complexity and compositional diversity have tremendously accelerated our understanding of the mechanisms and biological consequences of lipid-lipid and protein-lipid interactions. Concurrently, in some cases, the validity and applicability of model membrane systems are tarnished by inherent methodical limitations as well as undefined quality criteria. In this review we introduce membrane model systems widely used to study protein-lipid interactions in the context of key parameters of the membrane that govern lipid availability for peripheral membrane proteins. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Aleksander Czogalla
- Laboratory of Membrane Biochemistry, Paul Langerhans Institute Dresden, Faculty of Medicine Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), Germany.
| | - Michał Grzybek
- Laboratory of Membrane Biochemistry, Paul Langerhans Institute Dresden, Faculty of Medicine Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), Germany
| | - Walis Jones
- Laboratory of Membrane Biochemistry, Paul Langerhans Institute Dresden, Faculty of Medicine Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), Germany
| | - Unal Coskun
- Laboratory of Membrane Biochemistry, Paul Langerhans Institute Dresden, Faculty of Medicine Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), Germany.
| |
Collapse
|
69
|
McNamara CW, Lee MCS, Lim CS, Lim SH, Roland J, Simon O, Yeung BKS, Chatterjee AK, McCormack SL, Manary MJ, Zeeman AM, Dechering KJ, Kumar TRS, Henrich PP, Gagaring K, Ibanez M, Kato N, Kuhen KL, Fischli C, Nagle A, Rottmann M, Plouffe DM, Bursulaya B, Meister S, Rameh L, Trappe J, Haasen D, Timmerman M, Sauerwein RW, Suwanarusk R, Russell B, Renia L, Nosten F, Tully DC, Kocken CHM, Glynne RJ, Bodenreider C, Fidock DA, Diagana TT, Winzeler EA. Targeting Plasmodium PI(4)K to eliminate malaria. Nature 2013; 504:248-253. [PMID: 24284631 PMCID: PMC3940870 DOI: 10.1038/nature12782] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/15/2013] [Indexed: 02/06/2023]
Abstract
Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.
Collapse
Affiliation(s)
- Case W McNamara
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Marcus CS Lee
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA
| | - Chek Shik Lim
- Novartis Institutes for Tropical Disease, 138670 Singapore
| | - Siau Hoi Lim
- Novartis Institutes for Tropical Disease, 138670 Singapore
| | - Jason Roland
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Oliver Simon
- Novartis Institutes for Tropical Disease, 138670 Singapore
| | - Bryan KS Yeung
- Novartis Institutes for Tropical Disease, 138670 Singapore
| | - Arnab K Chatterjee
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Susan L McCormack
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Micah J Manary
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | - TR Santha Kumar
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA
| | - Philipp P Henrich
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA
| | - Kerstin Gagaring
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Maureen Ibanez
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Nobutaka Kato
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Kelli L Kuhen
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Christoph Fischli
- Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland
| | - Advait Nagle
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - David M Plouffe
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Badry Bursulaya
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Stephan Meister
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Lucia Rameh
- Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Joerg Trappe
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Dorothea Haasen
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | | | - Robert W Sauerwein
- TropIQ Health Sciences, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rossarin Suwanarusk
- Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
| | - Bruce Russell
- Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Laurent Renia
- Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
| | - Francois Nosten
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - David C Tully
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Clemens HM Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Richard J Glynne
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | | | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | | | - Elizabeth A Winzeler
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
70
|
Molecular dynamic simulation to explore the molecular basis of Btk-PH domain interaction with Ins(1,3,4,5)P4. ScientificWorldJournal 2013; 2013:580456. [PMID: 24307874 PMCID: PMC3836457 DOI: 10.1155/2013/580456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 09/07/2013] [Indexed: 02/04/2023] Open
Abstract
Bruton's tyrosine kinase contains a pleckstrin homology domain, and it specifically binds inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), which is involved in the maturation of B cells. In this paper, we studied 12 systems including the wild type and 11 mutants, K12R, S14F, K19E, R28C/H, E41K, L11P, F25S, Y40N, and K12R-R28C/H, to investigate any change in the ligand binding site of each mutant. Molecular dynamics simulations combined with the method of molecular mechanics/Poisson-Boltzmann solvent-accessible surface area have been applied to the twelve systems, and reasonable mutant structures and their binding free energies have been obtained as criteria in the final classification. As a result, five structures, K12R, K19E, R28C/H, and E41K mutants, were classified as “functional mutations,” whereas L11P, S14F, F25S, and Y40N were grouped into “folding mutations.” This rigorous study of the binding affinity of each of the mutants and their classification provides some new insights into the biological function of the Btk-PH domain and related mutation-causing diseases.
Collapse
|
71
|
Abstract
Intracellular organelles, including endosomes, show differences not only in protein but also in lipid composition. It is becoming clear from the work of many laboratories that the mechanisms necessary to achieve such lipid segregation can operate at very different levels, including the membrane biophysical properties, the interactions with other lipids and proteins, and the turnover rates or distribution of metabolic enzymes. In turn, lipids can directly influence the organelle membrane properties by changing biophysical parameters and by recruiting partner effector proteins involved in protein sorting and membrane dynamics. In this review, we will discuss how lipids are sorted in endosomal membranes and how they impact on endosome functions.
Collapse
Affiliation(s)
- Christin Bissig
- Biochemistry Department, University of Geneva, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
72
|
Bergan J, Skotland T, Sylvänne T, Simolin H, Ekroos K, Sandvig K. The ether lipid precursor hexadecylglycerol causes major changes in the lipidome of HEp-2 cells. PLoS One 2013; 8:e75904. [PMID: 24098742 PMCID: PMC3786967 DOI: 10.1371/journal.pone.0075904] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/20/2013] [Indexed: 01/22/2023] Open
Abstract
The ether-lipid precursor sn-1-O-hexadecylglycerol (HG) can be used to compensate for early metabolic defects in ether-lipid biosynthesis. To investigate a possible metabolic link between ether-linked phospholipids and the rest of the cellular lipidome, we incubated HEp-2 cells with HG. Mass spectrometry analysis revealed major changes in the lipidome of HG-treated cells compared to that of untreated cells or cells treated with palmitin, a control substance for HG containing an acyl group instead of the ether group. We present quantitative data for a total of 154 species from 17 lipid classes. These species are those constituting more than 2% of their lipid class for most lipid classes, but more than 1% for the ether lipids and glycosphingolipids. In addition to the expected ability of HG to increase the levels of ether-linked glycerophospholipids with 16 carbon atoms in the sn-1 position, this precursor also decreased the amounts of glycosphingolipids and increased the amounts of ceramide, phosphatidylinositol and lysophosphatidylinositol. However, incubation with palmitin, the fatty acyl analogue of HG, also increased the amounts of ceramide and phosphatidylinositols. Thus, changes in these lipid classes were not ether lipid-dependent. No major effects were observed for the other lipid classes, and cellular functions such as growth and endocytosis were unaffected. The data presented clearly demonstrate the importance of performing detailed quantitative lipidomic studies to reveal how the metabolism of ether-linked glycerophospholipids is coupled to that of glycosphingolipids and ester-linked glycerophospholipids, especially phosphatidylinositols.
Collapse
Affiliation(s)
- Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Tore Skotland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
73
|
PIKfyve regulates the endosomal localization of CpG oligodeoxynucleotides to elicit TLR9-dependent cellular responses. PLoS One 2013; 8:e73894. [PMID: 24040108 PMCID: PMC3767827 DOI: 10.1371/journal.pone.0073894] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/25/2013] [Indexed: 12/25/2022] Open
Abstract
TLR9 is a receptor for oligodeoxynucleotides that contain unmethylated CpG motifs (CpG). Because TLR9 resides in the endoplasmic reticulum during the quiescence state, CpG binding to TLR9 requires membrane trafficking, which includes the maturation of the CpG-containing endosome. In the present study, we examined the role of PIKfyve, a phosphatidylinositol 3-phosphate 5-kinase, in the regulation of TLR9 signaling. The PIKfyve inhibitor YM201636 inhibited co-localization of the CpG-containing endosome with LysoTracker, which stains acidic organelle, and with TLR9. YM201636 increased the co-localization of CpG with the early endosome marker EEA1 but decreased co-localization with the late endosome marker LAMP1. Similar results were obtained in Raw264.7 cells containing shRNA that targets PIKfyve. CpG-mediated phosphorylation but not lipopolysaccharide (LPS)-mediated phosphorylation of IKK, p38 MAPK, JNK and Stat3 was severely impaired by the loss of PIKfyve function. CpG-mediated expression of cytokine mRNA was also decreased in the absence of PIKfyve. These findings demonstrate a novel role of PIKfyve in TLR9 signaling.
Collapse
|
74
|
Shisheva A. PtdIns5P: news and views of its appearance, disappearance and deeds. Arch Biochem Biophys 2013; 538:171-80. [PMID: 23916588 DOI: 10.1016/j.abb.2013.07.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/22/2013] [Indexed: 12/24/2022]
Abstract
Accumulated evidence indicates that PtdIns5P, one of the seven phosphoinositides, found now to be constitutively present in yeast, plants and metazoa, serves as a signaling molecule to modulate pleiotropic cellular functions in both the nucleus and the cytoplasm. The enzymatic routes in biogenesis of basal PtdIns5P have remained incompletely understood. The role for candidate kinase PIKfyve that is principally involved in PtdIns(3,5)P2 production, has been questioned. In this review article we scrutinize the past obstacles that prevented the definitive implication of PIKfyve in PtdIns5P biosynthesis from PtdIns and focus on the recent pharmacological and genetic advancements that now make this conclusion well supported. We further summarize our current knowledge of the diverse stimuli modulating PtdIns5P levels, binding partners and regulated cellular process, with particular reference to the available mechanistic insights for the relevant signaling pathways.
Collapse
Affiliation(s)
- Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, United States.
| |
Collapse
|
75
|
Na R, Yu D, Qutob D, Zhao J, Gijzen M. Deletion of the Phytophthora sojae avirulence gene Avr1d causes gain of virulence on Rps1d. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:969-76. [PMID: 23550527 DOI: 10.1094/mpmi-02-13-0036-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Phytophthora sojae is an oomycete and a pathogen of soybean that causes root rot. During infection P. sojae delivers effector proteins into host cells to foster disease. However, effector-triggered immunity (ETI) results when pathogen factors are recognized by host resistance (R) proteins. We have now identified the P. sojae Avr1d gene, which encodes a predicted effector protein with the amino acid motif Arg-X-Leu-Arg (RXLR). Genetic mapping of 16 different P. sojae isolates and of a segregating F2 population of 40 individuals shows that the predicted RXLR effector gene Avh6 precisely cosegregates with the Avr1d phenotype. Transient expression assays confirm that Avr1d triggers cell death specifically in Rps1d soybean plants. The Avr1d gene is present in P. sojae strains that are avirulent on Rps1d, whereas the gene is deleted from the genome of virulent strains. Two sequence variants of the Avr1d gene encoding different protein products occur in P. sojae strains, but both are recognized by Rps1d and cause ETI. Liposome binding assays show that Avr1d has affinity for phosphatidylinositol 4-phosphate and that binding can be disrupted by mutation of lysine residues in the carboxy-terminal effector domain of the protein. The identification of Avr1d aids pathogen diagnostics and soybean cultivar development.
Collapse
Affiliation(s)
- Ren Na
- Agriculture and Agri-Food, Canada
| | | | | | | | | |
Collapse
|
76
|
Mitra S, Traughber CA, Brannon MK, Gomez S, Capelluto DGS. Ubiquitin interacts with the Tollip C2 and CUE domains and inhibits binding of Tollip to phosphoinositides. J Biol Chem 2013; 288:25780-25791. [PMID: 23880770 DOI: 10.1074/jbc.m113.484170] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A large number of cellular signaling processes are directed through internalization, via endocytosis, of polyubiquitinated cargo proteins. Tollip is an adaptor protein that facilitates endosomal cargo sorting for lysosomal degradation. Tollip preferentially binds phosphatidylinositol 3-phosphate (PtdIns(3)P) via its C2 domain, an association that may be required for endosomal membrane targeting. Here, we show that Tollip binds ubiquitin through its C2 and CUE domains and that its association with the C2 domain inhibits PtdIns(3)P binding. NMR analysis demonstrates that the C2 and CUE domains bind to overlapping sites on ubiquitin, suggesting that two ubiquitin molecules associate with Tollip simultaneously. Hydrodynamic studies reveal that ubiquitin forms heterodimers with the CUE domain, indicating that the association disrupts the dimeric state of the CUE domain. We propose that, in the absence of polyubiquitinated cargo, the dual binding of ubiquitin partitions Tollip into membrane-bound and membrane-free states, a function that contributes to the engagement of Tollip in both membrane trafficking and cytosolic pathways.
Collapse
Affiliation(s)
- Sharmistha Mitra
- From the Department of Biological Sciences, Protein Signaling Domains Laboratory, Virginia Tech, Blacksburg, Virginia 24061
| | - C Alicia Traughber
- From the Department of Biological Sciences, Protein Signaling Domains Laboratory, Virginia Tech, Blacksburg, Virginia 24061
| | - Mary K Brannon
- From the Department of Biological Sciences, Protein Signaling Domains Laboratory, Virginia Tech, Blacksburg, Virginia 24061
| | - Stephanie Gomez
- From the Department of Biological Sciences, Protein Signaling Domains Laboratory, Virginia Tech, Blacksburg, Virginia 24061
| | - Daniel G S Capelluto
- From the Department of Biological Sciences, Protein Signaling Domains Laboratory, Virginia Tech, Blacksburg, Virginia 24061.
| |
Collapse
|
77
|
Li X, Garrity AG, Xu H. Regulation of membrane trafficking by signalling on endosomal and lysosomal membranes. J Physiol 2013; 591:4389-401. [PMID: 23878375 DOI: 10.1113/jphysiol.2013.258301] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Endosomal and lysosomal membrane trafficking requires the coordination of multiple signalling events to control cargo sorting and processing, and endosome maturation. The initiation and termination of signalling events in endosomes and lysosomes is not well understood, but several key regulators have been identified, which include small GTPases, phosphoinositides, and Ca2+. Small GTPases act as master regulators and molecular switches in a GTP-dependent manner, initiating signalling cascades to regulate the direction and specificity of endosomal trafficking. Phosphoinositides are membrane-bound lipids that indicate vesicular identities for recruiting specific cytoplasmic proteins to endosomal membranes, thus allowing specificity of membrane fusion, fission, and cargo sorting to occur within and between specific vesicle compartments. In addition, phosphoinositides regulate the function of membrane proteins such as ion channels and transporters in a compartment-specific manner to mediate transport and signalling. Finally, Ca2+, a locally acting second messenger released from intracellular ion channels, may provide precise spatiotemporal regulation of endosomal signalling and trafficking events. Small GTPase signalling can regulate phosphoinositide conversion during endosome maturation, and electrophysiological studies on isolated endosomes have shown that endosomal and lysosomal Ca2+ channels are directly modulated by endosomal lipids. Thus trafficking and maturation of endosomes and lysosomes can be precisely regulated by dynamic changes in GTPases and membrane lipids, as well as Ca2+ signalling. Importantly, impaired phosphoinositide and Ca2+ signalling can cause endosomal and lysosomal trafficking defects at the cellular level, and a spectrum of lysosome storage diseases.
Collapse
Affiliation(s)
- Xinran Li
- H. Xu: University of Michigan, MCDB, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
78
|
van der Mark VA, Elferink RPJO, Paulusma CC. P4 ATPases: flippases in health and disease. Int J Mol Sci 2013; 14:7897-922. [PMID: 23579954 PMCID: PMC3645723 DOI: 10.3390/ijms14047897] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/28/2013] [Accepted: 04/07/2013] [Indexed: 12/26/2022] Open
Abstract
P4 ATPases catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of biological membranes, a process termed “lipid flipping”. Accumulating evidence obtained in lower eukaryotes points to an important role for P4 ATPases in vesicular protein trafficking. The human genome encodes fourteen P4 ATPases (fifteen in mouse) of which the cellular and physiological functions are slowly emerging. Thus far, deficiencies of at least two P4 ATPases, ATP8B1 and ATP8A2, are the cause of severe human disease. However, various mouse models and in vitro studies are contributing to our understanding of the cellular and physiological functions of P4-ATPases. This review summarizes current knowledge on the basic function of these phospholipid translocating proteins, their proposed action in intracellular vesicle transport and their physiological role.
Collapse
Affiliation(s)
- Vincent A van der Mark
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands.
| | | | | |
Collapse
|
79
|
Keder A, Carmena A. Cytoplasmic protein motility and polarized sorting during asymmetric cell division. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:797-808. [DOI: 10.1002/wdev.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
80
|
Bharill P, Ayyadevara S, Alla R, Shmookler Reis RJ. Extreme Depletion of PIP3 Accompanies the Increased Life Span and Stress Tolerance of PI3K-null C. elegans Mutants. Front Genet 2013; 4:34. [PMID: 23543623 PMCID: PMC3610087 DOI: 10.3389/fgene.2013.00034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/01/2013] [Indexed: 12/16/2022] Open
Abstract
The regulation of animal longevity shows remarkable plasticity, in that a variety of genetic lesions are able to extend lifespan by as much as 10-fold. Such studies have implicated several key signaling pathways that must normally limit longevity, since their disruption prolongs life. Little is known, however, about the proximal effectors of aging on which these pathways are presumed to converge, and to date, no pharmacologic agents even approach the life-extending effects of genetic mutation. In the present study, we have sought to define the downstream consequences of age-1 nonsense mutations, which confer 10-fold life extension to the nematode Caenorhabditis elegans – the largest effect documented for any single mutation. Such mutations insert a premature stop codon upstream of the catalytic domain of the AGE-1/p110α subunit of class-I PI3K. As expected, we do not detect class-I PI3K (and based on our sensitivity, it constitutes <14% of wild-type levels), nor do we find any PI3K activity as judged by immunodetection of phosphorylated AKT, which strongly requires PIP3 for activation by upstream kinases, or immunodetection of its product, PIP3. In the latter case, the upper 95%-confidence limit for PIP3 is 1.4% of the wild-type level. We tested a variety of commercially available PI3K inhibitors, as well as three phosphatidylinositol analogs (PIAs) that are most active in inhibiting AKT activation, for effects on longevity and survival of oxidative stress. Of these, GDC-0941, PIA6, and PIA24 (each at 1 or 10 μM) extended lifespan by 7–14%, while PIAs 6, 12, and 24 (at 1 or 10 μM) increased survival time in 5 mM peroxide by 12–52%. These effects may have been conferred by insulinlike signaling, since a reporter regulated by the DAF-16/FOXO transcription factor, SOD-3::GFP, was stimulated by these PIAs in the same rank order (PIA24 > PIA6 > PIA12) as lifespan. A second reporter, PEPCK::GFP, was equally activated (∼40%) by all three.
Collapse
Affiliation(s)
- Puneet Bharill
- McClellan VA Medical Center, Central Arkansas Veterans Healthcare System Little Rock, AR, USA ; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | | | | | | |
Collapse
|
81
|
Fonovich T, Magnarelli G. Phosphoinositide and phospholipid phosphorylation and hydrolysis pathways<br/>—Organophosphate and organochlorine pesticides effects<br>. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abc.2013.33a004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
82
|
Hirst J, Irving C, Borner GH. Adaptor Protein Complexes AP-4 and AP-5: New Players in Endosomal Trafficking and Progressive Spastic Paraplegia. Traffic 2012; 14:153-64. [DOI: 10.1111/tra.12028] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/15/2012] [Accepted: 11/21/2012] [Indexed: 12/16/2022]
Affiliation(s)
- Jennifer Hirst
- Cambridge Institute for Medical Research; University of Cambridge; Wellcome Trust/MRC Building; Cambridge; CB2 0XY; UK
| | - Carol Irving
- MRC Centre for Developmental Neurobiology; King's College; London; SE1 1UL; UK
| | - Georg H.H. Borner
- Cambridge Institute for Medical Research; University of Cambridge; Wellcome Trust/MRC Building; Cambridge; CB2 0XY; UK
| |
Collapse
|
83
|
Weber-Boyvat M, Zhao H, Aro N, Yuan Q, Chernov K, Peränen J, Lappalainen P, Jäntti J. A conserved regulatory mode in exocytic membrane fusion revealed by Mso1p membrane interactions. Mol Biol Cell 2012. [PMID: 23197474 PMCID: PMC3564535 DOI: 10.1091/mbc.e12-05-0415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sec1/Munc18 family proteins are important components of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex-mediated membrane fusion processes. However, the molecular interactions and the mechanisms involved in Sec1p/Munc18 control and SNARE complex assembly are not well understood. We provide evidence that Mso1p, a Sec1p- and Sec4p-binding protein, interacts with membranes to regulate membrane fusion. We identify two membrane-binding sites on Mso1p. The N-terminal region inserts into the lipid bilayer and appears to interact with the plasma membrane, whereas the C-terminal region of the protein binds phospholipids mainly through electrostatic interactions and may associate with secretory vesicles. The Mso1p membrane interactions are essential for correct subcellular localization of Mso1p-Sec1p complexes and for membrane fusion in Saccharomyces cerevisiae. These characteristics are conserved in the phosphotyrosine-binding (PTB) domain of β-amyloid precursor protein-binding Mint1, the mammalian homologue of Mso1p. Both Mint1 PTB domain and Mso1p induce vesicle aggregation/clustering in vitro, supporting a role in a membrane-associated process. The results identify Mso1p as a novel lipid-interacting protein in the SNARE complex assembly machinery. Furthermore, our data suggest that a general mode of interaction, consisting of a lipid-binding protein, a Rab family GTPase, and a Sec1/Munc18 family protein, is important in all SNARE-mediated membrane fusion events.
Collapse
Affiliation(s)
- Marion Weber-Boyvat
- Cell and Molecular Biology Program, Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Bhattacharjee S, Stahelin RV, Haldar K. Host targeting of virulence determinants and phosphoinositides in blood stage malaria parasites. Trends Parasitol 2012; 28:555-62. [PMID: 23084821 DOI: 10.1016/j.pt.2012.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 11/25/2022]
Abstract
Blood stage malaria parasites target a 'secretome' of hundreds of proteins including virulence determinants containing a host (cell) targeting (HT) signal, to human erythrocytes. Recent studies reveal that the export mechanism is due to the HT signal binding to the lipid phosphatidylinositol-3-phosphate [PI(3)P] in the parasite endoplasmic reticulum (ER). An aspartic protease plasmepsin V which cleaves a specialized form of the HT signal was previously thought to be the export mechanism, but is now recognized as a dedicated peptidase that cleaves the signal anchor subsequent to PI(3)P binding. We discuss a model of PI(3)P-dependent targeting and PI(3)P biology of a major human pathogen.
Collapse
Affiliation(s)
- Souvik Bhattacharjee
- Center for Rare and Neglected Diseases, University of Notre Dame, 103 Galvin Life Sciences, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
85
|
Echard A. Phosphoinositides and cytokinesis: the "PIP" of the iceberg. Cytoskeleton (Hoboken) 2012; 69:893-912. [PMID: 23012232 DOI: 10.1002/cm.21067] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 12/21/2022]
Abstract
Phosphoinositides [Phosphatidylinositol (PtdIns), phosphatidylinositol 3-monophosphate (PtdIns3P), phosphatidylinositol 4-monophosphate (PtdIns4P), phosphatidylinositol 5-monophosphate (PtdIns5P), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2) ), phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P(2) ), phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2) ), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3) )] are lowly abundant acidic lipids found at the cytosolic leaflet of the plasma membrane and intracellular membranes. Initially discovered as precursors of second messengers in signal transduction, phosphoinositides are now known to directly or indirectly control key cellular functions, such as cell polarity, cell migration, cell survival, cytoskeletal dynamics, and vesicular traffic. Phosphoinositides actually play a central role at the interface between membranes and cytoskeletons and contribute to the identity of the cellular compartments by recruiting specific proteins. Increasing evidence indicates that several phosphoinositides, particularly PtdIns(4,5)P(2) , are essential for cytokinesis, notably after furrow ingression. The present knowledge about the specific phosphoinositides and phosphoinositide modifying-enzymes involved in cytokinesis will be first presented. The review of the current data will then show that furrow stability and cytokinesis abscission require that both phosphoinositide production and hydrolysis are regulated in space and time. Finally, I will further discuss recent mechanistic insights on how phosphoinositides regulate membrane trafficking and cytoskeletal remodeling for successful furrow ingression and intercellular bridge abscission. This will highlight unanticipated connections between cytokinesis and enzymes implicated in human diseases, such as the Lowe syndrome.
Collapse
Affiliation(s)
- Arnaud Echard
- Membrane Traffic and Cell Division Lab, Institut Pasteur, 28 rue du Dr Roux 75015 Paris, France; CNRS URA2582, Paris, France.
| |
Collapse
|