51
|
Li WX, Qu Y, Mu DZ, Tang J. [A review on the relationship between mitochondrial dysfunction and white matter injury in preterm infants]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:864-869. [PMID: 30369366 PMCID: PMC7389051 DOI: 10.7499/j.issn.1008-8830.2018.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
White matter injury in preterm infants has a complex etiology and can lead to long-term neurocognitive and behavioral deficits, but there are still no specific treatment methods for this disease at present. More and more studies have shown that mitochondrial dysfunction plays an important role in the pathogenesis of white matter injury in preterm infants and might be a common subcellular mechanism of white matter developmental disorder, which involves oxidative stress, reduced ATP synthesis, and disequilibrium of calcium homeostasis. This article reviews the role of mitochondria in brain development and the mechanism of mitochondrial dysfunction, with a hope to perform early intervention of white matter injury in preterm infants by protecting mitochondrial function, so as to provide a reference for improving the neurodevelopmental outcome of preterm infants who survive.
Collapse
Affiliation(s)
- Wen-Xing Li
- Department of Pediatrics, West China Second Hospital, Sichuan University/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China.
| | | | | | | |
Collapse
|
52
|
Denis HL, Lamontagne-Proulx J, St-Amour I, Mason SL, Weiss A, Chouinard S, Barker RA, Boilard E, Cicchetti F. Platelet-derived extracellular vesicles in Huntington's disease. J Neurol 2018; 265:2704-2712. [PMID: 30209650 DOI: 10.1007/s00415-018-9022-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 01/09/2023]
Abstract
The production and release of extracellular vesicles (EV) is a property shared by all eukaryotic cells and a phenomenon frequently exacerbated in pathological conditions. The protein cargo of EV, their cell type signature and availability in bodily fluids make them particularly appealing as biomarkers. We recently demonstrated that platelets, among all types of blood cells, contain the highest concentrations of the mutant huntingtin protein (mHtt)-the genetic product of Huntington's disease (HD), a neurodegenerative disorder which manifests in adulthood with a complex combination of motor, cognitive and psychiatric deficits. Herein, we used a cohort of 59 HD patients at all stages of the disease, including individuals in pre-manifest stages, and 54 healthy age- and sex-matched controls, to evaluate the potential of EV derived from platelets as a biomarker. We found that platelets of pre-manifest and manifest HD patients do not release more EV even if they are activated. Importantly, mHtt was not found within EV derived from platelets, despite them containing high levels of this protein. Correlation analyses also failed to reveal an association between the number of platelet-derived EV and the age of the patients, the number of CAG repeats, the Unified Huntington Disease Rating Scale total motor score, the Total Functional Capacity score or the Burden of Disease score. Our data would, therefore, suggest that EV derived from platelets with HD is not a valuable biomarker in HD.
Collapse
Affiliation(s)
- Hélèna L Denis
- Centre de Recherche du CHU de Québec, Québec, QC, Canada
| | | | | | - Sarah L Mason
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | | | - Sylvain Chouinard
- Centre Hospitalier de l'Université de Montréal et Centre de recherche du Centre Hospitalier de l'Université de Montréal, Département de médecine, Hôpital Notre-Dame, Université de Montréal, Montréal, QC, Canada
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Eric Boilard
- Centre de Recherche du CHU de Québec, Québec, QC, Canada. .,Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC, Canada.
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Québec, QC, Canada. .,Département de psychiatrie et neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
53
|
Lamartinière Y, Boucau MC, Dehouck L, Krohn M, Pahnke J, Candela P, Gosselet F, Fenart L. ABCA7 Downregulation Modifies Cellular Cholesterol Homeostasis and Decreases Amyloid-β Peptide Efflux in an in vitro Model of the Blood-Brain Barrier. J Alzheimers Dis 2018; 64:1195-1211. [DOI: 10.3233/jad-170883] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yordenca Lamartinière
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| | - Marie-Christine Boucau
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| | - Lucie Dehouck
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| | - Markus Krohn
- Department of Neuro-/Pathology, University of Oslo (UiO) & Oslo University Hospital (OUS), Oslo, Norway
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo (UiO) & Oslo University Hospital (OUS), Oslo, Norway
- University of Lübeck (UzL), LIED, Lübeck, Germany
- Leibniz Institute of Plant Biochemistry (IPB), Halle, Germany
| | - Pietra Candela
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| | - Fabien Gosselet
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| | - Laurence Fenart
- Université d’Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), France
| |
Collapse
|
54
|
Toonen LJA, Overzier M, Evers MM, Leon LG, van der Zeeuw SAJ, Mei H, Kielbasa SM, Goeman JJ, Hettne KM, Magnusson OT, Poirel M, Seyer A, 't Hoen PAC, van Roon-Mom WMC. Transcriptional profiling and biomarker identification reveal tissue specific effects of expanded ataxin-3 in a spinocerebellar ataxia type 3 mouse model. Mol Neurodegener 2018; 13:31. [PMID: 29929540 PMCID: PMC6013885 DOI: 10.1186/s13024-018-0261-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Background Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder caused by expansion of the polyglutamine repeat in the ataxin-3 protein. Expression of mutant ataxin-3 is known to result in transcriptional dysregulation, which can contribute to the cellular toxicity and neurodegeneration. Since the exact causative mechanisms underlying this process have not been fully elucidated, gene expression analyses in brains of transgenic SCA3 mouse models may provide useful insights. Methods Here we characterised the MJD84.2 SCA3 mouse model expressing the mutant human ataxin-3 gene using a multi-omics approach on brain and blood. Gene expression changes in brainstem, cerebellum, striatum and cortex were used to study pathological changes in brain, while blood gene expression and metabolites/lipids levels were examined as potential biomarkers for disease. Results Despite normal motor performance at 17.5 months of age, transcriptional changes in brain tissue of the SCA3 mice were observed. Most transcriptional changes occurred in brainstem and striatum, whilst cerebellum and cortex were only modestly affected. The most significantly altered genes in SCA3 mouse brain were Tmc3, Zfp488, Car2, and Chdh. Based on the transcriptional changes, α-adrenergic and CREB pathways were most consistently altered for combined analysis of the four brain regions. When examining individual brain regions, axon guidance and synaptic transmission pathways were most strongly altered in striatum, whilst brainstem presented with strongest alterations in the pi-3 k cascade and cholesterol biosynthesis pathways. Similar to other neurodegenerative diseases, reduced levels of tryptophan and increased levels of ceramides, di- and triglycerides were observed in SCA3 mouse blood. Conclusions The observed transcriptional changes in SCA3 mouse brain reveal parallels with previous reported neuropathology in patients, but also shows brain region specific effects as well as involvement of adrenergic signalling and CREB pathway changes in SCA3. Importantly, the transcriptional changes occur prior to onset of motor- and coordination deficits. Electronic supplementary material The online version of this article (10.1186/s13024-018-0261-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lodewijk J A Toonen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Maurice Overzier
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Melvin M Evers
- Department of Research & Development, uniQure, Amsterdam, The Netherlands
| | - Leticia G Leon
- Cancer Pharmacology Lab, University of Pisa, Ospedale di Cisanello, Edificio 6 via Paradisa, 2, 56124, Pisa, Italy
| | - Sander A J van der Zeeuw
- Sequencing Analysis Support Core, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Szymon M Kielbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Jelle J Goeman
- Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Kristina M Hettne
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | | | | | | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
55
|
Lütjohann D, Lopez AM, Chuang JC, Kerksiek A, Turley SD. Identification of Correlative Shifts in Indices of Brain Cholesterol Metabolism in the C57BL6/Mecp2 tm1.1Bird Mouse, a Model for Rett Syndrome. Lipids 2018; 53:363-373. [PMID: 29770459 DOI: 10.1002/lipd.12041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/26/2018] [Accepted: 04/03/2018] [Indexed: 01/14/2023]
Abstract
Rett syndrome (RS) is a pervasive neurodevelopmental disorder resulting from loss-of-function mutations in the X-linked gene methyl-Cpg-binding protein 2 (MECP2). Using a well-defined model for RS, the C57BL6/Mecp2tm1.1Bird mouse, we have previously found a moderate but persistently lower rate of cholesterol synthesis, measured in vivo, in the brains of Mecp2-/y mice, starting from about the third week after birth. There was no genotypic difference in the total cholesterol concentration throughout the brain at any age. This raised the question of whether the lower rate of cholesterol synthesis in the mutants was balanced by a fall in the rate at which cholesterol was converted via cholesterol 24-hydroxylase (Cyp46A1) to 24S-hydroxycholesterol (24S-OHC), the principal route through which cholesterol is ordinarily removed from the brain. Here, we show that while there were no genotypic differences in the concentrations in plasma and liver of three cholesterol precursors (lanosterol, lathosterol, and desmosterol), two plant sterols (sitosterol and campesterol), and two oxysterols (27-hydroxycholesterol [27-OHC] and 24S-OHC), the brains of the Mecp2 -/y mice had significantly lower concentrations of all three cholesterol precursors, campesterol, and both oxysterols, with the level of 24S-OHC being ~20% less than in their Mecp2 +/y controls. Together, these data suggest that coordinated regulation of cholesterol synthesis and catabolism in the central nervous system is maintained in this model for RS. Furthermore, we speculate that the adaptive changes in these two pathways conceivably resulted from a shift in the permeability of the blood-brain barrier as implied by the significantly lower campesterol and 27-OHC concentrations in the brains of the Mecp2-/y mice.
Collapse
Affiliation(s)
- Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151, USA
| | - Jen-Chieh Chuang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9060, USA
| | - Anja Kerksiek
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151, USA
| |
Collapse
|
56
|
Di Pardo A, Maglione V. The S1P Axis: New Exciting Route for Treating Huntington's Disease. Trends Pharmacol Sci 2018; 39:468-480. [PMID: 29559169 DOI: 10.1016/j.tips.2018.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 11/17/2022]
Abstract
Huntington's disease (HD) is a single-gene inheritable neurodegenerative disorder with an associated complex molecular pathogenic profile that renders it the most 'curable incurable' brain disorder. Continuous effort in the field has contributed to the recent discovery of novel potential pathogenic mechanisms. Findings in preclinical models of the disease as well as in human post-mortem brains from affected patients demonstrate that alteration of the sphingosine-1-phosphate (S1P) axis may represent a possible key player in the pathogenesis of the disease and may act as a potential actionable drug target for the development of more targeted and effective therapeutic approaches. The relevance of the path of this new 'therapeutic route' is underscored by the fact that some drugs targeting the S1P axis are currently in clinical trials for the treatment of other brain disorders.
Collapse
Affiliation(s)
- Alba Di Pardo
- Centre for Neurogenetics and Rare Diseases, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Vittorio Maglione
- Centre for Neurogenetics and Rare Diseases, IRCCS Neuromed, 86077 Pozzilli (IS), Italy.
| |
Collapse
|
57
|
McMillin M, Grant S, Frampton G, Petrescu AD, Kain J, Williams E, Haines R, Canady L, DeMorrow S. FXR-Mediated Cortical Cholesterol Accumulation Contributes to the Pathogenesis of Type A Hepatic Encephalopathy. Cell Mol Gastroenterol Hepatol 2018; 6:47-63. [PMID: 29928671 PMCID: PMC6008252 DOI: 10.1016/j.jcmgh.2018.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/26/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Hepatic encephalopathy is a serious neurologic complication of acute and chronic liver diseases. We previously showed that aberrant bile acid signaling contributes to the development of hepatic encephalopathy via farnesoid X receptor (FXR)-mediated mechanisms in neurons. In the brain, a novel alternative bile acid synthesis pathway, catalyzed by cytochrome p450 46A1 (Cyp46A1), is the primary mechanism by which the brain regulates cholesterol homeostasis. The aim of this study was to determine if FXR activation in the brain altered cholesterol homeostasis during hepatic encephalopathy. METHODS Cyp7A1-/- mice or C57Bl/6 mice pretreated with central infusion of FXR vivo morpholino, 2-hydroxypropyl-β-cyclodextrin, or fed a cholestyramine-supplemented diet were injected with azoxymethane (AOM). Cognitive and neuromuscular impairment as well as liver damage and expression of Cyp46A1 were assessed using standard techniques. The subsequent cholesterol content in the frontal cortex was measured using commercially available kits and by Filipin III and Nile Red staining. RESULTS There was an increase in membrane-bound and intracellular cholesterol in the cortex of mice treated with AOM that was associated with decreased Cyp46A1 expression. Strategies to inhibit FXR signaling prevented the down-regulation of Cyp46A1 and the accumulation of cholesterol. Treatment of mice with 2-hydroxypropyl-β-cyclodextrin attenuated the AOM-induced cholesterol accumulation in the brain and the cognitive and neuromuscular deficits without altering the underlying liver pathology. CONCLUSIONS During hepatic encephalopathy, FXR signaling increases brain cholesterol and contributes to neurologic decline. Targeting cholesterol accumulation in the brain may be a possible therapeutic target for the management of hepatic encephalopathy.
Collapse
Key Words
- 2-HβC, 2-hypdroxypropyl-β-cyclodextrin
- AOM, azoxymethane
- Acute Liver Failure
- Azoxymethane
- CYP46A1, cytochrome p450 46A1
- CYP7A1, cytochrome p450 7A1
- Cytochrome p450 46A1
- FXR, farnesoid X receptor
- Farnesoid X Receptor
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- PBS, phosphate-buffered saline
- PFA, paraformaldehyde
- RT-PCR, reverse-transcription polymerase chain reaction
- WT, wild-type
Collapse
Affiliation(s)
- Matthew McMillin
- Central Texas Veterans Healthcare System, Temple, Texas,Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas
| | - Stephanie Grant
- Central Texas Veterans Healthcare System, Temple, Texas,Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas
| | - Gabriel Frampton
- Central Texas Veterans Healthcare System, Temple, Texas,Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas
| | - Anca D. Petrescu
- Central Texas Veterans Healthcare System, Temple, Texas,Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas
| | - Jessica Kain
- Central Texas Veterans Healthcare System, Temple, Texas,Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas
| | - Elaina Williams
- Central Texas Veterans Healthcare System, Temple, Texas,Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas
| | - Rebecca Haines
- Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas
| | - Lauren Canady
- Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas
| | - Sharon DeMorrow
- Central Texas Veterans Healthcare System, Temple, Texas,Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas,Correspondence Address correspondence to: Sharon DeMorrow, PhD, Department of Medical Physiology, Texas A&M Health Science Center, Central Texas Veterans Health Care System, Building 205, 1901 South 1st Street, Temple, Texas 76504. fax: (254) 743-0378.
| |
Collapse
|
58
|
Lu DL, Sookthai D, Le Cornet C, Katzke VA, Johnson TS, Kaaks R, Fortner RT. Reproducibility of serum oxysterols and lanosterol among postmenopausal women: Results from EPIC-Heidelberg. Clin Biochem 2018; 52:117-122. [DOI: 10.1016/j.clinbiochem.2017.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/11/2017] [Accepted: 11/01/2017] [Indexed: 11/25/2022]
|
59
|
Cotto B, Natarajaseenivasan K, Ferrero K, Wesley L, Sayre M, Langford D. Cocaine and HIV-1 Tat disrupt cholesterol homeostasis in astrocytes: Implications for HIV-associated neurocognitive disorders in cocaine user patients. Glia 2018; 66:889-902. [PMID: 29330881 DOI: 10.1002/glia.23291] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/21/2023]
Abstract
Cholesterol synthesis and clearance by astrocytes are tightly regulated to maintain constant levels within the brain. In this context, liver X receptors (LXRs) are the master regulators of cholesterol homeostasis in the central nervous system (CNS). Increasing levels of cholesterol in astrocytes trigger LXR activation leading to the transcription of target genes involved in cholesterol trafficking and efflux, including apolipoprotein E, cytochrome P450 enzymes, sterol regulatory binding protein, and several ATP-binding cassette transporter proteins. The disturbance of LXR signaling in the brain can lead to significant dysfunctions in cholesterol homeostasis, and disruptions in this pathway have been implicated in numerous neurological diseases including Alzheimer's disease and Huntington's disease. HIV infection of the CNS in combination with cocaine use is associated with astrocyte and neuronal energy deficit and damage. We propose that dysregulation in CNS cholesterol metabolism may be involved in the progression of HIV-associated neurocognitive disorders (HAND) and in cocaine-mediated neurocognitive impairments. We hypothesize that exposure of astrocytes to cocaine and the HIV protein Tat will disrupt LXR signaling. Alterations in these pathways will in turn, affect cholesterol bioavailability for neurons. Our data show that exposure of astrocytes to cocaine and HIV-Tat significantly decreases LXRβ levels, downstream signaling and bioavailability of cholesterol. Taken together, these data uncover novel alterations in a bioenergetic pathway in astrocytes exposed to cocaine and the HIV protein Tat. Results from these studies point to a new pathway in the CNS that may contribute to HAND in HIV+ cocaine user individuals.
Collapse
Affiliation(s)
- Bianca Cotto
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | | | - Kimberly Ferrero
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Leroy Wesley
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Matthew Sayre
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
60
|
Arenas F, Garcia-Ruiz C, Fernandez-Checa JC. Intracellular Cholesterol Trafficking and Impact in Neurodegeneration. Front Mol Neurosci 2017; 10:382. [PMID: 29204109 PMCID: PMC5698305 DOI: 10.3389/fnmol.2017.00382] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cholesterol is a critical component of membrane bilayers where it plays key structural and functional roles by regulating the activity of diverse signaling platforms and pathways. Particularly enriched in brain, cholesterol homeostasis in this organ is singular with respect to other tissues and exhibits a heterogeneous regulation in distinct brain cell populations. Due to the key role of cholesterol in brain physiology and function, alterations in cholesterol homeostasis and levels have been linked to brain diseases and neurodegeneration. In the case of Alzheimer disease (AD), however, this association remains unclear with evidence indicating that either increased or decreased total brain cholesterol levels contribute to this major neurodegenerative disease. Here, rather than analyzing the role of total cholesterol levels in neurodegeneration, we focus on the contribution of intracellular cholesterol pools, particularly in endolysosomes and mitochondria through its trafficking via specialized membrane domains delineated by the contacts between endoplasmic reticulum and mitochondria, in the onset of prevalent neurodegenerative diseases such as AD, Parkinson disease, and Huntington disease as well as in lysosomal disorders like Niemann-Pick type C disease. We dissect molecular events associated with intracellular cholesterol accumulation, especially in mitochondria, an event that results in impaired mitochondrial antioxidant defense and function. A better understanding of the mechanisms involved in the distribution of cholesterol in intracellular compartments may shed light on the role of cholesterol homeostasis disruption in neurodegeneration and may pave the way for specific intervention opportunities.
Collapse
Affiliation(s)
- Fabian Arenas
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
- Liver Unit and Hospital Clinic I Provincial, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red, CIBEREHD, Barcelona, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
- Liver Unit and Hospital Clinic I Provincial, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red, CIBEREHD, Barcelona, Spain
- Southern California Research Center for ALDP and Cirrhosis, Los Angeles, CA, United States
| | - Jose C. Fernandez-Checa
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
- Liver Unit and Hospital Clinic I Provincial, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red, CIBEREHD, Barcelona, Spain
- Southern California Research Center for ALDP and Cirrhosis, Los Angeles, CA, United States
| |
Collapse
|
61
|
Chaves G, Özel RE, Rao NV, Hadiprodjo H, Costa YD, Tokuno Z, Pourmand N. Metabolic and transcriptomic analysis of Huntington's disease model reveal changes in intracellular glucose levels and related genes. Heliyon 2017; 3:e00381. [PMID: 28920088 PMCID: PMC5576993 DOI: 10.1016/j.heliyon.2017.e00381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/02/2017] [Accepted: 08/04/2017] [Indexed: 11/19/2022] Open
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder caused by an expansion in a CAG-tri-nucleotide repeat that introduces a poly-glutamine stretch into the huntingtin protein (mHTT). Mutant huntingtin (mHTT) has been associated with several phenotypes including mood disorders and depression. Additionally, HD patients are known to be more susceptible to type II diabetes mellitus (T2DM), and HD mice model develops diabetes. However, the mechanism and pathways that link Huntington's disease and diabetes have not been well established. Understanding the underlying mechanisms can reveal potential targets for drug development in HD. In this study, we investigated the transcriptome of mHTT cell populations alongside intracellular glucose measurements using a functionalized nanopipette. Several genes related to glucose uptake and glucose homeostasis are affected. We observed changes in intracellular glucose concentrations and identified altered transcript levels of certain genes including Sorcs1, Hh-II and Vldlr. Our data suggest that these can be used as markers for HD progression. Sorcs1 may not only have a role in glucose metabolism and trafficking but also in glutamatergic pathways affecting trafficking of synaptic components.
Collapse
|
62
|
Chaibva M, Jawahery S, Pilkington AW, Arndt JR, Sarver O, Valentine S, Matysiak S, Legleiter J. Acetylation within the First 17 Residues of Huntingtin Exon 1 Alters Aggregation and Lipid Binding. Biophys J 2017; 111:349-362. [PMID: 27463137 DOI: 10.1016/j.bpj.2016.06.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 06/06/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder caused by an expanded polyglutamine (polyQ) domain near the N-terminus of the huntingtin (htt) protein. Expanded polyQ leads to htt aggregation. The first 17 amino acids (Nt(17)) in htt comprise a lipid-binding domain that undergoes a number of posttranslational modifications that can modulate htt toxicity and subcellular localization. As there are three lysines within Nt(17), we evaluated the impact of lysine acetylation on htt aggregation in solution and on model lipid bilayers. Acetylation of htt-exon1(51Q) and synthetic truncated htt-exon 1 mimicking peptides (Nt(17)-Q35-P10-KK) was achieved using a selective covalent label, sulfo-N-hydroxysuccinimide (NHSA). With this treatment, all three lysine residues (K6, K9, and K15) in Nt(17) were significantly acetylated. N-terminal htt acetylation retarded fibril formation in solution and promoted the formation of larger globular aggregates. Acetylated htt also bound lipid membranes and disrupted the lipid bilayer morphology less aggressively compared with the wild-type. Computational studies provided mechanistic insights into how acetylation alters the interaction of Nt(17) with lipid membranes. Our results highlight that N-terminal acetylation influences the aggregation of htt and its interaction with lipid bilayers.
Collapse
Affiliation(s)
- Maxmore Chaibva
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Sudi Jawahery
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Albert W Pilkington
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - James R Arndt
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Olivia Sarver
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Stephen Valentine
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Silvina Matysiak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland; Biophysics Program, Institute for Physical Chemistry and Technology, University of Maryland, College Park, Maryland.
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia; NanoSAFE, West Virginia University, Morgantown, West Virginia; Center for Neurosciences, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
63
|
Huntington Disease as a Neurodevelopmental Disorder and Early Signs of the Disease in Stem Cells. Mol Neurobiol 2017; 55:3351-3371. [PMID: 28497201 PMCID: PMC5842500 DOI: 10.1007/s12035-017-0477-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
Huntington disease (HD) is a dominantly inherited disorder caused by a CAG expansion mutation in the huntingtin (HTT) gene, which results in the HTT protein that contains an expanded polyglutamine tract. The adult form of HD exhibits a late onset of the fully symptomatic phase. However, there is also a long presymptomatic phase, which has been increasingly investigated and recognized as important for the disease development. Moreover, the juvenile form of HD, evoked by a higher number of CAG repeats, resembles a neurodevelopmental disorder and has recently been the focus of additional interest. Multiple lines of data, such as the developmental necessity of HTT, its role in the cell cycle and neurogenesis, and findings from pluripotent stem cells, suggest the existence of a neurodevelopmental component in HD pathogenesis. Therefore, we discuss the early molecular pathogenesis of HD in pluripotent and neural stem cells, with respect to the neurodevelopmental aspects of HD.
Collapse
|
64
|
Leoni V, Nury T, Vejux A, Zarrouk A, Caccia C, Debbabi M, Fromont A, Sghaier R, Moreau T, Lizard G. Mitochondrial dysfunctions in 7-ketocholesterol-treated 158N oligodendrocytes without or with α-tocopherol: Impacts on the cellular profil of tricarboxylic cycle-associated organic acids, long chain saturated and unsaturated fatty acids, oxysterols, cholesterol and cholesterol precursors. J Steroid Biochem Mol Biol 2017; 169:96-110. [PMID: 27020660 DOI: 10.1016/j.jsbmb.2016.03.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/28/2022]
Abstract
In multiple sclerosis (MS) a process of white matter degradation leading to demyelination is observed. Oxidative stress, inflammation, apoptosis, necrosis and/or autophagy result together into a progressive loss of oligodendrocytes. 7-ketocholesterol (7KC), found increased in the cerebrospinal fluid of MS patients, triggers a rupture of RedOx homeostasis associated with mitochondrial dysfunctions, aptoptosis and autophagy (oxiapoptophagy) in cultured murine oligodendrocytes (158N). α-tocopherol is able to mild the alterations induced by 7KC partially restoring the cellular homeostasis. In presence of 7KC, the amount of adherent 158N cells was decreased and oxidative stress was enhanced. An increase of caspase-3 and PARP degradation (evidences of apoptosis), and an increased LC3-II/LC3-I ratio (criterion of autophagy), were detected. These events were associated with a decrease of the mitochondrial membrane potential (ΔΨm) and by a decrease of oxidative phosphorylation revealed by reduced NAD+ and ATP. The cellular lactate was higher while pyruvate, citrate, fumarate, succinate (tricarboxylic acid (TCA) cycle intermediates) were significantly reduced in exposed cells, suggesting that an impairment of mitochondrial respiratory functions could lead to an increase of lactate production and to a reduced amount of ATP and acetyl-CoA available for the anabolic pathways. The concentration of sterol precursors lathosterol, lanosterol and desmosterol were significantly reduced together with satured and unsatured long chain fatty acids (C16:0 - C18:0, structural elements of membrane phospholipids). Such reductions were milder with α-tocopherol. It is likely that the cell death induced by 7KC is associated with mitochondrial dysfunctions, including alterations of oxidative phosphorylation, which could result from lipid anabolism dysfunctions, especially on TCA cycle intermediates. A better knowledge of mitochondrial associated dysfunctions triggered by 7KC will contribute to bring new information on the demyelination processes which are linked with oxidative stress and lipid peroxidation, especially in MS.
Collapse
Affiliation(s)
- Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy; Laboratory of Clinical Pathology, Foundation IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Thomas Nury
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France
| | - Anne Vejux
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France
| | - Amira Zarrouk
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France; Univ. Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir, & Univ. Sousse, Faculty of Medicine, Sousse, Tunisia
| | - Claudio Caccia
- Laboratory of Clinical Pathology, Foundation IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Meryam Debbabi
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France; Univ. Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir, & Univ. Sousse, Faculty of Medicine, Sousse, Tunisia
| | - Agnès Fromont
- Department of Neurology, Univ. Hospital/Univ. Bourgogne Franche Comté, Dijon, France
| | - Randa Sghaier
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France; Univ. Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir, & Univ. Sousse, Faculty of Medicine, Sousse, Tunisia
| | - Thibault Moreau
- Department of Neurology, Univ. Hospital/Univ. Bourgogne Franche Comté, Dijon, France
| | - Gérard Lizard
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France.
| |
Collapse
|
65
|
Adegbuyiro A, Sedighi F, Pilkington AW, Groover S, Legleiter J. Proteins Containing Expanded Polyglutamine Tracts and Neurodegenerative Disease. Biochemistry 2017; 56:1199-1217. [PMID: 28170216 DOI: 10.1021/acs.biochem.6b00936] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several hereditary neurological and neuromuscular diseases are caused by an abnormal expansion of trinucleotide repeats. To date, there have been 10 of these trinucleotide repeat disorders associated with an expansion of the codon CAG encoding glutamine (Q). For these polyglutamine (polyQ) diseases, there is a critical threshold length of the CAG repeat required for disease, and further expansion beyond this threshold is correlated with age of onset and symptom severity. PolyQ expansion in the translated proteins promotes their self-assembly into a variety of oligomeric and fibrillar aggregate species that accumulate into the hallmark proteinaceous inclusion bodies associated with each disease. Here, we review aggregation mechanisms of proteins with expanded polyQ-tracts, structural consequences of expanded polyQ ranging from monomers to fibrillar aggregates, the impact of protein context and post-translational modifications on aggregation, and a potential role for lipid membranes in aggregation. As the pathogenic mechanisms that underlie these disorders are often classified as either a gain of toxic function or loss of normal protein function, some toxic mechanisms associated with mutant polyQ tracts will also be discussed.
Collapse
Affiliation(s)
- Adewale Adegbuyiro
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Faezeh Sedighi
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Albert W Pilkington
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Sharon Groover
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States.,Blanchette Rockefeller Neurosciences Institute, Robert C. Byrd Health Sciences Center, P.O. Box 9304, West Virginia University , Morgantown, West Virginia 26506, United States.,NanoSAFE, P.O. Box 6223, West Virginia University , Morgantown, West Virginia 26506, United States
| |
Collapse
|
66
|
Aufschnaiter A, Kohler V, Diessl J, Peselj C, Carmona-Gutierrez D, Keller W, Büttner S. Mitochondrial lipids in neurodegeneration. Cell Tissue Res 2017; 367:125-140. [PMID: 27449929 PMCID: PMC5203858 DOI: 10.1007/s00441-016-2463-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/24/2016] [Indexed: 01/10/2023]
Abstract
Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer's or Parkinson's disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.
Collapse
Affiliation(s)
- Andreas Aufschnaiter
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Jutta Diessl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Carlotta Peselj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Didac Carmona-Gutierrez
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria.
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden.
| |
Collapse
|
67
|
Chen JY, Tran C, Hwang L, Deng G, Jung ME, Faull KF, Levine MS, Cepeda C. Partial Amelioration of Peripheral and Central Symptoms of Huntington's Disease via Modulation of Lipid Metabolism. J Huntingtons Dis 2016; 5:65-81. [PMID: 27031732 DOI: 10.3233/jhd-150181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a fatal, inherited neurodegenerative disorder characterized by uncontrollable dance-like movements, as well as cognitive deficits and mood changes. A feature of HD is a metabolic disturbance that precedes neurological symptoms. In addition, brain cholesterol synthesis is significantly reduced, which could hamper synaptic transmission. OBJECTIVE Alterations in lipid metabolism as a potential target for therapeutic intervention in the R6/2 mouse model of HD were examined. METHODS Electrophysiological recordings in vitro examined the acute effects of cholesterol-modifying drugs. In addition, behavioral testing, effects on synaptic activity, and measurements of circulating and brain tissue concentrations of cholesterol and the ketone β-hydroxybutyrate (BHB), were examined in symptomatic R6/2 mice and littermate controls raised on normal chow or a ketogenic diet (KD). RESULTS Whole-cell voltage clamp recordings of striatal medium-sized spiny neurons (MSNs) from symptomatic R6/2 mice showed increased frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) compared with littermate controls. Incubation of slices in cholesterol reduced the frequency of large-amplitude sIPSCs. Addition of BHB or the Liver X Receptor (LXR) agonist T0901317 reduced the frequency and amplitude of sIPSCs. Surprisingly, incubation in simvastatin to reduce cholesterol levels also decreased the frequency of sIPSCs. HD mice fed the KD lost weight more gradually, performed better in an open field, had fewer stereotypies and lower brain levels of cholesterol than mice fed a regular diet. CONCLUSIONS Lipid metabolism represents a potential target for therapeutic intervention in HD. Modifying cholesterol or ketone levels acutely in the brain can partially rescue synaptic alterations, and the KD can prevent weight loss and improve some behavioral abnormalities.
Collapse
Affiliation(s)
- Jane Y Chen
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Conny Tran
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Lin Hwang
- Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Gang Deng
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, University of California Los Angeles, CA, USA.,Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, CA, USA.,Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| |
Collapse
|
68
|
Nuclear Lipids in the Nervous System: What they do in Health and Disease. Neurochem Res 2016; 42:321-336. [PMID: 27766461 DOI: 10.1007/s11064-016-2085-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
In the last 20 years it has been widely demonstrated that cell nucleus contains neutral and polar lipids localized in nuclear membranes, nucleoli, nuclear matrix and chromatin. Nuclear lipids may show specific organization forming nuclear lipid microdomains and have both structural and functional roles. Depending on their localization, nuclear lipids play different roles such as the regulation of nuclear membrane and nuclear matrix fluidity but they also can act as platforms for vitamin and hormone function, for active chromatin anchoring, and for the regulation of gene expression, DNA duplication and transcription. Crosstalk among different kinds of lipid signalling pathways influence the physiopathology of numerous cell types. In neural cells the nuclear lipids are involved in cell proliferation, differentiation, inflammation, migration and apoptosis. Abnormal metabolism of nuclear lipids might be closely associated with tumorigenesis and neurodegenerative diseases such as Alzheimer disease and Parkinson disease among others.
Collapse
|
69
|
Kulig W, Cwiklik L, Jurkiewicz P, Rog T, Vattulainen I. Cholesterol oxidation products and their biological importance. Chem Phys Lipids 2016; 199:144-160. [DOI: 10.1016/j.chemphyslip.2016.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/14/2022]
|
70
|
Jha SK, Jha NK, Kumar D, Ambasta RK, Kumar P. Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1132-1146. [PMID: 27345267 DOI: 10.1016/j.bbadis.2016.06.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022]
Abstract
Mounting evidence suggests a link between metabolic syndrome (MetS) such as diabetes, obesity, non-alcoholic fatty liver disease in the progression of Alzheimer's disease (AD), Parkinson's disease (PD) and other neurodegenerative diseases (NDDs). For instance, accumulated Aβ oligomer is enhancing neuronal Ca2+ release and neural NO where increased NO level in the brain through post translational modification is modulating the level of insulin production. It has been further confirmed that irrespective of origin; brain insulin resistance triggers a cascade of the neurodegeneration phenomenon which can be aggravated by free reactive oxygen species burden, ER stress, metabolic dysfunction, neuorinflammation, reduced cell survival and altered lipid metabolism. Moreover, several studies confirmed that MetS and diabetic sharing common mechanisms in the progression of AD and NDDs where mitochondrial dynamics playing a critical role. Any mutation in mitochondrial DNA, exposure of environmental toxin, high-calorie intake, homeostasis imbalance, glucolipotoxicity is causative factors for mitochondrial dysfunction. These cumulative pleiotropic burdens in mitochondria leads to insulin resistance, increased ROS production; enhanced stress-related enzymes that is directly linked MetS and diabetes in neurodegeneration. Since, the linkup mechanism between mitochondrial dysfunction and disease phenomenon of both MetS and NDDs is quite intriguing, therefore, it is pertinent for the researchers to identify and implement the therapeutic interventions for targeting MetS and NDDs. Herein, we elucidated the pertinent role of MetS induced mitochondrial dysfunction in neurons and their consequences in NDDs. Further, therapeutic potential of well-known biomolecules and chaperones to target altered mitochondria has been comprehensively documented. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
71
|
Courtney R, Landreth GE. LXR Regulation of Brain Cholesterol: From Development to Disease. Trends Endocrinol Metab 2016; 27:404-414. [PMID: 27113081 PMCID: PMC4986614 DOI: 10.1016/j.tem.2016.03.018] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/07/2023]
Abstract
Liver X receptors (LXRs) are master regulators of cholesterol homeostasis and inflammation in the central nervous system (CNS). The brain, which contains a disproportionately large amount of the body's total cholesterol (∼25%), requires a complex and delicately balanced cholesterol metabolism to maintain neuronal function. Dysregulation of cholesterol metabolism has been implicated in numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Due to their cholesterol-sensing and anti-inflammatory activities, LXRs are positioned centrally in the everyday maintenance of CNS function. This review focuses on recent research into the role of LXRs in the CNS during normal development and homeostasis and in disease states.
Collapse
Affiliation(s)
- Rebecca Courtney
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gary E Landreth
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
72
|
Díez-Planelles C, Sánchez-Lozano P, Crespo MC, Gil-Zamorano J, Ribacoba R, González N, Suárez E, Martínez-Descals A, Martínez-Camblor P, Álvarez V, Martín-Hernández R, Huerta-Ruíz I, González-García I, Cosgaya JM, Visioli F, Dávalos A, Iglesias-Gutiérrez E, Tomás-Zapico C. Circulating microRNAs in Huntington's disease: Emerging mediators in metabolic impairment. Pharmacol Res 2016; 108:102-110. [PMID: 27155059 DOI: 10.1016/j.phrs.2016.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 01/22/2023]
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disease, with peripheral consequences that negatively contribute to quality of life. Circulating microRNAs (cmiRNAs) are being explored for their roles in intercellular communication and gene expression regulation, which allows gaining insight into the regulation of crosstalk between neuronal and peripheral tissues. Here, we explore the cmiRNA profile of plasma samples from fifteen symptomatic patients, with 40-45 CAG repeats in the HTT gene, and seven healthy matched controls. Isolated miRNAs from plasma samples were run against human miRNome panels, which have sequences for 752 human mature miRNAs. We found that 168 cmiRNAs are altered in symptomatic patients. Considering Bonferroni's correction, miR-877-5p, miR-223-3p, miR-223-5p, miR-30d-5p, miR-128, miR-22-5p, miR-222-3p, miR-338-3p, miR-130b-3p, miR-425-5p, miR-628-3p, miR-361-5p, miR-942 are significantly increased in HD patients as compared with controls. Moreover, after patient's organization according to approved HD scales, miR-122-5p is significantly decreased in HD patients with Unified Huntington's Disease Rating Scale >24, whereas an increase in miR-100-5p levels and a decrease in miR-641 and miR-330-3p levels were recorded when patients were rearranged by Total Functional Capacity. These results suggest that cmiRNA profile could be further modified by disease progression, making cmiRNAs useful as monitoring biomarkers. Analysis of target genes indicated a general overexpression of cmiRNAs implicated in metabolism regulation. Profiling cmiRNA of HD subjects opens the possibility of personalized therapies for different groups of HD patients, based on disease modifiers: regulation of altered pathways might contribute to not only alleviate disease symptoms, but also influence HD progression.
Collapse
Affiliation(s)
- C Díez-Planelles
- Department of Functional Biology, Physiology Area, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | | | - M C Crespo
- Laboratory of Disorders of lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain
| | - J Gil-Zamorano
- Laboratory of Disorders of lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain
| | - R Ribacoba
- Neurology Service, Asturias Central University Hospital, 33011 Oviedo, Spain
| | - N González
- Renal, Vascular and Diabetes Research Laboratory, IIS-Jiménez Díaz Foundation, The Autonomous University of Madrid, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - E Suárez
- Neurology Service, Asturias Central University Hospital, 33011 Oviedo, Spain
| | - A Martínez-Descals
- Neurology Service, Jiménez Díaz Foundation University Hospital, Madrid, Spain
| | - P Martínez-Camblor
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Universidad Autónoma de Chile, Santiago, Chile
| | - V Álvarez
- Molecular Genetics Service-Laboratory of Genetics, Asturias Central University Hospital, 33011 Oviedo, Spain
| | - R Martín-Hernández
- Laboratory of Disorders of lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain
| | - I Huerta-Ruíz
- Department of Functional Biology, Physiology Area, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - I González-García
- Department of Functional Biology, Physiology Area, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - J M Cosgaya
- Department of Endocrine and Nervous System Physiopathology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - F Visioli
- Laboratory of Disorders of lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain; Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | - A Dávalos
- Laboratory of Disorders of lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain
| | - E Iglesias-Gutiérrez
- Department of Functional Biology, Physiology Area, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - C Tomás-Zapico
- Department of Functional Biology, Physiology Area, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|
73
|
Membrane Lipids in Presynaptic Function and Disease. Neuron 2016; 90:11-25. [DOI: 10.1016/j.neuron.2016.02.033] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/28/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
|
74
|
Boussicault L, Alves S, Lamazière A, Planques A, Heck N, Moumné L, Despres G, Bolte S, Hu A, Pagès C, Galvan L, Piguet F, Aubourg P, Cartier N, Caboche J, Betuing S. CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington's disease. Brain 2016; 139:953-70. [PMID: 26912634 PMCID: PMC4766376 DOI: 10.1093/brain/awv384] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/04/2015] [Indexed: 11/22/2022] Open
Abstract
Huntington’s disease is an autosomal dominant neurodegenerative disease caused by abnormal polyglutamine expansion in huntingtin (Exp-HTT) leading to degeneration of striatal neurons. Altered brain cholesterol homeostasis has been implicated in Huntington’s disease, with increased accumulation of cholesterol in striatal neurons yet reduced levels of cholesterol metabolic precursors. To elucidate these two seemingly opposing dysregulations, we investigated the expression of cholesterol 24-hydroxylase (CYP46A1), the neuronal-specific and rate-limiting enzyme for cholesterol conversion to 24S-hydroxycholesterol (24S-OHC). CYP46A1 protein levels were decreased in the putamen, but not cerebral cortex samples, of post-mortem Huntington’s disease patients when compared to controls.
Cyp46A1
mRNA and CYP46A1 protein levels were also decreased in the striatum of the R6/2 Huntington’s disease mouse model and in ST
hdh
Q111 cell lines.
In vivo
, in a wild-type context, knocking down CYP46A1 expression in the striatum, via an adeno-associated virus-mediated delivery of selective shCYP46A1, reproduced the Huntington’s disease phenotype, with spontaneous striatal neuron degeneration and motor deficits, as assessed by rotarod.
In vitro
, CYP46A1 restoration protected ST
hdh
Q111 and Exp-HTT-expressing striatal neurons in culture from cell death. In the R6/2 Huntington’s disease mouse model, adeno-associated virus-mediated delivery of CYP46A1 into the striatum decreased neuronal atrophy, decreased the number, intensity level and size of Exp-HTT aggregates and improved motor deficits, as assessed by rotarod and clasping behavioural tests. Adeno-associated virus-CYP46A1 infection in R6/2 mice also restored levels of cholesterol and lanosterol and increased levels of desmosterol.
In vitro
, lanosterol and desmosterol were found to protect striatal neurons expressing Exp-HTT from death. We conclude that restoring CYP46A1 activity in the striatum promises a new therapeutic approach in Huntington’s disease.
Collapse
Affiliation(s)
- Lydie Boussicault
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Sandro Alves
- 2 INSERM U1169, Le Kremlin-Bicêtre, MIRCEN CEA and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| | - Antonin Lamazière
- 3 Laboratory of Mass Spectrometry, INSERM ERL 1157, CNRS UMR 7203 LBM, Sorbonne Universités- Université Pierre et Marie Curie-Paris 6, CHU Saint-Antoine, 75012 Paris, France
| | - Anabelle Planques
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France 4 Development and Neuropharmacology, Center for Interdisciplinary Research in Biology, INSERM CNRS 7141. Collège de France
| | - Nicolas Heck
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Lara Moumné
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Gaëtan Despres
- 3 Laboratory of Mass Spectrometry, INSERM ERL 1157, CNRS UMR 7203 LBM, Sorbonne Universités- Université Pierre et Marie Curie-Paris 6, CHU Saint-Antoine, 75012 Paris, France
| | - Susanne Bolte
- 5 Cellular Imaging Facility, Institute of Biology Paris-Seine CNRS FR, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Amélie Hu
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France 6 Laboratory of Experimental Neurology, Université Libre de Bruxelles, Belgium
| | - Christiane Pagès
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Laurie Galvan
- 7 Semel Institute, University California Los Angeles, Los Angeles, USA
| | - Francoise Piguet
- 8 Department of Translational Medicine and Neurogenetics, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), UMR 7104 CNRS/UdS, INSERM U964, BP 10142, 67404 Illkirch Cedex, France
| | - Patrick Aubourg
- 2 INSERM U1169, Le Kremlin-Bicêtre, MIRCEN CEA and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| | - Nathalie Cartier
- 2 INSERM U1169, Le Kremlin-Bicêtre, MIRCEN CEA and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| | - Jocelyne Caboche
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Sandrine Betuing
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| |
Collapse
|
75
|
Gao X, Campbell WA, Chaibva M, Jain P, Leslie AE, Frey SL, Legleiter J. Cholesterol Modifies Huntingtin Binding to, Disruption of, and Aggregation on Lipid Membranes. Biochemistry 2015; 55:92-102. [PMID: 26652744 DOI: 10.1021/acs.biochem.5b00900] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease caused by abnormally long CAG-repeats in the huntingtin gene that encode an expanded polyglutamine (polyQ) domain near the N-terminus of the huntingtin (htt) protein. Expanded polyQ domains are directly correlated to disease-related htt aggregation. Htt is found highly associated with a variety of cellular and subcellular membranes that are predominantly comprised of lipids. Since cholesterol homeostasis is altered in HD, we investigated how varying cholesterol content modifies the interactions between htt and lipid membranes. A combination of Langmuir trough monolayer techniques, vesicle permeability and binding assays, and in situ atomic force microscopy were used to directly monitor the interaction of a model, synthetic htt peptide and a full-length htt-exon1 recombinant protein with model membranes comprised of total brain lipid extract (TBLE) and varying amounts of exogenously added cholesterol. As the cholesterol content of the membrane increased, the extent of htt insertion decreased. Vesicles containing extra cholesterol were resistant to htt-induced permeabilization. Morphological and mechanical changes in the bilayer associated with exposure to htt were also drastically altered by the presence of cholesterol. Disrupted regions of pure TBLE bilayers were grainy in appearance and associated with a large number of globular aggregates. In contrast, morphological changes induced by htt in bilayers enriched in cholesterol were plateau-like with a smooth appearance. Collectively, these observations suggest that the presence and amount of cholesterol in lipid membranes play a critical role in htt binding and aggregation on lipid membranes.
Collapse
Affiliation(s)
- Xiang Gao
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Warren A Campbell
- Department of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Maxmore Chaibva
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Pranav Jain
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Ashley E Leslie
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Shelli L Frey
- Department of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States.,NanoSAFE, P.O. Box 6223, West Virginia University, Morgantown, West Virginia 26506, United States.,The Center for Neurosciences, West Virginia University, Morgantown, West Virginia 26505, United States
| |
Collapse
|
76
|
Sato N, Morishita R. The roles of lipid and glucose metabolism in modulation of β-amyloid, tau, and neurodegeneration in the pathogenesis of Alzheimer disease. Front Aging Neurosci 2015; 7:199. [PMID: 26557086 PMCID: PMC4615808 DOI: 10.3389/fnagi.2015.00199] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/04/2015] [Indexed: 12/20/2022] Open
Abstract
Diabetes is a risk factor for Alzheimer disease (AD). Apolipoprotein E (ApoE) and several genes related to AD have recently been identified by genome-wide association studies (GWAS) as being closely linked to lipid metabolism. Lipid metabolism and glucose-energy metabolism are closely related. Here, we review the emerging evidence regarding the roles of lipid and glucose metabolism in the modulation of β-amyloid, tau, and neurodegeneration during the pathogenesis of AD. Disruption of homeostasis of lipid and glucose metabolism affects production and clearance of β-amyloid and tau phosphorylation, and induces neurodegeneration. A more integrated understanding of the interactions among lipid, glucose, and protein metabolism is required to elucidate the pathogenesis of AD and to develop next-generation therapeutic options.
Collapse
Affiliation(s)
- Naoyuki Sato
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka UniversitySuita, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, Osaka UniversitySuita, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka UniversitySuita, Japan
| |
Collapse
|
77
|
The Potential Regulatory Mechanisms of miR-196a in Huntington's Disease through Bioinformatic Analyses. PLoS One 2015; 10:e0137637. [PMID: 26376480 PMCID: PMC4574104 DOI: 10.1371/journal.pone.0137637] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/20/2015] [Indexed: 11/19/2022] Open
Abstract
High throughput screening is a powerful tool to identify the potential candidate molecules involved during disease progression. However, analysis of complicated data is one of the most challenging steps on the way to obtaining useful results from this approach. Previously, we showed that a specific miRNA, miR-196a, could ameliorate the pathological phenotypes of Huntington’s disease (HD) in different models, and performed high throughput screening by using the striatum of transgenic mice. In this study, we further tried to identify the potential regulatory mechanisms using different bioinformatic tools, including Database for Annotation, Visualization and Integrated Discovery (DAVID), Molecular Signatures Database (MSigDB), TargetScan and MetaCore. The results showed that miR-196a dominantly altered “ABC transporters”, “RIG-I-like receptor signaling pathway”, immune system”, “adaptive immune system”,“tissue remodeling and wound repair” and “cytoskeleton remodeling”. In addition, miR-196a also changed the expression of several well-defined pathways of HD, such as apoptosis and cell adhesion. Since these analyses showed the regulatory pathways are highly related to the modification of the cytoskeleton, we further confirmed that miR-196a could enhance the neurite outgrowth in neuroblastoma cells, suggesting miR-196a might provide beneficial functions through the alteration of cytoskeleton structures. Since impairment of the cytoskeleton has been reported in several neuronal diseases, this study will provide not only the potential working mechanisms of miR-196a but also insights for therapeutic strategies for use with different neuronal diseases.
Collapse
|
78
|
Sanders SS, Martin DDO, Butland SL, Lavallée-Adam M, Calzolari D, Kay C, Yates JR, Hayden MR. Curation of the Mammalian Palmitoylome Indicates a Pivotal Role for Palmitoylation in Diseases and Disorders of the Nervous System and Cancers. PLoS Comput Biol 2015; 11:e1004405. [PMID: 26275289 PMCID: PMC4537140 DOI: 10.1371/journal.pcbi.1004405] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/16/2015] [Indexed: 12/12/2022] Open
Abstract
Palmitoylation involves the reversible posttranslational addition of palmitate to cysteines and promotes membrane binding and subcellular localization. Recent advancements in the detection and identification of palmitoylated proteins have led to multiple palmitoylation proteomics studies but these datasets are contained within large supplemental tables, making downstream analysis and data mining time-consuming and difficult. Consequently, we curated the data from 15 palmitoylation proteomics studies into one compendium containing 1,838 genes encoding palmitoylated proteins; representing approximately 10% of the genome. Enrichment analysis revealed highly significant enrichments for Gene Ontology biological processes, pathway maps, and process networks related to the nervous system. Strikingly, 41% of synaptic genes encode a palmitoylated protein in the compendium. The top disease associations included cancers and diseases and disorders of the nervous system, with Schizophrenia, HD, and pancreatic ductal carcinoma among the top five, suggesting that aberrant palmitoylation may play a pivotal role in the balance of cell death and survival. This compendium provides a much-needed resource for cell biologists and the palmitoylation field, providing new perspectives for cancer and neurodegeneration. Protein localization is essential for mediating protein function within the cellular context. Mislocalization of proteins can offset cellular balance, influencing whether a cell lives or dies. Many proteins are directed to cellular membranes through the addition of fats, or lipidation. In particular, palmitoylation involves the reversible addition of the fatty acid palmitate to cysteines. Its reversibility makes it a unique form of lipidation allowing its dynamic regulation. Recent advancements in fast, sensitive, non-radioactive methods to detect palmitoylation have led to an explosion in the identification of palmitoylated proteins through proteomics studies. However, the data is hidden in large supplemental tables in various formats. Thus, we curated a list of palmitoylated proteins revealing that approximately 10 percent of the human genome encodes for a proteoform that is palmitoylated. Computational analysis confirmed that palmitoylation is involved in protein localization and indicated a new role in metabolism. Importantly, we found that palmitoylation was enriched at neuronal synapses and in disorders of the nervous system, including Schizophrenia and Huntington disease. Interestingly, palmitoylation was equally enriched in cancers. Consequently, we suggest that palmitoylation plays a critical role in cell fate and our compendium provides a plethora of targets for neurodegeneration and cancer.
Collapse
Affiliation(s)
- Shaun S. Sanders
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dale D. O. Martin
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | - Stefanie L. Butland
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mathieu Lavallée-Adam
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Diego Calzolari
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Chris Kay
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael R. Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
79
|
Şişecioğlu M, Budak H, Geffers L, Çankaya M, Çiftci M, Thaller C, Eichele G, Küfrevioğlu Öİ, Özdemir H. A compendium of expression patterns of cholesterol biosynthetic enzymes in the mouse embryo. J Lipid Res 2015; 56:1551-9. [PMID: 26108225 PMCID: PMC4513996 DOI: 10.1194/jlr.m059634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
Cholesterol and its biosynthetic pathway intermediates and derivatives are required for many developmental processes including membrane biogenesis, transmembrane receptor signaling, steroid biogenesis, nuclear receptor activation, and posttranslational modification of hedgehog (Hh) proteins. To perform such multifaceted tasks depends on stringent regulation of expression of cholesterol biosynthetic enzymes (CBEs). We established for a whole organism, for the first time, the 3D expression pattern of all genes required for cholesterol biosynthesis (CBS), starting from acetyl-CoA and ending with cholesterol. This data was produced by high-throughput in situ hybridization on serial sections through the mouse fetus. The textually annotated image data were seamlessly integrated into the METscout and GenePaint public databases. This novel information helps in the understanding of why CBEs are expressed at particular locations within the fetus. For example, strong CBE expression is detected at sites of cell proliferation and also where cell growth increases membrane surface, such as in neurons sprouting axons and forming synapses. The CBE data also sheds light on the spatial relationship of cells and tissue that express sonic Hh (Shh) and produce cholesterol, respectively. We discovered that not all cells expressing Shh are capable of CBS. This finding suggests novel ways by which cholesterylation of Shh is regulated.
Collapse
Affiliation(s)
- Melda Şişecioğlu
- Departments of Molecular Biology and Genetics Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Harun Budak
- Departments of Molecular Biology and Genetics Faculty of Science, Ataturk University, 25240 Erzurum, Turkey Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, 37077 Goettingen, Germany
| | - Lars Geffers
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, 37077 Goettingen, Germany
| | - Murat Çankaya
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, 37077 Goettingen, Germany Department of Biology, Faculty of Arts and Sciences, Erzincan University, 24100 Erzincan, Turkey
| | - Mehmet Çiftci
- Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey Department of Chemistry, Faculty of Arts and Sciences, Bingol University, 12000 Bingol, Turkey
| | - Christina Thaller
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, 37077 Goettingen, Germany
| | - Gregor Eichele
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, 37077 Goettingen, Germany
| | | | - Hasan Özdemir
- Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|