51
|
Manickam AH, Michael MJ, Ramasamy S. Mitochondrial genetics and therapeutic overview of Leber's hereditary optic neuropathy. Indian J Ophthalmol 2017; 65:1087-1092. [PMID: 29133631 PMCID: PMC5700573 DOI: 10.4103/ijo.ijo_358_17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/09/2017] [Indexed: 12/22/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a common inherited mitochondrial disorder that is characterized by the degeneration of the optic nerves, leading to vision loss. The major mutations in the mitochondrial genes ND1, ND4, and ND6 of LHON subjects are found to increase the oxidative stress experienced by the optic nerve cell, thereby leading to nerve cell damage. Accurate treatments are not available and drugs that are commercially available like Idebenone, EPI-743, and Bendavia with their antioxidant role help in reducing the oxidative stress experienced by the cell thereby preventing the progression of the disease. Genetic counseling plays an effective role in making the family members aware of the inheritance pattern of the disease. Gene therapy is an alternative for curing the disease but is still under study. This review focuses on the role of mitochondrial genes in causing LHON and therapeutics available for treating the disease. A systematic search has been adopted in various databases using the keywords "LHON," "mitochondria," "ND1," "ND4," "ND6," and "therapy" and the following review on mitochondrial genetics and therapeutics of LHON has been developed with obtained articles from 1988 to 2017.
Collapse
Affiliation(s)
- Agaath Hedina Manickam
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tami Nadu, India
| | - Minu Jenifer Michael
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tami Nadu, India
| | - Sivasamy Ramasamy
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tami Nadu, India
| |
Collapse
|
52
|
Moore NA, Morral N, Ciulla TA, Bracha P. Gene therapy for inherited retinal and optic nerve degenerations. Expert Opin Biol Ther 2017; 18:37-49. [DOI: 10.1080/14712598.2018.1389886] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nicholas A. Moore
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nuria Morral
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas A. Ciulla
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Retina Service, Midwest Eye Institute, Indianapolis, IN, USA
| | - Peter Bracha
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
53
|
Finsterer J, Mancuso M, Pareyson D, Burgunder JM, Klopstock T. Mitochondrial disorders of the retinal ganglion cells and the optic nerve. Mitochondrion 2017; 42:1-10. [PMID: 29054473 DOI: 10.1016/j.mito.2017.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To summarise and discuss recent findings and future perspectives concerning mitochondrial disorders (MIDs) affecting the retinal ganglion cells and the optic nerve (mitochondrial optic neuropathy. MON). METHOD Literature review. RESULTS MON in MIDs is more frequent than usually anticipated. MON may occur in specific as well as non-specific MIDs. In specific and non-specific MIDs, MON may be a prominent or non-prominent phenotypic feature and due to mutations in genes located either in the mitochondrial DNA (mtDNA) or the nuclear DNA (nDNA). Clinically, MON manifests with painless, bilateral or unilateral, slowly or rapidly progressive visual impairment and visual field defects. In some cases, visual impairment may spontaneously recover. The most frequent MIDs with MON include LHON due to mutations in mtDNA-located genes and autosomal dominant optic atrophy (ADOA) or autosomal recessive optic atrophy (AROA) due to mutations in nuclear genes. Instrumental investigations for diagnosing MON include fundoscopy, measurement of visual acuity, visual fields, and color vision, visually-evoked potentials, optical coherence tomography, fluorescein angiography, electroretinography, and MRI of the orbita and cerebrum. In non-prominent MON, work-up of the muscle biopsy with transmission electron microscopy may indicate mitochondrial destruction. Treatment is mostly supportive but idebenone has been approved for LHON and experimental approaches are promising. CONCLUSIONS MON needs to be appreciated, requires extensive diagnostic work-up, and supportive treatment should be applied although loss of vision, as the most severe outcome, can often not be prevented.
Collapse
Affiliation(s)
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - Davide Pareyson
- Department of Clinical Neurosciences, C. Besta Neurological Institute, IRCCS Foundation, Milan, Italy.
| | - Jean-Marc Burgunder
- Department of Neurology, University of Bern, Switzerland; Department of Neurology, Sun Yat Sen University, Guangzhou, China; Department of Neurology, Sichuan University, Chendgu, China.
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur Institute, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
54
|
Pilz YL, Bass SJ, Sherman J. A Review of Mitochondrial Optic Neuropathies: From Inherited to Acquired Forms. JOURNAL OF OPTOMETRY 2017; 10:205-214. [PMID: 28040497 PMCID: PMC5595256 DOI: 10.1016/j.optom.2016.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/02/2016] [Accepted: 09/22/2016] [Indexed: 05/28/2023]
Abstract
In recent years, the term mitochondrial optic neuropathy (MON) has increasingly been used within the literature to describe a group of optic neuropathies that exhibit mitochondrial dysfunction in retinal ganglion cells (RGCs). Interestingly, MONs include genetic aetiologies, such as Leber hereditary optic neuropathy (LHON) and dominant optic atrophy (DOA), as well as acquired aetiologies resulting from drugs, nutritional deficiencies, and mixed aetiologies. Regardless of an inherited or acquired cause, patients exhibit the same clinical manifestations with selective loss of the RGCs due to mitochondrial dysfunction. Various novel therapies are being explored to reverse or limit damage to the RGCs. Here we review the pathophysiology, clinical manifestations, differential diagnosis, current treatment, and promising therapeutic targets of MON.
Collapse
MESH Headings
- DNA, Mitochondrial
- Diagnosis, Differential
- Humans
- Mitochondrial Diseases/diagnosis
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/physiopathology
- Mitochondrial Diseases/therapy
- Optic Atrophy, Autosomal Dominant/diagnosis
- Optic Atrophy, Autosomal Dominant/genetics
- Optic Atrophy, Autosomal Dominant/physiopathology
- Optic Atrophy, Autosomal Dominant/therapy
- Optic Atrophy, Hereditary, Leber/diagnosis
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/physiopathology
- Optic Atrophy, Hereditary, Leber/therapy
- Optic Nerve Diseases/diagnosis
- Optic Nerve Diseases/genetics
- Optic Nerve Diseases/physiopathology
- Optic Nerve Diseases/therapy
- Retinal Ganglion Cells/pathology
Collapse
Affiliation(s)
- Yasmine L Pilz
- State University New York, College of Optometry, New York, USA.
| | - Sherry J Bass
- State University New York, College of Optometry, New York, USA
| | - Jerome Sherman
- State University New York, College of Optometry, New York, USA
| |
Collapse
|
55
|
Bi R, Logan I, Yao YG. Leber Hereditary Optic Neuropathy: A Mitochondrial Disease Unique in Many Ways. Handb Exp Pharmacol 2017; 240:309-336. [PMID: 27787713 DOI: 10.1007/164_2016_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Leber hereditary optic neuropathy (LHON) was the first mitochondrial disease to be identified as being caused by mutations in the mitochondrial DNA (mtDNA). This disease has been studied extensively in the past two decades, particularly in Brazilian, Chinese and European populations; and many primary mutations have been reported. However, the disease is enigmatic with many unique features, and there still are several important questions to be resolved. The incomplete penetrance, the male-biased disease expression and the prevalence in young adults all defy a proper explanation. It has been reported that the development of LHON is affected by the interaction between mtDNA mutations, mtDNA haplogroup background, nuclear genes, environmental factors and epigenetics. Furthermore, with the help of new animal models for LHON that have been created in recent years, we are continuing to learn more about the mechanism of this disease. The stage has now been reached at which there is a good understanding of both the genetic basis of the disease and its epidemiology, but just how the blindness that follows from the death of cells in the optic nerve can be prevented remains to be a pharmacological challenge. In this chapter, we summarize the progress that has been made in various recent studies on LHON, focusing on the molecular pathogenic mechanisms, clinical features, biochemical effects, the pharmacology and its treatment.
Collapse
Affiliation(s)
- Rui Bi
- Division of Medical Genetics & Evolutionary Medicine, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | - Yong-Gang Yao
- Division of Medical Genetics & Evolutionary Medicine, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
56
|
Abstract
The report in 1988 that Leber Hereditary Optic Neuropathy (LHON) was the product of mitochondrial DNA (mtDNA) mutations provided the first demonstration of the clinical relevance of inherited mtDNA variation. From LHON studies, the medical importance was demonstrated for the mtDNA showing its coding for the most important energy genes, its maternal inheritance, its high mutation rate, its presence in hundreds to thousands of copies per cell, its quantitatively segregation of biallelic genotypes during both mitosis and meiosis, its preferential effect on the most energetic tissues including the eye and brain, its wide range of functional polymorphisms that predispose to common diseases, and its accumulation of mutations within somatic tissues providing the aging clock. These features of mtDNA genetics, in combination with the genetics of the 1-2000 nuclear DNA (nDNA) coded mitochondrial genes, is not only explaining the genetics of LHON but also providing a model for understanding the complexity of many common diseases. With the maturation of LHON biology and genetics, novel animal models for complex disease have been developed and new therapeutic targets and strategies envisioned, both pharmacological and genetic. Multiple somatic gene therapy approaches are being developed for LHON which are applicable to other mtDNA diseases. Moreover, the unique cytoplasmic genetics of the mtDNA has permitted the first successful human germline gene therapy via spindle nDNA transfer from mtDNA mutant oocytes to enucleated normal mtDNA oocytes. Such LHON lessons are actively being applied to common ophthalmological diseases like glaucoma and neurological diseases like Parkinsonism.
Collapse
|
57
|
Darbandi S, Darbandi M, Khorshid HRK, Sadeghi MR, Al-Hasani S, Agarwal A, Shirazi A, Heidari M, Akhondi MM. Experimental strategies towards increasing intracellular mitochondrial activity in oocytes: A systematic review. Mitochondrion 2016; 30:8-17. [PMID: 27234976 DOI: 10.1016/j.mito.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The mitochondrial complement is critical in sustaining the earliest stages of life. To improve the Assisted Reproductive Technology (ART), current methods of interest were evaluated for increasing the activity and copy number of mitochondria in the oocyte cell. METHODS This covered the researches from 1966 to September 2015. RESULTS The results provided ten methods that can be studied individually or simultaneously. CONCLUSION Though the use of these techniques generated great concern about heteroplasmy observation in humans, it seems that with study on these suggested methods there is real hope for effective treatments of old oocyte or oocytes containing mitochondrial problems in the near future.
Collapse
Affiliation(s)
- Sara Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahsa Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | | | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Safaa Al-Hasani
- Reproductive Medicine Unit, University of Schleswig-Holstein, Luebeck, Germany.
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahnaz Heidari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. M.@avicenna.ar.ir
| | - Mohammad Mehdi Akhondi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
58
|
Yu-Wai-Man P. Genetic manipulation for inherited neurodegenerative diseases: myth or reality? Br J Ophthalmol 2016; 100:1322-31. [PMID: 27002113 PMCID: PMC5050284 DOI: 10.1136/bjophthalmol-2015-308329] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
Abstract
Rare genetic diseases affect about 7% of the general population and over 7000 distinct clinical syndromes have been described with the majority being due to single gene defects. This review will provide a critical overview of genetic strategies that are being pioneered to halt or reverse disease progression in inherited neurodegenerative diseases. This field of research covers a vast area and only the most promising treatment paradigms will be discussed with a particular focus on inherited eye diseases, which have paved the way for innovative gene therapy paradigms, and mitochondrial diseases, which are currently generating a lot of debate centred on the bioethics of germline manipulation.
Collapse
Affiliation(s)
- Patrick Yu-Wai-Man
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
59
|
Dalkara D, Goureau O, Marazova K, Sahel JA. Let There Be Light: Gene and Cell Therapy for Blindness. Hum Gene Ther 2016; 27:134-47. [PMID: 26751519 PMCID: PMC4779297 DOI: 10.1089/hum.2015.147] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/06/2016] [Indexed: 12/14/2022] Open
Abstract
Retinal degenerative diseases are a leading cause of irreversible blindness. Retinal cell death is the main cause of vision loss in genetic disorders such as retinitis pigmentosa, Stargardt disease, and Leber congenital amaurosis, as well as in complex age-related diseases such as age-related macular degeneration. For these blinding conditions, gene and cell therapy approaches offer therapeutic intervention at various disease stages. The present review outlines advances in therapies for retinal degenerative disease, focusing on the progress and challenges in the development and clinical translation of gene and cell therapies. A significant body of preclinical evidence and initial clinical results pave the way for further development of these cutting edge treatments for patients with retinal degenerative disorders.
Collapse
Affiliation(s)
- Deniz Dalkara
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, France
| | - Olivier Goureau
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, France
| | - Katia Marazova
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, France
| | - José-Alain Sahel
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC 1423, France
- Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| |
Collapse
|
60
|
Tischner C, Wenz T. Keep the fire burning: Current avenues in the quest of treating mitochondrial disorders. Mitochondrion 2015; 24:32-49. [DOI: 10.1016/j.mito.2015.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/18/2022]
|
61
|
Viscomi C, Bottani E, Zeviani M. Emerging concepts in the therapy of mitochondrial disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:544-57. [PMID: 25766847 DOI: 10.1016/j.bbabio.2015.03.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/15/2015] [Accepted: 03/02/2015] [Indexed: 01/07/2023]
Abstract
Mitochondrial disorders are an important group of genetic conditions characterized by impaired oxidative phosphorylation. Mitochondrial disorders come with an impressive variability of symptoms, organ involvement, and clinical course, which considerably impact the quality of life and quite often shorten the lifespan expectancy. Although the last 20 years have witnessed an exponential increase in understanding the genetic and biochemical mechanisms leading to disease, this has not resulted in the development of effective therapeutic approaches, amenable of improving clinical course and outcome of these conditions to any significant extent. Therapeutic options for mitochondrial diseases still remain focused on supportive interventions aimed at relieving complications. However, new therapeutic strategies have recently been emerging, some of which have shown potential efficacy at the pre-clinical level. This review will present the state of the art on experimental therapy for mitochondrial disorders.
Collapse
Affiliation(s)
- Carlo Viscomi
- Unit of Molecular Neurogenetics, The Foundation "Carlo Besta" Institute of Neurology IRCCS, 20133 Milan, Italy; MRC-Mitochondrial Biology Unit, Cambridge CB2 0XY, UK.
| | | | - Massimo Zeviani
- Unit of Molecular Neurogenetics, The Foundation "Carlo Besta" Institute of Neurology IRCCS, 20133 Milan, Italy; MRC-Mitochondrial Biology Unit, Cambridge CB2 0XY, UK.
| |
Collapse
|
62
|
Nuclear expression of mitochondrial ND4 leads to the protein assembling in complex I and prevents optic atrophy and visual loss. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15003. [PMID: 26029714 PMCID: PMC4444999 DOI: 10.1038/mtm.2015.3] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/05/2015] [Accepted: 01/09/2015] [Indexed: 12/13/2022]
Abstract
Leber hereditary optic neuropathy is due to mitochondrial DNA mutations; in ~70% of all cases, a point mutation in the mitochondrial NADH dehydrogenase subunit 4, ND4, gene leads to central vision loss. We optimized allotopic expression (nuclear transcription of a gene that is normally transcribed inside the mitochondria) aimed at designing a gene therapy for ND4; its coding sequence was associated with the cis-acting elements of the human COX10 mRNA to allow the efficient mitochondrial delivery of the protein. After ocular administration to adult rats of a recombinant adeno-associated viral vector containing the human ND4 gene, we demonstrated that: (i) the sustained expression of human ND4 did not lead to harmful effects, instead the human protein is efficiently imported inside the mitochondria and assembled in respiratory chain complex I; (ii) the presence of the human protein in the experimental model of Leber hereditary optic neuropathy significantly prevents retinal ganglion cell degeneration and preserves both complex I function in optic nerves and visual function. Hence, the use of optimized allotopic expression is relevant for treating mitochondrial disorders due to mutations in the organelle genome.
Collapse
|
63
|
Abstract
Defects in mitochondrial genome can cause a wide range of clinical disorders, mainly neuromuscular diseases. Various strategies have been proposed to address these pathologies; unfortunately no efficient treatment is currently available. In some cases, defects may be rescued by targeting into mitochondria nuclear DNA-expressed counterparts of the affected molecules. Another strategy is based on the induced shift of the heteroplasmy, meaning that wild type and mutated mtDNA can coexist in a single cell. The occurrence and severity of the disease depend on the heteroplasmy level, therefore, several approaches have been recently proposed to selectively reduce the levels of mutant mtDNA. Here we describe the experimental systems used to study the molecular mechanisms of mitochondrial dysfunctions: the respiratory deficient yeast strains, mammalian trans-mitochondrial cybrid cells and mice models, and overview the recent advances in development of various therapeutic approaches.
Collapse
Affiliation(s)
- Yann Tonin
- UMR 7156, Université de Strasbourg-CNRS, 21, rue René Descartes, 67084 Strasbourg, France
| | - Nina Entelis
- UMR 7156, Université de Strasbourg-CNRS, 21, rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
64
|
Patrushev MV, Kamenski PA, Mazunin IO. Mutations in mitochondrial DNA and approaches for their correction. BIOCHEMISTRY (MOSCOW) 2014; 79:1151-60. [DOI: 10.1134/s0006297914110029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
65
|
Trapani I, Puppo A, Auricchio A. Vector platforms for gene therapy of inherited retinopathies. Prog Retin Eye Res 2014; 43:108-28. [PMID: 25124745 PMCID: PMC4241499 DOI: 10.1016/j.preteyeres.2014.08.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/26/2014] [Accepted: 08/02/2014] [Indexed: 12/20/2022]
Abstract
Inherited retinopathies (IR) are common untreatable blinding conditions. Most of them are inherited as monogenic disorders, due to mutations in genes expressed in retinal photoreceptors (PR) and in retinal pigment epithelium (RPE). The retina's compatibility with gene transfer has made transduction of different retinal cell layers in small and large animal models via viral and non-viral vectors possible. The ongoing identification of novel viruses as well as modifications of existing ones based either on rational design or directed evolution have generated vector variants with improved transduction properties. Dozens of promising proofs of concept have been obtained in IR animal models with both viral and non-viral vectors, and some of them have been relayed to clinical trials. To date, recombinant vectors based on the adeno-associated virus (AAV) represent the most promising tool for retinal gene therapy, given their ability to efficiently deliver therapeutic genes to both PR and RPE and their excellent safety and efficacy profiles in humans. However, AAVs' limited cargo capacity has prevented application of the viral vector to treatments requiring transfer of genes with a coding sequence larger than 5 kb. Vectors with larger capacity, i.e. nanoparticles, adenoviral and lentiviral vectors are being exploited for gene transfer to the retina in animal models and, more recently, in humans. This review focuses on the available platforms for retinal gene therapy to fight inherited blindness, highlights their main strengths and examines the efforts to overcome some of their limitations.
Collapse
Affiliation(s)
- Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Agostina Puppo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy; Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy.
| |
Collapse
|
66
|
Bi R, Zhang W, Yu D, Li X, Wang HZ, Hu QX, Zhang C, Lu W, Ni J, Fang Y, Li T, Yao YG. Mitochondrial DNA haplogroup B5 confers genetic susceptibility to Alzheimer's disease in Han Chinese. Neurobiol Aging 2014; 36:1604.e7-16. [PMID: 25457022 DOI: 10.1016/j.neurobiolaging.2014.10.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/07/2014] [Accepted: 10/10/2014] [Indexed: 02/05/2023]
Abstract
Mitochondrial dysfunction has been widely reported in psychiatric and neurodegenerative diseases. We aimed to investigate the association between matrilineal structures of Han Chinese populations and Alzheimer's disease (AD) by a 2-stage case-control study: A total of 341 AD patients and 435 normal individuals from Southwest China were analyzed for mitochondrial DNA sequence variations and were classified into respective haplogroups. A total of 371 AD patients and 470 normal individuals from East China, as validation samples, were genotyped for the variants defining the risk haplogroup. Haplogroup B5 had a significantly higher frequency in AD patients (7.33%) than in control subjects (3.68%) from Southwest China, and we found a similar pattern of higher frequency of B5 in patients in the case-control sample from East China. In the combined population, association of haplogroup B5 with AD risk was strengthened (p = 0.02; odds ratio = 1.74; 95% confidence interval = 1.10-2.76). In lymphoblastoid cell lines belonging to haplogroup B5a, we observed significantly increased reactive oxygen species and decreased mitochondrial mass. Hela cells with stable expression of the MT-ATP6 gene with B5-defining variant m.8584G>A also showed a significantly decreased mitochondrial function. Taken together, our results indicated that haplogroup B5 conferred genetic susceptibility to AD in Han Chinese, and this effect was most likely mediated by ancient variant m.8584G>A. The predisposing effect of B5 to AD is consistent with the ancestral-susceptibility model of complex diseases.
Collapse
Affiliation(s)
- Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wen Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Dandan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Xiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hui-Zhen Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiu-Xiang Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong, University School of Medicine, Shanghai, China
| | - Weihong Lu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong, University School of Medicine, Shanghai, China
| | - Jianliang Ni
- First Geriatric Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong, University School of Medicine, Shanghai, China
| | - Tao Li
- The Mental Health Center & Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.
| |
Collapse
|
67
|
La Morgia C, Carbonelli M, Barboni P, Sadun AA, Carelli V. Medical management of hereditary optic neuropathies. Front Neurol 2014; 5:141. [PMID: 25132831 PMCID: PMC4117178 DOI: 10.3389/fneur.2014.00141] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/16/2014] [Indexed: 01/31/2023] Open
Abstract
Hereditary optic neuropathies are diseases affecting the optic nerve. The most common are mitochondrial hereditary optic neuropathies, i.e., the maternally inherited Leber's hereditary optic neuropathy (LHON) and dominant optic atrophy (DOA). They both share a mitochondrial pathogenesis that leads to the selective loss of retinal ganglion cells and axons, in particular of the papillo-macular bundle. Typically, LHON is characterized by an acute/subacute loss of central vision associated with impairment of color vision and swelling of retinal nerve fibers followed by optic atrophy. DOA, instead, is characterized by a childhood-onset and slowly progressive loss of central vision, worsening over the years, leading to optic atrophy. The diagnostic workup includes neuro-ophthalmologic evaluation and genetic testing of the three most common mitochondrial DNA mutations affecting complex I (11778/ND4, 3460/ND1, and 14484/ND6) for LHON and sequencing of the nuclear gene OPA1 for DOA. Therapeutic strategies are still limited including agents that bypass the complex I defect and exert an antioxidant effect (idebenone). Further strategies are aimed at stimulating compensatory mitochondrial biogenesis. Gene therapy is also a promising avenue that still needs to be validated.
Collapse
Affiliation(s)
- Chiara La Morgia
- UOC Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria , Bologna , Italy ; Unità di Neurologia, Dipartimento di Scienze Biomediche e NeuroMotorie (DIBINEM), Università di Bologna , Bologna , Italy
| | | | - Piero Barboni
- Studio Oculistico d'Azeglio , Bologna , Italy ; Istituto Scientifico San Raffaele , Milan , Italy
| | - Alfredo Arrigo Sadun
- Doheny Eye Institute, University of California Los Angeles , Los Angeles, CA , USA
| | - Valerio Carelli
- UOC Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria , Bologna , Italy ; Unità di Neurologia, Dipartimento di Scienze Biomediche e NeuroMotorie (DIBINEM), Università di Bologna , Bologna , Italy
| |
Collapse
|
68
|
Abstract
Significant advances have been made over the last decade or two in the elucidation of the molecular pathogenesis of inherited ocular disorders. In particular, remarkable successes have been achieved in exploration of gene-based medicines for these conditions, both in preclinical and in clinical studies. Progress in the development of gene therapies targeted toward correcting the primary genetic defect or focused on modulating secondary effects associated with retinal pathologies are discussed in the review. Likewise, the recent utilization of genes encoding light-sensing molecules to provide new functions to residual retinal cells in the degenerating retina is discussed. While a great deal has been learned over the last two decades, the next decade should result in an increasing number of preclinical studies progressing to human clinical trial, an exciting prospect for patients, those active in research and development and bystanders alike.
Collapse
|
69
|
Koilkonda RD, Yu H, Chou TH, Feuer WJ, Ruggeri M, Porciatti V, Tse D, Hauswirth WW, Chiodo V, Boye SL, Lewin AS, Neuringer M, Renner L, Guy J. Safety and effects of the vector for the Leber hereditary optic neuropathy gene therapy clinical trial. JAMA Ophthalmol 2014; 132:409-20. [PMID: 24457989 DOI: 10.1001/jamaophthalmol.2013.7630] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE We developed a novel strategy for treatment of Leber hereditary optic neuropathy (LHON) caused by a mutation in the nicotinamide adenine dinucleotide dehydrogenase subunit IV (ND4) mitochondrial gene. OBJECTIVE To demonstrate the safety and effects of the gene therapy vector to be used in a proposed gene therapy clinical trial. DESIGN AND SETTING In a series of laboratory experiments, we modified the mitochondrial ND4 subunit of complex I in the nuclear genetic code for import into mitochondria. The protein was targeted into the organelle by agency of a targeting sequence (allotopic expression). The gene was packaged into adeno-associated viral vectors and then vitreally injected into rodent, nonhuman primate, and ex vivo human eyes that underwent testing for expression and integration by immunohistochemical analysis and blue native polyacrylamide gel electrophoresis. During serial follow-up, the animal eyes underwent fundus photography, optical coherence tomography, and multifocal or pattern electroretinography. We tested for rescue of visual loss in rodent eyes also injected with a mutant G11778A ND4 homologue responsible for most cases of LHON. EXPOSURE Ocular infection with recombinant adeno-associated viral vectors containing a wild-type allotopic human ND4 gene. MAIN OUTCOMES AND MEASURES Expression of human ND4 and rescue of optic neuropathy induced by mutant human ND4. RESULTS We found human ND4 expressed in almost all mouse retinal ganglion cells by 1 week after injection and ND4 integrated into the mouse complex I. In rodent eyes also injected with a mutant allotopic ND4, wild-type allotopic ND4 prevented defective adenosine triphosphate synthesis, suppressed visual loss, reduced apoptosis of retinal ganglion cells, and prevented demise of axons in the optic nerve. Injection of ND4 in the ex vivo human eye resulted in expression in most retinal ganglion cells. Primates undergoing vitreal injection with the ND4 test article and followed up for 3 months had no serious adverse reactions. CONCLUSIONS AND RELEVANCE Expression of our allotopic ND4 vector in the ex vivo human eye, safety of the test article, rescue of the LHON mouse model, and the severe irreversible loss of visual function in LHON support clinical testing with mutated G11778A mitochondrial DNA in our patients.
Collapse
Affiliation(s)
- Rajeshwari D Koilkonda
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Hong Yu
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - William J Feuer
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Marco Ruggeri
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - David Tse
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - William W Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville
| | - Vince Chiodo
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville
| | - Sanford L Boye
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Lauren Renner
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - John Guy
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
70
|
Gene therapy for mitochondrial diseases: Leber Hereditary Optic Neuropathy as the first candidate for a clinical trial. C R Biol 2014; 337:193-206. [PMID: 24702846 DOI: 10.1016/j.crvi.2013.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 12/30/2022]
Abstract
Mitochondrial disorders cannot be ignored anymore in most medical disciplines; indeed their minimum estimated prevalence is superior to 1 in 5000 births. Despite the progress made in the last 25 years on the identification of gene mutations causing mitochondrial pathologies, only slow progress was made towards their effective treatments. Ocular involvement is a frequent feature in mitochondrial diseases and corresponds to severe and irreversible visual handicap due to retinal neuron loss and optic atrophy. Interestingly, three clinical trials for Leber Congenital Amaurosis due to RPE65 mutations are ongoing since 2007. Overall, the feasibility and safety of ocular Adeno-Associated Virus delivery in adult and younger patients and consistent visual function improvements have been demonstrated. The success of gene-replacement therapy for RPE65 opens the way for the development of similar approaches for a broad range of eye disorders, including those with mitochondrial etiology such as Leber Hereditary Optic Neuropathy (LHON).
Collapse
|
71
|
Cruz-Torres V, Vázquez-Acevedo M, García-Villegas R, Pérez-Martínez X, Mendoza-Hernández G, González-Halphen D. The cytosol-synthesized subunit II (Cox2) precursor with the point mutation W56R is correctly processed in yeast mitochondria to rescue cytochrome oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2128-39. [PMID: 22985601 DOI: 10.1016/j.bbabio.2012.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/01/2012] [Accepted: 09/07/2012] [Indexed: 01/07/2023]
Abstract
Deletion of the yeast mitochondrial gene COX2 encoding subunit 2 (Cox2) of cytochrome c oxidase (CcO) results in loss of respiration (Δcox2 strain). Supekova et al. (2010) [1] transformed a Δcox2 strain with a vector expressing Cox2 with a mitochondrial targeting sequence (MTS) and the point mutation W56R (Cox2(W56R)), restoring respiratory growth. Here, the CcO carrying the allotopically-expressed Cox2(W56R) was characterized. Yeast mitochondria from the wild-type (WT) and the Δcox2+Cox2(W56R) strains were subjected to Blue Native electrophoresis. In-gel activity of CcO and spectroscopic quantitation of cytochromes revealed that only 60% of CcO is present in the complemented strain, and that less CcO is found associated in supercomplexes as compared to WT. CcOs from the WT and the mutant exhibited similar subunit composition, although activity was 20-25% lower in the enzyme containing Cox2(W56R) than in the one with Cox2(WT). Tandem mass spectrometry confirmed that W(56) was substituted by R(56) in Cox2(W56R). In addition, Cox2(W56R) exhibited the same N-terminus than Cox2(WT), indicating that the MTS of Oxa1 and the leader sequence of 15 residues were removed from Cox2(W56R) during maturation. Thus, Cox2(W56R) is identical to Cox2(WT) except for the point mutation W56R. Mitochondrial Cox1 synthesis is strongly reduced in Δcox2 mutants, but the Cox2(W56R) complemented strain led to full restoration of Cox1 synthesis. We conclude that the cytosol-synthesized Cox2(W56R) follows a rate-limiting process of import, maturation or assembly that yields lower steady-state levels of CcO. Still, the allotopically-expressed Cox2(W56R) restores CcO activity and allows mitochondrial Cox1 synthesis to advance at WT levels.
Collapse
Affiliation(s)
- Valentín Cruz-Torres
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | | | | | | | | | | |
Collapse
|
72
|
Hufnagel RB, Ahmed ZM, Corrêa ZM, Sisk RA. Gene therapy for Leber congenital amaurosis: advances and future directions. Graefes Arch Clin Exp Ophthalmol 2012; 250:1117-28. [PMID: 22644094 DOI: 10.1007/s00417-012-2028-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/25/2012] [Accepted: 04/03/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Leber congenital amaurosis (LCA) is a congenital retinal dystrophy that results in significant and often severe vision loss at an early age. Comprehensive analysis of the genetic mutations and phenotypic correlations in LCA patients has allowed for significant improvements in understanding molecular pathways of photoreceptor degeneration and dysfunction. The purpose of this article is to review the literature on the subject of retinal gene therapy for LCA, including historical descriptions, preclinical animal studies, and human clinical trials. METHODS A literature search of peer-reviewed and indexed publications from 1996-2011 using the PubMed search engine was performed. Key terms included "Leber congenital amaurosis", LCA, RPE65, "cone-rod dystrophy", "gene therapy", and "human trials" in various combinations. Seminal articles prior to 1996 were selected from primary sources and reviews from the initial search. Articles were chosen based on pertinence to clinical, genetic, and therapeutic topics reviewed in this manuscript. Fundus photographs from LCA patients were obtained retrospectively from the clinical practice of one of the authors (R.A.S). RESULTS Herein, we reviewed the literature on LCA as a genetic disease, the results of human gene therapy trials to date, and possible future directions towards treating inherited retinal diseases at the genetic level. Original descriptions of LCA by Theodor Leber and subsequent research demonstrate the severity of this disease with early-onset blindness. Discoveries of the causative heritable mutations revealed genes and protein products involved in photoreceptor development and visual transduction. Animal models have provided a means to test novel therapeutic strategies, namely gene therapy. Stemming from these experiments, three independent clinical trials tested the safety of subretinal delivery of viral gene therapy to patients with mutations in the RPE65 gene. More recently, efficacy studies have been conducted with encouraging results. CONCLUSIONS Initial safety studies indicated promising results of subretinal delivery of viral vector with subclinical immunologic or surgical sequelae. Overall, these initial studies demonstrate that viral vector gene therapy results are very promising, safe, and effective. Future studies measuring potential improvement in photoreceptor function may rely on recent advances in retinal imaging and electrophysiologic testing.
Collapse
Affiliation(s)
- Robert B Hufnagel
- Department of Pediatrics, Division of Pediatric Ophthalmology, University of Cincinnati and Cincinnati Children's Hospital, College of Medicine, 3333 Burnet Ave, ML 7003, Cincinnati, OH 45229, USA.
| | | | | | | |
Collapse
|
73
|
Niazi AK, Mileshina D, Cosset A, Val R, Weber-Lotfi F, Dietrich A. Targeting nucleic acids into mitochondria: progress and prospects. Mitochondrion 2012; 13:548-58. [PMID: 22609422 DOI: 10.1016/j.mito.2012.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/14/2012] [Indexed: 12/18/2022]
Abstract
Given the essential functions of these organelles in cell homeostasis, their involvement in incurable diseases and their potential in biotechnological applications, genetic transformation of mitochondria has been a long pursued goal that has only been reached in a couple of unicellular organisms. The challenge led scientists to explore a wealth of different strategies for mitochondrial delivery of DNA or RNA in living cells. These are the subject of the present review. Targeting DNA into the organelles currently shows promise but remarkably a number of alternative approaches based on RNA trafficking were also established and will bring as well major contributions.
Collapse
Affiliation(s)
- Adnan Khan Niazi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
74
|
Szczepanowska J, Malinska D, Wieckowski MR, Duszynski J. Effect of mtDNA point mutations on cellular bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1740-6. [PMID: 22406627 DOI: 10.1016/j.bbabio.2012.02.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
This overview discusses the results of research on the effects of most frequent mtDNA point mutations on cellular bioenergetics. Thirteen proteins coded by mtDNA are crucial for oxidative phosphorylation, 11 of them constitute key components of the respiratory chain complexes I, III and IV and 2 of mitochondrial ATP synthase. Moreover, pathogenic point mutations in mitochondrial tRNAs and rRNAs generate abnormal synthesis of the mtDNA coded proteins. Thus, pathogenic point mutations in mtDNA usually disturb the level of key parameter of the oxidative phosphorylation, i.e. the electric potential on the inner mitochondrial membrane (Δψ), and in a consequence calcium signalling and mitochondrial dynamics in the cell. Mitochondrial generation of reactive oxygen species is also modified in the mutated cells. The results obtained with cultured cells and describing biochemical consequences of mtDNA point mutations are full of contradictions. Still they help elucidate the biochemical basis of pathologies and provide a valuable tool for finding remedies in the future. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Joanna Szczepanowska
- Department of Biochemsitry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | |
Collapse
|
75
|
Angebault C, Gueguen N, Desquiret-Dumas V, Chevrollier A, Guillet V, Verny C, Cassereau J, Ferre M, Milea D, Amati-Bonneau P, Bonneau D, Procaccio V, Reynier P, Loiseau D. Idebenone increases mitochondrial complex I activity in fibroblasts from LHON patients while producing contradictory effects on respiration. BMC Res Notes 2011; 4:557. [PMID: 22192149 PMCID: PMC3285568 DOI: 10.1186/1756-0500-4-557] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/22/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leber's hereditary optic neuropathy (LHON) is caused by mutations in the complex I subunits of the respiratory chain. Although patients have been treated with idebenone since 1992, the efficacy of the drug is still a matter of debate. METHODS We evaluated the effect of idebenone in fibroblasts from LHON patients using enzymatic and polarographic measurements. RESULTS Complex I activity was 42% greater in treated fibroblasts compared to controls (p = 0.002). Despite this complex I activity improvement, the effects on mitochondrial respiration were contradictory, leading to impairment in some cases and stimulation in others. CONCLUSION These results indicate that idebenone is able to compensate the complex I deficiency in LHON patient cells with variable effects on respiration, indicating that the patients might not be equally likely to benefit from the treatment.
Collapse
|
76
|
Adhya S, Mahato B, Jash S, Koley S, Dhar G, Chowdhury T. Mitochondrial gene therapy: The tortuous path from bench to bedside. Mitochondrion 2011; 11:839-44. [DOI: 10.1016/j.mito.2011.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/12/2011] [Accepted: 06/10/2011] [Indexed: 01/25/2023]
|
77
|
Mileshina D, Ibrahim N, Boesch P, Lightowlers RN, Dietrich A, Weber-Lotfi F. Mitochondrial transfection for studying organellar DNA repair, genome maintenance and aging. Mech Ageing Dev 2011; 132:412-23. [PMID: 21645537 DOI: 10.1016/j.mad.2011.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/02/2011] [Accepted: 05/21/2011] [Indexed: 12/15/2022]
Abstract
Maintenance of the mitochondrial genome is a major challenge for cells, particularly as they begin to age. Although it is established that organelles possess regular DNA repair pathways, many aspects of these complex processes and of their regulation remain to be investigated. Mitochondrial transfection of isolated organelles and in whole cells with customized DNA synthesized to contain defined lesions has wide prospects for deciphering repair mechanisms in a physiological context. We document here the strategies currently developed to transfer DNA of interest into mitochondria. Methodologies with isolated mitochondria claim to exploit the protein import pathway or the natural competence of the organelles, to permeate the membranes or to use conjugal transfer from bacteria. Besides biolistics, which remains restricted to yeast and Chlamydomonas reinhardtii, nanocarriers or fusion proteins have been explored as methods to target custom DNA into mitochondria in intact cells. In further approaches, whole mitochondria have been transferred into recipient cells. Repair failure or error-prone repair leads to mutations which potentially could be rescued by allotopic expression of proteins. The relevance of the different approaches for the analysis of mitochondrial DNA repair mechanisms and of aging is discussed.
Collapse
Affiliation(s)
- Daria Mileshina
- Institut de Biologie Moléculaire des Plantes, CNRS/Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
78
|
Cwerman-Thibault H, Sahel JA, Corral-Debrinski M. Mitochondrial medicine: to a new era of gene therapy for mitochondrial DNA mutations. J Inherit Metab Dis 2011; 34:327-44. [PMID: 20571866 DOI: 10.1007/s10545-010-9131-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/12/2010] [Accepted: 05/17/2010] [Indexed: 01/01/2023]
Abstract
Mitochondrial disorders can no longer be ignored in most medical disciplines. Such disorders include specific and widespread organ involvement, with tissue degeneration or tumor formation. Primary or secondary actors, mitochondrial dysfunctions also play a role in the aging process. Despite progresses made in identification of their molecular bases, nearly everything remains to be done as regards therapy. Research dealing with mitochondrial physiology and pathology has >20 years of history around the world. We are involved, as are many other laboratories, in the challenge of finding ways to fight these diseases. However, our main limitation is the scarcety of animal models required for both understanding the molecular mechanisms underlying the diseases and evaluating therapeutic strategies. This is especially true for diseases due to mutations in mitochondrial DNA (mtDNA), since an authentic genetic model of mtDNA mutations is technically a very difficult task due to both the inability of manipulating the mitochondrial genome of living mammalian cells and to its multicopy nature. This has led researchers in the field to consider the prospect of gene therapy approaches that can roughly be divided into three groups: (1) import of wild-type copies or relevant sections of DNA or RNA into mitochondria, (2) manipulation of mitochondrial genetic content, and (3) rescue of a defect by expression of an engineered gene product from the nucleus (allotopic or xenotropic expression). We briefly introduce these concepts and indicate where promising progress has been made in the last decade.
Collapse
|
79
|
Won YW, Lim KS, Kim YH. Intracellular organelle-targeted non-viral gene delivery systems. J Control Release 2011; 152:99-109. [PMID: 21255626 DOI: 10.1016/j.jconrel.2011.01.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/30/2010] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
Gene therapy is a rapidly growing approach for the treatment of various diseases. To achieve successful gene therapy, a gene delivery system is necessary to overcome several barriers in the extracellular and intracellular spaces. Polymers, peptides, liposomes and nanoparticles developed as gene carriers have achieved efficient cellular uptake of genes. Among these carriers, cationic polymers and peptides have been further developed as intracellular organelle-targeted delivery systems. The cytoplasm, nucleus and mitochondria have been considered primary targets for gene delivery using targeting moieties or environment-responsive materials. In this review, we explore recently developed non-viral gene carriers based on reducible systems specialized to target the cytoplasm, nucleus and mitochondria.
Collapse
Affiliation(s)
- Young-Wook Won
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, and Institute of Aging Society, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| | | | | |
Collapse
|
80
|
Wenz T, Williams SL, Bacman SR, Moraes CT. Emerging therapeutic approaches to mitochondrial diseases. ACTA ACUST UNITED AC 2011; 16:219-29. [PMID: 20818736 DOI: 10.1002/ddrr.109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial diseases are very heterogeneous and can affect different tissues and organs. Moreover, they can be caused by genetic defects in either nuclear or mitochondrial DNA as well as by environmental factors. All of these factors have made the development of therapies difficult. In this review article, we will discuss emerging approaches to the therapy of mitochondrial disorders, some of which are targeted to specific conditions whereas others may be applicable to a more diverse group of patients.
Collapse
Affiliation(s)
- Tina Wenz
- Department of Neurology, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
81
|
Mitochondrial RNA import: from diversity of natural mechanisms to potential applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:145-90. [PMID: 21414588 DOI: 10.1016/b978-0-12-386043-9.00004-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria, owing to their bacterial origin, still contain their own DNA. However, the majority of bacterial genes were lost or transferred to the nuclear genome and the biogenesis of the "present-day" mitochondria mainly depends on the expression of the nuclear genome. Thus, most mitochondrial proteins and a small number of mitochondrial RNAs (mostly tRNAs) expressed from nuclear genes need to be imported into the organelle. During evolution, macromolecule import systems were universally established. The processes of protein mitochondrial import are very well described in the literature. By contrast, deciphering the mitochondrial RNA import phenomenon is still a real challenge. The purpose of this review is to present a general survey of our present knowledge in this field in different model organisms, protozoa, plants, yeast, and mammals. Questions still under debate and major challenges are discussed. Mitochondria are involved in numerous human diseases. The targeting of macromolecule to mitochondria represents a promising way to fight mitochondrial disorders and recent developments in this area of research are presented.
Collapse
|
82
|
Mazunin IO, Volodko NV, Starikovskaya EB, Sukernik RI. Mitochondrial genome and human mitochondrial diseases. Mol Biol 2010. [DOI: 10.1134/s0026893310050018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
83
|
Figueroa-Martínez F, Vázquez-Acevedo M, Cortés-Hernández P, García-Trejo JJ, Davidson E, King MP, González-Halphen D. What limits the allotopic expression of nucleus-encoded mitochondrial genes? The case of the chimeric Cox3 and Atp6 genes. Mitochondrion 2010; 11:147-54. [PMID: 20854934 DOI: 10.1016/j.mito.2010.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 08/17/2010] [Accepted: 09/10/2010] [Indexed: 10/19/2022]
Abstract
Allotopic expression is potentially a gene therapy for mtDNA-related diseases. Some OXPHOS proteins like ATP6 (subunit a of complex V) and COX3 (subunit III of complex IV) that are typically mtDNA-encoded, are naturally nucleus-encoded in the alga Chlamydomonas reinhardtii. The mitochondrial proteins whose genes have been relocated to the nucleus exhibit long mitochondrial targeting sequences ranging from 100 to 140 residues and a diminished overall mean hydrophobicity when compared with their mtDNA-encoded counterparts. We explored the allotopic expression of the human gene products COX3 and ATP6 that were re-designed for mitochondrial import by emulating the structural properties of the corresponding algal proteins. In vivo and in vitro data in homoplasmic human mutant cells carrying either a T8993G mutation in the mitochondrial atp6 gene or a 15bp deletion in the mtDNA-encoded cox3 gene suggest that these human mitochondrial proteins re-designed for nuclear expression are targeted to the mitochondria, but fail to functionally integrate into their corresponding OXPHOS complexes.
Collapse
|
84
|
Perales-Clemente E, Fernández-Silva P, Acín-Pérez R, Pérez-Martos A, Enríquez JA. Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task? Nucleic Acids Res 2010; 39:225-34. [PMID: 20823090 PMCID: PMC3017613 DOI: 10.1093/nar/gkq769] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial-DNA diseases have no effective treatments. Allotopic expression—synthesis of a wild-type version of the mutated protein in the nuclear-cytosolic compartment and its importation into mitochondria—has been proposed as a gene-therapy approach. Allotopic expression has been successfully demonstrated in yeast, but in mammalian mitochondria results are contradictory. The evidence available is based on partial phenotype rescue, not on the incorporation of a functional protein into mitochondria. Here, we show that reliance on partial rescue alone can lead to a false conclusion of successful allotopic expression. We recoded mitochondrial mt-Nd6 to the universal genetic code, and added the N-terminal mitochondrial-targeting sequence of cytochrome c oxidase VIII (C8) and the HA epitope (C8Nd6HA). The protein apparently co-localized with mitochondria, but a significant part of it seemed to be located outside mitochondria. Complex I activity and assembly was restored, suggesting successful allotopic expression. However, careful examination of transfected cells showed that the allotopically-expressed protein was not internalized in mitochondria and that the selected clones were in fact revertants for the mt-Nd6 mutation. These findings demonstrate the need for extreme caution in the interpretation of functional rescue experiments and for clear-cut controls to demonstrate true rescue of mitochondrial function by allotopic expression.
Collapse
Affiliation(s)
- Ester Perales-Clemente
- Centro Nacional de Investigaciónes Cardiovasculares Carlos III, Melchor Fernández Almagro, Madrid, Spain
| | | | | | | | | |
Collapse
|
85
|
Zou Y, Jia X, Zhang AM, Wang WZ, Li S, Guo X, Kong QP, Zhang Q, Yao YG. The MT-ND1 and MT-ND5 genes are mutational hotspots for Chinese families with clinical features of LHON but lacking the three primary mutations. Biochem Biophys Res Commun 2010; 399:179-85. [DOI: 10.1016/j.bbrc.2010.07.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 07/15/2010] [Indexed: 02/03/2023]
|
86
|
Michaud M, Maréchal-Drouard L, Duchêne AM. RNA trafficking in plant cells: targeting of cytosolic mRNAs to the mitochondrial surface. PLANT MOLECULAR BIOLOGY 2010; 73:697-704. [PMID: 20506035 DOI: 10.1007/s11103-010-9650-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 05/07/2010] [Indexed: 05/06/2023]
Abstract
Subcellular localization of mRNA is a widespread and efficient way for targeting proteins to specific regions of a cell. Messenger RNA sorting appears as a key mechanism for posttranscriptional gene regulation, and its involvement in organelle biogenesis has been described in different organisms. Here we demonstrate that mRNA targeting to the surface of mitochondria occurs in higher plants. Cytosolic mRNAs corresponding to mitochondrial proteins, but also to some particular cytosolic proteins, were found associated to mitochondria, offering new perspectives for mitochondria biogenesis in plant cells.
Collapse
Affiliation(s)
- Morgane Michaud
- Institut de Biologie Moléculaire des Plantes, UPR 2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | |
Collapse
|
87
|
Marella M, Seo BB, Thomas BB, Matsuno-Yagi A, Yagi T. Successful amelioration of mitochondrial optic neuropathy using the yeast NDI1 gene in a rat animal model. PLoS One 2010; 5:e11472. [PMID: 20628600 PMCID: PMC2900204 DOI: 10.1371/journal.pone.0011472] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 06/15/2010] [Indexed: 01/31/2023] Open
Abstract
Background Leber's hereditary optic neuropathy (LHON) is a maternally inherited disorder with point mutations in mitochondrial DNA which result in loss of vision in young adults. The majority of mutations reported to date are within the genes encoding the subunits of the mitochondrial NADH-quinone oxidoreductase, complex I. Establishment of animal models of LHON should help elucidate mechanism of the disease and could be utilized for possible development of therapeutic strategies. Methodology/Principal Findings We established a rat model which involves injection of rotenone-loaded microspheres into the optic layer of the rat superior colliculus. The animals exhibited the most common features of LHON. Visual loss was observed within 2 weeks of rotenone administration with no apparent effect on retinal ganglion cells. Death of retinal ganglion cells occurred at a later stage. Using our rat model, we investigated the effect of the yeast alternative NADH dehydrogenase, Ndi1. We were able to achieve efficient expression of the Ndi1 protein in the mitochondria of all regions of retinal ganglion cells and axons by delivering the NDI1 gene into the optical layer of the superior colliculus. Remarkably, even after the vision of the rats was severely impaired, treatment of the animals with the NDI1 gene led to a complete restoration of the vision to the normal level. Control groups that received either empty vector or the GFP gene had no effects. Conclusions/Significance The present study reports successful manifestation of LHON-like symptoms in rats and demonstrates the potential of the NDI1 gene therapy on mitochondrial optic neuropathies. Our results indicate a window of opportunity for the gene therapy to be applied successfully after the onset of the disease symptoms.
Collapse
Affiliation(s)
- Mathieu Marella
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Byoung Boo Seo
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Biju B. Thomas
- Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Akemi Matsuno-Yagi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Takao Yagi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
88
|
Shokolenko IN, Alexeyev MF, LeDoux SP, Wilson GL. The approaches for manipulating mitochondrial proteome. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:451-461. [PMID: 20544885 PMCID: PMC3249350 DOI: 10.1002/em.20570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Over the past decade a large volume of research data has accumulated which has established a fundamental role for mitochondria in normal cellular functioning, as well as in various pathologies. Mitochondria play a pivotal role in metabolism and energy production, and are one of the key players involved in programmed cell death. On the other hand, mitochondrial dysfunction is implicated, directly or indirectly in numerous pathological conditions including inherited mitochondrial disorders, diabetes, cardiovascular and neurodegenerative diseases, and a variety of malignancies. The ability to modulate mitochondrial function by altering the diverse protein component of this organelle may be of great value for developing future therapeutic interventions. This review will discuss approaches used to introduce proteins into mitochondria. One group of methods utilizes strategies aimed at expressing proteins from genes in the nucleus. These include overexpression of nuclear-encoded mitochondrial proteins, allotopic expression, which is the re-coding and relocation of mitochondrial genes to the nucleus for expression and subsequent delivery of their gene products to mitochondria, and xenotopic expression, which is the nuclear expression of genes coding electron transport chain components from distant species, for delivery of their products to mammalian mitochondria. Additionally, antigenomic and progenomic strategies which focus on expression of mitochondrially targeted nuclear proteins involved in the maintenance of mtDNA will be discussed. The second group of methods considered will focus on attempts to use purified proteins for mitochondrial delivery. Special consideration has been given to the complexities involved in targeting exogenous proteins to mitochondria.
Collapse
|
89
|
Mitochondrial DNA mutations and human disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:113-28. [PMID: 19761752 DOI: 10.1016/j.bbabio.2009.09.005] [Citation(s) in RCA: 427] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/04/2009] [Accepted: 09/09/2009] [Indexed: 01/07/2023]
Abstract
Mitochondrial disorders are a group of clinically heterogeneous diseases, commonly defined by a lack of cellular energy due to oxidative phosphorylation (OXPHOS) defects. Since the identification of the first human pathological mitochondrial DNA (mtDNA) mutations in 1988, significant efforts have been spent in cataloguing the vast array of causative genetic defects of these disorders. Currently, more than 250 pathogenic mtDNA mutations have been identified. An ever-increasing number of nuclear DNA mutations are also being reported as the majority of proteins involved in mitochondrial metabolism and maintenance are nuclear-encoded. Understanding the phenotypic diversity and elucidating the molecular mechanisms at the basis of these diseases has however proved challenging. Progress has been hampered by the peculiar features of mitochondrial genetics, an inability to manipulate the mitochondrial genome, and difficulties in obtaining suitable models of disease. In this review, we will first outline the unique features of mitochondrial genetics before detailing the diseases and their genetic causes, focusing specifically on primary mtDNA genetic defects. The functional consequences of mtDNA mutations that have been characterised to date will also be discussed, along with current and potential future diagnostic and therapeutic advances.
Collapse
|
90
|
Aggarwal D, Carelli V, Sadun AA. Genotype–phenotype correlations in mitochondrial optic neuropathies. EXPERT REVIEW OF OPHTHALMOLOGY 2009. [DOI: 10.1586/eop.09.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
91
|
Abstract
Research of patients with defects in cellular energy metabolism (mitochondrial disease) has led to a better understanding of mitochondrial biology in health and disease. The obtained knowledge is of increasing importance for physicians of all medical disciplines. It assists in enabling the development of rational treatment strategies for diseases or conditions caused by mitochondrial dysfunction. The still frequently used classical interventions with vitamins or co-factors are only beneficial in some rare mitochondrial disease conditions, like coenzyme Q biosynthesis defects. For that reason alternative strategies to correct disturbed energy metabolism have to be developed. New approaches in this direction include nutrition and exercise therapies, alternative gene expression, enzyme-replacement, scavenging of potentially toxic compounds and modulating cell signalling. The effect of some of these interventions has already been explored in humans whilst others are still at the level of single cell research. We review the state of the art of the development of mitochondrial treatment strategies and discuss what steps need to be taken to efficiently approach the huge burden of disease caused by dysfunctional mitochondria.
Collapse
Affiliation(s)
- S Koene
- Radboud University Nijmegen Medical Centre, Nijmegen Centre for Mitochondrial Disorders, Nijmegen, The Netherlands
| | | |
Collapse
|
92
|
DiMauro S, Hirano M. Pathogenesis and treatment of mitochondrial disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:139-70. [PMID: 20225024 PMCID: PMC10440730 DOI: 10.1007/978-90-481-2813-6_10] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past 50 years, our understanding of the biochemical and molecular causes of mitochondrial diseases, defined restrictively as disorders due to defects of the mitochondrial respiratory chain (RC), has made great strides. Mitochondrial diseases can be due to mutations in mitochondrial DNA (mtDNA) or in nuclear DNA (nDNA) and each group can be subdivided into more specific classes. Thus, mtDNA-related disorders can result from mutations in genes affecting protein synthesis in toto or mutations in protein-coding genes. Mendelian mitochondrial disorders can be attributed to mutations in genes that (i) encode subunits of the RC ("direct hits"); (ii) encode assembly proteins or RC complexes ("indirect hits"); (iii) encode factors needed for mtDNA maintenance, replication, or translation (intergenomic signaling); (iv) encode components of the mitochondrial protein import machinery; (v) control the synthesis and composition of mitochondrial membrane phospholipids; and (vi) encode proteins involved in mitochondrial dynamics.In contrast to this wealth of knowledge about etiology, our understanding of pathogenic mechanism is very limited. We discuss pathogenic factors that can influence clinical expression, especially ATP shortage and reactive oxygen radicals (ROS) excess. Therapeutic options are limited and fall into three modalities: (i) symptomatic interventions, which are palliative but crucial for day-to-day management; (ii) radical approaches aimed at correcting the biochemical or molecular error, which are interesting but still largely experimental; and (iii) pharmacological means of interfering with the pathogenic cascade of events (e.g. boosting ATP production or scavenging ROS), which are inconsistently and incompletely effective, but can be safe and helpful.
Collapse
Affiliation(s)
- Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, 3-313 Russ Berrie Medical Science Pavilion, New York, NY 10032, USA.
| | | |
Collapse
|
93
|
Dimauro S, Rustin P. A critical approach to the therapy of mitochondrial respiratory chain and oxidative phosphorylation diseases. Biochim Biophys Acta Mol Basis Dis 2008; 1792:1159-67. [PMID: 19026744 DOI: 10.1016/j.bbadis.2008.10.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/09/2008] [Accepted: 10/11/2008] [Indexed: 12/17/2022]
Abstract
Taking advantage of a series of questions raised by an association of patients with mitochondrial disease, this review, after a brief overview of basic concepts of mitochondrial bioenergetics and genetics, discusses the pros and cons of a number of practical options in the field of mitochondrial therapy. This makes it clear that, in contrast to the spectacular progress in our understanding of the biochemical and molecular bases of the mitochondrial diseases defined restrictively as disorders due to defects in the mitochondrial respiratory chain, we are still extremely limited in our ability to treat these conditions. We finally discussed the emerging genetic-based strategies that show some promise, even if much work remains to be done.
Collapse
Affiliation(s)
- Salvatore Dimauro
- Department of Neurology, Columbia University Medical Center, 313 Russ Berrie Medical Science Pavilion, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | | |
Collapse
|
94
|
Ellouze S, Augustin S, Bouaita A, Bonnet C, Simonutti M, Forster V, Picaud S, Sahel JA, Corral-Debrinski M. Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction. Am J Hum Genet 2008; 83:373-87. [PMID: 18771762 DOI: 10.1016/j.ajhg.2008.08.013] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/11/2008] [Accepted: 08/16/2008] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial diseases due to mutations in mitochondrial DNA can no longer be ignored in most medical areas. With prevalence certainly higher than one in 6000, they probably represent the most common form of metabolic disorders. Despite progress in identification of their molecular mechanisms, little has been done with regard to therapy. We have recently optimized the allotopic expression for the mitochondrial genes ATP6, ND1, and ND4 and obtained a complete and long-lasting rescue of mitochondrial dysfunction in the human fibroblasts in which these genes were mutated. However, biosafety and benefit to mitochondrial function must be validated in animal models prior to clinical applications. To create an animal model of Leber Hereditary Optic Neuropathy (LHON), we introduced the human ND4 gene harboring the G11778A mutation, responsible of 60% of LHON cases, to rat eyes by in vivo electroporation. The treatment induced the degeneration of retinal ganglion cells (RGCs), which were 40% less abundant in treated eyes than in control eyes. This deleterious effect was also confirmed in primary cell culture, in which both RGC survival and neurite outgrowth were compromised. Importantly, RGC loss was clearly associated with a decline in visual performance. A subsequent electroporation with wild-type ND4 prevented both RGC loss and the impairment of visual function. Hence, these data provide the proof-of-principle that optimized allotopic expression can be an effective treatment for LHON, and they open the way to clinical studies on other devastating mitochondrial disorders.
Collapse
Affiliation(s)
- Sami Ellouze
- Institut de la Vision, Université Pierre et Marie Curie-Paris6, Unité mixte de recherche S 592, 17 rue Moreau, Paris F-75012, France
| | | | | | | | | | | | | | | | | |
Collapse
|