51
|
Mielczarek-Palacz A, Kondera-Anasz Z, Smycz-Kubańska M, Englisz A, Janusz A, Królewska-Daszczyńska P, Wendlocha D. The role of galectins‑1, 3, 7, 8 and 9 as potential diagnostic and therapeutic markers in ovarian cancer (Review). Mol Med Rep 2022; 25:166. [PMID: 35293602 PMCID: PMC8941520 DOI: 10.3892/mmr.2022.12682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
The incidence of ovarian cancer is increasing, particularly throughout the highly developed countries, while this cancer type remains a major diagnostic and therapeutic challenge. The currently poorly recognized lectins called galectins have various roles in interactions occurring in the tumor microenvironment. Galectins are involved in tumor-associated processes, including the promotion of growth, adhesion, angiogenesis and survival of tumor cells. Results of research studies performed so far point to a complex role of galectins-1, 3, −7, −8 and −9 in carcinogenesis of ovarian cancer and elucidation of the mechanisms may contribute to novel forms of therapies targeting the proteins. In particular, it appears important to recognize the reasons for changes in expression of galectins. Galectins also appear to be a useful diagnostic and prognostic tool to evaluate tumor progression or the efficacy of therapies in patients with ovarian cancer, which requires further study.
Collapse
Affiliation(s)
- Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, School of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40‑055 Katowice, Poland
| | - Zdzisława Kondera-Anasz
- Department of Immunology and Serology, School of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40‑055 Katowice, Poland
| | - Marta Smycz-Kubańska
- Department of Immunology and Serology, School of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40‑055 Katowice, Poland
| | - Aleksandra Englisz
- Department of Immunology and Serology, School of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40‑055 Katowice, Poland
| | - Aleksandra Janusz
- Department of Immunology and Serology, School of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40‑055 Katowice, Poland
| | - Patrycja Królewska-Daszczyńska
- Department of Immunology and Serology, School of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40‑055 Katowice, Poland
| | - Dominika Wendlocha
- Department of Immunology and Serology, School of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40‑055 Katowice, Poland
| |
Collapse
|
52
|
Clinical Potential of Fruit in Bladder Cancer Prevention and Treatment. Nutrients 2022; 14:nu14061132. [PMID: 35334790 PMCID: PMC8951059 DOI: 10.3390/nu14061132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022] Open
Abstract
Bladder cancer (BC) is the most common tumor of the urinary system in the world. Moreover, despite using anticancer therapies, BC is also characterized by a high recurrence risk. Among numerous risk factors, cigarette smoking, occupational exposure to certain aromatic compounds, and genetic factors contribute most strongly to BC development. However, the epidemiological data to date suggests that diet quality may influence some carcinogenic factors of BC and, therefore, might have a preventative effect. Adequate consumption of selected fruits with scientifically proven properties, including pomegranates and cranberries, can significantly reduce the risk of developing BC, even in those at risk. Therefore, in this article, we aim to elucidate, using available literature, the role of fruits, including pomegranates, cranberries, citrus fruits, cactus pears, and apples, in BC prevention and treatment. Previous data indicate the role of compounds in the above-mentioned fruits in the modulation of the signaling pathways, including cell proliferation, cell growth, cell survival, and cell death.
Collapse
|
53
|
Pedrosa LDF, Raz A, Fabi JP. The Complex Biological Effects of Pectin: Galectin-3 Targeting as Potential Human Health Improvement? Biomolecules 2022; 12:289. [PMID: 35204790 PMCID: PMC8961642 DOI: 10.3390/biom12020289] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 is the only chimeric representative of the galectin family. Although galectin-3 has ubiquitous regulatory and physiological effects, there is a great number of pathological environments where galectin-3 cooperatively participates. Pectin is composed of different chemical structures, such as homogalacturonans, rhamnogalacturonans, and side chains. The study of pectin's major structural aspects is fundamental to predicting the impact of pectin on human health, especially regarding distinct molecular modulation. One of the explored pectin's biological activities is the possible galectin-3 protein regulation. The present review focuses on revealing the structure/function relationship of pectins, their fragments, and their biological effects. The discussion highlighted by this review shows different effects described within in vitro and in vivo experimental models, with interesting and sometimes contradictory results, especially regarding galectin-3 interaction. The review demonstrates that pectins are promissory food-derived molecules for different bioactive functions. However, galectin-3 inhibition by pectin had been stated in literature before, although it is not a fully understood, experimentally convincing, and commonly agreed issue. It is demonstrated that more studies focusing on structural analysis and its relation to the observed beneficial effects, as well as substantial propositions of cause and effect alongside robust data, are needed for different pectin molecules' interactions with galectin-3.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
| | - Avraham Raz
- Department of Oncology and Pathology, School of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508080, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508080, SP, Brazil
| |
Collapse
|
54
|
Li M, Guo K, Huang X, Feng L, Yuan Y, Li J, Lao Y, Guo Z. Association Between Serum Galectin-3 Levels and Coronary Stenosis Severity in Patients With Coronary Artery Disease. Front Cardiovasc Med 2022; 9:818162. [PMID: 35198615 PMCID: PMC8858949 DOI: 10.3389/fcvm.2022.818162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
Background The relationship between galectin-3 (Gal-3) and coronary artery disease (CAD) has not been fully elucidated. Aim This study aimed to determine the relationship between the presence and severity of CAD and serum Gal-3 levels. Patients and Methods Three-hundred thirty-one consecutive CAD patients were enrolled as the study group. An additional 62 patients without CAD were enrolled as the control group. Serum Gal-3 levels were separately compared between the non-CAD and CAD groups, among the stable CAD and Acute coronary syndrome (ACS) groups, and between CAD patients with low and high SYNTAX scores (SSs). The 1-year cumulative rate of major adverse cardiac events (MACEs) was also compared among ACS patients by Gal-3 levels. Results Serum Gal-3 was significantly higher in the CAD group than in the non-CAD group 3.89 (0.16–63.67) vs. 2.07 (0.23–9.38) ng/ml, P < 0.001. Furthermore, serum Gal-3 was significantly higher in the non-ST-segment elevation ACS (NSTE-ACS) group than that in the stable CAD group, 4.72 (1.0–16.14) vs. 2.23 (0.65–23.8) ng/ml, P = 0.04 and higher in the ST-segment elevation myocardial infarction (STEMI) group than that in the stable CAD group 7.87 (0.59–63.67) vs. 2.23 (0.65–23.8) ng/ml, P < 0.001. Serum Gal-3 level was an independent predictor of ACS compared with stable CAD group (OR = 1.131, 95% CI: 1.051–1.217, P = 0.001) as well as high SS (OR = 1.030, 95% CI: 1.021–1.047, P = 0.038) after adjust other confounding risk factors. Acute coronary syndrome patients with Gal-3 levels above the median (gal-3 = 4.78 ng/ml) showed a higher cumulative MACE rate than those with Gal-3 levels below the median. After adjusting other confounding risk factors, Gal-3 remained an independent risk factor for the cumulative rate of MACEs in ACS patients (6% higher rate of MACEs incidence per 1 ng/ml increment of Gal-3). Conclusion Galectin-3 correlated with the presence of CAD as well as coronary stability and complexity. Galectin-3 may be valuable in predicting mid-term prognosis in ACS patients.
Collapse
Affiliation(s)
- Mingxing Li
- Division of Cardiology, Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Kai Guo
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Xuansheng Huang
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Li Feng
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Yong Yuan
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Jiewen Li
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Yi Lao
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Zhigang Guo
- Division of Cardiology, Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Zhigang Guo
| |
Collapse
|
55
|
Heine V, Dey C, Bojarová P, Křen V, Elling L. Methods of in vitro study of galectin-glycomaterial interaction. Biotechnol Adv 2022; 58:107928. [DOI: 10.1016/j.biotechadv.2022.107928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
|
56
|
Bendtsen SK, Perez-Penco M, Hübbe ML, Martinenaite E, Orebo Holmström M, Weis-Banke SE, Grønne Dahlager Jørgensen N, Jørgensen MA, Munir Ahmad S, Jensen KM, Friese C, Lundsager MT, Johansen AZ, Carretta M, Ødum N, Met Ö, Svane IM, Madsen DH, Andersen MH. Peptide vaccination activating Galectin-3-specific T cells offers a novel means to target Galectin-3-expressing cells in the tumor microenvironment. Oncoimmunology 2022; 11:2026020. [PMID: 35111385 PMCID: PMC8802901 DOI: 10.1080/2162402x.2022.2026020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Galectin-3 (Gal3) can be expressed by many cells in the tumor microenvironment (TME), including cancer cells, cancer-associated fibroblasts, tumor-associated macrophages, and regulatory T cells (Tregs). In addition to immunosuppression, Gal3 expression has been connected to malignant cell transformation, tumor progression, and metastasis. In the present study, we found spontaneous T-cell responses against Gal3-derived peptides in PBMCs from both healthy donors and cancer patients. We isolated and expanded these Gal3-specific T cells in vitro and showed that they could directly recognize target cells that expressed Gal3. Finally, therapeutic vaccination with a long Gal3-derived peptide epitope, which induced the expansion of Gal3-specific CD8+ T cells in vivo, showed a significant tumor-growth delay in mice inoculated with EO771.LMB metastatic mammary tumor cells. This was associated with a significantly lower percentage of both Tregs and tumor-infiltrating Gal3+ cells in the non-myeloid CD45+CD11b− compartment and with an alteration of the T-cell memory populations in the spleens of Gal3-vaccinated mice. These results suggest that by activating Gal3-specific T cells by an immune-modulatory vaccination, we can target Gal3-producing cells in the TME, and thereby induce a more immune permissive TME. This indicates that Gal3 could be a novel target for therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Simone Kloch Bendtsen
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Maria Perez-Penco
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Mie Linder Hübbe
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Stine Emilie Weis-Banke
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Nicolai Grønne Dahlager Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Mia Aaboe Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Shamaila Munir Ahmad
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Kasper Mølgaard Jensen
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Christina Friese
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Mia Thorup Lundsager
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Astrid Zedlitz Johansen
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Marco Carretta
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Daniel Hargbøl Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), University of Copenhagen, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
57
|
Yunos NM, Amin NDM, Jauri MH, Ling SK, Hassan NH, Sallehudin NJ. The In Vitro Anti-Cancer Activities and Mechanisms of Action of 9-Methoxycanthin-6-one from Eurycoma longifolia in Selected Cancer Cell Lines. Molecules 2022; 27:molecules27030585. [PMID: 35163852 PMCID: PMC8838174 DOI: 10.3390/molecules27030585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
An alkaloid compound from the hairy root culture of Eurycoma longifolia has been isolated and characterised as 9-methoxycanthin-6-one. The aims of these studies were to investigate the in vitro anti-cancer activities of 9-methoxycanthin-6-one against ovarian cancer (A2780, SKOV-3), breast cancer (MCF-7), colorectal cancer (HT29), skin cancer (A375) and cervical cancer (HeLa) cell lines by using a Sulphorhodamine B assay, and to evaluate the mechanisms of action of 9-methoxycanthin-6-one via the Hoechst 33342 assay and proteomics approach. The results had shown that 9-methoxycanthin-6-one gave IC50 values of 4.04 ± 0.36 µM, 5.80 ± 0.40 µM, 15.09 ± 0.99 µM, 3.79 ± 0.069 µM, 5.71 ± 0.20 µM and 4.30 ± 0.27 µM when tested in A2780, SKOV-3, MCF-7, HT-29, A375 and HeLa cell lines, respectively. It was found that 9-methoxycanthin-6-one induced apoptosis in a concentration dependent manner when analysed via the Hoechst 33342 assay. 9-methoxycanthine-6-one were found to affect the expressions of apoptotic-related proteins, that were proteins pyruvate kinase (PKM), annexin A2 (ANXA2), galectin 3 (LGAL3), heterogeneous nuclear ribonucleoprotein A1 (HNRNP1A1), peroxiredoxin 3 (PRDX3), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the differential analysis of 2-DE profiles between treated and non-treated 9-methoxycanthine-6-one. Proteins such as acetyl-CoA acyltransferase 2 (ACAA2), aldehyde dehydrogenase 1 (ALDH1A1), capping protein (CAPG), eukaryotic translation elongation factor 1 (EEF1A1), malate dehydrogenase 2 (MDH2), purine nucleoside phosphorylase (PNP), and triosephosphate isomerase 1 (TPI1) were also identified to be associated with A2780 cell death induced by 9-methoxycanthine-6-one. These findings may provide a new insight on the mechanisms of action of 9-methoxycanthin-6-one in exerting its anti-cancer effects in vitro.
Collapse
Affiliation(s)
- Nurhanan Murni Yunos
- Bioactivity Programme, Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia; (N.D.M.A.); (N.J.S.)
- Correspondence: ; Tel.: +60-3627-97659
| | - Nor Datiakma Mat Amin
- Bioactivity Programme, Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia; (N.D.M.A.); (N.J.S.)
| | - Muhammad Haffiz Jauri
- Phytochemistry Programme, Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia; (M.H.J.); (S.K.L.)
| | - Sui Kiong Ling
- Phytochemistry Programme, Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia; (M.H.J.); (S.K.L.)
| | - Nor Hasnida Hassan
- Biotechnology Programme, Forestry Biotechnology Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia;
| | - Nor Jannah Sallehudin
- Bioactivity Programme, Natural Products Division, Forest Research Institute Malaysia, Kepong 52109, Malaysia; (N.D.M.A.); (N.J.S.)
| |
Collapse
|
58
|
Targeting LAG3/GAL-3 to overcome immunosuppression and enhance anti-tumor immune responses in multiple myeloma. Leukemia 2022; 36:138-154. [PMID: 34290359 PMCID: PMC8727303 DOI: 10.1038/s41375-021-01301-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023]
Abstract
Immune profiling in patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), and multiple myeloma (MM) provides the framework for developing novel immunotherapeutic strategies. Here, we demonstrate decreased CD4+ Th cells, increased Treg and G-type MDSC, and upregulation of immune checkpoints on effector/regulatory and CD138+ cells in MM patients, compared MGUS/SMM patients or healthy individuals. Among the checkpoints profiled, LAG3 was most highly expressed on proliferating CD4+ Th and CD8+ Tc cells in MM patients BMMC and PBMC. Treatment with antibody targeting LAG3 significantly enhanced T cells proliferation and activities against MM. XBP1/CD138/CS1-specific CTL generated in vitro displayed anti-MM activity, which was further enhanced following anti-LAG3 treatment, within the antigen-specific memory T cells. Treg and G-type MDSC weakly express LAG3 and were minimally impacted by anti-LAG3. CD138+ MM cells express GAL-3, a ligand for LAG3, and anti-GAL-3 treatment increased MM-specific responses, as observed for anti-LAG3. Finally, we demonstrate checkpoint inhibitor treatment evokes non-targeted checkpoints as a cause of resistance and propose combination therapeutic strategies to overcome this resistance. These studies identify and validate blockade of LAG3/GAL-3, alone or in combination with immune strategies including XBP1/CD138/CS1 multipeptide vaccination, to enhance anti-tumor responses and improve patient outcome in MM.
Collapse
|
59
|
Zhang T, Sun G, Shuai M, Ye J, Huang J, Yao X, Sun C, Min X. Purification, chemical analysis and inhibitory effects on galectin-3 of enzymatic pH-modified citrus pectin. Food Chem X 2021; 12:100169. [PMID: 34877529 PMCID: PMC8628203 DOI: 10.1016/j.fochx.2021.100169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
EMCP is fractionated by ion-exchange and gel permeation chromatographies. EMCP fractions contain glucan backbone and different saccharides as side chains. RG-II domain may weaken the binding strength between EMCP fractions and Gal-3. EMCP-3p and EMCP-2p exhibit strong cytotoxicity against MCF-7 and A549 cell lines.
Modified citrus pectin (MCP), a commercially available dietary supplement prepared from citrus pectin, contains several different polysaccharide domains, but its primary chemical structure and the binding epitopes that antagonize galectin-3 function remain unclear. In this study, five fractions were isolated from MCP after endo-polygalacturonase degradation (EMCP) and a combination of DEAE-cellulose and Sepharose CL-6B or Sephadex G-75 chromatography. Their primary structures, abilities to inhibit galectin-3-mediated hemagglutination, and antiproliferation activities on MCF-7 and A549 cell lines were studied. Results showed that EMCP-3p, one of the five fractions, was composed of Glc (89.8%), Gal (3.8%), Ara (3.1%), GalA (1.1%), Man (0.9%), and Rha (1.3%) with an average molecular weight of 88.4 KDa, which had the most substantial degree of galectin-3 inhibition with an MIC of 31.25 μg/mL, and it exhibited remarkable cytotoxicity against MCF-7 (36.7%) and A549 (57.4%) cell lines. These results provide new insight into the structure–function relationships of EMCP-derived polysaccharides.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.,School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Guoqing Sun
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Ming Shuai
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Jingyu Ye
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.,School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Xiaodong Yao
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Chengxin Sun
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.,School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
60
|
Tarighat SS, Fei F, Joo EJ, Abdel-Azim H, Yang L, Geng H, Bum-Erdene K, Grice ID, von Itzstein M, Blanchard H, Heisterkamp N. Overcoming Microenvironment-Mediated Chemoprotection through Stromal Galectin-3 Inhibition in Acute Lymphoblastic Leukemia. Int J Mol Sci 2021; 22:12167. [PMID: 34830047 PMCID: PMC8624256 DOI: 10.3390/ijms222212167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Environmentally-mediated drug resistance in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) significantly contributes to relapse. Stromal cells in the bone marrow environment protect leukemia cells by secretion of chemokines as cues for BCP-ALL migration towards, and adhesion to, stroma. Stromal cells and BCP-ALL cells communicate through stromal galectin-3. Here, we investigated the significance of stromal galectin-3 to BCP-ALL cells. We used CRISPR/Cas9 genome editing to ablate galectin-3 in stromal cells and found that galectin-3 is dispensable for steady-state BCP-ALL proliferation and viability. However, efficient leukemia migration and adhesion to stromal cells are significantly dependent on stromal galectin-3. Importantly, the loss of stromal galectin-3 production sensitized BCP-ALL cells to conventional chemotherapy. We therefore tested novel carbohydrate-based small molecule compounds (Cpd14 and Cpd17) with high specificity for galectin-3. Consistent with results obtained using galectin-3-knockout stromal cells, treatment of stromal-BCP-ALL co-cultures inhibited BCP-ALL migration and adhesion. Moreover, these compounds induced anti-leukemic responses in BCP-ALL cells, including a dose-dependent reduction of viability and proliferation, the induction of apoptosis and, importantly, the inhibition of drug resistance. Collectively, these findings indicate galectin-3 regulates BCP-ALL cell responses to chemotherapy through the interactions between leukemia cells and the stroma, and show that a combination of galectin-3 inhibition with conventional drugs can sensitize the leukemia cells to chemotherapy.
Collapse
Affiliation(s)
- Somayeh S. Tarighat
- Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (S.S.T.); (F.F.); (E.J.J.); (H.A.-A.)
| | - Fei Fei
- Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (S.S.T.); (F.F.); (E.J.J.); (H.A.-A.)
| | - Eun Ji Joo
- Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (S.S.T.); (F.F.); (E.J.J.); (H.A.-A.)
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA;
| | - Hisham Abdel-Azim
- Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (S.S.T.); (F.F.); (E.J.J.); (H.A.-A.)
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA;
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA;
| | - Khuchtumur Bum-Erdene
- Institute for Glycomics, Griffith University, Gold Coast, Southport, QLD 4222, Australia; (K.B.-E.); (I.D.G.); (M.v.I.); (H.B.)
| | - I. Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast, Southport, QLD 4222, Australia; (K.B.-E.); (I.D.G.); (M.v.I.); (H.B.)
- School of Medical Science, Griffith University, Gold Coast, Southport, QLD 4222, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, Southport, QLD 4222, Australia; (K.B.-E.); (I.D.G.); (M.v.I.); (H.B.)
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast, Southport, QLD 4222, Australia; (K.B.-E.); (I.D.G.); (M.v.I.); (H.B.)
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Nora Heisterkamp
- Division of Hematology/Oncology and Bone Marrow Transplant, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (S.S.T.); (F.F.); (E.J.J.); (H.A.-A.)
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA;
| |
Collapse
|
61
|
Tumorigenic Aspects of MSC Senescence-Implication in Cancer Development and Therapy. J Pers Med 2021; 11:jpm11111133. [PMID: 34834485 PMCID: PMC8618265 DOI: 10.3390/jpm11111133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
As an organism ages, many physiological processes change, including the immune system. This process, called immunosenescence, characterized by abnormal activation and imbalance of innate and adaptive immunity, leads to a state of chronic low-grade systemic inflammation, termed inflammaging. Aging and inflammaging are considered to be the root of many diseases of the elderly, as infections, autoimmune and chronic inflammatory diseases, degenerative diseases, and cancer. The role of mesenchymal stromal/stem cells (MSCs) in the inflammaging process and the age-related diseases is not completely established, although numerous features of aging MSCs, including altered immunomodulatory properties, impeded MSC niche supporting functions, and senescent MSC secretory repertoire are consistent with inflammaging development. Although senescence has its physiological function and can represent a mechanism of tumor prevention, in most cases it eventually transforms into a deleterious (para-)inflammatory process that promotes tumor growth. In this review we are going through current literature, trying to explore the role of senescent MSCs in making and/or sustaining a microenvironment permissive to tumor development and to analyze the therapeutic options that could target this process.
Collapse
|
62
|
Çakır Y, Kelten Talu C, Mermut Ö, Can Trabulus D, Arslan E. The Expression of Galectin-3 in Tumor and Cancer-Associated Fibroblasts in Invasive Micropapillary Breast Carcinomas: Relationship with Clinicopathologic Parameters. Eur J Breast Health 2021; 17:341-351. [PMID: 34651113 DOI: 10.4274/ejbh.galenos.2021.2021-2-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/22/2021] [Indexed: 12/01/2022]
Abstract
Objective Galectin-3 affects tumor progression and cell surface polarization by expressing from the tumor and cancer-associated fibroblasts (CAFs). Therefore, it may have a role on micropapillary carcinomas (IMPC), which have characteristic morphological features. The aim was to investigate the expression levels of Galectin-3 within tumor and peritumoral CAFs in IMPC, and to compare with expression in invasive ductal carcinomas (IDC). Materials and Methods Hematoxylin and Eosin-stained preparations of resection materials examined between 2010-2016 were re-evaluated. Thirty-four IMPC cases and 34 IDC cases with similar molecular subtype distribution to IMPC were compared. Galectin-3 levels were evaluated with a calculated H-score in tumor and semi-quantitatively in CAFs. Results While tumoral Galectin-3 expression levels were higher in IMPCs compared to IDCs, there was no difference for Galectin-3 expression in CAFs between the two histologic types. However, there was no significant relationship between tumoral Galectin-3 expression and clinicopathological parameters in IMPCs. When the subjects were divided into two groups, depending on their Galectin-3 status regardless of histological types, the loss of Galectin-3 expression in tumor was found to be related to larger tumor size/advanced pT stage and a greater number of metastatic nodes. Additionally, expression of Galectin-3 in CAFs was found to be associated with distant metastasis. Conclusion IMPC showed prominent Galectin-3 expression in tumor compared to IDC. However, independent from the histological type, whereas the loss of Galectin-3 expression in tumor showed an association with larger tumor size and higher number of metastatic axillary lymph nodes, the presence of Galectin-3 expression in CAFs showed an association with distant metastasis.
Collapse
Affiliation(s)
- Yasemin Çakır
- Department of Pathology, University of Health Sciences Turkey, İstanbul Training and Research Hospital, İstanbul, Turkey
| | - Canan Kelten Talu
- Department of Pathology, University of Health Sciences Turkey, İstanbul Training and Research Hospital, İstanbul, Turkey
| | - Özlem Mermut
- Department of Radiation Oncology, University of Health Sciences Turkey, İstanbul Training and Research Hospital, İstanbul, Turkey
| | - Didem Can Trabulus
- Department of General Surgery, University of Health Sciences Turkey, İstanbul Training and Research Hospital, İstanbul, Turkey
| | - Esra Arslan
- Department of Nuclear Medicine, University of Health Sciences Turkey, İstanbul Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
63
|
Yin P, Cui S, Liao X, Yao X. Galectin‑3 blockade suppresses the growth of cetuximab‑resistant human oral squamous cell carcinoma. Mol Med Rep 2021; 24:685. [PMID: 34328195 PMCID: PMC8365594 DOI: 10.3892/mmr.2021.12325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 11/09/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a cancer associated with high mortality (accounting for 3.1/100,000 deaths per year in Brazil in 2013) and a high frequency of amplification in the expression of the epidermal growth factor receptor (EGFR). Treatment with the EGFR inhibitor cetuximab leads to drug resistance in patients with OSCC due to unknown mechanisms. Galectin‑3 (Gal‑3) is a β‑galactoside binding lectin that regulates multiple signaling pathways in cells. The present study aimed to investigate the effect of Gal‑3 in cetuximab‑resistant (cet‑R) OSCC. The OSCC HSC3 cell line was selected to establish a mouse xenograft model, which was treated with cetuximab to induce resistance. Subsequently, a Gal‑3 inhibitor was used to treat cet‑R tumors, and the tumor volume was monitored. The expression of Gal‑3, phosphorylated (p)‑ERK1/2 and p‑Akt was assessed using immunohistochemistry. The combined effect of cetuximab and the Gal‑3 inhibitor on HSC3 tumor xenografts was also investigated. HSC3 cells were cultured in vitro to investigate the regulatory effects of Gal‑3 on ERK1/2 and Akt via western blotting. In addition, the effects of the Gal‑3 inhibitor on the proliferation, colony formation, invasion and apoptosis of HSC3 cells were investigated by performing Cell Counting Kit‑8, colony formation, Transwell and apoptosis assays, respectively. In cet‑R OSCC tumors, increased expression of Gal‑3, p‑ERK1/2 and p‑Akt was observed. Further research demonstrated that Gal‑3 regulated the expression of both ERK1/2 and Akt in HSC3 cells by promoting phosphorylation. Moreover, the Gal‑3 inhibitor decreased the proliferation and invasion, but increased the apoptosis of cet‑R HSC3 cells. In addition, the Gal‑3 inhibitor suppressed the growth of cet‑R tumors. Collectively, the results indicated that the Gal‑3 inhibitor and cetuximab displayed a synergistic inhibitory effect on OSCC tumors. In summary, the present study demonstrated that Gal‑3 may serve an important role in cet‑R OSCC. The combination of cetuximab and the Gal‑3 inhibitor may display a synergistic antitumor effect, thereby inhibiting the development of cetuximab resistance in OSCC.
Collapse
Affiliation(s)
- Peng Yin
- Department of Stomatology, Beijing Luhe Hospital, Capital Medical University, Beijing 110112, P.R. China
| | - Shuanlong Cui
- Department of Stomatology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Xiangling Liao
- Department of Stomatology, Beijing Luhe Hospital, Capital Medical University, Beijing 110112, P.R. China
| | - Xiaoguang Yao
- Department of Surgery, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
64
|
Tiraboschi C, Gentilini L, Velazquez C, Corapi E, Jaworski FM, Garcia Garcia JD, Rondón Y, Chauchereau A, Laderach DJ, Compagno D. Combining inhibition of galectin-3 with and before a therapeutic vaccination is critical for the prostate-tumor-free outcome. J Immunother Cancer 2021; 8:jitc-2020-001535. [PMID: 33293356 PMCID: PMC7725099 DOI: 10.1136/jitc-2020-001535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a major health problem worldwide. Taxol derivatives-based chemotherapies or immunotherapies are usually proposed depending on the symptomatic status of the patient. In the case of immunotherapy, tumors develop robust immune escape mechanisms that abolish any protective response, and to date why prostate cancer is one of the most resistant diseases remains unresolved. METHODS By using a combination of clinical data to study the transcriptome of metastasis samples from patients with castration-refractory prostate cancer, and state of the art cellular and molecular biology assays in samples from tumor-bearing mice that have been submitted to surgical resection of the tumor before receiving a vaccination, we answered several essential questions in the field of immunotherapy for prostate cancer. We also used two different methods to inhibit the expression of galectin-3 (Gal-3) in tumor cells: a stable RNA interference method to control the expression of this galectin efficiently only in tumor cells, and low and non-cytotoxic doses of docetaxel to easily transfer our findings to clinical settings. RESULTS Herein, we show for the first time that Gal-3 expressed by prostate tumor cells is the main immune checkpoint responsible for the failure of vaccine-based immunotherapy. Our results show that low and non-cytotoxic doses of docetaxel lead to the inhibition of Gal-3 expression in PCa cells as well as in clinical samples of patients with metastatic and castration-resistant PCa promoting a Th1 response. We thus optimized a prostate cancer animal model that undergoes surgical resection of the tumor to mimic prostatectomy usually performed in patients. Importantly, using Gal-3-knocked down-PCa cells or low and non-cytotoxic doses of taxane before vaccination, we were able to highly control tumor recurrence through a direct impact on the proliferation and infiltration of CD8+ cytotoxic T. CONCLUSIONS Thus, Gal-3 expression by PCa cells is a crucial inhibitor for the success of immunotherapy, and low doses of docetaxel with non-cytotoxic effect on leukocyte survival could be used before immunotherapy for all patients with PCa to reduce the expression of this critical negative immune checkpoint, pre-conditioning the tumor-microenvironment to activate an antitumor immune response and promote tumor-free outcome.
Collapse
Affiliation(s)
- Carolina Tiraboschi
- Quimica biologica, IQUIBICEN-CONICET-UBA, Ciudad Autonoma de Buenos Aires, Argentina
| | - Lucas Gentilini
- Quimica biologica, IQUIBICEN-CONICET-UBA, Ciudad Autonoma de Buenos Aires, Argentina
| | - Carla Velazquez
- Quimica biologica, IQUIBICEN-CONICET-UBA, Ciudad Autonoma de Buenos Aires, Argentina
| | - Enrique Corapi
- Quimica biologica, IQUIBICEN-CONICET-UBA, Ciudad Autonoma de Buenos Aires, Argentina
| | | | | | - Yorfer Rondón
- Quimica biologica, IQUIBICEN-CONICET-UBA, Ciudad Autonoma de Buenos Aires, Argentina
| | | | - Diego José Laderach
- Quimica biologica, IQUIBICEN-CONICET-UBA, Ciudad Autonoma de Buenos Aires, Argentina.,Universidad Nacional de Lujan, Lujan, Argentina
| | - Daniel Compagno
- Quimica biologica, IQUIBICEN-CONICET-UBA, Ciudad Autonoma de Buenos Aires, Argentina
| |
Collapse
|
65
|
The genomic architecture of metastasis in breast cancer: focus on mechanistic aspects, signalling pathways and therapeutic strategies. Med Oncol 2021; 38:95. [PMID: 34268641 DOI: 10.1007/s12032-021-01547-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is a multifactorial, heterogeneous disease and the second most frequent cancer amongst women worldwide. Metastasis is one of the most leading causes of death in these patients. Early-stage or locally advanced breast cancer is limited to the breast or nearby lymph nodes. When breast cancer spreads to farther tissues/organs from its original site, it is referred to as metastatic or stage IV breast cancer. Normal breast development is regulated by specific genes and signalling pathways controlling cell proliferation, cell death, cell differentiation and cell motility. Dysregulation of genes involved in various signalling pathways not only leads to the formation of primary tumour but also to the metastasis as well. The metastatic cascade is represented by a multi-step process including invasion of the local tumour cell followed by its entry into the vasculature, exit of malignant cells from the circulation and ultimately their colonization at the distant sites. These stages are referred to as formation of primary tumour, angiogenesis, invasion, intravasation and extravasation, respectively. The major sites of metastasis of breast cancer are the lymph nodes, bone, brain and lung. Only about 28% five-year survival rate has been reported for stage IV breast cancer. Metastasis is a serious concern for breast cancer and therefore, various therapeutic strategies such as tyrosine kinase inhibitors have been developed to target specific dysregulated genes and various signalling pathways involved in different steps of metastasis. In addition, other therapies like hyperbaric oxygen therapy, RNA interference and CRISPR/Cas9 are also being explored as novel strategies to cure the stage IV/metastatic breast cancer. Therefore, the current review has been compiled with an aim to evaluate the genetic basis of stage IV breast cancer with a focus on the molecular mechanisms. In addition, the therapeutic strategies targeting these dysregulated genes involved in various signalling pathways have also been discussed. Genome editing technologies that can target specific genes in the affected areas by making knock-in and knock-out alternations and thereby bring significant treatment outcomes in breast cancer have also been summarized.
Collapse
|
66
|
Boutas I, Kontogeorgi A, Dimitrakakis C, Kalantaridou SN. The expression of Galectin-3 in endometrial cancer: a systematic review of the literature. Mol Biol Rep 2021; 48:5699-5705. [PMID: 34241773 DOI: 10.1007/s11033-021-06536-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Galectin-3 is part of a protein group called lectins and acts as a multifunctional glycoprotein due to its expression location. Galectin-3 is expressed by different human tissues. It plays a significant role in carcinogenesis and the selection of tumor-related physiological and pathological activities. Galectin-3 has been utilized through the years as a diagnostic and prognostic marker for various types of cancers. METHODS AND RESULTS This review describes the outcomes of some studies on the matter that were selected appropriately through a review of the existing literature. These studies examined the levels of Galectin-3 expression in endometrial carcinomas, the outcomes, and the prognosis of these carcinomas. Two of the studies concluded that high expression of Galectin-3 is associated with a tumor's histological grade, type and depth. This enhanced nuclear Galectin-3 expression might assist in progression to atypia and neoplasia. The other three on the contrary concluded that malignant tumors had a decreased expression of Galectin-3 and that Galectin-3 played a suppressive role in tumor growth. CONCLUSIONS The part Galectin-3 might potentially have in metastasis of cancers and the offering of a better prognosis for patients is of high importance. To date, there is minimal literature regarding the effects of Galectin-3 and more research is required.
Collapse
Affiliation(s)
- Ioannis Boutas
- 3rd Department of Obstetrics and Gynecology, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462, Athens, Greece.
| | - Adamantia Kontogeorgi
- 3rd Department of Obstetrics and Gynecology, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462, Athens, Greece
| | - Constantine Dimitrakakis
- 1st Department of Obstetrics and Gynecology, Alexandra Hospital, National and Kaposdistrian University of Athens, Athens, Greece
| | - Sophia N Kalantaridou
- 3rd Department of Obstetrics and Gynecology, Attikon Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462, Athens, Greece
| |
Collapse
|
67
|
Ribatti D, Solimando AG, Pezzella F. The Anti-VEGF(R) Drug Discovery Legacy: Improving Attrition Rates by Breaking the Vicious Cycle of Angiogenesis in Cancer. Cancers (Basel) 2021; 13:cancers13143433. [PMID: 34298648 PMCID: PMC8304542 DOI: 10.3390/cancers13143433] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Resistance to anti-vascular endothelial growth factor (VEGF) molecules causes lack of response and disease recurrence. Acquired resistance develops as a result of genetic/epigenetic changes conferring to the cancer cells a drug resistant phenotype. In addition to tumor cells, tumor endothelial cells also undergo epigenetic modifications involved in resistance to anti-angiogenic therapies. The association of multiple anti-angiogenic molecules or a combination of anti-angiogenic drugs with other treatment regimens have been indicated as alternative therapeutic strategies to overcome resistance to anti-angiogenic therapies. Alternative mechanisms of tumor vasculature, including intussusceptive microvascular growth (IMG), vasculogenic mimicry, and vascular co-option, are involved in resistance to anti-angiogenic therapies. The crosstalk between angiogenesis and immune cells explains the efficacy of combining anti-angiogenic drugs with immune check-point inhibitors. Collectively, in order to increase clinical benefits and overcome resistance to anti-angiogenesis therapies, pan-omics profiling is key.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: ; Tel.: +39-080-547832
| | - Antonio Giovanni Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy;
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
| | - Francesco Pezzella
- Nuffield Division of Laboratory Science, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX39DU, UK;
| |
Collapse
|
68
|
Angiogenic Properties of NK Cells in Cancer and Other Angiogenesis-Dependent Diseases. Cells 2021; 10:cells10071621. [PMID: 34209508 PMCID: PMC8303392 DOI: 10.3390/cells10071621] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/23/2022] Open
Abstract
The pathogenesis of many serious diseases, including cancer, is closely related to disturbances in the angiogenesis process. Angiogenesis is essential for the progression of tumor growth and metastasis. The tumor microenvironment (TME) has immunosuppressive properties, which contribute to tumor expansion and angiogenesis. Similarly, the uterine microenvironment (UME) exerts a tolerogenic (immunosuppressive) and proangiogenic effect on its cells, promoting implantation and development of the embryo and placenta. In the TME and UME natural killer (NK) cells, which otherwise are capable of killing target cells autonomously, enter a state of reduced cytotoxicity or anergy. Both TME and UME are rich with factors (e.g., TGF-β, glycodelin, hypoxia), which support a conversion of NK cells to the low/non-cytotoxic, proangiogenic CD56brightCD16low phenotype. It is plausible that the phenomenon of acquiring proangiogenic and low cytotoxic features by NK cells is not only limited to cancer but is a common feature of different angiogenesis-dependent diseases (ADDs). In this review, we will discuss the role of NK cells in angiogenesis disturbances associated with cancer and other selected ADDs. Expanding the knowledge of the mechanisms responsible for angiogenesis and its disorders contributes to a better understanding of ADDs and may have therapeutic implications.
Collapse
|
69
|
Jeethy Ram T, Lekshmi A, Somanathan T, Sujathan K. Galectin-3: A factotum in carcinogenesis bestowing an archery for prevention. Tumour Biol 2021; 43:77-96. [PMID: 33998569 DOI: 10.3233/tub-200051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cancer metastasis and therapy resistance are the foremost hurdles in oncology at the moment. This review aims to pinpoint the functional aspects of a unique multifaceted glycosylated molecule in both intracellular and extracellular compartments of a cell namely galectin-3 along with its metastatic potential in different types of cancer. All materials reviewed here were collected through the search engines PubMed, Scopus, and Google scholar. Among the 15 galectins identified, the chimeric gal-3 plays an indispensable role in the differentiation, transformation, and multi-step process of tumor metastasis. It has been implicated in the molecular mechanisms that allow the cancer cells to survive in the intravascular milieu and promote tumor cell extravasation, ultimately leading to metastasis. Gal-3 has also been found to have a pivotal role in immune surveillance and pro-angiogenesis and several studies have pointed out the importance of gal-3 in establishing a resistant phenotype, particularly through the epithelial-mesenchymal transition process. Additionally, some recent findings suggest the use of gal-3 inhibitors in overcoming therapeutic resistance. All these reports suggest that the deregulation of these specific lectins at the cellular level could inhibit cancer progression and metastasis. A more systematic study of glycosylation in clinical samples along with the development of selective gal-3 antagonists inhibiting the activity of these molecules at the cellular level offers an innovative strategy for primary cancer prevention.
Collapse
Affiliation(s)
- T Jeethy Ram
- Division of Cancer Research, Regional Cancer Centre, Medical College, Trivandrum, Kerala, India
| | - Asha Lekshmi
- Division of Cancer Research, Regional Cancer Centre, Medical College, Trivandrum, Kerala, India
| | - Thara Somanathan
- Division of Pathology, Regional Cancer Centre, Medical College, Trivandrum, Kerala, India
| | - K Sujathan
- Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| |
Collapse
|
70
|
Tavares MR, Pechar M, Chytil P, Etrych T. Polymer-Based Drug-Free Therapeutics for Anticancer, Anti-Inflammatory, and Antibacterial Treatment. Macromol Biosci 2021; 21:e2100135. [PMID: 34008348 DOI: 10.1002/mabi.202100135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/05/2021] [Indexed: 01/09/2023]
Abstract
This paper summarizes the area of biomedicinal polymers, which serve as nanomedicines even though they do not contain any anticancer or antiinflammatory drugs. These polymer nanomedicines with unique design are in the literature highlighted as a novel class of therapeutics called "drug-free macromolecular therapeutics." Their therapeutic efficacy is based on the tailored multiple presentations of biologically active vectors, i.e., peptides, oligopeptides, or oligosaccharides. Thus, they enable, for example, to directly induce the apoptosis of malignant cells by the crosslinking of surface slowly internalizing receptors, or to deplete the efficacy of tumor-associated proteins. The precise biorecognition of natural binding motifs by multiple vectors on the polymer construct remains the crucial part in the designing of these drug-free nanomedicines. Here, the rationales, designs, synthetic approaches, and therapeutic potential of drug-free macromolecular therapeutics consisting of various active vectors are described in detail. Recent developments and achievements for namely B-cell lymphoma treatment, Gal-3-positive tumors, inflammative liver injury, and bacterial treatment are reviewed and highlighted. Finally, a possible future prospect within this highly exciting new field of nanomedicine research is presented.
Collapse
Affiliation(s)
- Marina Rodrigues Tavares
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Michal Pechar
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Petr Chytil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| |
Collapse
|
71
|
Pereira-Prado V, Vigil-Bastitta G, Sánchez-Romero C, Arocena M, Molina-Frechero N, González-González R, Meleti M, Bologna-Molina R. Immunoexpression of galectin-3 and its potential relation to hypoxia-inducible factor-1α in ameloblastomas. Biotech Histochem 2021; 96:296-301. [PMID: 32744463 DOI: 10.1080/10520295.2020.1800819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In tumor biology, hypoxia triggers signaling pathways that induce transcription of genes related to angiogenesis, metastasis, glucose metabolism and apoptosis. We investigated the expression of hypoxia related proteins, galectin-3 (Gal-3) and hypoxia-inducible factor-1α (HIF-1α), in conventional (CA) and unicystic ameloblastomas (UA). We applied immunohistochemistry for Gal-3 and HIF-1α to 72 cases of ameloblastoma: 59 cases of CA and 13 cases of unicystic UA. Immunoexpression was evaluated semiquantitatively. Gal-3 expression was observed in 40% of the cases: 23/59 CA and 6/13 UA. HIF-1α immunostaining was observed in 55% of cases: 36/59 CA and 4/13 UA. 19 CA and 2 UA were positive for both markers. Immunostaining was evident in the center of the tumor islands, which exhibited squamous metaplasia or cystic degeneration. The expression of Gal-3 and HIF-1α in ameloblastomas could be interpreted as a response to hypoxic stress. Co-expression of both proteins in CA may suggest a potential interaction that participates in the biological behavior of this ameloblastoma variant.
Collapse
Affiliation(s)
- V Pereira-Prado
- Molecular Pathology Area, School of Dentistry, University of the Republic, Montevideo, Uruguay
| | - G Vigil-Bastitta
- Molecular Pathology Area, School of Dentistry, University of the Republic, Montevideo, Uruguay
| | - C Sánchez-Romero
- Molecular Pathology Area, School of Dentistry, University of the Republic, Montevideo, Uruguay
| | - M Arocena
- Biochemistry Area, School of Dentistry, Republic University, Montevideo, Uruguay
| | - N Molina-Frechero
- Health Care Department, Metropolitan Autonomous University, Xochimilco Unit, Mexico City, Mexico
| | - R González-González
- Department of Research, School of Dentistry, Juarez University of Durango State, Durango, Mexico
| | - M Meleti
- University Center of Dentistry, Department of Medicine and Surgery, University of Parma, Italy
| | - R Bologna-Molina
- Molecular Pathology Area, School of Dentistry, University of the Republic, Montevideo, Uruguay
- Department of Research, School of Dentistry, Juarez University of Durango State, Durango, Mexico
| |
Collapse
|
72
|
Hoekstra ME, Vijver SV, Schumacher TN. Modulation of the tumor micro-environment by CD8 + T cell-derived cytokines. Curr Opin Immunol 2021; 69:65-71. [PMID: 33862306 DOI: 10.1016/j.coi.2021.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023]
Abstract
Upon their activation, CD8+ T cells in the tumor micro-environment (TME) secrete cytokines such as IFNγ, TNFα, and IL-2. While over the past years a major interest has developed in the antigenic signals that induce such cytokine release, our understanding of the cells that subsequently sense these CD8+ T-cell secreted cytokines is modest. Here, we review the current insights into the spreading behavior of CD8+ T-cell-secreted cytokines in the TME. We argue for a model in which variation in the mode of cytokine secretion, cytokine half-life, receptor-mediated clearance, cytokine binding to extracellular components, and feedback or forward loops, between different cytokines or between individual tumors, sculpts the local tissue response to natural and therapy-induced T-cell activation in human cancer.
Collapse
Affiliation(s)
- Mirjam E Hoekstra
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Saskia V Vijver
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
73
|
Abstract
LAG-3 is an immunosuppressive checkpoint molecule expressed on T cells. One of its ligands, GAL-3, can promote the progression of malignancy and has been identified on tumor cells. Both LAG-3 and GAL-3 are the targets of emerging immunotherapies, but have not been well-studied in endometrial carcinomas. LAG-3, CD3, and GAL-3 immunohistochemistry was performed on 75 endometrial cancers (25 nonmethylated mismatch repair-deficient, 25 MLH1-hypermethylated mismatch repair-deficient, and 25 mismatch repair-intact). LAG-3 and CD3 lymphocytes were averaged per high-power field. Tumoral GAL-3 expression was semiquantitatively scored. Tumor-infiltrating lymphocyte expression of LAG-3 and CD3 were positively correlated (Spearman ρ=0.521, P<0.001) and greater in mismatch repair-deficient compared with mismatch repair-intact tumors (LAG-3: P<0.001; CD3: P<0.001). The majority (64%) of endometrial carcinomas demonstrated ≥1% tumoral GAL-3 expression, with higher rates in mismatch repair-deficient versus intact tumors at the ≥1% (80% vs. 32%, P<0.001) and the ≥5% thresholds (52% vs. 16%, P=0.003). At the ≥5% threshold, nonmethylated mismatch repair-deficient cancers were more likely than intact tumors carcinomas to express GAL-3 (60% vs. 4/25 16%, P=0.003). LAG-3 lymphocytes were positively correlated with GAL-3 expression in nonmethylated mismatch repair-deficient endometrial carcinomas only (Spearman ρ=0.461, P=0.020). LAG-3 tumor-associated lymphocytes and GAL-3 neoplastic cells are common in endometrial carcinomas, particularly in nonmethylated mismatch repair-deficient cancers. This supports a role for immunotherapies targeting LAG-3 and/or GAL-3 in a subset of endometrial carcinomas, potentially in concert with other checkpoint inhibitors.
Collapse
|
74
|
Al Attar A, Antaramian A, Noureddin M. Review of galectin-3 inhibitors in the treatment of nonalcoholic steatohepatitis. Expert Rev Clin Pharmacol 2021; 14:457-464. [PMID: 33612037 DOI: 10.1080/17512433.2021.1894127] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Galectin-3 (Gal-3) is a β-galactoside binding protein associated with many disease pathologies, including chronic inflammation and fibrogenesis. It has been implicated in the disease severity of NASH, although its precise role is unknown. Inhibition of Gal-3 has shown to improve and prevent fibrosis progression and has now reached phase III clinical trial in NASH patients. AREAS COVERED This discusses the role of Gal-3 in NASH. It brings together the current findings of Gal-3 in NASH and hepatic fibrosis by analyzing recent data from animal model studies and clinical trials. EXPERT OPINION Gal-3 inhibitors, in particular, Belapectin (GR-MD-02), have shown promising results for NASH with advanced fibrosis. In a phase 2 trial, Belapectin did not meet the primary endpoint. However, a sub-analysis of Belapectin among a separate group of patients without esophageal varices showed 2 mg/kg of GR-MD-02 reduced HVPG and the development of new varices. A subsequent study is under way, aiming to replicate the positive findings in phase 2 and demonstrate greater efficacy. If Belapectin is shown to be effective, it will be coupled with other drugs that target steatohepatitis to maximize efficacy and disease reversal.
Collapse
Affiliation(s)
- Atef Al Attar
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ani Antaramian
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mazen Noureddin
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
75
|
Sturgill ER, Rolig AS, Linch SN, Mick C, Kasiewicz MJ, Sun Z, Traber PG, Shlevin H, Redmond WL. Galectin-3 inhibition with belapectin combined with anti-OX40 therapy reprograms the tumor microenvironment to favor anti-tumor immunity. Oncoimmunology 2021; 10:1892265. [PMID: 33717655 PMCID: PMC7927986 DOI: 10.1080/2162402x.2021.1892265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Treatment with an agonist anti-OX40 antibody (aOX40) boosts anti-tumor immunity by providing costimulation and driving effector T cell responses. However, tumor-induced immune suppression contributes significantly to poor response rates to aOX40 therapy, thus combining aOX40 with other agents that relieve tumor-mediated immune suppression may significantly improve outcomes. Once such target is galectin-3 (Gal-3), which drives tumor-induced immunosuppression by increasing macrophage infiltration and M2 polarization, restricting TCR signaling, and inducing T cell apoptosis. A wide-variety of tumors also upregulate Gal-3, which is associated with poor prognosis. Tumor-bearing (MCA-205 sarcoma, 4T1 mammary carcinoma, TRAMP-C1 prostate adenocarcinoma) mice were treated with a Gal-3 inhibitor (belapectin; GR-MD-02), aOX40, or combination therapy and the extent of tumor growth was determined. The phenotype and function of tumor-infiltrating lymphocytes was determined by flow cytometry, multiplex cytokine assay, and multiplex immunohistochemistry. Gal-3 inhibition synergized with aOX40 to promote tumor regression and increase survival. Specifically, aOX40/belapectin therapy significantly improved survival of tumor-bearing mice through a CD8+ T cell-dependent mechanism. Combination aOX40/belapectin therapy enhanced CD8+ T cell density within the tumor and reduced the frequency and proliferation of regulatory Foxp3+CD4+ T cells. Further, aOX40/belapectin therapy significantly reduced monocytic MDSC (M-MDSCs) and MHC-IIhi macrophage populations, both of which displayed reduced arginase 1 and increased iNOS. Combination aOX40/belapectin therapy alleviated M-MDSC-specific functional suppression compared to M-MDSCs isolated from untreated tumors. Our data suggests that Gal-3 inhibition plus aOX40 therapy reduces M-MDSC-meditated immune suppression thereby increasing CD8+ T cell recruitment leading to increased tumor regression and survival.
Collapse
Affiliation(s)
- Elizabeth R Sturgill
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Annah S Rolig
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Stefanie N Linch
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Courtney Mick
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Melissa J Kasiewicz
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Zhaoyu Sun
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Peter G Traber
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| |
Collapse
|
76
|
Zhang S, Xu Y, Xie C, Ren L, Wu G, Yang M, Wu X, Tang M, Hu Y, Li Z, Yu R, Liao X, Mo S, Wu J, Li M, Song E, Qi Y, Song L, Li J. RNF219/ α-Catenin/LGALS3 Axis Promotes Hepatocellular Carcinoma Bone Metastasis and Associated Skeletal Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001961. [PMID: 33643786 PMCID: PMC7887580 DOI: 10.1002/advs.202001961] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/18/2020] [Indexed: 05/10/2023]
Abstract
The incidence of bone metastases in hepatocellular carcinoma (HCC) has increased prominently over the past decade owing to the prolonged overall survival of HCC patients. However, the mechanisms underlying HCC bone-metastasis remain largely unknown. In the current study, HCC-secreted lectin galactoside-binding soluble 3 (LGALS3) is found to be significantly upregulated and correlates with shorter bone-metastasis-free survival of HCC patients. Overexpression of LGALS3 enhances the metastatic capability of HCC cells to bone and induces skeletal-related events by forming a bone pre-metastatic niche via promoting osteoclast fusion and podosome formation. Mechanically, ubiquitin ligaseRNF219-meidated α-catenin degradation prompts YAP1/β-catenin complex-dependent epigenetic modifications of LGALS3 promoter, resulting in LGALS3 upregulation and metastatic bone diseases. Importantly, treatment with verteporfin, a clinical drug for macular degeneration, decreases LGALS3 expression and effectively inhibits skeletal complications of HCC. These findings unveil a plausible role for HCC-secreted LGALS3 in pre-metastatic niche and can suggest a promising strategy for clinical intervention in HCC bone-metastasis.
Collapse
Affiliation(s)
- Shuxia Zhang
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Yingru Xu
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Chan Xie
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Liangliang Ren
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Geyan Wu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080China
| | - Meisongzhu Yang
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Xingui Wu
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Miaoling Tang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080China
| | - Yameng Hu
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Ziwen Li
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Ruyuan Yu
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Xinyi Liao
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Shuang Mo
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Jueheng Wu
- Department of MicrobiologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Mengfeng Li
- Department of MicrobiologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Erwei Song
- Department of Breast OncologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yanfei Qi
- Centenary InstituteUniversity of SydneySydney2000Australia
| | - Libing Song
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080China
| | - Jun Li
- Key Laboratory of Liver Disease of Guangdong ProvinceThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| |
Collapse
|
77
|
Karsiyaka Hendek M, Olgun E, Kisa U. The effect of initial periodontal treatment on gingival crevicular fluid galectin-3 levels in participants with periodontal disease. Aust Dent J 2021; 66:169-174. [PMID: 33378559 DOI: 10.1111/adj.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The aim of study was to evaluate galectin-3 levels in gingival crevicular fluid (GCF) from periodontally healthy (H) patients and those with periodontitis (P), gingivitis (G) and the effect of initial periodontal treatment on GCF galectin-3 level. METHODS A total of 75 participants, 25 patients with periodontitis, 25 with gingivitis and 25 periodontally healthy subjects were included into the study. Patients with periodontal disease received initial periodontal treatment. GCF galectin-3 level was assessed at baseline and at the 6th-8th weeks after completion of periodontal treatment. GCF galectin-3 level was evaluated by enzyme-linked immunosorbent assay. RESULTS GCF galectin-3 level was the lowest in the H group (102.31[63.07] μg/30 s), followed by the G group (241.45[145.89] μg/30 s) and the highest in the P group (338.27[219.37] μg/30 s). These differences were statistically significant between H and the other groups (P < 0.001). After initial periodontal treatment, GCF galectin-3 level significantly decreased in the G and P groups compared to baseline values (P < 0.01). CONCLUSION The results of this study suggest that GCF galectin-3 level is a potential biomarker for the evaluation of gingival inflammation and initial periodontal treatment is effective in decreasing GCF galectin-3 level.
Collapse
Affiliation(s)
- M Karsiyaka Hendek
- Department of Periodontology, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| | - E Olgun
- Department of Periodontology, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| | - U Kisa
- Department of Biochemistry, Faculty of Medicine, Kirikkale University, Kirikkale, Turkey
| |
Collapse
|
78
|
Kim SJ, Chun KH. Non-classical role of Galectin-3 in cancer progression: translocation to nucleus by carbohydrate-recognition independent manner. BMB Rep 2021. [PMID: 32172730 PMCID: PMC7196190 DOI: 10.5483/bmbrep.2020.53.4.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Galectin-3 is a carbohydrate-binding protein and regulates diverse functions, including cell proliferation and differentiation, mRNA splicing, apoptosis induction, immune surveillance and inflammation, cell adhesion, angiogenesis, and cancer-cell metastasis. Galectin-3 is also recommended as a diagnostic or prognostic biomarker of various diseases, including heart disease, kidney disease, and cancer. Galectin-3 exists as a cytosol, is secreted in extracellular spaces on cells, and is also detected in nuclei. It has been found that galectin-3 has different functions in cellular localization: (i) Extracellular galectin-3 mediates cell attachment and detachment. (ii) cytosolic galectin-3 regulates cell survival by blocking the intrinsic apoptotic pathway, and (iii) nuclear galectin-3 supports the ability of the transcriptional factor for target gene expression. In this review, we focused on the role of galectin-3 on translocation from cytosol to nucleus, because it happens in a way independent of carbohydrate recognition and accelerates cancer progression. We also suggested here that intracellular galecin-3 could be a potent therapeutic target in cancer therapy. [BMB Reports 2020; 53(4): 173-180].
Collapse
Affiliation(s)
- Seok-Jun Kim
- Department of Biomedical Science, College of Natural Science, Chosun University; Department of Life Science & Brain Korea 21 Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju 61452, Korea
| | - Kyung-Hee Chun
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
79
|
Lecocq Q, Keyaerts M, Devoogdt N, Breckpot K. The Next-Generation Immune Checkpoint LAG-3 and Its Therapeutic Potential in Oncology: Third Time's a Charm. Int J Mol Sci 2020; 22:ijms22010075. [PMID: 33374804 PMCID: PMC7795594 DOI: 10.3390/ijms22010075] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The blockade of immune checkpoints (ICPs), such as cytotoxic T lymphocyte associated protein-4 (CTLA-4) and programmed death-1 (PD-1) and its ligand (PD-L1), has propelled the field of immuno-oncology into its current era. Drugs targeting these ICPs have improved clinical outcome in a number of patients with solid and hematological cancers. Nonetheless, some patients have no benefit from these ICP-blocking therapies. This observation has instigated research into alternative pathways that are responsible for the escape of cancer cells from anti-cancer immune responses. From this research, a number of molecules have emerged as promising therapeutic targets, including lymphocyte activating gene-3 (LAG-3), a next-generation ICP. We will review the current knowledge on the biological activity of LAG-3 and linked herewith its expression on activated immune cells. Moreover, we will discuss the prognostic value of LAG-3 and how LAG-3 expression in tumors can be monitored, which is an aspect that is of utmost importance, as the blockade of LAG-3 is actively pursued in clinical trials.
Collapse
Affiliation(s)
- Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
| | - Marleen Keyaerts
- Nuclear Medicine Department, UZ Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium;
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Correspondence:
| |
Collapse
|
80
|
Alencar GF, Owsiany KM, Karnewar S, Sukhavasi K, Mocci G, Nguyen AT, Williams CM, Shamsuzzaman S, Mokry M, Henderson CA, Haskins R, Baylis RA, Finn AV, McNamara CA, Zunder ER, Venkata V, Pasterkamp G, Björkegren J, Bekiranov S, Owens GK. Stem Cell Pluripotency Genes Klf4 and Oct4 Regulate Complex SMC Phenotypic Changes Critical in Late-Stage Atherosclerotic Lesion Pathogenesis. Circulation 2020; 142:2045-2059. [PMID: 32674599 PMCID: PMC7682794 DOI: 10.1161/circulationaha.120.046672] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/16/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Rupture and erosion of advanced atherosclerotic lesions with a resultant myocardial infarction or stroke are the leading worldwide cause of death. However, we have a limited understanding of the identity, origin, and function of many cells that make up late-stage atherosclerotic lesions, as well as the mechanisms by which they control plaque stability. METHODS We conducted a comprehensive single-cell RNA sequencing of advanced human carotid endarterectomy samples and compared these with single-cell RNA sequencing from murine microdissected advanced atherosclerotic lesions with smooth muscle cell (SMC) and endothelial lineage tracing to survey all plaque cell types and rigorously determine their origin. We further used chromatin immunoprecipitation sequencing (ChIP-seq), bulk RNA sequencing, and an innovative dual lineage tracing mouse to understand the mechanism by which SMC phenotypic transitions affect lesion pathogenesis. RESULTS We provide evidence that SMC-specific Klf4- versus Oct4-knockout showed virtually opposite genomic signatures, and their putative target genes play an important role regulating SMC phenotypic changes. Single-cell RNA sequencing revealed remarkable similarity of transcriptomic clusters between mouse and human lesions and extensive plasticity of SMC- and endothelial cell-derived cells including 7 distinct clusters, most negative for traditional markers. In particular, SMC contributed to a Myh11-, Lgals3+ population with a chondrocyte-like gene signature that was markedly reduced with SMC-Klf4 knockout. We observed that SMCs that activate Lgals3 compose up to two thirds of all SMC in lesions. However, initial activation of Lgals3 in these cells does not represent conversion to a terminally differentiated state, but rather represents transition of these cells to a unique stem cell marker gene-positive, extracellular matrix-remodeling, "pioneer" cell phenotype that is the first to invest within lesions and subsequently gives rise to at least 3 other SMC phenotypes within advanced lesions, including Klf4-dependent osteogenic phenotypes likely to contribute to plaque calcification and plaque destabilization. CONCLUSIONS Taken together, these results provide evidence that SMC-derived cells within advanced mouse and human atherosclerotic lesions exhibit far greater phenotypic plasticity than generally believed, with Klf4 regulating transition to multiple phenotypes including Lgals3+ osteogenic cells likely to be detrimental for late-stage atherosclerosis plaque pathogenesis.
Collapse
Affiliation(s)
- Gabriel F. Alencar
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
- Department of Biochemistry and Molecular Genetics (G.F.A., K.M.O., C.A.H., R.A.B., S.B.), University of Virginia, Charlottesville
| | - Katherine M. Owsiany
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
- Department of Biochemistry and Molecular Genetics (G.F.A., K.M.O., C.A.H., R.A.B., S.B.), University of Virginia, Charlottesville
| | - Santosh Karnewar
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
| | | | - Giuseppe Mocci
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden (G.M., V.V., J.B.)
| | - Anh T. Nguyen
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
| | - Corey M. Williams
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (C.M.W., E.R.Z.), University of Virginia, Charlottesville
| | - Sohel Shamsuzzaman
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
| | - Michal Mokry
- Laboratory of Clinical Chemistry and Hematology, Division Laboratories and Pharmacy (M.M., G.P.), University Medical Center Utrecht, University Utrecht, The Netherlands
- Department of Cardiology (M.M.), University Medical Center Utrecht, University Utrecht, The Netherlands
| | - Christopher A. Henderson
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
- Department of Biochemistry and Molecular Genetics (G.F.A., K.M.O., C.A.H., R.A.B., S.B.), University of Virginia, Charlottesville
| | - Ryan Haskins
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
| | - Richard A. Baylis
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
- Department of Biochemistry and Molecular Genetics (G.F.A., K.M.O., C.A.H., R.A.B., S.B.), University of Virginia, Charlottesville
| | | | - Coleen A. McNamara
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
- School of Medicine, Division of Cardiovascular Medicine, Department of Medicine (C.A.M.), University of Virginia, Charlottesville
| | - Eli R. Zunder
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (C.M.W., E.R.Z.), University of Virginia, Charlottesville
| | - Vamsidhar Venkata
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden (G.M., V.V., J.B.)
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry and Hematology, Division Laboratories and Pharmacy (M.M., G.P.), University Medical Center Utrecht, University Utrecht, The Netherlands
| | - Johan Björkegren
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden (G.M., V.V., J.B.)
- Department of Genetics and Genomic Sciences (J.B.), Icahn School of Medicine at Mount Sinai, New York
- Icahn Institute of Genomics and Multiscale Biology (J.B.), Icahn School of Medicine at Mount Sinai, New York
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics (G.F.A., K.M.O., C.A.H., R.A.B., S.B.), University of Virginia, Charlottesville
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center (G.F.A., K.M.O, S.K., A.N., C.M.W., S.S., C.A.H., R.H., R.A.B., C.A.M., E.R.Z., G.K.O.), University of Virginia, Charlottesville
| |
Collapse
|
81
|
The therapeutic potential of galectin-3 inhibition in fibrotic disease. Int J Biochem Cell Biol 2020; 130:105881. [PMID: 33181315 DOI: 10.1016/j.biocel.2020.105881] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022]
Abstract
Galectin-3 is a beta-galactoside-binding mammalian lectin and part of the 15 member galectin family that are evolutionarily highly conserved. It is the only chimeric protein with a C-terminal carbohydrate recognition domain (CRD) linked to a proline, glycine, and tyrosine rich additional N-terminal domain. Galectin-3 binds several cell surface glycoproteins via its CRD domain as well as undergoing oligomerization, via binding at the N-terminal or the CRD, resulting in the formation of a galectin-3 lattice on the cell surface. The galectin-3 lattice has been regarded as being a crucial mechanism whereby extracellular galectin-3 modulates cellular signalling by prolonging retention time or retarding lateral movement of cell surface receptors in the plasma membrane. As such galectin-3 can regulate various cellular functions such as diffusion, compartmentalization and endocytosis of plasma membrane glycoproteins and glycolipids and the functionality of membrane receptors. In multiple models of organ fibrosis, it has been demonstrated that galectin-3 is potently pro-fibrotic and modulates the activity of fibroblasts and macrophages in chronically inflamed organs. Increased galectin-3 expression also activates myofibroblasts resulting in scar formation and may therefore impact common fibrotic pathways leading to fibrosis in multiple organs. Over the last decade there has been a marked increase in the scientific literature investigating galectin-3 in a range of fibrotic diseases as well as the clinical development of new galectin-3 inhibitors. In this review we will examine the role of galectin-3 in fibrosis, the therapeutic strategies for inhibiting galectin-3 in fibrotic disease and the clinical landscape to date.
Collapse
|
82
|
Lectin affinity chromatography and quantitative proteomic analysis reveal that galectin-3 is associated with metastasis in nasopharyngeal carcinoma. Sci Rep 2020; 10:16462. [PMID: 33020562 PMCID: PMC7536187 DOI: 10.1038/s41598-020-73498-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a serious cancer in East and Southeast Asia. Patients are often diagnosed at advanced stages, rendering treatment failure due to high potential of metastasis. This study identified lectin-binding glycoproteins with a potential role in NPC metastasis. Cell lysate and culture medium in highly metastatic 5-8F, and lowly-metastatic 6-10B NPC cell lines were fractionated by ConA- and WGA-affinity chromatography, and subjected to GeLC-MS/MS. A total of 232 and 197 proteins were identified in ConA-enriched fraction of 5-8F and 6-10B cell lysates respectively. In WGA-enriched fraction, 65 and 164 proteins were found in 5-8F and 6-10B cell lysates respectively. Proteins identified in culture medium for both cell lines were 223 and 85 for ConA-enriched fraction, and 94 and 124 for WGA-enriched fraction from 5-8F and 6-10B respectively. Differentially expressed proteins were functionally categorized into cell–cell adhesion, extracellular matrix, glycolysis, protein homeostasis and/or glycosylation enzymes, and lipid metabolism. Interestingly, Galectin-3 (Gal-3) was highly expressed in 5-8F cells but was lowly expressed in 6-10B cells. The Gal-3 knockdown in 5-8F cells, Gal-3 overexpression in 6-10B cells and treatment with Gal-3 inhibitor revealed that Gal-3 was responsible for metastatic phenotypes including adhesion, migration and invasion. So Galectin-3 may serve as a potential target for NPC therapeutic interventions.
Collapse
|
83
|
Maruhashi T, Sugiura D, Okazaki IM, Okazaki T. LAG-3: from molecular functions to clinical applications. J Immunother Cancer 2020; 8:jitc-2020-001014. [PMID: 32929051 PMCID: PMC7488795 DOI: 10.1136/jitc-2020-001014] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
To prevent the destruction of tissues owing to excessive and/or inappropriate immune responses, immune cells are under strict check by various regulatory mechanisms at multiple points. Inhibitory coreceptors, including programmed cell death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4), serve as critical checkpoints in restricting immune responses against self-tissues and tumor cells. Immune checkpoint inhibitors that block PD-1 and CTLA-4 pathways significantly improved the outcomes of patients with diverse cancer types and have revolutionized cancer treatment. However, response rates to such therapies are rather limited, and immune-related adverse events are also observed in a substantial patient population, leading to the urgent need for novel therapeutics with higher efficacy and lower toxicity. In addition to PD-1 and CTLA-4, a variety of stimulatory and inhibitory coreceptors are involved in the regulation of T cell activation. Such coreceptors are listed as potential drug targets, and the competition to develop novel immunotherapies targeting these coreceptors has been very fierce. Among such coreceptors, lymphocyte activation gene-3 (LAG-3) is expected as the foremost target next to PD-1 in the development of cancer therapy, and multiple clinical trials testing the efficacy of LAG-3-targeted therapy are underway. LAG-3 is a type I transmembrane protein with structural similarities to CD4. Accumulating evidence indicates that LAG-3 is an inhibitory coreceptor and plays pivotal roles in autoimmunity, tumor immunity, and anti-infection immunity. In this review, we summarize the current understanding of LAG-3, ranging from its discovery to clinical application.
Collapse
Affiliation(s)
- Takumi Maruhashi
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Daisuke Sugiura
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Il-Mi Okazaki
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Taku Okazaki
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
84
|
Gabr M, Rehman AU, Chen HF. Quinoline-Pyrazole Scaffold as a Novel Ligand of Galectin-3 and Suppressor of TREM2 Signaling. ACS Med Chem Lett 2020; 11:1759-1765. [PMID: 32944144 DOI: 10.1021/acsmedchemlett.0c00330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Galectin-3 has been identified as a critical player in driving the neuroinflammatory responses in Alzheimer's disease (AD). A key feature of this function of galectin-3 is associated with its interaction with the triggering receptor expressed on myeloid cells-2 (TREM2). Herein, we report a high-throughput screening (HTS) platform that can be used for the identification of inhibitors of TREM2 and galectin-3 interaction. We have utilized this HTS assay to screen a focused library of compounds optimized for the central nervous system (CNS)-related diseases. MG-257 was identified from this screen as the first example of a small molecule that can attenuate TREM2 signaling based on its high affinity to galectin-3 (endogenous ligand of TREM2). Remarkably, MG-257 reduced the levels of proinflammatory cytokines in activated microglial cells, which highlights its ability to inhibit the neuroinflammatory response associated with AD.
Collapse
Affiliation(s)
- Moustafa Gabr
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Ashfaq Ur Rehman
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Center for Bioinformation Technology, Shanghai 200235, China
| |
Collapse
|
85
|
Caputo S, Grioni M, Brambillasca CS, Monno A, Brevi A, Freschi M, Piras IS, Elia AR, Pieri V, Baccega T, Lombardo A, Galli R, Briganti A, Doglioni C, Jachetti E, Bellone M. Galectin-3 in Prostate Cancer Stem-Like Cells Is Immunosuppressive and Drives Early Metastasis. Front Immunol 2020; 11:1820. [PMID: 33013832 PMCID: PMC7516304 DOI: 10.3389/fimmu.2020.01820] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Galectin-3 (Gal-3) is an extracellular matrix glycan-binding protein with several immunosuppressive and pro-tumor functions. The role of Galectin-3 in cancer stem-like cells (CSCs) is poorly investigated. Here, we show that prostate CSCs also colonizing prostate-draining lymph nodes of transgenic adenocarcinoma of the mouse prostate (TRAMP) mice overexpress Gal-3. Gal-3 contributes to prostate CSC-mediated immune suppression because either Gal-3 silencing in CSCs, or co-culture of CSCs and T cells in the presence of the Gal-3 inhibitor N-Acetyl-D-lactosamine rescued T cell proliferation. N-Acetyl-D-lactosamine also rescued the proliferation of T cells in prostate-draining lymph nodes of TRAMP mice affected by prostate intraepithelial neoplasia. Additionally, Gal-3 impacted prostate CSC tumorigenic and metastatic potential in vivo, as Gal-3 silencing in prostate CSCs reduced both primary tumor growth and secondary invasion. Gal-3 was also found expressed in more differentiated prostate cancer cells, but with different intracellular distribution as compared to CSCs, which suggests different functions of Gal-3 in the two cell populations. In fact, the prevalent nuclear and cytoplasmic distribution of Gal-3 in prostate CSCs made them less susceptible to apoptosis, when compared to more differentiated prostate cancer cells, in which Gal-3 was predominantly intra-cytoplasmic. Finally, we found Gal-3 expressed in human and mouse prostate intraepithelial neoplasia lesions and in metastatic lymph nodes. All together, these findings identify Gal-3 as a key molecule and a potential therapeutic target already in the early phases of prostate cancer progression and metastasis.
Collapse
Affiliation(s)
- Sara Caputo
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Grioni
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara S Brambillasca
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Monno
- Innate Immunity and Tissue Remodeling Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arianna Brevi
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Freschi
- NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ignazio S Piras
- Neurogenomics Division, Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Angela R Elia
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Pieri
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Tania Baccega
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Lombardo
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Briganti
- NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Unit of Urology and URI, Division of Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Claudio Doglioni
- NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Unit of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Jachetti
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,NET-IMPACT, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
86
|
Hara A, Niwa M, Kanayama T, Noguchi K, Niwa A, Matsuo M, Kuroda T, Hatano Y, Okada H, Tomita H. Galectin-3: A Potential Prognostic and Diagnostic Marker for Heart Disease and Detection of Early Stage Pathology. Biomolecules 2020; 10:biom10091277. [PMID: 32899694 PMCID: PMC7565392 DOI: 10.3390/biom10091277] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
The use of molecular biomarkers for the early detection of heart disease, before their onset of symptoms, is an attractive novel approach. Ideal molecular biomarkers, those that are both sensitive and specific to heart disease, are likely to provide a much earlier diagnosis, thereby providing better treatment outcomes. Galectin-3 is expressed by various immune cells, including mast cells, histiocytes and macrophages, and plays an important role in diverse physiological functions. Since galectin-3 is readily expressed on the cell surface, and is readily secreted by injured and inflammatory cells, it has been suggested that cardiac galectin-3 could be a marker for cardiac disorders such as cardiac inflammation and fibrosis, depending on the specific pathogenesis. Thus, galectin-3 may be a novel candidate biomarker for the diagnosis, analysis and prognosis of various cardiac diseases, including heart failure. The goals of heart disease treatment are to prevent acute onset and to predict their occurrence by using the ideal molecular biomarkers. In this review, we discuss and summarize recent developments of galectin-3 as a next-generation molecular biomarker of heart disease. Furthermore, we describe how galectin-3 may be useful as a diagnostic marker for detecting the early stages of various heart diseases, which may contribute to improved early therapeutic interventions.
Collapse
Affiliation(s)
- Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.K.); (K.N.); (A.N.); (M.M.); (T.K.); (Y.H.); (H.T.)
- Correspondence: ; Tel.: +81-58-230-6225
| | - Masayuki Niwa
- Medical Education Development Center, Gifu University School of Medicine, Gifu 501-1194, Japan;
| | - Tomohiro Kanayama
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.K.); (K.N.); (A.N.); (M.M.); (T.K.); (Y.H.); (H.T.)
| | - Kei Noguchi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.K.); (K.N.); (A.N.); (M.M.); (T.K.); (Y.H.); (H.T.)
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.K.); (K.N.); (A.N.); (M.M.); (T.K.); (Y.H.); (H.T.)
| | - Mikiko Matsuo
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.K.); (K.N.); (A.N.); (M.M.); (T.K.); (Y.H.); (H.T.)
| | - Takahiro Kuroda
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.K.); (K.N.); (A.N.); (M.M.); (T.K.); (Y.H.); (H.T.)
| | - Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.K.); (K.N.); (A.N.); (M.M.); (T.K.); (Y.H.); (H.T.)
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan;
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.K.); (K.N.); (A.N.); (M.M.); (T.K.); (Y.H.); (H.T.)
| |
Collapse
|
87
|
Li Y, Chen R, Yang J, Mo S, Quek K, Kok CH, Cheng XD, Tian S, Zhang W, Qin JJ. Integrated Bioinformatics Analysis Reveals Key Candidate Genes and Pathways Associated With Clinical Outcome in Hepatocellular Carcinoma. Front Genet 2020; 11:814. [PMID: 32849813 PMCID: PMC7396661 DOI: 10.3389/fgene.2020.00814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/06/2020] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 85-90% of all liver cancer cases and has poor relapse-free survival. There are many gene expression studies that have been performed to elucidate the genetic landscape and driver pathways leading to HCC. However, existing studies have been limited by the sample size and thus the pathogenesis of HCC is still unclear. In this study, we performed an integrated characterization using four independent datasets including 320 HCC samples and 270 normal liver tissues to identify the candidate genes and pathways in the progression of HCC. A total of 89 consistent differentially expression genes (DEGs) were identified. Gene-set enrichment analysis revealed that these genes were significantly enriched for cellular response to zinc ion in biological process group, collagen trimer in the cellular component group, extracellular matrix (ECM) structural constituent conferring tensile strength in the molecular function group, protein digestion and absorption, mineral absorption and ECM-receptor interaction. Network system biology based on the protein-protein interaction (PPI) network was also performed to identify the most connected and important genes based on our DEGs. The top five hub genes including osteopontin (SPP1), Collagen alpha-2(I) chain (COL1A2), Insulin-like growth factor I (IGF1), lipoprotein A (LPA), and Galectin-3 (LGALS3) were identified. Western blot and immunohistochemistry analysis were employed to verify the differential protein expression of hub genes in HCC patients. More importantly, we identified that these five hub genes were significantly associated with poor disease-free survival and overall survival. In summary, we have identified a potential clinical significance of these genes as prognostic biomarkers for HCC patients who would benefit from experimental approaches to obtain optimal outcome.
Collapse
Affiliation(s)
- Yubin Li
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Runzhe Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jian Yang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Shaowei Mo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kelly Quek
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Accenture Applied Intelligence, ASEAN, Singapore, Singapore
| | - Chung H Kok
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Cancer Hospital, Hangzhou, China
| | - Saisai Tian
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Weidong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jiang-Jiang Qin
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
88
|
Cymbaluk-Płoska A, Gargulińska P, Kwiatkowski S, Pius-Sadowska E, Machaliński B. Could Galectin 3 Be a Good Prognostic Factor in Endometrial Cancer? Diagnostics (Basel) 2020; 10:diagnostics10090635. [PMID: 32859099 PMCID: PMC7554825 DOI: 10.3390/diagnostics10090635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Galectin 3 is a modulator of several basic biological functions. It may be involved in the development of obesity and type 2 diabetes—risk factors of endometrial cancer. The study involved 144 patients, after abrasion due to postmenopausal bleeding. Galectin 3 concentrations were quantified in serum by multiplex fluorescent bead-based immunoassays. Median serum galectin 3 concentrations revealed significant differences between FIGO III and IV vs. FIGO I and II patients. Statistically higher concentrations were reported for patients with lymph node metastases compared to patients without it (p = 0.001) as well as in patients with lymphovascular space invasion compared to patients without LVSI (p = 0.02). No statistically significant differences were observed for median of galectin 3 levels depending on the surgical procedure (laparoscopy vs. laparotomy, p = 0.0608). Patients with galectin 3 levels exceeding the median value were characterized by overall survival being shorter by 11.9 months. High levels of galectin 3 were correlated with shorter disease-free survival, the difference is up to 14.8 months. Galectin 3 can be an independent prognostic factor in patients with endometrial cancer. Among the recognized prognostic factors and the concentrations of the galectin 3 marker at the adopted time points, the univariate analysis showed a significant effect of staging, grading, and cutoff galectin 3 on the OS. For multivariate analysis, the galectin 3 cutoff point had the greatest significant impact on OS.
Collapse
Affiliation(s)
- Aneta Cymbaluk-Płoska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
- Correspondence:
| | - Paula Gargulińska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Ewa Pius-Sadowska
- General Pathology Department, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (E.P.-S.); (B.M.)
| | - Bogusław Machaliński
- General Pathology Department, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (E.P.-S.); (B.M.)
| |
Collapse
|
89
|
Stow JL, Hung Y, Wall AA. Macropinocytosis: Insights from immunology and cancer. Curr Opin Cell Biol 2020; 65:131-140. [PMID: 32745890 DOI: 10.1016/j.ceb.2020.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 12/15/2022]
Abstract
Macropinocytosis is increasingly recognized for its versatile adaptations and functions as a highly conserved, ubiquitous pathway for the bulk uptake of fluid, particulate cargo, and membranes. Innate immune cells and transformed cancer cells share the capacity for both constitutive and induced macropinocytosis, which is used for immune surveillance, ingestion of pathogens, immune response shaping, and enhancement of scavenging for nutrients as fuel for cell survival and proliferation. Immunology and cancer biology are leading a resurgence of interest in defining the molecular and physiological regulation of macropinocytosis, partly in pursuit of ways to control macropinocytic uptake in disease settings. New approaches, including high-resolution live imaging, screening of cell surface molecular inventories, biophysics, and exploration of cell microenvironments, have converged to provide new insights into macropinosome induction, formation, and maturation. Recent studies reveal mechanisms for fluid control in and by macrophage macropinosomes that impinge on membrane trafficking and cell migration. EGFR, PTEN, V-ATPase, syndecan 1, and galectin-3 have roles variably in the metabolic regulation of Ras or PI3K signaling for Rac1-mediated macropinocytosis in cancer. These molecular pathways and mechanisms contribute to the impressive adaptability of macropinocytosis in many cells and tissues and in disease.
Collapse
Affiliation(s)
- Jennifer L Stow
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Yu Hung
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Adam A Wall
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
90
|
Filipová M, Bojarová P, Rodrigues Tavares M, Bumba L, Elling L, Chytil P, Gunár K, Křen V, Etrych T, Janoušková O. Glycopolymers for Efficient Inhibition of Galectin-3: In Vitro Proof of Efficacy Using Suppression of T Lymphocyte Apoptosis and Tumor Cell Migration. Biomacromolecules 2020; 21:3122-3133. [PMID: 32697592 DOI: 10.1021/acs.biomac.0c00515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The development of efficient galectin-3 (Gal-3) inhibitors draws attention in the field of anti-cancer therapy, especially due to the prominent role of extra- and intracellular Gal-3 in vital processes of cancerogenesis, such as immunosuppression, stimulation of tumor cells proliferation, survival, invasion, apoptotic resistance, and metastasis formation and progression. Here, by combining poly-LacNAc (Galβ4GlcNAc)-derived oligosaccharides with N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers, we synthesized multivalent glycopolymer inhibitors with a high potential to target extracellular and intracellular Gal-3. The inhibitory capabilities of the best conjugate in the studied series were in the nanomolar range proving the excellent Gal-3 inhibitory potential. Moreover, thorough investigation of the inhibitory effect in the biological conditions showed that the glycopolymers strongly inhibited Gal-3-induced apoptosis of T lymphocytes and suppressed migration and spreading of colorectal, breast, melanoma, and prostate cancer cells. In sum, the strong inhibitory activity toward Gal-3, combined with favorable pharmacokinetics of HPMA copolymers ensuring enhanced tumor accumulation via the enhanced permeability and retention effect, nominate the glycopolymers containing LacdiNAc-LacNAc (GalNAcβ4GlcNAcβ3Galβ4GlcNAc) tetrasaccharide as promising tools for preclinical in anti-cancer therapy evaluation.
Collapse
Affiliation(s)
- Marcela Filipová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-16206 Prague 6, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4 Czech Republic.,Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná Sq. 3105, CZ-27201 Kladno, Czech Republic
| | - Marina Rodrigues Tavares
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-16206 Prague 6, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4 Czech Republic
| | - Lothar Elling
- Institute of Biotechnology and Helmholtz Institute for Biomedical Engineering, RWTH Aachen, Pauwelstr. 20, D-52079 Aachen, Germany
| | - Petr Chytil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-16206 Prague 6, Czech Republic
| | - Kristýna Gunár
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-16206 Prague 6, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4 Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-16206 Prague 6, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, CZ-16206 Prague 6, Czech Republic
| |
Collapse
|
91
|
Bernhard SP, Fricke MS, Haag R, Cloninger MJ. Protein Aggregation Nucleated by Functionalized Dendritic Polyglycerols. Polym Chem 2020; 11:3849-3862. [PMID: 35222696 PMCID: PMC8881006 DOI: 10.1039/d0py00667j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Dendritic polyglycerols (dPGs) are emerging as important polymers for the study of biological processes due to their relatively low toxicity and excellent biocompatibility. The highly branched nature and high density of endgroups make the dPGs particularly attractive frameworks for the study of multivalent interactions such as multivalent protein-carbohydrate interactions. Here, we report the synthesis of a series of lactose functionalized dPGs with different hydrodynamic radii. A series of lactose functionalized dPGs bearing different densities of lactose functional groups was also synthesized. These lactose functionalized dPGs were used to study the templated aggregation of galectin-3, a galactoside binding protein that is overexpressed during many processes involved in cancer progression. Dynamic light scattering measurements revealed a direct correlation between the hydrodynamic radii of the lactose functionalized dPGs and the size of the galectin-3/lactose functionalized dPG aggregates formed upon mixing the lactose functionalized dPGs with galectin-3 in solution. These studies exposed the critical role of galectin-3's N-terminal domain in formation of galectin-3 multimers and also enabled comparisons of polymer templated aggregation using nonspecific interactions versus specific protein-carbohydrate binding interactions.
Collapse
Affiliation(s)
| | | | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Mary J Cloninger
- Department of Chemistry and Biochemistry, Bozeman, MT, 59717, USA
| |
Collapse
|
92
|
Rodriguez-Garcia A, Palazon A, Noguera-Ortega E, Powell DJ, Guedan S. CAR-T Cells Hit the Tumor Microenvironment: Strategies to Overcome Tumor Escape. Front Immunol 2020; 11:1109. [PMID: 32625204 PMCID: PMC7311654 DOI: 10.3389/fimmu.2020.01109] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapies have demonstrated remarkable efficacy for the treatment of hematological malignancies. However, in patients with solid tumors, objective responses to CAR-T cell therapy remain sporadic and transient. A major obstacle for CAR-T cells is the intrinsic ability of tumors to evade immune responses. Advanced solid tumors are largely composed of desmoplastic stroma and immunosuppressive modulators, and characterized by aberrant cell proliferation and vascularization, resulting in hypoxia and altered nutrient availability. To mount a curative response after infusion, CAR-T cells must infiltrate the tumor, recognize their cognate antigen and perform their effector function in this hostile tumor microenvironment, to then differentiate and persist as memory T cells that confer long-term protection. Fortunately, recent advances in synthetic biology provide a wide set of tools to genetically modify CAR-T cells to overcome some of these obstacles. In this review, we provide a comprehensive overview of the key tumor intrinsic mechanisms that prevent an effective CAR-T cell antitumor response and we discuss the most promising strategies to prevent tumor escape to CAR-T cell therapy.
Collapse
Affiliation(s)
- Alba Rodriguez-Garcia
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Laboratory, Ikerbasque Basque Foundation for Science, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Estela Noguera-Ortega
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel J. Powell
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sonia Guedan
- Department of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| |
Collapse
|
93
|
Pouliquen DL, Boissard A, Coqueret O, Guette C. Biomarkers of tumor invasiveness in proteomics (Review). Int J Oncol 2020; 57:409-432. [PMID: 32468071 PMCID: PMC7307599 DOI: 10.3892/ijo.2020.5075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past two decades, quantitative proteomics has emerged as an important tool for deciphering the complex molecular events involved in cancers. The number of references involving studies on the cancer metastatic process has doubled since 2010, while the last 5 years have seen the development of novel technologies combining deep proteome coverage capabilities with quantitative consistency and accuracy. To highlight key findings within this huge amount of information, the present review identified a list of tumor invasive biomarkers based on both the literature and data collected on a biocollection of experimental cell lines, tumor models of increasing invasiveness and tumor samples from patients with colorectal or breast cancer. Crossing these different data sources led to 76 proteins of interest out of 1,245 mentioned in the literature. Information on these proteins can potentially be translated into clinical prospects, since they represent potential targets for the development and evaluation of innovative therapies, alone or in combination. Herein, a systematical review of the biology of each of these proteins, including their specific subcellular/extracellular or multiple localizations is presented. Finally, as an important advantage of quantitative proteomics is the ability to provide data on all these molecules simultaneously in cell pellets, body fluids or paraffin‑embedded sections of tumors/invaded tissues, the significance of some of their interconnections is discussed.
Collapse
Affiliation(s)
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| | | | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| |
Collapse
|
94
|
Compagno D, Tiraboschi C, Garcia JD, Rondón Y, Corapi E, Velazquez C, Laderach DJ. Galectins as Checkpoints of the Immune System in Cancers, Their Clinical Relevance, and Implication in Clinical Trials. Biomolecules 2020; 10:biom10050750. [PMID: 32408492 PMCID: PMC7277089 DOI: 10.3390/biom10050750] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 12/14/2022] Open
Abstract
Galectins are small proteins with pleiotropic functions, which depend on both their lectin (glycan recognition) and non-lectin (recognition of other biomolecules besides glycans) interactions. Currently, 15 members of this family have been described in mammals, each with its structural and ligand recognition particularities. The galectin/ligand interaction translates into a plethora of biological functions that are particular for each cell/tissue type. In this sense, the cells of the immune system are highly sensitive to the action of these small and essential proteins. While galectins play central roles in tumor progression, they are also excellent negative regulators (checkpoints) of the immune cell functions, participating in the creation of a microenvironment that promotes tumor escape. This review aims to give an updated view on how galectins control the tumor’s immune attack depending on the tumor microenvironment, because determining which galectins are essential and the role they play will help to develop future clinical trials and benefit patients with incurable cancer.
Collapse
Affiliation(s)
- Daniel Compagno
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET-UBA, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (C.T.); (J.D.G.); (Y.R.); (E.C.); (C.V.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
- Correspondence: or (D.C.); (D.J.L.)
| | - Carolina Tiraboschi
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET-UBA, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (C.T.); (J.D.G.); (Y.R.); (E.C.); (C.V.)
| | - José Daniel Garcia
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET-UBA, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (C.T.); (J.D.G.); (Y.R.); (E.C.); (C.V.)
| | - Yorfer Rondón
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET-UBA, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (C.T.); (J.D.G.); (Y.R.); (E.C.); (C.V.)
| | - Enrique Corapi
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET-UBA, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (C.T.); (J.D.G.); (Y.R.); (E.C.); (C.V.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Carla Velazquez
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET-UBA, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (C.T.); (J.D.G.); (Y.R.); (E.C.); (C.V.)
- Facultad de Biotecnología y Biología Molecular, Facultad de Farmacia, Universidad Nacional de la Plata, La Plata 1900, Provincia de Buenos Aires, Argentina
| | - Diego José Laderach
- Molecular and Functional Glyco-Oncology Laboratory, IQUIBICEN-CONICET-UBA, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; (C.T.); (J.D.G.); (Y.R.); (E.C.); (C.V.)
- Departamento de Ciencias Básicas, Universidad Nacional de Lujan, Lujan 6700, Provincia de Buenos Aires, Argentina
- Correspondence: or (D.C.); (D.J.L.)
| |
Collapse
|
95
|
Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020; 21:1968-1994. [PMID: 32227919 DOI: 10.1021/acs.biomac.0c00045] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic 3D extracellular matrices (ECMs) find application in cell studies, regenerative medicine, and drug discovery. While cells cultured in a monolayer may exhibit unnatural behavior and develop very different phenotypes and genotypes than in vivo, great efforts in materials chemistry have been devoted to reproducing in vitro behavior in in vivo cell microenvironments. This requires fine-tuning the biochemical and structural actors in synthetic ECMs. This review will present the fundamentals of the ECM, cover the chemical and structural features of the scaffolds used to generate ECM mimics, discuss the nature of the signaling biomolecules required and exploited to generate bioresponsive cell microenvironments able to induce a specific cell fate, and highlight the synthetic strategies involved in creating functional 3D ECM mimics.
Collapse
Affiliation(s)
- Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, , 92296 Châtenay-Malabry, France
| | - Sofia Magli
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Linda Rabbachin
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Susanna Sampaolesi
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
96
|
Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases. Biomolecules 2020; 10:biom10030389. [PMID: 32138174 PMCID: PMC7175224 DOI: 10.3390/biom10030389] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/11/2022] Open
Abstract
Galectin-3 is a β-galactoside-binding lectin which is important in numerous biological activities in various organs, including cell proliferation, apoptotic regulation, inflammation, fibrosis, and host defense. Galectin-3 is predominantly located in the cytoplasm and expressed on the cell surface, and then often secreted into biological fluids, like serum and urine. It is also released from injured cells and inflammatory cells under various pathological conditions. Many studies have revealed that galectin-3 plays an important role as a diagnostic or prognostic biomarker for certain types of heart disease, kidney disease, viral infection, autoimmune disease, neurodegenerative disorders, and tumor formation. In particular, it has been recognized that galectin-3 is extremely useful for detecting many of these diseases in their early stages. The purpose of this article is to review and summarize the recent literature focusing on the biomarker characteristics and long-term outcome predictions of galectin-3, in not only patients with various types of diseases, but associated animal models.
Collapse
|
97
|
Bednarczyk M, Stege H, Grabbe S, Bros M. β2 Integrins-Multi-Functional Leukocyte Receptors in Health and Disease. Int J Mol Sci 2020; 21:E1402. [PMID: 32092981 PMCID: PMC7073085 DOI: 10.3390/ijms21041402] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
β2 integrins are heterodimeric surface receptors composed of a variable α (CD11a-CD11d) and a constant β (CD18) subunit and are specifically expressed by leukocytes. The α subunit defines the individual functional properties of the corresponding β2 integrin, but all β2 integrins show functional overlap. They mediate adhesion to other cells and to components of the extracellular matrix (ECM), orchestrate uptake of extracellular material like complement-opsonized pathogens, control cytoskeletal organization, and modulate cell signaling. This review aims to delineate the tremendous role of β2 integrins for immune functions as exemplified by the phenotype of LAD-I (leukocyte adhesion deficiency 1) patients that suffer from strong recurrent infections. These immune defects have been largely attributed to impaired migratory and phagocytic properties of polymorphonuclear granulocytes. The molecular base for this inherited disease is a functional impairment of β2 integrins due to mutations within the CD18 gene. LAD-I patients are also predisposed for autoimmune diseases. In agreement, polymorphisms within the CD11b gene have been associated with autoimmunity. Consequently, β2 integrins have received growing interest as targets in the treatment of autoimmune diseases. Moreover, β2 integrin activity on leukocytes has been implicated in tumor development.
Collapse
Affiliation(s)
| | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (H.S.); (S.G.)
| |
Collapse
|
98
|
Zhang FP, Huang YP, Luo WX, Deng WY, Liu CQ, Xu LB, Liu C. Construction of a risk score prognosis model based on hepatocellular carcinoma microenvironment. World J Gastroenterol 2020; 26:134-153. [PMID: 31969776 PMCID: PMC6962430 DOI: 10.3748/wjg.v26.i2.134] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/23/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common cancer with a poor prognosis. Previous studies revealed that the tumor microenvironment (TME) plays an important role in HCC progression, recurrence, and metastasis, leading to poor prognosis. However, the effects of genes involved in TME on the prognosis of HCC patients remain unclear. Here, we investigated the HCC microenvironment to identify prognostic genes for HCC.
AIM To identify a robust gene signature associated with the HCC microenvironment to improve prognosis prediction of HCC.
METHODS We computed the immune/stromal scores of HCC patients obtained from The Cancer Genome Atlas based on the ESTIMATE algorithm. Additionally, a risk score model was established based on Differentially Expressed Genes (DEGs) between high‐ and low‐immune/stromal score patients.
RESULTS The risk score model consisting of eight genes was constructed and validated in the HCC patients. The patients were divided into high- or low-risk groups. The genes (Disabled homolog 2, Musculin, C-X-C motif chemokine ligand 8, Galectin 3, B-cell-activating transcription factor, Killer cell lectin like receptor B1, Endoglin and adenomatosis polyposis coli tumor suppressor) involved in our risk score model were considered to be potential immunotherapy targets, and they may provide better performance in combination. Functional enrichment analysis showed that the immune response and T cell receptor signaling pathway represented the major function and pathway, respectively, related to the immune-related genes in the DEGs between high- and low-risk groups. The receiver operating characteristic (ROC) curve analysis confirmed the good potency of the risk score prognostic model. Moreover, we validated the risk score model using the International Cancer Genome Consortium and the Gene Expression Omnibus database. A nomogram was established to predict the overall survival of HCC patients.
CONCLUSION The risk score model and the nomogram will benefit HCC patients through personalized immunotherapy.
Collapse
MESH Headings
- Aged
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/mortality
- Databases, Genetic/statistics & numerical data
- Datasets as Topic
- Female
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Kaplan-Meier Estimate
- Liver/immunology
- Liver/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/mortality
- Male
- Middle Aged
- Models, Genetic
- Neoplasm Staging
- Nomograms
- Precision Medicine/methods
- ROC Curve
- Risk Assessment/methods
- Treatment Outcome
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Fa-Peng Zhang
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Yi-Pei Huang
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Wei-Xin Luo
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Wan-Yu Deng
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- College of Life Science, Shangrao Normal University, Shangrao 334001, Jiangxi Province, China
| | - Chao-Qun Liu
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Lei-Bo Xu
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | - Chao Liu
- Department of Biliary Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| |
Collapse
|
99
|
Beckwith DM, Cudic M. Tumor-associated O-glycans of MUC1: Carriers of the glyco-code and targets for cancer vaccine design. Semin Immunol 2020; 47:101389. [PMID: 31926647 DOI: 10.1016/j.smim.2020.101389] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023]
Abstract
The transformation from normal to malignant phenotype in human cancers is associated with aberrant cell-surface glycosylation. It has frequently been reported that MUC1, the heavily glycosylated cell-surface mucin, is altered in both, expression and glycosylation pattern, in human carcinomas of the epithelium. The presence of incomplete or truncated glycan structures, often capped by sialic acid, commonly known as tumor-associated carbohydrate antigens (TACAs), play a key role in tumor initiation, progression, and metastasis. Accumulating evidence suggests that expression of TACAs is associated with tumor escape from immune defenses. In this report, we will give an overview of the oncogenic functions of MUC1 that are exerted through TACA interactions with endogenous carbohydrate-binding proteins (lectins). These interactions often lead to creation of a pro-tumor microenvironment, favoring tumor progression and metastasis, and tumor evasion. In addition, we will describe current efforts in the design of cancer vaccines with special emphasis on synthetic MUC1 glycopeptide vaccines. Analysis of the key factors that govern structure-based design of immunogenic MUC1 glycopeptide epitopes are described. The role of TACA type, position, and density on observed humoral and cellular immune responses is evaluated.
Collapse
Affiliation(s)
- Donella M Beckwith
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States.
| |
Collapse
|
100
|
Zhang N, Peng F, Wang Y, Yang L, Wu F, Wang X, Ye C, Han B, He G. Shikonin induces colorectal carcinoma cells apoptosis and autophagy by targeting galectin-1/JNK signaling axis. Int J Biol Sci 2020; 16:147-161. [PMID: 31892852 PMCID: PMC6930377 DOI: 10.7150/ijbs.36955] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/20/2019] [Indexed: 02/05/2023] Open
Abstract
Colorectal carcinoma (CRC) is the third most common malignant tumor pathology worldwide. Despite progress in surgical procedures and therapy options, CRC is still a considerable cause of cancer-related mortality. In this study, we tested the antitumor effects of shikonin in CRC and tried to identify its potential mechanism. The potential target, molecular mechanism as well as in vitro and in vivo antitumor effects of shikonin in CRC cells were determined by an integrative protocol including quantitative proteomics, RT-PCR, western blotting, RNA interference and overexpression, apoptosis and autophagy assays, etc. Galectin-1 was a potential target of shikonin from the iTRAQ-based proteomic analysis in shikonin-treated SW620 cell. The overexpression and RNA silencing of galectin-1 in two CRC cells suggested that the shikonin sensitivity was correlation to galectin-1 levels. The ROS accumulation induced by shikonin was important to the formation of galectin-1 dimers. Dimer galectin-1 was found to be associated with the activation of JNK and downstream apoptosis or autophagy. Moreover, through functional in vitro studies, we showed that differences in galectin-1 level affected tumor cell proliferation, migration, and invasion. In summary, shikonin induced CRC cells apoptosis and autophagy by targeting galectin-1 and JNK signaling pathway both in vitro and in vivo, which suggested a potential novel therapy target for CRC.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yujia Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fengbo Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyun Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|