51
|
Crosslinked self-assembled nanoparticles for chemo-sonodynamic combination therapy favoring antitumor, antimetastasis management and immune responses. J Control Release 2018; 290:150-164. [DOI: 10.1016/j.jconrel.2018.10.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
|
52
|
Lyons CL, Roche HM. Nutritional Modulation of AMPK-Impact upon Metabolic-Inflammation. Int J Mol Sci 2018; 19:E3092. [PMID: 30304866 PMCID: PMC6213547 DOI: 10.3390/ijms19103092] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 12/12/2022] Open
Abstract
Nutritional status provides metabolic substrates to activate AMP-Activated Protein Kinase (AMPK), the energy sensor that regulates metabolism. Recent evidence has demonstrated that AMPK has wider functions with respect to regulating immune cell metabolism and function. One such example is the regulatory role that AMPK has on NLRP3-inlflammasome and IL-1β biology. This in turn can result in subsequent negative downstream effects on glucose, lipid and insulin metabolism. Nutrient stress in the form of obesity can impact AMPK and whole-body metabolism, leading to complications such as type 2 diabetes and cancer risk. There is a lack of data regarding the nature and extent that nutrient status has on AMPK and metabolic-inflammation. However, emerging work elucidates to a direct role of individual nutrients on AMPK and metabolic-inflammation, as a possible means of modulating AMPK activity. The posit being to use such nutritional agents to re-configure metabolic-inflammation towards more oxidative phosphorylation and promote the resolution of inflammation. The complex paradigm will be discussed within the context of if/how dietary components, nutrients including fatty acids and non-nutrient food components, such as resveratrol, berberine, curcumin and the flavonoid genistein, modulate AMPK dependent processes relating to inflammation and metabolism.
Collapse
Affiliation(s)
- Claire L Lyons
- Unit of Molecular Metabolism, Lund University Diabetes Center, Clinical Research Center, Lund University, 205 02 Malmö, Sweden.
- Nutrigenomics Research Group, UCD Institute of Food and Health, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, 4 Dublin, Ireland.
| | - Helen M Roche
- Nutrigenomics Research Group, UCD Institute of Food and Health, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, 4 Dublin, Ireland.
- Institute of Global Food Security, Queen's University Belfast BT7 1NN, Northern Ireland, UK.
| |
Collapse
|
53
|
Gu Y, Zhao Z, Su H, Zhang P, Liu J, Niu G, Li S, Wang Z, Kwok RTK, Ni XL, Sun J, Qin A, Lam JWY, Tang BZ. Exploration of biocompatible AIEgens from natural resources. Chem Sci 2018; 9:6497-6502. [PMID: 30310579 PMCID: PMC6115644 DOI: 10.1039/c8sc01635f] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/28/2018] [Indexed: 12/24/2022] Open
Abstract
Luminogens with aggregation-induced emission (AIEgens) characteristics have been well developed and applied in various areas such as bio-imaging, theranostics, organic photoelectronics and chemo/bio sensors. However, most of the reported AIEgens suffer from the disadvantages of complex organic synthesis and high cost, as well as being environmentally unfriendly and hard to degrade, which have largely limited their real applications. In this work, we discovered berberine chloride, a natural isoquinoline alkaloid isolated from Chinese herbal plants, as an unconventional rotor-free AIEgen with bright solid-state emission and water-soluble characteristics. Single crystal structure analysis and optical property, viscosity, and host-guest interaction studies suggested that intramolecular vibration and twisted intramolecular charge transfer were responsible for the AIE phenomenon of berberine chloride. Moreover, berberine chloride was biocompatible and could specifically target lipid droplets in a fluorescence turn-on and wash-free manner, demonstrating the great potential of natural products as promising AIE probes.
Collapse
Affiliation(s)
- Yuan Gu
- Department of Chemistry , Department of Chemical and Biological Engineering , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Division of Biomedical Engineering , Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , China .
- HKUST - Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Zheng Zhao
- Department of Chemistry , Department of Chemical and Biological Engineering , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Division of Biomedical Engineering , Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , China .
- HKUST - Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Huifang Su
- Department of Chemistry , Department of Chemical and Biological Engineering , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Division of Biomedical Engineering , Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , China .
- HKUST - Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Pengfei Zhang
- Department of Chemistry , Department of Chemical and Biological Engineering , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Division of Biomedical Engineering , Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , China .
- HKUST - Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Junkai Liu
- NSFC Center for Luminescence from Molecular Aggregate , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Guangle Niu
- Department of Chemistry , Department of Chemical and Biological Engineering , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Division of Biomedical Engineering , Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , China .
- HKUST - Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Shiwu Li
- NSFC Center for Luminescence from Molecular Aggregate , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Zhaoyang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization , Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Ryan T K Kwok
- Department of Chemistry , Department of Chemical and Biological Engineering , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Division of Biomedical Engineering , Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , China .
- HKUST - Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Xin-Long Ni
- MOE Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province , Guizhou University , Guiyang , Guizhou 550025 , China
| | - Jingzhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization , Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Anjun Qin
- NSFC Center for Luminescence from Molecular Aggregate , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Jacky W Y Lam
- Department of Chemistry , Department of Chemical and Biological Engineering , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Division of Biomedical Engineering , Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , China .
- HKUST - Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Ben Zhong Tang
- Department of Chemistry , Department of Chemical and Biological Engineering , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Division of Biomedical Engineering , Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , China .
- HKUST - Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan , Shenzhen 518057 , China
- NSFC Center for Luminescence from Molecular Aggregate , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization , Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
54
|
Hesari A, Ghasemi F, Cicero AFG, Mohajeri M, Rezaei O, Hayat SMG, Sahebkar A. Berberine: A potential adjunct for the treatment of gastrointestinal cancers? J Cell Biochem 2018; 119:9655-9663. [DOI: 10.1002/jcb.27392] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Affiliation(s)
- AmirReza Hesari
- Department of Biotechnology Faculty of Medicine, Arak University of Medical Sciences Arak Iran
| | - Faezeh Ghasemi
- Department of Biotechnology Faculty of Medicine, Arak University of Medical Sciences Arak Iran
| | - Arrigo F. G. Cicero
- Medical and Surgical Sciences Department University of Bologna Bologna Italy
| | - Mohammad Mohajeri
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biotechnology Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Omid Rezaei
- Faculty of Medicine, Arak University of Medical Sciences Arak Iran
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
55
|
Berberine Inhibits Human Melanoma A375.S2 Cell Migration and Invasion via Affecting the FAK, uPA, and NF-κB Signaling Pathways and Inhibits PLX4032 Resistant A375.S2 Cell Migration In Vitro. Molecules 2018; 23:molecules23082019. [PMID: 30104528 PMCID: PMC6222729 DOI: 10.3390/molecules23082019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 01/12/2023] Open
Abstract
Many studies have demonstrated that berberine inhibited the cell migration and invasion in human cancer cell lines. However, the exact molecular mechanism of berberine inhibiting the cell migration and invasion of human melanoma A375.S2 and A375.S2/PLX (PLX4032 induced resistant A375.S2) skin cancer cells remains unknown. In this study, we investigated the anti-metastasis mechanisms of berberine in human melanoma cancer A375.S2 cells and A375.S2/PLX resistant cells in vitro. Berberine at low concentrations (0, 1, 1.5 and 2 μM) induced cell morphological changes and reduced the viable cell number and inhibited the mobility, migration, and invasion of A375.S2 cells that were assayed by wound healing and transwell filter. The gelatin zymography assay showed that berberine slightly inhibited MMP-9 activity in A375.S2 cells. Results from western blotting indicated that berberine inhibited the expression of MMP-1, MMP-13, E-cadherin, N-cadherin, RhoA, ROCK1, SOS-1, GRB2, Ras, p-ERK1/2, p-c-Jun, p-FAK, p-AKT, NF-κB, and uPA after 24 h of treatment, but increased the PKC and PI3K in A375.S2 cells. PLX4032 is an inhibitor of the BRAFV600E mutation and used for the treatment of cancer cells harboring activated BRAF mutations. Berberine decrease cell number and inhibited the cell mobility in the resistant A375.S2 (A375.S2/PLX, PLX4032 generated resistant A375.S2 cells). Based on these observations, we suggest that the potential of berberine as an anti-metastatic agent in melanoma that deserves to be investigated in more detail, including in vivo studies in future.
Collapse
|
56
|
Saxena M, Balaji SA, Deshpande N, Ranganathan S, Pillai DM, Hindupur SK, Rangarajan A. AMP-activated protein kinase promotes epithelial-mesenchymal transition in cancer cells through Twist1 upregulation. J Cell Sci 2018; 131:jcs.208314. [PMID: 29950484 PMCID: PMC6080604 DOI: 10.1242/jcs.208314] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 06/20/2018] [Indexed: 12/24/2022] Open
Abstract
The developmental programme of epithelial-mesenchymal transition (EMT), involving loss of epithelial and acquisition of mesenchymal properties, plays an important role in the invasion-metastasis cascade of cancer cells. In the present study, we show that activation of AMP-activated protein kinase (AMPK) using A769662 led to a concomitant induction of EMT in multiple cancer cell types, as observed by enhanced expression of mesenchymal markers, decrease in epithelial markers, and increase in migration and invasion. In contrast, inhibition or depletion of AMPK led to a reversal of EMT. Importantly, AMPK activity was found to be necessary for the induction of EMT by physiological cues such as hypoxia and TGFβ treatment. Furthermore, AMPK activation increased the expression and nuclear localization of Twist1, an EMT transcription factor. Depletion of Twist1 impaired AMPK-induced EMT phenotypes, suggesting that AMPK might mediate its effects on EMT, at least in part, through Twist1 upregulation. Inhibition or depletion of AMPK also attenuated metastasis. Thus, our data underscore a central role for AMPK in the induction of EMT and in metastasis, suggesting that strategies targeting AMPK might provide novel approaches to curb cancer spread. Highlighted Article: Pharmacological and physiological activation of AMPK promotes epithelial-mesenchymal transition in cancer cells through Twist1 upregulation and its increased nuclear localization.
Collapse
Affiliation(s)
- Meera Saxena
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Sai A Balaji
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Neha Deshpande
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Santhalakshmi Ranganathan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Divya Mohan Pillai
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Sravanth Kumar Hindupur
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
57
|
Wang Y, Zhang S. Berberine suppresses growth and metastasis of endometrial cancer cells via miR-101/COX-2. Biomed Pharmacother 2018; 103:1287-1293. [DOI: 10.1016/j.biopha.2018.04.161] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022] Open
|
58
|
Philippe C, Pinson B, Dompierre J, Pantesco V, Viollet B, Daignan-Fornier B, Moenner M. AICAR Antiproliferative Properties Involve the AMPK-Independent Activation of the Tumor Suppressors LATS 1 and 2. Neoplasia 2018; 20:555-562. [PMID: 29730476 PMCID: PMC5994775 DOI: 10.1016/j.neo.2018.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
AICAR (Acadesine) is a pharmacological precursor of purine nucleotide biosynthesis with anti-tumoral properties. Although recognized as an AMP mimetic activator of the protein kinase AMPK, the AICAR monophosphate derivative ZMP was also shown to mediate AMPK-independent effects. In order to unveil these AMPK-independent functions, we performed a transcriptomic analysis in AMPKα1/α2 double knockout murine embryonic cells. Kinetic analysis of the cellular response to AICAR revealed the up-regulation of the large tumor suppressor kinases (Lats) 1 and 2 transcripts, followed by the repression of numerous genes downstream of the transcriptional regulators Yap1 and Taz. This transcriptional signature, together with the observation of increased levels in phosphorylation of Lats1 and Yap1 proteins, suggested that the Hippo signaling pathway was activated by AICAR. This effect was observed in both fibroblasts and epithelial cells. Knockdown of Lats1/2 prevented the cytoplasmic delocalization of Yap1/Taz proteins in response to AICAR and conferred a higher resistance to the drug. These results indicate that activation of the most downstream steps of the Hippo cascade participates to the antiproliferative effects of AICAR.
Collapse
Affiliation(s)
- Chloé Philippe
- Université de Bordeaux, IBGC UMR 5095, Bordeaux, France; Centre National de la Recherche Scientifique, IBGC UMR 5095, Bordeaux, France
| | - Benoît Pinson
- Université de Bordeaux, IBGC UMR 5095, Bordeaux, France; Centre National de la Recherche Scientifique, IBGC UMR 5095, Bordeaux, France
| | - Jim Dompierre
- Université de Bordeaux, IBGC UMR 5095, Bordeaux, France; Centre National de la Recherche Scientifique, IBGC UMR 5095, Bordeaux, France
| | | | - Benoît Viollet
- INSERM U1016, Institut Cochin, Paris, France; CNRS (UMR 8104), Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bertrand Daignan-Fornier
- Université de Bordeaux, IBGC UMR 5095, Bordeaux, France; Centre National de la Recherche Scientifique, IBGC UMR 5095, Bordeaux, France.
| | - Michel Moenner
- Université de Bordeaux, IBGC UMR 5095, Bordeaux, France; Centre National de la Recherche Scientifique, IBGC UMR 5095, Bordeaux, France.
| |
Collapse
|
59
|
Li J, Liu F, Jiang S, Liu J, Chen X, Zhang S, Zhao H. Berberine hydrochloride inhibits cell proliferation and promotes apoptosis of non-small cell lung cancer via the suppression of the MMP2 and Bcl-2/Bax signaling pathways. Oncol Lett 2018; 15:7409-7414. [PMID: 29725453 DOI: 10.3892/ol.2018.8249] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/11/2017] [Indexed: 12/30/2022] Open
Abstract
Berberine, also known as berberine hydrochloride and isoquinoline alkaloid, is a major alkaloid from Coptis chinensis. Berberine's extensive biological properties have previously been studied, and it has been used clinically for the treatment of diarrhea, hypertension, diabetes and other diseases. The present study aimed to determine the possible anticancer effects of berberine hydrochloride treatment on human non-small cell lung cancer (NSCLC) cell proliferation and apoptosis via the matrix metalloproteinase 2 (MMP-2) and the B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) signaling pathway. Human A549 lung carcinoma cells were exposed to various concentrations of berberine hydrochloride in order to analyze the possible anticancer effects on NSCLC cell proliferation and apoptosis, using a MTT assay and an Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis kit. Subsequently, the present study detected the expression of MMP-2, Bcl-2, Bax and Janus kinase 2 (Jak2). Berberine hydrochloride treatment inhibited the expression of vascular endothelial growth factor (VEGF) and nuclear factor κB (NF-κB) and transcription factor AP-1 (AP-1) proteins, in A549 cells. Firstly, it was revealed that berberine hydrochloride treatment may inhibit proliferation, increase cytotoxicity and enhance apoptosis in A549 cells. Subsequently, treatment with berberine hydrochloride significantly downregulated MMP-2 protein expression, increased the activity of the Bcl-2/Bax signaling pathway and suppressed the Jak2/VEGF/NF-κB/AP-1signaling pathways. These results suggest that berberine hydrochloride may be a potential novel anticancer drug, since it inhibits cell proliferation and promotes the rate of apoptosis of NSCLC cells by the suppression of the MMP-2, Bcl-2/Bax and Jak2/VEGF/NF-κB/AP-1 signaling pathways.
Collapse
Affiliation(s)
- Jie Li
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Fang Liu
- Department of Oncology, Dongying City People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Shulong Jiang
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Jie Liu
- Department of Oncology, Shandong Cancer Hospital and Institute Shandong Academy of Medical Sciences, Jinan, Shandong 257091, P.R. China
| | - Xiuhong Chen
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Shangnuan Zhang
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Haibo Zhao
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
60
|
Shao Y, Li P, Zhu ST, Yue JP, Ji XJ, Ma D, Wang L, Wang YJ, Zong Y, Wu YD, Zhang ST. MiR-26a and miR-144 inhibit proliferation and metastasis of esophageal squamous cell cancer by inhibiting cyclooxygenase-2. Oncotarget 2017; 7:15173-86. [PMID: 26959737 PMCID: PMC4924778 DOI: 10.18632/oncotarget.7908] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
The altered expression of miRNAs is involved in carcinogenesis of esophageal squamous cell carcinoma (ESCC), but whether miRNAs regulate COX-2 expression in ESCC is not clear. To this end, the expression levels of miR-26a and miR-144 in ESCC clinical tissues and cell lines were investigated by qRT-PCR. COX-2 and PEG2 were quantified by western blot and ELISA. Decrease in miR-26a and miR-144 expression in ESCC was found by a comparison between 30 pairs of ESCC tumor and adjacent normal tissues as well as in 11 ESCC cell lines (P < 0.001). Co-transfection of miR-26a and miR-144 in ESCC cell lines more significantly suppressed cell proliferation, migration, and invasion than did either miR-26a or miR-144 alone (all P < 0.001), as shown by assays of CCK8, migration and invasion and flow cytometry. The inhibitory effect of these two miRNAs in vivo was also verified in nude mice xenograft models. COX-2 was confirmed as a target of miR-26a and miR-144. In conclusion, miR-26a and miR-144 expression is downregulated in ESCC. Co-expression of miR-26a and miR-144 in ESCC cells resulted in inhibition of proliferation and metastasis in vitro and in vivo, suggesting that targeting COX-2 may be the mechanism of these two miRNAs.
Collapse
Affiliation(s)
- Ying Shao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Sheng-Tao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Ji-Ping Yue
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Xiao-Jun Ji
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dan Ma
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Li Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Yong-Jun Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Ye Zong
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Yong-Dong Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Shu-Tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| |
Collapse
|
61
|
D'Amato-Brito C, Cipriano D, Colin DJ, Germain S, Seimbille Y, Robert JH, Triponez F, Serre-Beinier V. Role of MIF/CD74 signaling pathway in the development of pleural mesothelioma. Oncotarget 2017; 7:11512-25. [PMID: 26883190 PMCID: PMC4905490 DOI: 10.18632/oncotarget.7314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 01/24/2016] [Indexed: 11/25/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine implicated in acute and chronic inflammatory diseases. MIF is overexpressed in various tumors. It displays a number of functions that provide a direct link between the process of inflammation and tumor growth. Our group recently identified the MIF-receptor CD74 as an independent prognostic factor for overall survival in patients with malignant pleural mesothelioma. In the present study, we compared the levels of expression of MIF and CD74 in different human mesothelioma cell lines and investigated their physiopathological functions in vitro and in vivo. Human mesothelioma cells expressed more CD74 and secreted less MIF than non tumoral MeT5A cells, suggesting a higher sensitivity to MIF. In mesothelioma cells, high MIF levels were associated with a high multiplication rate of cells. In vitro, reduction of MIF or CD74 levels in both mesothelioma cell lines showed that the MIF/CD74 signaling pathway promoted tumor cell proliferation and protected MPM cells from apoptosis. Finally, mesothelioma cell lines expressing high CD74 levels had a low tumorigenic potential after xenogeneic implantation in athymic nude mice. All these data highlight the complexity of the MIF/CD74 signaling pathway in the development of mesothelioma.
Collapse
Affiliation(s)
- Cintia D'Amato-Brito
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Davide Cipriano
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Didier J Colin
- MicroPET/SPECT/CT Imaging Laboratory, Centre for BioMedical Imaging (CIBM), University Hospitals and University of Geneva, Geneva, Switzerland
| | - Stéphane Germain
- MicroPET/SPECT/CT Imaging Laboratory, Centre for BioMedical Imaging (CIBM), University Hospitals and University of Geneva, Geneva, Switzerland
| | - Yann Seimbille
- Cyclotron Unit, University Hospitals and University of Geneva, Geneva, Switzerland
| | - John H Robert
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Frédéric Triponez
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Véronique Serre-Beinier
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
62
|
Zhao Y, Cui L, Pan Y, Shao D, Zheng X, Zhang F, Zhang H, He K, Chen L. Berberine inhibits the chemotherapy-induced repopulation by suppressing the arachidonic acid metabolic pathway and phosphorylation of FAK in ovarian cancer. Cell Prolif 2017; 50. [PMID: 28990249 DOI: 10.1111/cpr.12393] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 09/09/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Cytotoxic chemotherapy is an effective and traditional treatment of ovarian cancer. However, chemotherapy-induced apoptosis may also trigger and ultimately accelerate the repopulation of the small number of adjacent surviving cells. This study mainly focused on the tumour cell repopulation caused by chemotherapy in ovarian cancer and the adjunctive/synergistic effect of Berberine on the prevention of tumour repopulation. MATERIALS AND METHODS The transwell system was used to mimic the co-culture of surviving ovarian cancer cells in the microenvironment of cytotoxic chemotherapy-treated dying cells. Tumour cell proliferation was observed by crystal violet staining. AA and PGE2 levels were measured by ELISA, and changes of protein expression were analysed by Western blot. RESULTS Chemotherapy drug VP16 treatment triggered AA pathway, leading to the elevated PGE2 level, and ultimately enhanced the repopulation of ovarian cancer cells. Berberine can block the caspase 3-iPLA2 -AA-COX-2-PGE2 pathway by inhibiting the expression of iPLA2 and COX-2. Berberine can also reverse the increased phosphorylation of FAK caused by abnormal PGE2 level and thus reverse the repopulation of ovarian cancer cells after VP16 treatment. CONCLUSIONS Our observation suggested that Berberine could inhibit the chemotherapy-induced repopulation of ovarian cancer cells by suppressing the AA pathway and phosphorylation of FAK. And these findings implicated a novel combined use of Berberine and chemotherapeutics, which might prevent ovarian cancer recurrence by abrogating early tumour repopulation.
Collapse
Affiliation(s)
- Yawei Zhao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Lianzhi Cui
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China.,Clinical Laboratory, Jilin Cancer Hospital, Changchun, China
| | - Yue Pan
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dan Shao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiao Zheng
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Fan Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hansi Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China.,School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
63
|
Chen L, Teng H, Jia Z, Battino M, Miron A, Yu Z, Cao H, Xiao J. Intracellular signaling pathways of inflammation modulated by dietary flavonoids: The most recent evidence. Crit Rev Food Sci Nutr 2017; 58:2908-2924. [PMID: 28682647 DOI: 10.1080/10408398.2017.1345853] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hui Teng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhen Jia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Maurizio Battino
- Center for Nutrition & Health, Universidad Europea del Atlantico, Santander, Spain and Dept. of Clinical Sciences, Universitr Nutrition & Health, Universidad Europea
| | - Anca Miron
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Romania
| | - Zhiling Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Hui Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| |
Collapse
|
64
|
Kim SH, Kim G, Han DH, Lee M, Kim I, Kim B, Kim KH, Song YM, Yoo JE, Wang HJ, Bae SH, Lee YH, Lee BW, Kang ES, Cha BS, Lee MS. Ezetimibe ameliorates steatohepatitis via AMP activated protein kinase-TFEB-mediated activation of autophagy and NLRP3 inflammasome inhibition. Autophagy 2017; 13:1767-1781. [PMID: 28933629 DOI: 10.1080/15548627.2017.1356977] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Impairment in macroautophagy/autophagy flux and inflammasome activation are common characteristics of nonalcoholic steatohepatitis (NASH). Considering the lack of approved agents for treating NASH, drugs that can enhance autophagy and modulate inflammasome pathways may be beneficial. Here, we investigated the novel mechanism of ezetimibe, a widely prescribed drug for hypercholesterolemia, as a therapeutic option for ameliorating NASH. Human liver samples with steatosis and NASH were analyzed. For in vitro studies of autophagy and inflammasomes, primary mouse hepatocytes, human hepatoma cells, mouse embryonic fibroblasts with Ampk or Tsc2 knockout, and human or primary mouse macrophages were treated with ezetimibe and palmitate. Steatohepatitis and fibrosis were induced by feeding Atg7 wild-type, haploinsufficient, and knockout mice a methionine- and choline-deficient diet with ezetimibe (10 mg/kg) for 4 wk. Human livers with steatosis or NASH presented impaired autophagy with decreased nuclear TFEB and increased SQSTM1, MAP1LC3-II, and NLRP3 expression. Ezetimibe increased autophagy flux and concomitantly ameliorated lipid accumulation and apoptosis in palmitate-exposed hepatocytes. Ezetimibe induced AMPK phosphorylation and subsequent TFEB nuclear translocation, related to MAPK/ERK. In macrophages, ezetimibe blocked the NLRP3 inflammasome-IL1B pathway in an autophagy-dependent manner and modulated hepatocyte-macrophage interaction via extracellular vesicles. Ezetimibe attenuated lipid accumulation, inflammation, and fibrosis in liver-specific Atg7 wild-type and haploinsufficient mice, but not in knockout mice. Ezetimibe ameliorates steatohepatitis by autophagy induction through AMPK activation and TFEB nuclear translocation, related to an independent MTOR ameliorative effect and the MAPK/ERK pathway. Ezetimibe dampens NLRP3 inflammasome activation in macrophages by modulating autophagy and a hepatocyte-driven exosome pathway.
Collapse
Affiliation(s)
- Soo Hyun Kim
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea
| | - Gyuri Kim
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea.,b Department of Medicine, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul , Korea.,c Graduate School , Yonsei University College of Medicine , Seoul , Korea
| | - Dai Hoon Han
- d Department of Surgery , Yonsei University College of Medicine , Seoul , Korea
| | - Milim Lee
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea
| | - Irene Kim
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea
| | - Bohkyung Kim
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea
| | - Kook Hwan Kim
- e Severance Biomedical Science Institute, Yonsei Biomedical Research Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Young-Mi Song
- f Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital , University of Toronto , Toronto , Canada
| | - Jeong Eun Yoo
- g Department of Pathology , Yonsei University College of Medicine , Seoul , Korea
| | - Hye Jin Wang
- h Department of Pharmacology , Yonsei University College of Medicine , Seoul , Korea
| | - Soo Han Bae
- e Severance Biomedical Science Institute, Yonsei Biomedical Research Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Yong-Ho Lee
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea.,c Graduate School , Yonsei University College of Medicine , Seoul , Korea.,i Institute of Endocrine Research , Yonsei University College of Medicine , Seoul , Korea
| | - Byung-Wan Lee
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea.,c Graduate School , Yonsei University College of Medicine , Seoul , Korea.,i Institute of Endocrine Research , Yonsei University College of Medicine , Seoul , Korea
| | - Eun Seok Kang
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea.,c Graduate School , Yonsei University College of Medicine , Seoul , Korea.,i Institute of Endocrine Research , Yonsei University College of Medicine , Seoul , Korea
| | - Bong-Soo Cha
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea.,c Graduate School , Yonsei University College of Medicine , Seoul , Korea.,i Institute of Endocrine Research , Yonsei University College of Medicine , Seoul , Korea
| | - Myung-Shik Lee
- a Department of Internal Medicine , Yonsei University College of Medicine , Seoul , Korea.,e Severance Biomedical Science Institute, Yonsei Biomedical Research Institute , Yonsei University College of Medicine , Seoul , Korea
| |
Collapse
|
65
|
Casticin inhibits interleukin-1β-induced ICAM-1 and MUC5AC expression by blocking NF-κB, PI3K-Akt, and MAPK signaling in human lung epithelial cells. Oncotarget 2017; 8:101175-101188. [PMID: 29254155 PMCID: PMC5731865 DOI: 10.18632/oncotarget.20933] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/27/2017] [Indexed: 01/31/2023] Open
Abstract
The compound casticin, isolated from Vitex rotundifolia, exerts anti-inflammatory effects and causes apoptosis of cancer cells. In this study, we explored the anti-inflammatory effects of casticin and modulation of cyclooxygenase (COX)-2, intercellular adhesion molecule 1 (ICAM-1), and mucin 5AC (MUC5AC) expression in interleukin-1β (IL-1β)-activated A549 human pulmonary epithelial cells. A549 cells were treated with various concentrations of casticin (5-20 μM), and an inflammatory response was triggered with interleukin (IL)-1β cytokines. Casticin decreased levels of IL-6, tumor necrosis factor α, and IL-8 and suppressed COX-2 expression and prostaglandin E2 production. It also reduced MUC5AC, proinflammatory cytokine, and chemokine gene expression and inhibited ICAM-1 expression for monocyte adhesion in IL-1β-stimulated A549 cells. In addition, casticin inhibited phosphorylation of Akt, phosphatidylinositol 3-kinase (PI3K), and mitogen-activated protein kinase (MAPK) and blocked nuclear transcription factor kappa-B (NF-κB) subunit p65 protein translocation into the nucleus. Co-culture of NF-κB, MAPK, and PI3K inhibitors with casticin also led to more significantly suppressed ICAM-1 expression in inflammatory A549 cells. These results provide evidence that casticin has an anti-inflammatory effect by blocking proinflammatory cytokine, chemokine, and ICAM-1 expression via suppression of the PI3K/Akt, NF-κB, and MAPK signaling pathways in IL-1β-stimulated inflammatory pulmonary epithelial cells.
Collapse
|
66
|
Lin CY, Hsieh PL, Liao YW, Peng CY, Lu MY, Yang CH, Yu CC, Liu CM. Berberine-targeted miR-21 chemosensitizes oral carcinomas stem cells. Oncotarget 2017; 8:80900-80908. [PMID: 29113353 PMCID: PMC5655248 DOI: 10.18632/oncotarget.20723] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer recurrence and chemoresistance are two major obstacles to the treatment of oral squamous cell carcinomas (OSCC). And cancer stem cells (CSCs) have been found to possess tumor initiating, self-renewal and metastasis abilities, resulting in the relapse and chemoresistance of OSCC. In the present study, we investigated the anti-CSCs effect of berberine, a phenanthrene alkaloid isolated from the Berberis genus. Our results demonstrated that berberine dose dependently downregulated the oncogenicity in vitro, including ALDH1 activity, self-renewal property, and colony formation and invasion abilities as well as potentiated chemosensitivity of OSCC-CSCs. In addition, tumor growth in mice was attenuated after oral gavage treatment of berberine. We showed that the expression of miR-21 was suppressed following administration of berberine in OSCC-CSCs. And inhibition of endogenous miR-21 reduced the characteristics of CSCs, including self-renewal, migration, invasion capabilities and ALDH1 activity. Taken together, we demonstrated the anti-CSC effect of berberine in oral cancer and its potential to serve as adjuvant to traditional chemotherapy to improve treatment effect.
Collapse
Affiliation(s)
- Che-Yi Lin
- Department of Oral and Maxillofacial Surgery, Chi Mei Hospital, Tainan, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Hsuan Yang
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Ming Liu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
67
|
Han YH, Kee JY, Kim DS, Mun JG, Park SH, Kim YJ, Um JY, Hong SH. Arctii Fructus Inhibits Colorectal Cancer Cell Proliferation and MMPs Mediated Invasion via AMPK. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1309-1325. [PMID: 28830210 DOI: 10.1142/s0192415x17500720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although Arctii Fructus (AF) has been shown to have various pharmacological effects, there have been no studies concerning the inhibitory effects of AF on the metastatic properties of colorectal cancer (CRC). The aim of this study was to investigate whether AF could suppress CRC progression by inhibiting cell growth, epithelial-mesenchymal transition (EMT), migration, and the invasion ability of CRC cells. AF decreased proliferation of CRC cells by inducing cell cycle arrest and apoptosis via extrinsic and intrinsic apoptotic pathways. Regarding metastatic properties, AF inhibited EMT by increasing the expression of the epithelial marker, E-cadherin, and decreasing the expression of the mesenchymal marker, N-cadherin, in CT26 cells. Moreover, AF decreased the migration and invasion of CT26 cells by inhibiting matrix metalloproteinase-2 (MMP-2) and MMP-9 activity. We confirmed that the decreased invasion ability and MMP-9 activity by AF treatment involved AMP-activated protein kinase (AMPK) activation. Collectively, this study demonstrates that AF inhibits the proliferation and metastatic properties of CRC cells.
Collapse
Affiliation(s)
- Yo-Han Han
- * Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ji-Ye Kee
- * Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dae-Seung Kim
- * Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jeong-Geon Mun
- * Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seong-Hwan Park
- * Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Yong Ju Kim
- † Department of Herbal Medicine Resources, College of Environmental and Bioresources Sciences, Chonbuk National University, 54596 Iksan, Republic of Korea
| | - Jae-Young Um
- ‡ Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seung-Heon Hong
- * Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
68
|
Liu B, Fu XQ, Li T, Su T, Guo H, Zhu PL, Tse AKW, Liu SM, Yu ZL. Computational and experimental prediction of molecules involved in the anti-melanoma action of berberine. JOURNAL OF ETHNOPHARMACOLOGY 2017; 208:225-235. [PMID: 28729227 DOI: 10.1016/j.jep.2017.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/07/2017] [Accepted: 07/15/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE Berberine (BBR) is a naturally occurring alkaloid compound that can be found in Chinese medicinal herbs such as Rhizoma Coptidis and Phellodendri Cortex. These BBR containing herbs are commonly used by Chinese medicine doctors to treat cancers including melanoma. In this study, we explored proteins potentially involved in the anti-melanoma effects of BBR using computational and experimental approaches. MATERIALS AND METHODS Target proteins of BBR were predicted using the reverse pharmacophore screening, molecular docking and molecular dynamics. Anti-melanoma activities of BBR in melanoma cells were examined by MTT and EdU proliferation assays. Effects of BBR on activities of target proteins in melanoma cells were examined by Western blotting or fluorescence assay. RESULTS Ten proteins implicated in cancer and with high fit-score in the reverse pharmacophore screening were selected as potential targets of BBR. Molecular docking and molecular dynamics revealed that BBR could stably bind to four of the ten proteins, namely 3-phosphoinositide-dependent protein kinase 1 (PDK1), glucocorticoid receptor (GR), p38 mitogen-activated protein kinase (p38) and dihydroorotate dehydrogenase (DHODH). Cellular experiments showed that BBR inhibited cell proliferation, increased the phosphorylation of GR and p38, and inhibited the activity of DHODH in A375 human melanoma cells. CONCLUSIONS These findings suggest that p38, GR and DHODH are potentially involved in the anti-melanoma action of BBR. This study provided a chemical and pharmacological justification for the clinical use of BBR-containing herbs in melanoma treatment.
Collapse
Affiliation(s)
- Bin Liu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ting Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Tao Su
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Hui Guo
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Pei-Li Zhu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Anfernee Kai-Wing Tse
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Shi-Ming Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| |
Collapse
|
69
|
Ha BG, Jung SS, Shon YH. Effects of proton beam irradiation on mitochondrial biogenesis in a human colorectal adenocarcinoma cell line. Int J Oncol 2017; 51:859-866. [PMID: 28713989 DOI: 10.3892/ijo.2017.4067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 06/27/2017] [Indexed: 11/06/2022] Open
Abstract
Proton beam therapy has recently been used to improve local control of tumor growth and reduce side-effects by decreasing the global dose to normal tissue. However, the regulatory mechanisms underlying the physiological role of proton beam radiation are not well understood, and many studies are still being conducted regarding these mechanisms. To determine the effects of proton beams on mitochondrial biogenesis, we investigated: mitochondrial DNA (mtDNA) mass; the gene expression of mitochondrial transcription factors, functional regulators, and dynamic-related regulators; and the phosphorylation of the signaling molecules that participate in mitochondrial biogenesis. Both the mtDNA/nuclear DNA (nDNA) ratio and the mitochondria staining assays showed that proton beam irradiation increases mitochondrial biogenesis in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced aggressive HT-29 cells. Simultaneously, proton beam irradiation increases the gene expression of the mitochondrial transcription factors PGC-1α, NRF1, ERRα, and mtTFA, the dynamic regulators DRP1, OPA1, TIMM44, and TOM40, and the functional regulators CytC, ATP5B and CPT1-α. Furthermore, proton beam irradiation increases the phosphorylation of AMPK, an important molecule involved in mitochondrial biogenesis that is an energy sensor and is regulated by the AMP/ATP ratio. Based on these findings, we suggest that proton beam irradiation inhibits metastatic potential by increasing mitochondrial biogenesis and function in TPA-induced aggressive HT-29 cells.
Collapse
Affiliation(s)
- Byung Geun Ha
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 700-721, Republic of Korea
| | - Sung Suk Jung
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 700-721, Republic of Korea
| | - Yun Hee Shon
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 700-721, Republic of Korea
| |
Collapse
|
70
|
Guo W, Wang H, Yang Y, Guo S, Zhang W, Liu Y, Yi X, Ma J, Zhao T, Liu L, Jian Z, Liu L, Wang G, Gao T, Shi Q, Li C. Down-regulated miR-23a Contributes to the Metastasis of Cutaneous Melanoma by Promoting Autophagy. Am J Cancer Res 2017; 7:2231-2249. [PMID: 28740547 PMCID: PMC5505056 DOI: 10.7150/thno.18835] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/31/2017] [Indexed: 12/18/2022] Open
Abstract
Melanoma is among the most aggressive tumors, and the occurrence of metastasis leads to a precipitous drop in the patients' survival. Therefore, identification of metastasis-associated biomarkers and therapeutic targets will contribute a lot to improving melanoma theranostics. Recently, microRNAs (miRNAs) have been implicated in modulating cancer invasion and metastasis, and are proved as potential non-invasive biomarkers in sera for various tumors. Here, we reported miR-23a as a novel metastasis-associated miRNA that played a remarkable role in modulating melanoma invasive and metastatic capacity and was of great value in predicting melanoma metastasis and prognosis. We found that serum miR-23a level was significantly down-regulated in metastatic melanoma patients and highly correlated with poor clinical outcomes. In addition, miR-23a level was also remarkably decreased in metastatic melanoma tissues and cell lines. Furthermore, overexpressed miR-23a suppressed the invasive and migratory property of melanoma cells by abrogating autophagy through directly targeting ATG12. Specially, miR-23a-ATG12 axis attenuated melanoma invasion and migration through autophagy-mediated AMPK-RhoA pathway. Finally, the overexpression of miR-23a prevented melanoma metastasis in vivo. Taken together, our findings demonstrate that the metastasis-associated miR-23a is not only a potential biomarker, but also a valuable therapeutic target for melanoma.
Collapse
|
71
|
Diet phytochemicals and cutaneous carcinoma chemoprevention: A review. Pharmacol Res 2017; 119:327-346. [PMID: 28242334 DOI: 10.1016/j.phrs.2017.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/25/2017] [Accepted: 02/04/2017] [Indexed: 12/11/2022]
Abstract
Cutaneous carcinoma, which has occupied a peculiar place among worldwide populations, is commonly responsible for the considerably increasing morbidity and mortality rates. Currently available medical procedures fail to completely avoid cutaneous carcinoma development or to prevent mortality. Cancer chemoprevention, as an alternative strategy, is being considered to reduce the incidence and burden of cancers through chemical agents. Derived from dietary foods, phytochemicals have become safe and reliable compounds for the chemoprevention of cutaneous carcinoma by relieving multiple pathological processes, including oxidative damage, epigenetic alteration, chronic inflammation, angiogenesis, etc. In this review, we presented comprehensive knowledges, main molecular mechanisms for the initiation and development of cutaneous carcinoma as well as effects of various diet phytochemicals on chemoprevention.
Collapse
|
72
|
Tong D, Liu Q, Liu G, Xu J, Lan W, Jiang Y, Xiao H, Zhang D, Jiang J. Metformin inhibits castration-induced EMT in prostate cancer by repressing COX2/PGE2/STAT3 axis. Cancer Lett 2016; 389:23-32. [PMID: 28043910 DOI: 10.1016/j.canlet.2016.12.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/17/2022]
Abstract
Castration is the standard therapeutic treatment for advanced prostate cancer but with limited benefit due to the profound relapse and metastasis. Activation of inflammatory signaling pathway and initiation of epithelial-mesenchymal transition (EMT) are closely related to drug resistance, tumor relapseas well as metastasis. In this study, we demonstrated that metformin is capable of inhibiting prostate cancer cell migration and invasion by repressing EMT evidenced by downregulating the mesenchymal markers N-cadherin, Vimentin, and Twist and upregulating the epithelium E-cadherin. These effects have also been observed in our animal model as well as prostate cancer patients. In addition, we showed the effects of metformin on the expression of genes involved in EMT through repressing the levels of COX2, PGE2 and phosphorylated STAT3. Furthermore, inactivating COX2 abolishes metformin's regulatory effects and exogenously administered PGE2 is capable of enhancing STAT3 phosphorylation and expression of EMT biomarker. We propose that metformin represses prostate cancer EMT and metastasis through targeting the COX2/PGE2/STAT3 axis. These findings suggest that metformin by itself or in combination with other anticancer drugs could be used as an anti-metastasis therapy.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Gaolei Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Jing Xu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Weihua Lan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Yao Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Hualiang Xiao
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China.
| |
Collapse
|
73
|
The biological function and significance of CD74 in immune diseases. Inflamm Res 2016; 66:209-216. [DOI: 10.1007/s00011-016-0995-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/30/2016] [Indexed: 12/25/2022] Open
|
74
|
Yarla NS, Bishayee A, Sethi G, Reddanna P, Kalle AM, Dhananjaya BL, Dowluru KSVGK, Chintala R, Duddukuri GR. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol 2016; 40-41:48-81. [PMID: 26853158 DOI: 10.1016/j.semcancer.2016.02.001] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/23/2016] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
Arachidonic acid (AA) pathway, a metabolic process, plays a key role in carcinogenesis. Hence, AA pathway metabolic enzymes phospholipase A2s (PLA2s), cyclooxygenases (COXs) and lipoxygenases (LOXs) and their metabolic products, such as prostaglandins and leukotrienes, have been considered novel preventive and therapeutic targets in cancer. Bioactive natural products are a good source for development of novel cancer preventive and therapeutic drugs, which have been widely used in clinical practice due to their safety profiles. AA pathway inhibitory natural products have been developed as chemopreventive and therapeutic agents against several cancers. Curcumin, resveratrol, apigenin, anthocyans, berberine, ellagic acid, eugenol, fisetin, ursolic acid, [6]-gingerol, guggulsteone, lycopene and genistein are well known cancer chemopreventive agents which act by targeting multiple pathways, including COX-2. Nordihydroguaiaretic acid and baicalein can be chemopreventive molecules against various cancers by inhibiting LOXs. Several PLA2s inhibitory natural products have been identified with chemopreventive and therapeutic potentials against various cancers. In this review, we critically discuss the possible utility of natural products as preventive and therapeutic agents against various oncologic diseases, including prostate, pancreatic, lung, skin, gastric, oral, blood, head and neck, colorectal, liver, cervical and breast cancers, by targeting AA pathway. Further, the current status of clinical studies evaluating AA pathway inhibitory natural products in cancer is reviewed. In addition, various emerging issues, including bioavailability, toxicity and explorability of combination therapy, for the development of AA pathway inhibitory natural products as chemopreventive and therapeutic agents against human malignancy are also discussed.
Collapse
Affiliation(s)
- Nagendra Sastry Yarla
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, 18301 N. Miami Avenue, Miami, FL 33169, USA.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India
| | - Arunasree M Kalle
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India; Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bhadrapura Lakkappa Dhananjaya
- Toxinology/Toxicology and Drug Discovery Unit, Center for Emerging Technologies, Jain Global Campus, Jain University, Kanakapura Taluk, Ramanagara 562 112, Karnataka, India
| | - Kaladhar S V G K Dowluru
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India; Department of Microbiology and Bioinformatics, Bilaspur University, Bilaspur 495 001, Chhattisgarh, India
| | - Ramakrishna Chintala
- Department of Environmental Sciences, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India
| | - Govinda Rao Duddukuri
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India.
| |
Collapse
|
75
|
Controls of Nuclear Factor-Kappa B Signaling Activity by 5'-AMP-Activated Protein Kinase Activation With Examples in Human Bladder Cancer Cells. Int Neurourol J 2016; 20:182-187. [PMID: 27706018 PMCID: PMC5083836 DOI: 10.5213/inj.1632718.359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 02/02/2023] Open
Abstract
Generally, both lipopolysaccharide (LPS)- and hypoxia-induced nuclear factor kappa B (NF-κB) effects are alleviated through differential posttranslational modification of NF-κB phosphorylation after pretreatment with 5´-AMP-activated protein kinase (AMPK) activators such as 5´-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or the hypoglycemic agent metformin. We found that AICAR or metformin acts as a regulator of LPS/NF-κB-or hypoxia/NF-κB-mediated cyclooxygenase induction by an AMPK-dependent mechanism with interactions between p65-NF-κB phosphorylation and acetylation, including in a human bladder cancer cell line (T24). In summary, we highlighted the regulatory interactions of AMPK activity on NF-κB induction, particularly in posttranslational phosphorylation and acetylation of NF-κB under inflammatory conditions or hypoxia environment.
Collapse
|
76
|
Metformin mediated reversal of epithelial to mesenchymal transition is triggered by epigenetic changes in E-cadherin promoter. J Mol Med (Berl) 2016; 94:1397-1409. [DOI: 10.1007/s00109-016-1455-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 01/24/2023]
|
77
|
Li J, Luo M, Wang Y, Shang B, Dong L. Celecoxib suppresses fibroblast growth factor-2 expression in pancreatic ductal adenocarcinoma PANC-1 cells. Oncol Rep 2016; 36:1345-52. [DOI: 10.3892/or.2016.4924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/16/2016] [Indexed: 11/05/2022] Open
|
78
|
Tsai SC, Tsai MH, Chiu CF, Lu CC, Kuo SC, Chang NW, Yang JS. AMPK-dependent signaling modulates the suppression of invasion and migration by fenofibrate in CAL 27 oral cancer cells through NF-κB pathway. ENVIRONMENTAL TOXICOLOGY 2016; 31:866-876. [PMID: 25545733 DOI: 10.1002/tox.22097] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 06/04/2023]
Abstract
Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist and lipid-lowering agent, has been used worldwide for treatment of hyperlipidemia. The clinical trials demonstrate that fenofibrate possesses multiple pharmacological activities, including antitumor effects. However, the precise mechanisms in oral squamous cell carcinoma (OSCC) remain unclear. In this study, we investigated the anticancer effects of fenofibrate on the migration and invasion of human oral cancer CAL 27 cells. Fenofibrate inhibited the cell migration and invasion of CAL 27 cells by the wound healing and Boyden chamber transwell assays, respectively. In addition, fenofibrate reduced the protein expressions of MMP-1, MMP-2, MMP-7, and MMP-9 by Western blotting and inhibited enzyme activities of MMP-2/-9 using gelatin zymography assay. Results from immunoblotting analysis showed that the proteins of p-LKB1 (Ser428), LKB1, p-AMPKα (Thr172), p-AMPKα1/α2 (Ser425/Ser491), p-AMPKβ1 (Ser108), and AMPKγ1 were upregulated by fenofibrate; the levels of p-IKKα/β (Ser176) and p-IκBα were reduced in fenofibrate-treated cells. Also, fenofibrate suppressed the expressions of nuclear NF-κB p65 and p50 by immunoblotting and NF-κB DNA binding activity by EMSA assay. The anti-invasive effect of fenofibrate was attenuated by compound C [an adenosine 5'-monophosphate-activated protein kinase (AMPK) inhibitor] or dominant negative form of AMPK (DN-AMPKα1). Thus, fenofibrate considerably inhibited metastatic behaviors of CAL 27 cells might be mediated through blocking NF-κB signaling, resulting in the inhibition of MMPs; these effects were AMPK-dependent rather than PPARα signaling. Our findings provide a molecular rationale, whereby fenofibrate exerts anticancer effects and additional beneficial effects for the treatment of cancer patients. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 866-876, 2016.
Collapse
Affiliation(s)
- Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Ming-Hsui Tsai
- Department of Otolaryngology, China Medical University Hospital, Taichung, 404, Taiwan
| | - Chang-Fang Chiu
- Department of Hematology and Oncology, China Medical University Hospital, Taichung, 404, Taiwan
| | - Chi-Cheng Lu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Sheng-Chu Kuo
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, 404, Taiwan
| | - Nai-Wen Chang
- Department of Biochemistry, China Medical University, Taichung, 404, Taiwan
| | - Jai-Sing Yang
- Bracco Pharmaceutical Corp. Ltd., Taipei, 104, Taiwan
| |
Collapse
|
79
|
Cazarin JM, Coelho RG, Hecht F, Andrade BM, Carvalho DP. 5'-AMP-Activated Protein Kinase Regulates Papillary (TPC-1 and BCPAP) Thyroid Cancer Cell Survival, Migration, Invasion, and Epithelial-to-Mesenchymal Transition. Thyroid 2016; 26:933-42. [PMID: 27121619 DOI: 10.1089/thy.2015.0440] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Differentiated thyroid carcinomas (DTC) are associated with a good prognosis and a high survival rate. However, tumor recurrence occurs in approximately 20-30% of DTC patients, reinforcing the importance of identifying new molecular targets for cancer management. It has been shown that the 5'-AMP-activated protein kinase (AMPK) is over-activated in papillary thyroid cancer (PTC). This study aimed to investigate the effects of 5-aminoimidazole-4-carboxamide-ribonucleoside (AICAR), an AMPK activator, on various aspects of thyroid cancer cell behavior, including cell survival, apoptosis, migration, invasion, and epithelial-to-mesenchymal transition (EMT), in the human thyroid cancer cell lines BCPAP and TPC-1. METHODS BCPAP and TPC-1 cells were cultivated in Dulbecco's modified Eagle's medium, and the non-tumor-derived cell line Nthy-ORI was grown in RPMI. Cells were treated or not with AICAR for different periods of time. The cell growth rate, cell cycle phase, apoptosis, cell migration, and invasion were analyzed using transwell inserts, and EMT was quantified by the expression of mesenchymal and epithelial markers. RESULTS AMPK is activated in thyroid cancer cell lines, and AICAR treatment further increased AMPK phosphorylation. After 48 hours of AICAR treatment, the percentage of cells in the G2/M phase decreased, and a G0/G1-phase arrest was induced in both cell lines. AMPK activation effectively induced apoptosis in the BCPAP and TPC-1 cancer cell lines, while no apoptosis induction was observed in Nthy-ORI cells. AICAR also reduced the migration of Nthy-ORI and BCPAP cells by 30% and approximately 60% in TPC-1 cells. AICAR had no effect on cell invasion in Nthy-ORI and TPC-1 cells, but a significant reduction of cell invasion was observed in BCPAP cells. AICAR induced a significant reduction of N-cadherin and no changes in the expression of vimentin or TCF/Zeb1 protein in BCPAP cells. No differences in the expression of EMT markers were found in the AICAR-treated Nthy-ORI cells. A remarkable reduction of vimentin, TCF/Zeb1, and N-cadherin protein expression was detected in the TPC-1 cells. CONCLUSIONS Increased activation of AMPK in PTC cell lines leads to a strong antitumor response, as measured by the inhibition of cell proliferation, cell migration, and induction of cell death. AMPK activation also reverses EMT in TPC-1 cells.
Collapse
Affiliation(s)
- Juliana M Cazarin
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Raquel G Coelho
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Fabio Hecht
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Bruno M Andrade
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Denise P Carvalho
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| |
Collapse
|
80
|
Abstract
AMP-activated protein kinase (AMPK) is an important mediator in maintaining cellular energy homeostasis. AMPK is activated in response to a shortage of energy. Once activated, AMPK can promote ATP production and regulate metabolic energy. AMPK is a known target for treating metabolic syndrome and type-2 diabetes; however, recently AMPK is emerging as a possible metabolic tumor suppressor and target for cancer prevention and treatment. Recent epidemiological studies indicate that treatment with metformin, an AMPK activator reduces the incidence of cancer. In this article we review the role of AMPK in regulating inflammation, metabolism, and other regulatory processes with an emphasis on cancer, as well as, discuss the potential for targeting AMPK to treat various types of cancer. Activation of AMPK has been found to oppose tumor progression in several cancer types and offers a promising cancer therapy. This review evaluates the evidence linking AMPK with tumor suppressor function and analyzes the molecular mechanisms involved. AMPK activity opposes tumor development and progression in part by regulating inflammation and metabolism.
Collapse
|
81
|
Choi MK, Song IS. Blockade of P-Glycoprotein Decreased the Disposition of Phenformin and Increased Plasma Lactate Level. Biomol Ther (Seoul) 2016; 24:199-205. [PMID: 26797108 PMCID: PMC4774502 DOI: 10.4062/biomolther.2015.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate the in vivo relevance of P-glycoprotein (P-gp) in the pharmacokinetics and adverse effect of phenformin. To investigate the involvement of P-gp in the transport of phenformin, a bi-directional transport of phenformin was carried out in LLC-PK1 cells overexpressing P-gp, LLC-PK1-Pgp. Basal to apical transport of phenformin was 3.9-fold greater than apical to basal transport and became saturated with increasing phenformin concentration (2–75 μM) in LLC-PK1-Pgp, suggesting the involvement of P-gp in phenformin transport. Intrinsic clearance mediated by P-gp was 1.9 μL/min while passive diffusion clearance was 0.31 μL/min. Thus, P-gp contributed more to phenformin transport than passive diffusion. To investigate the contribution of P-gp on the pharmacokinetics and adverse effect of phenformin, the effects of verapamil, a P-gp inhibitor, on the pharmacokinetics of phenformin were also examined in rats. The plasma concentrations of phenformin were increased following oral administration of phenformin and intravenous verapamil infusion compared with those administerd phenformin alone. Pharmacokinetic parameters such as Cmax and AUC of phenformin increased and CL/F and Vss/F decreased as a consequence of verapamil treatment. These results suggested that P-gp blockade by verapamil may decrease the phenformin disposition and increase plasma phenformin concentrations. P-gp inhibition by verapamil treatment also increased plasma lactate concentration, which is a crucial adverse event of phenformin. In conclusion, P-gp may play an important role in phenformin transport process and, therefore, contribute to the modulation of pharmacokinetics of phenformin and onset of plasma lactate level.
Collapse
Affiliation(s)
- Min-Koo Choi
- College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
82
|
Physcion inhibits the metastatic potential of human colorectal cancer SW620 cells in vitro by suppressing the transcription factor SOX2. Acta Pharmacol Sin 2015; 37:264-75. [PMID: 26707141 DOI: 10.1038/aps.2015.115] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/10/2015] [Indexed: 12/13/2022] Open
Abstract
AIM Physcion, an anthraquinone derivative, exhibits hepatoprotective, anti-inflammatory, anti-microbial and anti-cancer activities. In this study we examined whether and how physcion inhibited metastatic potential of human colorectal cancer cells in vitro. METHODS Human colorectal cancer cell line SW620 was tested. Cell migration and invasion were assessed using a wound healing and Transwell assay, respectively. The expression levels of transcription factor SOX2 in the cells were modulated with shRNA targeting SOX2 and SOX2 overexpressing plasmid. The expression of target molecules involved in epithelial-mesenchymal transition (EMT) process and the signaling pathways was determined with Western blots or qRT-PCR. ROS levels were measured using DCF-DA. RESULTS Physcion (2.5, 5 mol/L) did not affect the cell viability, but dose-dependently inhibited the cell adhesion, migration and invasion. Physcion also inhibited the EMT process in the cells, as evidenced by the increased epithelial marker E-cadherin expression, and by decreased expression of mesenchymal markers N-cadherin, vimentin, fibronectin and α-SMA, as well as transcriptional repressors Snail, Slug and Twist. Physcion suppressed the expression of SOX2, whereas overexpression of SOX2 abrogated the inhibition of physcion on metastatic behaviors. Physcion markedly increased ROS production and phosphorylation of AMPK and GSK3β in the cells, whereas the AMPK inhibitor compound C or the ROS inhibitor NAC abolished the inhibition of physcion on metastatic behaviors. CONCLUSION Physcion inhibits the metastatic potential of human colorectal cancer cells in vitro via activating ROS/AMPK/GSK3β signaling pathways and suppressing SOX2.
Collapse
|
83
|
Wang N, Tan HY, Li L, Yuen MF, Feng Y. Berberine and Coptidis Rhizoma as potential anticancer agents: Recent updates and future perspectives. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:35-48. [PMID: 26494507 DOI: 10.1016/j.jep.2015.10.028] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 10/17/2015] [Accepted: 10/17/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The antineoplastic property of Coptidis Rhizoma and berberine was correlated with its traditional use of clearing internal fire, removing damp-heat and counteracting toxic pathogens. AIM OF THE STUDY The anti-tumor effect of Coptidis Rhizoma and berberine was extensively studied since our last comprehensive review in 2009. This study aims to summarize the recent updates and give rise to perspectives of Coptidis Rhizoma and berberine as potential novel antineoplastic agents. METHODS Quality studies in recent 5 years were retrieved from PubMed, Medline and CNKI with keywords including Coptis, Coptidis Rhizoma, huanglian, berberine, tumor and cancer. Studies were focused on the pharmacological actions of Coptidis Rhizoma and berberine in cancer progression. RESULTS It was shown that Coptidis Rhizoma extract and berberine may repress tumor progression by regressing abnormal cell proliferation, arresting cell cycle and inducing cell death. Studies also highlighted the actions of Coptidis Rhizoma extract and berberine in inhibiting tumor cell invasion and angiogenesis, which in turn abolish cancer metastasis. Some studies have also been conducted to reveal the potential effect of Coptidis Rhizoma extract and berberine in regulating tumor stromal microenvironment, as well as in preventing carcinogenesis. Most of the results have been demonstrated with in vivo models, but results of high-quality clinical trials are not yet available. Unspecified cancer type and staging, fluctuated dose information and variants of targets across studies of berberine/ Coptidis Rhizoma impede their clinical use for cancer treatment. CONCLUSION Recent advances highlighted by this review may shed light on future direction of studies featuring Coptidis Rhizoma and berberine as novel antineoplastic agents, which should be repeatedly proven in future animal and clinical studies. Although more evidences on its specificity and clinical efficacy are necessary to support its clinical use, Coptidis Rhizoma and berberine are highly expected to be effective, safe and affordable treatments for cancer patients.
Collapse
Affiliation(s)
- Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Man-Fung Yuen
- Division of Gastroenterology and Hepatology, Queen Mary Hospital, and Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
84
|
Li J, Li B, Xu WW, Chan KW, Guan XY, Qin YR, Lee NPY, Chan KT, Law S, Tsao SW, Cheung ALM. Role of AMPK signaling in mediating the anticancer effects of silibinin in esophageal squamous cell carcinoma. Expert Opin Ther Targets 2015; 20:7-18. [DOI: 10.1517/14728222.2016.1121236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
85
|
Apigenin Attenuates Melanoma Cell Migration by Inducing Anoikis through Integrin and Focal Adhesion Kinase Inhibition. Molecules 2015; 20:21157-66. [PMID: 26633318 PMCID: PMC6332386 DOI: 10.3390/molecules201219752] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 11/16/2022] Open
Abstract
Apigenin, a nonmutagenic flavonoid, has been found to have antitumor properties and is therefore particularly relevant for the development of chemotherapeutic agents for cancers. In this study, time- and dose-dependent cell viability and cytotoxicity were assessed to determine the effects of apigenin on A2058 and A375 melanoma cells. Melanoma cells were pretreated with different concentrations of apigenin and analyzed for morphological changes, anoikis induction, cell migration, and levels of proteins associated with apoptosis. Apigenin reduced integrin protein levels and inhibited the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK1/2), which induce anoikis in human cutaneous melanoma cells. Apigenin exhibited dose-dependent inhibition of melanoma cell migration, unlike untreated controls. Furthermore, apigenin treatment increased apoptotic factors such as caspase-3 and cleaved poly(ADP-ribose) polymerase in a dose-dependent manner, demonstrating the metastasis of melanoma cells. Our results provide a new insight into the mechanisms by which apigenin prevents melanoma metastasis by sensitizing anoikis induced by the loss of integrin proteins in the FAK/ERK1/2 signaling pathway. These findings elucidate the related mechanisms and suggest the potential of apigenin in developing clinical treatment strategies against malignant melanoma.
Collapse
|
86
|
Shao Y, Li P, Zhu ST, Yue JP, Ji XJ, He Z, Ma D, Wang L, Wang YJ, Zong Y, Wu YD, Zhang ST. Cyclooxygenase-2, a Potential Therapeutic Target, Is Regulated by miR-101 in Esophageal Squamous Cell Carcinoma. PLoS One 2015; 10:e0140642. [PMID: 26556718 PMCID: PMC4640815 DOI: 10.1371/journal.pone.0140642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/29/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND & AIMS Cyclooxygenase-2 (COX-2) is known to promote the carcinogenesis of esophageal squamous cell carcinoma (ESCC). There are no reports on whether microRNAs (miRNAs) regulate COX-2 expression in ESCC. This study investigated the effect of miR-101 on ESCC through modulating COX-2 expression in ESCC. METHODS Real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to quantify miR-101 expression in ESCC clinical tissues and cell lines. The effects of miR-101 on ESCC progression were evaluated by cell counting kit-8 (CCK8), transwell migration and invasion assays, as well as by flow cytometry. The COX-2 and PEG2 levels were determined by western blot and enzyme-linked immunosorbent assays (ELISA). The luciferase reporter assay was used to verify COX-2 as a direct target of miR-101. The anti-tumor activity of miR-101 in vivo was investigated in a xenograft nude mouse model of ESCC. RESULTS Downregulation of miR-101 was confirmed through comparison of 30 pairs of ESCC tumor and adjacent normal tissues (P < 0.001), as well as in 11 ESCC cell lines and a human immortalized esophageal cell line (P < 0.001). Transfection of miR-101 in ESCC cell lines significantly suppressed cell proliferation, migration, and invasion (all P < 0.001). The antitumor effect of miR-101 was verified in a xenograft model. Furthermore, COX-2 was shown to be a target of miR-101. CONCLUSIONS Overexpression of miR-101 in ESCC inhibits proliferation and metastasis. Therefore, the miR-101/COX-2 pathway might be a therapeutic target in ESCC.
Collapse
MESH Headings
- Animals
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/therapy
- Cell Line, Tumor
- Cell Movement
- Cyclooxygenase 2/biosynthesis
- Cyclooxygenase 2/genetics
- Down-Regulation
- Enzyme Induction/genetics
- Esophageal Neoplasms/enzymology
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/therapy
- Esophagus/chemistry
- Gene Expression Regulation, Neoplastic/genetics
- Genes, Reporter
- Genetic Therapy
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- Molecular Targeted Therapy
- Neoplasm Invasiveness
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Real-Time Polymerase Chain Reaction
- Transfection
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ying Shao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Sheng-tao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Ji-ping Yue
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Xiao-jun Ji
- Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhen He
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Dan Ma
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Li Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Yong-jun Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Ye Zong
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Yong-dong Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Shu-tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
- * E-mail:
| |
Collapse
|
87
|
AlQathama A, Prieto JM. Natural products with therapeutic potential in melanoma metastasis. Nat Prod Rep 2015; 32:1170-82. [PMID: 26018751 DOI: 10.1039/c4np00130c] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Malignant melanoma is the most aggressive form of skin cancer and accounts for about 3% of all cases of malignant tumour. Its incidence is increasing worldwide and it is becoming resistant to current therapeutic agents. Natural products continue to provide lead cytotoxic compounds for cancer treatment but less attention has been given to antimigratory compounds. This paper systematically and critically surveys all natural products with direct in vitro and in vivo pharmacological effects on migration and/or metastasis of melanoma cells and maps the mechanisms of action for these underexploited properties. As a result, over 30 natural active principles are described acting mainly through their antagonistic effects upon the TNF-α and EP2 receptors or the suppression of several protein kinases involved in metastatic pathways such as RAS, PI3K, ERK and FAK. Also, some were able to reduce the level of mesenchymal biomarkers such as N-cadherin and/or elevate the expression of other molecules such as E-cadherin. Consequently, downstream transcription factors namely NF-kB, AP-1, ATF-2, CREB, and HIF were inactivated leading to diminished production of MMPs, IL-1, IL-6, COX-2, VEGF and GM-CSF. This review also discusses the opportunity of combination therapies based on natural products and approved drugs, such as the combination of EGCG and dacarbazine, or the combination of two natural compounds such as quercetin and sulforaphane.
Collapse
Affiliation(s)
- A AlQathama
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX London, UK.
| | | |
Collapse
|
88
|
Li N, Huang D, Lu N, Luo L. Role of the LKB1/AMPK pathway in tumor invasion and metastasis of cancer cells (Review). Oncol Rep 2015; 34:2821-6. [PMID: 26398719 DOI: 10.3892/or.2015.4288] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/31/2015] [Indexed: 11/06/2022] Open
Abstract
Liver kinase B1 (LKB1), also known as serine/threo-nine kinase 11 (STK11), is a tumor suppressor that is inactivated in Peutz-Jeghers familial cancer syndrome. LKB1 phosphorylates and activates AMP-activated protein kinase (AMPK), which negatively regulates cancer cell proliferation and metabolism. However, recent evidence demonstrates that the LKB1/AMPK pathway is involved in the process of tumor invasion and migration, which is an important hallmark of carcinoma progression to higher pathological grades of malignancy. This review focuses on the function of the LKB1/AMPK pathway in the invasion and migration of cancer cells and provides an overview of therapeutic strategies aimed at this pathway in malignant tumors.
Collapse
Affiliation(s)
- Nianshuang Li
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Deqiang Huang
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nonghua Lu
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingyu Luo
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
89
|
Berberine Regulated Lipid Metabolism in the Presence of C75, Compound C, and TOFA in Breast Cancer Cell Line MCF-7. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:396035. [PMID: 26351511 PMCID: PMC4550799 DOI: 10.1155/2015/396035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 12/21/2022]
Abstract
Berberine interfering with cancer reprogramming metabolism was confirmed in our previous study. Lipid metabolism and mitochondrial function were also the core parts in reprogramming metabolism. In the presence of some energy-related inhibitors, including C75, compound C, and TOFA, the discrete roles of berberine in lipid metabolism and mitochondrial function were elucidated. An altered lipid metabolism induced by berberine was observed under the inhibition of FASN, AMPK, and ACC in breast cancer cell MCF-7. And the reversion of berberine-induced lipid suppression indicated that ACC inhibition might be involved in that process instead of FASN inhibition. A robust apoptosis induced by berberine even under the inhibition of AMPK and lipid synthesis was also indicated. Finally, mitochondrial function regulation under the inhibition of AMPK and ACC might be in an ACL-independent manner. Undoubtedly, the detailed mechanisms of berberine interfering with lipid metabolism and mitochondrial function combined with energy-related inhibitors need further investigation, including the potential compensatory mechanisms for ATP production and the upregulation of ACL.
Collapse
|
90
|
Banskota S, Regmi SC, Kim JA. NOX1 to NOX2 switch deactivates AMPK and induces invasive phenotype in colon cancer cells through overexpression of MMP-7. Mol Cancer 2015; 14:123. [PMID: 26116564 PMCID: PMC4482031 DOI: 10.1186/s12943-015-0379-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/06/2015] [Indexed: 01/01/2023] Open
Abstract
Background Although matrix metalloproteinase (MMP)-7 expression is correlated with increased metastatic potential in human colon cancer cells, the underlying molecular mechanism of invasive phenotype remains unknown. In the current study, we investigated the regulatory effects of membrane NADPH oxidase (NOX) and AMP activated protein kinase (AMPK) on MMP-7 expression and invasive phenotype change in colon cancer cells. Methods Production of superoxide anion was measured by lucigenin chemiluminescence assay using whole cells and protein extracts (NADPH oxidase activity), and intracellular reactive oxygen species (ROS) by fluorescence microscopy using 2’,7’-dichlorofluorescein diacetate (DCF-DA). Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to measure mRNA and protein levels, respectively. siRNA transfection was used to assess involvement of genes in cancer invasion, which were identified by Matrigel transwell invasion assay. Luciferase reporter assay was performed to identify transcription factors linked to gene expression. Results Under basal conditions, less invasive human colon cancer cells (HT29 and Caco-2) showed low MMP-7 expression but high NOX1 expression and AMPK phosphorylation. Treatment of HT29 and Caco-2 cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced an invasive phenotype response along with corresponding increases in ROS production and NOX2 and MMP-7 expression as well as reduced AMPK phosphorylation, which resemble basal conditions of highly invasive human colon cancer cells (SW620 and HCT116). In addition, inverse regulation between AMPK phosphorylation and NOX2 and MMP-7 expression was observed in HT29 cells treated with different concentrations of exogenous hydrogen peroxide. TPA-induced invasive phenotype in HT29 cells was abolished by treatment with Vit. E, DPI, apocynin, and NOX2 siRNA but not NOX1 siRNA, indicating NOX2-derived ROS production induced an invasive phenotype. TPA-induced induction of MMP-7 expression was suppressed by AP-1, NF-κB, and MAPK (ERK, p38, and JNK) inhibitors, whereas TPA-induced expression of NOX2 and its regulators, p47phox and p67phox, was blocked by p38 and NF-κB inhibitors. Conclusions Molecular switch from NOX1 to NOX2 in colon cancer cells induces ROS production and subsequently enhances MMP-7 expression by deactivating AMPK, which otherwise inhibits stimulus-induced autoregulation of ROS and NOX2 gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0379-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suhrid Banskota
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, South Korea.
| | - Sushil C Regmi
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, South Korea.
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, South Korea.
| |
Collapse
|
91
|
Yang W, Zou L, Huang C, Lei Y. Redox regulation of cancer metastasis: molecular signaling and therapeutic opportunities. Drug Dev Res 2015; 75:331-41. [PMID: 25160073 DOI: 10.1002/ddr.21216] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer metastasis is the major cause of cancer-related mortality. Accumulated evidence has shown that high-metastasis potential cancer cells have more reactive oxygen species (ROS) accumulation compared with low-metastasis potential cancer cells. ROS can function as second messengers to regulate multiple cancer metastasis-related signaling pathways via reversible oxidative posttranslational modifications of cysteine in key redox-sensitive proteins, which leads to the structural and functional change of these proteins. Because ROS can promote cancer metastasis, therapeutic strategies aiming at inducing/reducing cellular ROS level or targeting redox sensors involved in metastasis hold great potential in developing new efficient approaches for anticancer therapy. In this review, we summarize recent findings on regulation of tumor metastasis by key redox sensors and describe the potential of targeting redox signaling pathways for cancer therapy.
Collapse
Affiliation(s)
- Wenyong Yang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China; College of Life Sciences, Sichuan University, Chengdu, 610065, China; The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | | | | | | |
Collapse
|
92
|
Ma L, Zhang L, Wang B, Wei J, Liu J, Zhang L. Berberine inhibits Chlamydia pneumoniae infection-induced vascular smooth muscle cell migration through downregulating MMP3 and MMP9 via PI3K. Eur J Pharmacol 2015; 755:102-9. [PMID: 25746423 DOI: 10.1016/j.ejphar.2015.02.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/29/2015] [Accepted: 02/17/2015] [Indexed: 01/01/2023]
Abstract
The mechanisms by which Chlamydia pneumoniae infection promote vascular smooth muscle cell (VSMC) migration required in the development of atherosclerosis have not yet been fully clarified. Matrix metalloproteinases (MMPs) have important roles in VSMC migration. However, it is still unknown whether MMPs are involved in C. pneumoniae infection-induced VSMC migration. In addition, whether berberine can exert its inhibitory effects on the infection-induced VSMC migration also remains unclear. Accordingly, we investigated the effects of berberine on C. pneumoniae infection-induced VSMC migration and explored the possible mechanisms involved in this process. Herein, we found that C. pneumoniae infection could induce VSMC migration through Matrigel-coated membrane (P<0.05), which can be significantly inhibited by the broad-spectrum MMP inhibitor GM6001 (P<0.05). Our results also showed that C. pneumoniae infection upregulated both mRNA and protein expressions of MMP3 and MMP9 (P<0.05). The specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002 significantly suppressed the increases in MMP3 and MMP9 protein expressions induced by C. pneumoniae infection (P<0.05). Further experiments showed that berberine significantly attenuated C. pneumoniae infection-induced VSMC migration (P<0.05). Moreover, berberine suppressed the protein expressions of MMP3 and MMP9 caused by C. pneumoniae infection in a dose-dependent manner (P<0.05). C. pneumoniae infection-induced increase in the phosphorylation level of Akt at Ser473 was inhibited by the treatment with berberine (P<0.05). Taken together, our data suggest that berberine inhibits C. pneumoniae infection-induced VSMC migration by downregulating the expressions of MMP3 and MMP9 via PI3K.
Collapse
Affiliation(s)
- Lu Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Beibei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Junyan Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jingya Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
93
|
Adiponectin mediates antiproliferative and apoptotic responses in endometrial carcinoma by the AdipoRs/AMPK pathway. Gynecol Oncol 2015; 137:311-20. [PMID: 25703675 DOI: 10.1016/j.ygyno.2015.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/09/2015] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Determine the serum adiponectin levels in endometrial carcinoma (EC) cases and controls and explore the correlation between them. We assessed the functions of AdipoR1 and AdipoR2 in endometrial cancer cells to determine whether the AMPK/ERK and Akt pathways mediate the effects of adiponectin-induced apoptosis and anti-proliferation. MATERIAL AND METHODS The serum adiponectin levels were measured via enzyme-linked immunosorbent assay (ELISA). The proliferation and apoptosis rates were determined with MTT and annexin V/PI assays. To evaluate the activation of AMPK, ERK, and Akt and the expression of Bcl-2 and Cyclin D1, western blot analysis was performed in Ishikawa 3-H-12 cells. We down-regulated AdipoRs by si-RNA to assess their functions. RESULTS The serum adiponectin levels were significantly decreased in patients with EC compared to controls. The adiponectin-induced apoptosis and anti-proliferation effects in EC cells were blocked by Compound C. Ishikawa 3-H-12 cells exhibited time- and dose-dependent increases in the p-AMPK levels after treatment with adiponectin. Adiponectin treatment reduced the levels of ERK and Akt phosphorylations and cyclin D1 and Bcl-2 mRNA and protein expression. Compound C blocked the effects on ERK, Akt, cyclin D1, and Bcl-2. AdipoR1 and AdipoR2 were involved in adiponectin-induced growth inhibition and ERK activation inhibition. We speculated that AdipoR1 has a greater role than adipoR2 in apoptosis and Akt activation inhibition after adiponectin treatment. CONCLUSION Adiponectin was an apoptotic and anti-proliferation agent for EC cells, and these effects were dependent on the AMPK/ERK and Akt pathways. AdipoR1 and AdipoR2 may play different roles in this process.
Collapse
|
94
|
Bergamo A, Gerdol M, Lucafò M, Pelillo C, Battaglia M, Pallavicini A, Sava G. RNA-seq analysis of the whole transcriptome of MDA-MB-231 mammary carcinoma cells exposed to the antimetastatic drug NAMI-A. Metallomics 2015; 7:1439-50. [DOI: 10.1039/c5mt00081e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
95
|
Wang J, Yuan L, Xiao H, Wang C, Xiao C, Wang Y, Liu X. A novel mechanism for momordin Ic-induced HepG2 apoptosis: involvement of PI3K- and MAPK-dependent PPARγ activation. Food Funct 2014; 5:859-68. [PMID: 24584198 DOI: 10.1039/c3fo60558b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Momordin Ic is a natural triterpenoid saponin found in various Chinese and Japanese natural medicines such as the fruit of Kochia scoparia (L.) Schrad. Momordin Ic has been previously demonstrated to induce HepG2 cell apoptosis in a ROS-mediated PI3K and MAPK pathway-dependent manner. In the present study, the underlying mechanisms of PI3K and MAPK pathway-mediated PPARγ, and PGC-1α co-regulator activation, as well as the effects of downstream proteins, COX-2 and FoxO4, on cell apoptosis were investigated. The results demonstrated that momordin Ic activated PPARγ and inhibited COX-2. PGC-1α and FoxO4 expressions were increased by the PI3K or MAPK pathways. Furthermore, PPARγ inhibition decreased p-p38 and FoxO4 expression, and restored COX-2 expression. ROS inhibition exerted little effect on PPARγ, COX-2 and FoxO4 expression but affected PGC-1α expression. These results revealed the involvement of PI3K and MAPK-dependent PPARγ activation in momordin Ic-induced apoptosis, providing more detailed information underlying the pro-apoptotic mechanism of momordin Ic in HepG2 cell apoptosis.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | | | | | | | | | | | | |
Collapse
|
96
|
Krishan S, Richardson DR, Sahni S. Adenosine Monophosphate–Activated Kinase and Its Key Role in Catabolism: Structure, Regulation, Biological Activity, and Pharmacological Activation. Mol Pharmacol 2014; 87:363-77. [DOI: 10.1124/mol.114.095810] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
97
|
Transportation of berberine into HepG2, HeLa and SY5Y cells: a correlation to its anti-cancer effect. PLoS One 2014; 9:e112937. [PMID: 25402492 PMCID: PMC4234535 DOI: 10.1371/journal.pone.0112937] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 10/17/2014] [Indexed: 12/13/2022] Open
Abstract
The anti-cancer activities of berberine (BBR) have been reported extensively in various cancer cell lines. However, the minimal inhibitory concentrations of BBR varied greatly among different cell lines and very few studies have been devoted to elucidate this aspect. In this study, we employed three cancer cell lines, HepG2, HeLa and SY5Y, to compare the transportation and distribution of BBR. HPLC results demonstrated that BBR was capable of penetrating all the cell lines whereas the cumulative concentrations were significantly different. HepG2 cells accumulated higher level of BBR for longer duration than the other two cell lines. Molecular docking studies revealed the BBR binding site on P-glycoprotein 1 (P-gp). In addition, we elucidated that BBR regulated P-gp at both mRNA and protein levels. BBR induced the transcription and translation of P-gp in HeLa and SY5Y cells, whereas BBR inhibited P-gp expression in HepG2 cells. Further study showed that BBR regulates P-gp expression depending on different mechanisms (or affected by different factors) in different cell lines. To summarize, our study has revealed several mechanistic aspects of BBR regulation on P-gp in different cancer cell lines and might shed some useful insights into the use of BBR in the anti-cancer drug development.
Collapse
|
98
|
Kim HS, Lim J, Lee DY, Ryu JH, Lim JS. Kazinol C from Broussonetia kazinoki activates AMP-activated protein kinase to induce antitumorigenic effects in HT-29 colon cancer cells. Oncol Rep 2014; 33:223-9. [PMID: 25394483 DOI: 10.3892/or.2014.3601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/21/2014] [Indexed: 11/05/2022] Open
Abstract
Kazinol C is a 1,3-diphenylpropane, obtained from Broussonetia kazinoki, that has been employed in folk medicine as an edema suppressant. It exerts beneficial effects in oxidative stress-related diseases, such as cancer. However, the molecular mechanism involved in the anticancer effects remains to be determined. AMP-activated protein kinase (AMPK) has emerged as a possible anticancer target molecule. The present study investigated the effect of kazinol C on AMPK activation as well as subsequent HT-29 colon cancer cell viability, apoptosis and migration. Kazinol C markedly induced AMPK phosphorylation and significantly attenuated HT-29 colon cancer cell growth and viability. Compound C, as a well‑known AMPK inhibitor, blocked the kazinol C-induced cell death, and stable transduction of dominant-negative (DN) AMPK in colon cancer cells also inhibited kazinol C-induced cell apoptosis. In addition, kazinol C inhibited HT-29 cell migration and anchorage-independent growth. AMPK inhibition using stable transduction with DN AMPK significantly abrogated the kazinol C-induced inhibition of cancer cell migration. Thus, AMPK is a critical and novel regulator of kazinol C-mediated cancer cell apoptosis and inhibition of migration, suggesting that AMPK is a prime cancer target.
Collapse
Affiliation(s)
- Hak-Su Kim
- Department of Biological Science and the Research Center for Women's Diseases, Sookmyung Women's University, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Jihyun Lim
- Department of Biological Science and the Research Center for Women's Diseases, Sookmyung Women's University, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Da Yeon Lee
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Jae-Ha Ryu
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Science and the Research Center for Women's Diseases, Sookmyung Women's University, Yongsan-Gu, Seoul 140-742, Republic of Korea
| |
Collapse
|
99
|
Organic cation transporter-mediated drug–drug interaction potential between berberine and metformin. Arch Pharm Res 2014; 38:849-56. [DOI: 10.1007/s12272-014-0510-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/23/2014] [Indexed: 01/08/2023]
|
100
|
A gene expression signature-based approach reveals the mechanisms of action of the Chinese herbal medicine berberine. Sci Rep 2014; 4:6394. [PMID: 25227736 PMCID: PMC5377252 DOI: 10.1038/srep06394] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/26/2014] [Indexed: 12/13/2022] Open
Abstract
Berberine (BBR), a traditional Chinese herbal medicine, was shown to display anticancer activity. In this study, we attempted to provide a global view of the molecular pathways associated with its anticancer effect through a gene expression-based chemical approach. BBR-induced differentially expressed genes obtained from the Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) were analyzed using the Connectivity Map (CMAP) database to compare similarities of gene expression profiles between BBR and CMAP compounds. Candidate compounds were further analyzed using the Search Tool for Interactions of Chemicals (STITCH) database to explore chemical-protein interactions. Results showed that BBR may inhibit protein synthesis, histone deacetylase (HDAC), or AKT/mammalian target of rapamycin (mTOR) pathways. Further analyses demonstrated that BBR inhibited global protein synthesis and basal AKT activity, and induced endoplasmic reticulum (ER) stress and autophagy, which was associated with activation of AMP-activated protein kinase (AMPK). However, BBR did not alter mTOR or HDAC activities. Interestingly, BBR induced the acetylation of α-tubulin, a substrate of HDAC6. In addition, the combination of BBR and SAHA, a pan-HDAC inhibitor, synergistically inhibited cell proliferation and induced cell cycle arrest. Our results provide novel insights into the mechanisms of action of BBR in cancer therapy.
Collapse
|