51
|
Zhang W, Zeng L, Yu H, He Z, Huang C, Li C, Nie Y, Li L, Zhou F, Liu B, Zhang Y, Yao Z, Zhang W, Qin L, Chen D, He Q, Lai Y. Injectable spontaneous hydrogen-releasing hydrogel for long-lasting alleviation of osteoarthritis. Acta Biomater 2023; 158:163-177. [PMID: 36596433 DOI: 10.1016/j.actbio.2022.12.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 01/02/2023]
Abstract
Excessive production of reactive oxygen species (ROS) amplifies pro-inflammatory pathways and exacerbates immune responses, and is a key factor in the progression of osteoarthritis (OA). Therapeutic hydrogen gas (H2) with antioxidative and anti-inflammatory effects, has a potential for OA alleviation, but the targeted delivery and sustained release of H2 are still challenging. Herein, we develop an injectable calcium boride nanosheets (CBN) loaded hydrogel platform (CBN@GelDA hydrogel) as a high-payload and sustainable H2 precursor for OA treatment. The CBN@GelDA hydrogel could maintain constant physiological pH conditions which further promotes more H2 release than the CBN alone and lasts more than one week. The biocompatibility of this hydrogel with macrophages and chondrocytes is effectively enhanced. The experiments show that the CBN@GelDA hydrogel holds the ROS scavenging ability, reducing the expression of related inflammatory cytokines, lessening M1 macrophages but stimulating M2 phenotype, and thereby decreasing chondrocyte apoptosis, which facilitates to breaking of the vicious circle of OA progression. Furthermore, a single-time injection of the CBN@GelDA hydrogel markedly reduces joint destruction in OA rats. From what has been discussed above, this injectable spontaneous H2-releasing hydrogel is promising for OA treatment. STATEMENT OF SIGNIFICANCE: Oxidative stress and inflammation play the key role in the occurrence and development of osteoarthritis (OA). The system of a hydrogel loaded with H2 precursor calcium boride nanosheet (CBN), which is the first to use as an H2 precursor, integrates superior injectable and biocompatible of hydrogel and the selection of antioxidant properties of H2. This system can improve H2 release behavior and achieve a single injection into the articular cavity to alleviate the progression of OA in rats. This study of the combination of a convenient long-acting injectable hydrogel and a safe therapeutic gas is of great value for improving the quality of life of clinical patients.
Collapse
Affiliation(s)
- Wenjing Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingting Zeng
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huan Yu
- Faculty of Pharmaceutical Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ziheng He
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuishan Huang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cairong Li
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyi Nie
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Long Li
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Zhou
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ben Liu
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuantao Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhenyu Yao
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Di Chen
- Faculty of Pharmaceutical Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qianjun He
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuxiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Engineering Laboratory of Biomaterials Additive Manufacturing, Shenzhen, 518055, China.
| |
Collapse
|
52
|
Wang Z, Yi X, Yi W, Jian C, Qi B, Liu Q, Li Z, Yu A. Early diagnosis of heterotopic ossification with a NIR fluorescent probe by targeting type II collagen. J Mater Chem B 2023; 11:1684-1691. [PMID: 36594255 DOI: 10.1039/d2tb02157a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heterotopic ossification (HO) is a devastating sequela in which the pathologic extracellular matrix of the cartilage and bone forms abnormally in soft tissues following traumatic injuries or orthopaedic surgeries. Early treatment is essential for inhibiting the progression of HO but is currently limited by the absence of sensitive and specific early diagnosis. Herein, this study exploits the enrichment of type II collagen (Col2a1) in the HO cartilage formation stage towards developing a near-infrared (NIR) probe for early HO diagnosis, namely WL-808 by conjugating a Col2a1-binding peptide (WYRGRL) and a cyanine dye (IR-808). WL-808 exhibits high specificity for targeting the cartilage in vitro and in vivo with no apparent cytotoxicity. The NIR signal of WL-808 can be detected in the HO cartilage lesions as early as 1 week after injury when micro-CT cannot show any ectopic bone formation. Moreover, the probe is rarely distributed in the normal knee articular cartilage in vivo via the intravenous administration method. Taken together, WL-808 demonstrates great potential in early HO diagnosis under NIR imaging, facilitating early HO prophylaxis and treatment in the clinic.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China. .,Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei 430071, China
| | - Xinzeyu Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China. .,Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei 430071, China
| | - Wanrong Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China. .,Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei 430071, China
| | - Chao Jian
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China. .,Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei 430071, China
| | - Baiwen Qi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China. .,Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei 430071, China
| | - Qiaoyun Liu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zonghuan Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China. .,Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei 430071, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China. .,Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei 430071, China
| |
Collapse
|
53
|
Intracellular Delivery of Itaconate by Metal–Organic Framework-Anchored Hydrogel Microspheres for Osteoarthritis Therapy. Pharmaceutics 2023; 15:pharmaceutics15030724. [PMID: 36986584 PMCID: PMC10051475 DOI: 10.3390/pharmaceutics15030724] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Treatment of osteoarthritis (OA) remains a significant clinical challenge. Itaconate (IA), an emerging regulator of intracellular inflammation and oxidative stress, may potentially be harnessed to treat OA. However, the short joint residence time, inefficient drug delivery, and cell-impermeable property of IA can seriously hamper the clinical translation. Herein, IA-encapsulated zeolitic imidazolate framework-8 (IA-ZIF-8) nanoparticles were self-assembled by zinc ions, 2-methylimidazole, and IA to render them pH-responsive. Subsequently, IA-ZIF-8 nanoparticles were firmly immobilized in hydrogel microspheres via one-step microfluidic technology. It was demonstrated in vitro experiments that IA-ZIF-8-loaded hydrogel microspheres (IA-ZIF-8@HMs) exhibited good anti-inflammatory and anti-oxidative stress effects by releasing pH-responsive nanoparticles into chondrocytes. Importantly, compared with IA-ZIF-8, IA-ZIF-8@HMs showed better performance in the treatment of OA due to their superior performance in sustained release. Thus, such hydrogel microspheres not only hold enormous potential for OA therapy, but also provide a novel avenue for cell-impermeable drugs by constructing appropriate drug delivery systems.
Collapse
|
54
|
Sun S, Liu H, Hu Y, Wang Y, Zhao M, Yuan Y, Han Y, Jing Y, Cui J, Ren X, Chen X, Su J. Selection and identification of a novel ssDNA aptamer targeting human skeletal muscle. Bioact Mater 2023; 20:166-178. [PMID: 35663338 PMCID: PMC9157180 DOI: 10.1016/j.bioactmat.2022.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle disorders have posed great threats to health. Selective delivery of drugs and oligonucleotides to skeletal muscle is challenging. Aptamers can improve targeting efficacy. In this study, for the first time, the human skeletal muscle-specific ssDNA aptamers (HSM01, etc.) were selected and identified with Systematic Evolution of Ligands by Exponential Enrichment (SELEX). The HSM01 ssDNA aptamer preferentially interacted with human skeletal muscle cells in vitro. The in vivo study using tree shrews showed that the HSM01 ssDNA aptamer specifically targeted human skeletal muscle cells. Furthermore, the ability of HSM01 ssDNA aptamer to target skeletal muscle cells was not affected by the formation of a disulfide bond with nanoliposomes in vitro or in vivo, suggesting a potential new approach for targeted drug delivery to skeletal muscles via liposomes. Therefore, this newly identified ssDNA aptamer and nanoliposome modification could be used for the treatment of human skeletal muscle diseases.
Collapse
Affiliation(s)
- Shuming Sun
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Yanpeng Wang
- Molecular Biology Research Center, Center for Medical Genetics, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Mingri Zhao
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Yijun Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Yafei Han
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jin Cui
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
55
|
Li C, Gong P, Chao M, Li J, Yang L, Huang Y, Wang D, Liu J, Liu Z. A Biomimetic Lubricating Nanosystem with Responsive Drug Release for Osteoarthritis Synergistic Therapy. Adv Healthc Mater 2023; 12:e2203245. [PMID: 36708271 DOI: 10.1002/adhm.202203245] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/15/2023] [Indexed: 01/29/2023]
Abstract
Osteoarthritis (OA) is associated with lubrication failure of articular cartilage and severe inflammatory response of joint capsule. Synergistic therapy combining joint lubrication and anti-inflammation emerges as a novel treatment of OA. In this study, bioinspired by ultralow friction of natural articular synovial fluid and mussel adhesion chemistry, a biomimetic nanosystem with dual functions of enhanced lubrication and stimuli-responsive drug release is developed. A dopamine mediated strategy realizes one step biomimetic grafting of hyaluronic acid (HA) on fluorinated graphene. The polymer modified sheets exhibit highly efficient near-infrared absorption, and show steady lubrication with a long time under various working conditions, in which the coefficient of friction is reduced by 75% compared to H2 O. Diclofenac sodium (DS) with a high loading capacity of 29.2% is controllably loaded, and responsive and sustained drug release is adjusted by near-infrared light. Cell experiments reveal that the lubricating nanosystem is taken up by endocytosis, and anti-inflammation results confirm that the nanosystem inhibits osteoarthritis deterioration by upregulating cartilage anabolic gene and downregulating catabolic proteases and pain-related gene. This work proposes a promising biomimetic approach to integrate polymer modified fluorinated graphene as a dual-functional nanosystem for effective synergistic therapy of OA.
Collapse
Affiliation(s)
- Cheng Li
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Peiwei Gong
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China.,State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Mianran Chao
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Juan Li
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Liyan Yang
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Yan Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Dandan Wang
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zhe Liu
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| |
Collapse
|
56
|
Zhang ZJ, Hou YK, Chen MW, Yu XZ, Chen SY, Yue YR, Guo XT, Chen JX, Zhou Q. A pH-responsive metal-organic framework for the co-delivery of HIF-2α siRNA and curcumin for enhanced therapy of osteoarthritis. J Nanobiotechnology 2023; 21:18. [PMID: 36650517 PMCID: PMC9847079 DOI: 10.1186/s12951-022-01758-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
The occurrence of osteoarthritis (OA) is highly correlated with the reduction of joint lubrication performance, in which persistent excessive inflammation and irreversible destruction of cartilage dominate the mechanism. The inadequate response to monotherapy methods, suboptimal efficacy caused by undesirable bioavailability, short retention, and lack of stimulus-responsiveness, are few unresolved issues. Herein, we report a pH-responsive metal-organic framework (MOF), namely, MIL-101-NH2, for the co-delivery of anti-inflammatory drug curcumin (CCM) and small interfering RNA (siRNA) for hypoxia inducible factor (HIF-2α). CCM and siRNA were loaded via encapsulation and surface coordination ability of MIL-101-NH2. Our vitro tests showed that MIL-101-NH2 protected siRNA from nuclease degradation by lysosomal escape. The pH-responsive MIL-101-NH2 gradually collapsed in an acidic OA microenvironment to release the CCM payloads to down-regulate the level of pro-inflammatory cytokines, and to release the siRNA payloads to cleave the target HIF-2α mRNA for gene-silencing therapy, ultimately exhibiting the synergetic therapeutic efficacy by silencing HIF-2α genes accompanied by inhibiting the inflammation response and cartilage degeneration of OA. The hybrid material reported herein exhibited promising potential performance for OA therapy as supported by both in vitro and in vivo studies and may offer an efficacious therapeutic strategy for OA utilizing MOFs as host materials.
Collapse
Affiliation(s)
- Zi-Jian Zhang
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Ying-Ke Hou
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Ming-Wa Chen
- grid.284723.80000 0000 8877 7471NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515 People’s Republic of China
| | - Xue-Zhao Yu
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Si-Yu Chen
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Ya-Ru Yue
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Xiong-Tian Guo
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Jin-Xiang Chen
- grid.284723.80000 0000 8877 7471NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515 People’s Republic of China
| | - Quan Zhou
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| |
Collapse
|
57
|
Yin Z, Gong G, Wang X, Liu W, Wang B, Yin J. The dual role of autophagy in periprosthetic osteolysis. Front Cell Dev Biol 2023; 11:1123753. [PMID: 37035243 PMCID: PMC10080036 DOI: 10.3389/fcell.2023.1123753] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
Periprosthetic osteolysis (PPO) induced by wear particles is an important cause of aseptic loosening after artificial joint replacement, among which the imbalance of osteogenesis and osteoclastic processes occupies a central position. The cells involved in PPO mainly include osteoclasts (macrophages), osteoblasts, osteocytes, and fibroblasts. RANKL/RANK/OGP axis is a typical way for osteolysis. Autophagy, a mode of regulatory cell death and maintenance of cellular homeostasis, has a dual role in PPO. Although autophagy is activated in various periprosthetic cells and regulates the release of inflammatory cytokines, osteoclast activation, and osteoblast differentiation, its beneficial or detrimental role remains controversy. In particular, differences in the temporal control and intensity of autophagy may have different effects. This article focuses on the role of autophagy in PPO, and expects the regulation of autophagy to become a powerful target for clinical treatment of PPO.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, The First People’s Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiang Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Bin Wang
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
- *Correspondence: Jian Yin, ; Bin Wang,
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
- *Correspondence: Jian Yin, ; Bin Wang,
| |
Collapse
|
58
|
Li J, Zhang H, Han Y, Hu Y, Geng Z, Su J. Targeted and responsive biomaterials in osteoarthritis. Theranostics 2023; 13:931-954. [PMID: 36793867 PMCID: PMC9925319 DOI: 10.7150/thno.78639] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/07/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease characterized by loss of articular cartilage and chronic inflammation, involving multiple cellular dysfunctions and tissue lesions. The non-vascular environment and dense cartilage matrix in the joints tend to block drug penetration, resulting in low drug bioavailability. There is a desire to develop safer and more effective OA therapies to meet the challenges of an aging world population in the future. Biomaterials have achieved satisfactory results in improving drug targeting, prolonging the duration of action, and achieving precision therapy. This article reviews the current basic understanding of the pathological mechanisms and clinical treatment dilemmas of OA, summarizes and discusses the advances for different kinds of targeted and responsive biomaterials in OA, seeking to provide new perspectives for the treatment of OA. Subsequently, limitations and challenges in clinical translation and biosafety are analyzed to guide the development of future therapeutic strategies for OA. As the need for precision medicine rises over time, emerging multifunctional biomaterials based on tissue targeting and controlled release will become an irreplaceable part of OA management.
Collapse
Affiliation(s)
- Jiadong Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China.,School of Medicine, Shanghai University, Shanghai 200444, China.,School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Yafei Han
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
59
|
Xu XL, Xue Y, Ding JY, Zhu ZH, Wu XC, Song YJ, Cao YL, Tang LG, Ding DF, Xu JG. Nanodevices for deep cartilage penetration. Acta Biomater 2022; 154:23-48. [PMID: 36243371 DOI: 10.1016/j.actbio.2022.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease and is the main cause of chronic pain and functional disability in adults. Articular cartilage is a hydrated soft tissue that is composed of normally quiescent chondrocytes at a low density, a dense network of collagen fibrils with a pore size of 60-200 nm, and aggrecan proteoglycans with high-density negative charge. Although certain drugs, nucleic acids, and proteins have the potential to slow the progression of OA and restore the joints, these treatments have not been clinically applied owing to the lack of an effective delivery system capable of breaking through the cartilage barrier. Recently, the development of nanotechnology for delivery systems renders new ideas and treatment methods viable in overcoming the limited penetration. In this review, we focus on current research on such applications of nanotechnology, including exosomes, protein-based cationic nanocarriers, cationic liposomes/solid lipid nanoparticles, amino acid-based nanocarriers, polyamide derivatives-based nanocarriers, manganese dioxide, and carbon nanotubes. Exosomes are the smallest known nanoscale extracellular vesicles, and they can quickly deliver nucleic acids or proteins to the required depth. Through electrostatic interactions, nanocarriers with appropriate balance in cationic property and particle size have a strong ability to penetrate cartilage. Although substantial preclinical evidence has been obtained, further optimization is necessary for clinical transformation. STATEMENT OF SIGNIFICANCE: The dense cartilage matrix with high-negative charge was associated with reduced therapeutic effect in osteoarthritis patients with deep pathological changes. However, a systematic review in nanodevices for deep cartilage penetration is still lacking. Current approaches to assure penetration of nanosystems into the depth of cartilage were reviewed, including nanoscale extracellular vesicles from different cell lines and nanocarriers with appropriate balance in cationic property and size particle. Moreover, nanodevices entering clinical trials and further optimization were also discussed, providing important guiding significance to future research.
Collapse
Affiliation(s)
- Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yan Xue
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai 201613, China
| | - Jia-Ying Ding
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Heng Zhu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xi-Chen Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yong-Jia Song
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue-Long Cao
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Long-Guang Tang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.
| | - Dao-Fang Ding
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
60
|
Emulsion Gel: a Dual Drug Delivery Platform for Osteoarthritis Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
61
|
Huang J, Liu Q, Xia J, Chen X, Xiong J, Yang L, Liang Y. Modification of mesenchymal stem cells for cartilage-targeted therapy. J Transl Med 2022; 20:515. [PMID: 36348497 PMCID: PMC9644530 DOI: 10.1186/s12967-022-03726-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the destruction of the articular cartilage, sclerosis of the subchondral bone, and joint dysfunction. Its pathogenesis is attributed to direct damage and mechanical destruction of joint tissues. Mesenchymal stem cells (MSCs), suggested as a potential strategy for the treatment of OA, have shown therapeutic effects on OA. However, the specific fate of MSCs after intraarticular injection, including cell attachment, proliferation, differentiation, and death, is still unclear, and there is no guarantee that stem cells can be retained in the cartilage tissue to enact repair. Direct homing of MSCs is an important determinant of the efficacy of MSC-based cartilage repair. Recent studies have revealed that the unique homing capacity of MSCs and targeted modification can improve their ability to promote tissue regeneration. Here, we comprehensively review the homing effect of stem cells in joints and highlight progress toward the targeted modification of MSCs. In the future, developments of this targeting system that accelerate tissue regeneration will benefit targeted tissue repair.
Collapse
|
62
|
Li X, Shu X, Shi Y, li H, Pei X. MOFs and bone: Application of MOFs in bone tissue engineering and bone diseases. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
63
|
Chu T, Li Q, Dai C, Li X, Kong X, Fan Y, Yin H, Ge J. A novel Nanocellulose-Gelatin-AS-IV external stent resists EndMT by activating autophagy to prevent restenosis of grafts. Bioact Mater 2022; 22:466-481. [PMID: 36330163 PMCID: PMC9615139 DOI: 10.1016/j.bioactmat.2022.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Vein grafts are widely used for coronary artery bypass grafting and hemodialysis access, but restenosis remains the "Achilles' heel" of these treatments. An extravascular stent is one wrapped around the vein graft and provides mechanical strength; it can buffer high arterial pressure and secondary vascular dilation of the vein to prevent restenosis. In this study, we developed a novel Nanocellulose-gelatin hydrogel, loaded with the drug Astragaloside IV (AS-IV) as an extravascular scaffold to investigate its ability to reduce restenosis. We found that the excellent physical and chemical properties of the drug AS-IV loaded Nanocellulose-gelatin hydrogel external stent limit graft vein expansion and make the stent biocompatible. We also found it can prevent restenosis by resisting endothelial-to-mesenchymal transition (EndMT) in vitro. It does so by activating autophagy, and AS-IV can enhance this effect both in vivo and in vitro. This study has added to existing research on the mechanism of extravascular stents in preventing restenosis of grafted veins. Furthermore, we have developed a novel extravascular stent for the prevention and treatment of restenosis. This will help optimize the clinical treatment plan of external stents and improve the prognosis in patients with vein grafts. The NC-Gelatin extravascular stent has suitable physicochemical properties to prevent restenosis of the grafted veins. The NC-Gelatin extravascular stent has excellent biocompatibility, which is critical for grafting veins. The NC-Gelatin extravascular stent prevents restenosis by activating autophagy against EndMT. AS-IV can enhance the effect of the stent to activate autophagy against EndMT.
Collapse
Affiliation(s)
- Tianshu Chu
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China
| | - Qingye Li
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Yaan, Sichuan Province, 625014, PR China
| | - Chun Dai
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China
| | - Xiang Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiang Kong
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China
| | - Yangming Fan
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China
| | - Hongyan Yin
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianjun Ge
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China,Corresponding author. The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
64
|
Kao WC, Chen JC, Liu PC, Lu CC, Lin SY, Chuang SC, Wu SC, Chang LH, Lee MJ, Yang CD, Lee TC, Wang YC, Li JY, Wei CW, Chen CH. The Role of Autophagy in Osteoarthritic Cartilage. Biomolecules 2022; 12:biom12101357. [PMID: 36291565 PMCID: PMC9599131 DOI: 10.3390/biom12101357] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common diseases leading to physical disability, with age being the main risk factor, and degeneration of articular cartilage is the main focus for the pathogenesis of OA. Autophagy is a crucial intracellular homeostasis system recycling flawed macromolecules and cellular organelles to sustain the metabolism of cells. Growing evidences have revealed that autophagy is chondroprotective by regulating apoptosis and repairing the function of damaged chondrocytes. Then, OA is related to autophagy depending on different stages and models. In this review, we discuss the character of autophagy in OA and the process of the autophagy pathway, which can be modulated by some drugs, key molecules and non-coding RNAs (microRNAs, long non-coding RNAs and circular RNAs). More in-depth investigations of autophagy are needed to find therapeutic targets or diagnostic biomarkers through in vitro and in vivo situations, making autophagy a more effective way for OA treatment in the future. The aim of this review is to introduce the concept of autophagy and make readers realize its impact on OA. The database we searched in is PubMed and we used the keywords listed below to find appropriate article resources.
Collapse
Affiliation(s)
- Wei-Chun Kao
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Jian-Chih Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ping-Cheng Liu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheng-Chang Lu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shun-Cheng Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ling-hua Chang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Mon-Juan Lee
- Department of Medical Science Industries, Chang Jung Christian University, Tainan 71101, Taiwan
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Chung-Da Yang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Tien-Ching Lee
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ying-Chun Wang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Jhong-You Li
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Chun-Wang Wei
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-W.W.); (C.-H.C.); Tel.: +886-7-3121101 (ext. 2648#19) (C-W.W.); +886-7-3209209 (C.-H.C.)
| | - Chung-Hwan Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80420, Taiwan
- Graduate Institute of Materials Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Correspondence: (C.-W.W.); (C.-H.C.); Tel.: +886-7-3121101 (ext. 2648#19) (C-W.W.); +886-7-3209209 (C.-H.C.)
| |
Collapse
|
65
|
Yang W, Yue H, Lu G, Wang W, Deng Y, Ma G, Wei W. Advances in Delivering Oxidative Modulators for Disease Therapy. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9897464. [PMID: 39070608 PMCID: PMC11278358 DOI: 10.34133/2022/9897464] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/17/2022] [Indexed: 07/30/2024]
Abstract
Oxidation modulators regarding antioxidants and reactive oxygen species (ROS) inducers have been used for the treatment of many diseases. However, a systematic review that refers to delivery system for divergent modulation of oxidative level within the biomedical scope is lacking. To provide a comprehensive summarization and analysis, we review pilot designs for delivering the oxidative modulators and the main applications for inflammatory treatment and tumor therapy. On the one hand, the antioxidants based delivery system can be employed to downregulate ROS levels at inflammatory sites to treat inflammatory diseases (e.g., skin repair, bone-related diseases, organ dysfunction, and neurodegenerative diseases). On the other hand, the ROS inducers based delivery system can be employed to upregulate ROS levels at the tumor site to kill tumor cells (e.g., disrupt the endogenous oxidative balance and induce lethal levels of ROS). Besides the current designs of delivery systems for oxidative modulators and the main application cases, prospects for future research are also provided to identify intelligent strategies and inspire new concepts for delivering oxidative modulators.
Collapse
Affiliation(s)
- Wei Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Guihong Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wenjing Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yuan Deng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Department of Orthopedics, Fourth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
66
|
Yu H, Huang C, Kong X, Ma J, Ren P, Chen J, Zhang X, Luo H, Chen G. Nanoarchitectonics of Cartilage-Targeting Hydrogel Microspheres with Reactive Oxygen Species Responsiveness for the Repair of Osteoarthritis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40711-40723. [PMID: 36063108 DOI: 10.1021/acsami.2c12703] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Clinically, intra-articular administration can hardly achieve the truly targeted therapy, and the drugs are usually insufficient to show local and long-term therapeutic effects because of their rapid clearance. Herein, inspired by the phenomenon that bees track the scent of flowers to collect nectar, we developed cartilage-targeting hydrogel microspheres with reactive oxygen species (ROS)-responsive ability via combining the microfluidic method and photopolymerization processes to integrate cartilage-targeting peptides and ROS-responsive nanoparticles in the hydrogel matrix. The hydrogel microspheres with cartilage-targeting properties promoted better retention in the joint cavity and enhanced cellular uptake of the nanoparticles. Moreover, the ROS-responsive nanoparticles could react with osteoarthritis (OA)-induced intracellular ROS, resulting in the depolymerization of nanoparticles, which could not only eliminate excess ROS and reduce inflammation but also promote the release of dexamethasone (Dex) and kartogenin (KGN) in situ, realizing effective OA therapy. It was demonstrated that this hydrogel microsphere showed favorable ROS-responsive ability and enhanced chondrogenic differentiation as well as the downregulation of pro-inflammatory factors in vitro. Additionally, the hydrogel microspheres, similar to bees, could target and effectively repair cartilage in the OA model. Thus, the injectable hydrogel microspheres exerted an excellent potential to repair OA and may also provide an effective avenue for inflammatory bowel disease therapy.
Collapse
Affiliation(s)
- Han Yu
- Zhejiang Chinese Medical University, Hangzhou 310000, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
| | - Chenglong Huang
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
| | - Xiangjia Kong
- Zhejiang Chinese Medical University, Hangzhou 310000, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
| | - Jun Ma
- Zhejiang Chinese Medical University, Hangzhou 310000, China
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
| | - Peng Ren
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
| | - Jiayi Chen
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
| | - Xinyu Zhang
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
| | - Huanhuan Luo
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
| | - Gang Chen
- Department of Orthopaedics, Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, P. R. China
| |
Collapse
|
67
|
Ding DF, Xue Y, Wu XC, Zhu ZH, Ding JY, Song YJ, Xu XL, Xu JG. Recent Advances in Reactive Oxygen Species (ROS)-Responsive Polyfunctional Nanosystems 3.0 for the Treatment of Osteoarthritis. J Inflamm Res 2022; 15:5009-5026. [PMID: 36072777 PMCID: PMC9443071 DOI: 10.2147/jir.s373898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is an inflammatory and degenerative joint disease with severe effects on individuals, society, and the economy that affects millions of elderly people around the world. To date, there are no effective treatments for OA; however, there are some treatments that slow or prevent its progression. Polyfunctional nanosystems have many advantages, such as controlled release, targeted therapy and high loading rate, and have been widely used in OA treatment. Previous mechanistic studies have revealed that inflammation and ROS are interrelated, and a large number of studies have demonstrated that ROS play an important role in different types of OA development. In this review article, we summarize third-generation ROS-sensitive nanomaterials that scavenge excessive ROS from chondrocytes and osteoclasts in vivo. We only focus on polymer-based nanoparticles (NPs) and do not review the effects of drug-loaded or heavy metal NPs. Mounting evidence suggests that polyfunctional nanosystems will be a promising therapeutic strategy in OA therapy due to their unique characteristics of being sensitive to changes in the internal environment.
Collapse
Affiliation(s)
- Dao-Fang Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yan Xue
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), Tongji University, Shanghai, People’s Republic of China
| | - Xi-Chen Wu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Zhi-Heng Zhu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jia-Ying Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yong-Jia Song
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China
- Correspondence: Xiao-Ling Xu, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, People’s Republic of China, Email
| | - Jian-Guang Xu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Jian-Guang Xu, Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 200000, People’s Republic of China, Email
| |
Collapse
|
68
|
Guo X, Lou J, Wang F, Fan D, Qin Z. Recent Advances in Nano-Therapeutic Strategies for Osteoarthritis. Front Pharmacol 2022; 13:924387. [PMID: 35800449 PMCID: PMC9253376 DOI: 10.3389/fphar.2022.924387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 01/08/2023] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis and the leading cause of disability globally. It tends to occur in middle age or due to an injury or obesity. OA occurs with the onset of symptoms, including joint swelling, joint effusion, and limited movement at a late stage of the disease, which leads to teratogenesis and loss of joint function. During the pathogenesis of this degenerative joint lesion, several local inflammatory responses are activated, resulting in synovial proliferation and pannus formation that facilitates the destruction of the bone and the articular cartilage. The commonly used drugs for the clinical diagnosis and treatment of OA have limitations such as low bioavailability, short half-life, poor targeting, and high systemic toxicity. With the application of nanomaterials and intelligent nanomedicines, novel nanotherapeutic strategies have shown more specific targeting, prolonged half-life, refined bioavailability, and reduced systemic toxicity, compared to the existing medications. In this review, we summarized the recent advancements in new nanotherapeutic strategies for OA and provided suggestions for improving the treatment of OA.
Collapse
Affiliation(s)
- Xinjing Guo
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jia Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Fazhan Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Daoyang Fan, ; Fazhan Wang, ; Zhihai Qin,
| | - Daoyang Fan
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Daoyang Fan, ; Fazhan Wang, ; Zhihai Qin,
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Daoyang Fan, ; Fazhan Wang, ; Zhihai Qin,
| |
Collapse
|
69
|
Chen Y, Wu X, Li J, Jiang Y, Xu K, Su J. Bone-Targeted Nanoparticle Drug Delivery System: An Emerging Strategy for Bone-Related Disease. Front Pharmacol 2022; 13:909408. [PMID: 35712701 PMCID: PMC9195145 DOI: 10.3389/fphar.2022.909408] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/27/2022] [Indexed: 12/28/2022] Open
Abstract
Targeted delivery by either systemic or local targeting of therapeutics to the bone is an attractive treatment for various bone metabolism diseases such as osteoporosis, osteoarthritis, osteosarcoma, osteomyelitis, etc. To overcome the limitations of direct drug delivery, the combination of bone-targeted agents with nanotechnology has the opportunity to provide a more effective therapeutic approach, where engineered nanoparticles cause the drug to accumulate in the bone, thereby improving efficacy and minimizing side effects. Here, we summarize the current advances in systemic or local bone-targeting approaches and nanosystem applications in bone diseases, which may provide new insights into nanocarrier-delivered drugs for the targeted treatment of bone diseases. We envision that novel drug delivery carriers developed based on nanotechnology will be a potential vehicle for the treatment of currently incurable bone diseases and are expected to be translated into clinical applications.
Collapse
Affiliation(s)
- Yulin Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,School of Medicine, Shanghai University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Xianmin Wu
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Jiadong Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,School of Medicine, Shanghai University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
70
|
Ye J, Gong M, Song J, Chen S, Meng Q, Shi R, Zhang L, Xue J. Integrating Inflammation-Responsive Prodrug with Electrospun Nanofibers for Anti-Inflammation Application. Pharmaceutics 2022; 14:pharmaceutics14061273. [PMID: 35745845 PMCID: PMC9229020 DOI: 10.3390/pharmaceutics14061273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/04/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation plays a side effect on tissue regeneration, greatly inhibiting the repair or regeneration of tissues. Conventional local delivery of anti-inflammation drugs through physical encapsulation into carriers face the challenges of uncontrolled release. The construction of an inflammation-responsive prodrug to release anti-inflammation drugs depending on the occurrence of inflammation to regulate chronic inflammation is of high need. Here, we construct nanofiber-based scaffolds to regulate the inflammation response of chronic inflammation during tissue regeneration. An inflammation-sensitive prodrug is synthesized by free radical polymerization of the indomethacin-containing precursor, which is prepared by the esterification of N-(2-hydroxyethyl) acrylamide with the anti-inflammation drug indomethacin. Then, anti-inflammation scaffolds are constructed by loading the prodrug in poly(ε-caprolactone)/gelatin electrospun nanofibers. Cholesterol esterase, mimicking the inflammation environment, is adopted to catalyze the hydrolysis of the ester bonds, both in the prodrug and the nanofibers matrix, leading to the generation of indomethacin and the subsequent release to the surrounding. In contrast, only a minor amount of the drug is released from the scaffold, just based on the mechanism of hydrolysis in the absence of cholesterol esterase. Furthermore, the inflammation-responsive nanofiber scaffold can effectively inhibit the cytokines secreted from RAW264.7 macrophage cells induced by lipopolysaccharide in vitro studies, highlighting the great potential of these electrospun nanofiber scaffolds to be applied for regulating the chronic inflammation in tissue regeneration.
Collapse
Affiliation(s)
- Jingjing Ye
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Gong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Song
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shu Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qinghan Meng
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Rui Shi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
- Correspondence: (R.S.); (L.Z.); (J.X.)
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (R.S.); (L.Z.); (J.X.)
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (R.S.); (L.Z.); (J.X.)
| |
Collapse
|
71
|
Liu WB, Dong SH, Hu WH, Gao M, Li T, Ji QB, Yang XQ, Qi DB, Zhang Z, Song ZL, Liu YJ, Zhang XS. A simple, universal and multifunctional template agent for personalized treatment of bone tumors. Bioact Mater 2022; 12:292-302. [PMID: 35087969 PMCID: PMC8783040 DOI: 10.1016/j.bioactmat.2021.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
Bone tumors occur in bone or its accessory tissues. Benign bone tumors are easy to cure and have good prognosis, while malignant bone tumors develop rapidly and have poor and high mortality. So far, there is no satisfactory treatment method. Here, we designed a universal template vector for bone tumor therapy that simultaneously meets the needs of bone targeting, tumor killing, osteoclast suppression, and tumor imaging. The template is composed of a polydopamine (PDA) core and a multifunctional surface. PDA has excellent biosafety and photothermal performance. In this study, alendronate sodium (ALN) is grafted to enable its general bone targeting function. PDA core can carry a variety of chemotherapy drugs, and the rich ALN group can carry a variety of metal ions with an imaging function. Therefore, more personalized treatment plans can be designed for different bone tumor patients. In addition, the PDA core enables photothermal therapy and enhanced chemotherapy. Through template drug Doxorubicin (DOX) and template imaging ion Fe (Ⅱ), we systematically verified the therapeutic effect, imaging effect, and inhibition of bone dissolution of the agent on Osteosarcoma (OS), a primary malignant bone tumor, in vivo. In conclusion, our work provides a more general template carrier for the clinical treatment of bone tumors, through which personalized treatment of bone tumors can be achieved. The PDA-ALN-DOX presented high bone targeting property, photothermal conversion efficiency, drug loading capacity, and multimodal imaging modalities. CPT is a more efficient and convenient therapy for bone tumors.
Collapse
|
72
|
Ye Y, Zhao Y, Sun Y, Cao J. Recent Progress of Metal-Organic Framework-Based Photodynamic Therapy for Cancer Treatment. Int J Nanomedicine 2022; 17:2367-2395. [PMID: 35637838 PMCID: PMC9144878 DOI: 10.2147/ijn.s362759] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT), combining photosensitizers (PSs) and excitation light at a specific wavelength to produce toxic reactive oxygen species, has been a novel and promising approach to cancer treatment with non-invasiveness, spatial specificity, and minimal systemic toxicity, compared with conventional cancer treatment. Recently, numerous basic research and clinical research have demonstrated the potential of PDT in the treatment of a variety of malignant tumors, such as esophageal cancer, bladder cancer, and so on. Metal-organic framework (MOF) has been developed as a new type of nanomaterial with the advantages of high porosity, large specific surface area, adjustable pore size, and easy functionalization, which could serve as carriers to load PSs or increase the accumulation of PSs in target cells during PDT. Moreover, active MOFs have the potential to construct multifunctional systems, which are conducive to refining the tumor microenvironment (TME) and implementing combination therapy to improve PDT efficacy. Hence, a comprehensive and in-depth depiction of the whole scene of the recent development of MOFs-based PDT in cancer treatment is desirable. This review summarized the recent research strategies of MOFs-based PDT in antitumor therapy from the perspective of MOFs functions, including active MOFs, inactive MOFs, and their further combination therapies in clinical antitumor treatment. In addition, the bottlenecks and obstacles in the application of MOFs in PDT are also described.
Collapse
Affiliation(s)
- Yuyun Ye
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People’s Republic of China
| | - Yifan Zhao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People’s Republic of China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People’s Republic of China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People’s Republic of China
- Correspondence: Jie Cao; Yong Sun, Email ;
| |
Collapse
|
73
|
Wang Z, Le H, Wang Y, Liu H, Li Z, Yang X, Wang C, Ding J, Chen X. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioact Mater 2022; 11:317-338. [PMID: 34977434 PMCID: PMC8671106 DOI: 10.1016/j.bioactmat.2021.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
The development of interdisciplinary biomedical engineering brings significant breakthroughs to the field of cartilage regeneration. However, cartilage defects are considerably more complicated in clinical conditions, especially when injuries occur at specific sites (e.g., osteochondral tissue, growth plate, and weight-bearing area) or under inflammatory microenvironments (e.g., osteoarthritis and rheumatoid arthritis). Therapeutic implantations, including advanced scaffolds, developed growth factors, and various cells alone or in combination currently used to treat cartilage lesions, address cartilage regeneration under abnormal conditions. This review summarizes the strategies for cartilage regeneration at particular sites and pathological microenvironment regulation and discusses the challenges and opportunities for clinical transformation.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Chenyu Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
74
|
Li J, Yin Z, Huang B, Xu K, Su J. Stat3 Signaling Pathway: A Future Therapeutic Target for Bone-Related Diseases. Front Pharmacol 2022; 13:897539. [PMID: 35548357 PMCID: PMC9081430 DOI: 10.3389/fphar.2022.897539] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022] Open
Abstract
Signal transducer and activator of transcription 3 (Stat3) is activated by phosphorylation and translocated to the nucleus to participate in the transcriptional regulation of DNA. Increasing evidences point that aberrant activation or deletion of the Stat3 plays a critical role in a broad range of pathological processes including immune escape, tumorigenesis, and inflammation. In the bone microenvironment, Stat3 acts as a common downstream response protein for multiple cytokines and is engaged in the modulation of cellular proliferation and intercellular interactions. Stat3 has direct impacts on disease progression by regulating mesenchymal stem cells differentiation, osteoclast activation, macrophage polarization, angiogenesis, and cartilage degradation. Here, we describe the theoretical basis and key roles of Stat3 in different bone-related diseases in combination with in vitro experiments and animal models. Then, we summarize and categorize the drugs that target Stat3, providing potential therapeutic strategies for their use in bone-related diseases. In conclusion, Stat3 could be a future target for bone-related diseases.
Collapse
Affiliation(s)
- Jiadong Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Biaotong Huang, ; Ke Xu, ; Jiacan Su,
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Biaotong Huang, ; Ke Xu, ; Jiacan Su,
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Biaotong Huang, ; Ke Xu, ; Jiacan Su,
| |
Collapse
|
75
|
Huang H, Lou Z, Zheng S, Wu J, Yao Q, Chen R, Kou L, Chen D. Intra-articular drug delivery systems for osteoarthritis therapy: shifting from sustained release to enhancing penetration into cartilage. Drug Deliv 2022; 29:767-791. [PMID: 35261301 PMCID: PMC8920370 DOI: 10.1080/10717544.2022.2048130] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a progressive chronic inflammation that leads to cartilage degeneration. OA Patients are commonly given pharmacological treatment, but the available treatments are not sufficiently effective. The development of sustained-release drug delivery systems (DDSs) for OA may be an attractive strategy to prevent rapid drug clearance and improve the half-life of a drug at the joint cavity. Such delivery systems will improve the therapeutic effects of anti-inflammatory effects in the joint cavity. Whereas, for disease-modifying OA drugs (DMOADs) which target chondrocytes or act on mesenchymal stem cells (MSCs), the cartilage-permeable DDSs are required to maximize their efficacy. This review provides an overview of joint structure in healthy and pathological conditions, introduces the advances of the sustained-release DDSs and the permeable DDSs, and discusses the rational design of the permeable DDSs for OA treatment. We hope that the ideas generated in this review will promote the development of effective OA drugs in the future.
Collapse
Affiliation(s)
- Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zijian Lou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shimin Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianing Wu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daosen Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
76
|
Samec T, Boulos J, Gilmore S, Hazelton A, Alexander-Bryant A. Peptide-based delivery of therapeutics in cancer treatment. Mater Today Bio 2022; 14:100248. [PMID: 35434595 PMCID: PMC9010702 DOI: 10.1016/j.mtbio.2022.100248] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 11/09/2022] Open
Abstract
Current delivery strategies for cancer therapeutics commonly cause significant systemic side effects due to required high doses of therapeutic, inefficient cellular uptake of drug, and poor cell selectivity. Peptide-based delivery systems have shown the ability to alleviate these issues and can significantly enhance therapeutic loading, delivery, and cancer targetability. Peptide systems can be tailor-made for specific cancer applications. This review describes three peptide classes, targeting, cell penetrating, and fusogenic peptides, as stand-alone nanoparticle systems, conjugations to nanoparticle systems, or as the therapeutic modality. Peptide nanoparticle design, characteristics, and applications are discussed as well as peptide applications in the clinical space.
Collapse
Affiliation(s)
- Timothy Samec
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Jessica Boulos
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Serena Gilmore
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Anthony Hazelton
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Angela Alexander-Bryant
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| |
Collapse
|
77
|
Hao L, Ma C, Li Z, Wang Y, Zhao X, Yu M, Hou H. Effects of type II collagen hydrolysates on osteoarthritis through the NF-κB, Wnt/β-catenin and MAPK pathways. Food Funct 2022; 13:1192-1205. [PMID: 35018959 DOI: 10.1039/d1fo03414f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Osteoarthritis (OA), a degenerative disease, has attracted extensive attention all over the world. In this study, a rat model involving medial meniscus resection (MMx) and anterior to medial collateral ligament (ACL) operation was successfully established to study the effects of bovine cartilage hydrolysates rich in type II collagen peptides (BIIP) on cartilage protection. The results of histological analysis indicated that oral administration of BIIP at doses of 200 and 500 mg kg-1 d-1 ameliorated cartilage degeneration. Moreover, the potential targets of BIIP affecting OA in vivo were studied by proteomics, and the effects of BIIP on OA through signaling pathways, such as NF-κB, Wnt/β-catenin and MAPK, were further explored at mRNA and protein levels. BIIP downregulated the expression of IL-6, RUNX2, NF-κB p65, HIF-2α, β-catenin and p-JNK, which may be the main factor leading to the prevention of OA. These results suggest that BIIP can be used as a novel potential substance of functional foods to exert chondroprotective action.
Collapse
Affiliation(s)
- Li Hao
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, PR China
| | - Chengcheng Ma
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Zhaoxia Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Yanchao Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Xue Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Mingxiao Yu
- Meitek Technology Co., Ltd, No. 1888 Dazhushan South Road, Qingdao, Shandong Province 266400, PR China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, PR China
| |
Collapse
|
78
|
Shafiq M, Chen Y, Hashim R, He C, Mo X, Zhou X. Reactive Oxygen Species-Based Biomaterials for Regenerative Medicine and Tissue Engineering Applications. Front Bioeng Biotechnol 2022; 9:821288. [PMID: 35004664 PMCID: PMC8733692 DOI: 10.3389/fbioe.2021.821288] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species (ROS), acting as essential mediators in biological system, play important roles in the physiologic and pathologic processes, including cellular signal transductions and cell homeostasis interference. Aberrant expression of ROS in tissue microenvironment can be caused by the internal/external stimuli and tissue injury, which may leads to an elevated level of oxidative stress, inflammatory response, and cellular damage as well as disruption in the tissue repair process. To prevent the formation of excess ROS around the injury site, advanced biomaterials can be remodeled or instructed to release their payloads in an injury microenvironment-responsive fashion to regulate the elevated levels of the ROS, which may also help downregulate the oxidative stress and promote tissue regeneration. A multitude of scaffolds and bioactive cues have been reported to promote the regeneration of damaged tissues based on the scavenging of free radicals and reactive species that confer high protection to the cellular activity and tissue function. In this review, we outline the underlying mechanism of ROS generation in the tissue microenvironment and present a comprehensive review of ROS-scavenging biomaterials for regenerative medicine and tissue engineering applications, including soft tissues regeneration, bone and cartilage repair as well as wound healing. Additionally, we highlight the strategies for the regulation of ROS by scaffold design and processing technology. Taken together, developing ROS-based biomaterials may not only help develop advanced platforms for improving injury microenvironment but also accelerate tissue regeneration.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China.,Department of Biotechnology, Faculty of Life Science, University of Central Punjab (UCP), Lahore, Pakistan
| | - Yujie Chen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Rashida Hashim
- Department of Chemistry, Faculty of Science, Quaid-i-Azam University (QAU), Islamabad, Pakistan
| | - Chuanglong He
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xiaojun Zhou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| |
Collapse
|
79
|
Li X, Wang X, Liu Q, Yan J, Pan D, Wang L, Xu Y, Wang F, Liu Y, Li X, Yang M. ROS-Responsive Boronate-Stabilized Polyphenol-Poloxamer 188 Assembled Dexamethasone Nanodrug for Macrophage Repolarization in Osteoarthritis Treatment. Adv Healthc Mater 2021; 10:e2100883. [PMID: 34137218 DOI: 10.1002/adhm.202100883] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a disabling joint disease associated with chronic inflammation. The polarization of macrophages plays the key role in inflammatory microenvironment of joint which is a therapeutic target for OA treatment. Herein, a boronate-stabilized polyphenol-poloxamer assembled dexamethasone nanodrug with reactive oxygen species (ROS)-responsive drug release behavior and ROS scavenging ability is prepared. Thanks to that, the nanodrug can efficiently inhibit the ROS and nitric oxide production in lipopolysaccharide-activated RAW264.7 macrophages and modulate macrophages M2 polarization at a much lower concentration than free drug dexamethasone. Furthermore, the monosodium iodoacetate-induced OA mice treated with this nanodrug is very similar with the normal mice with the evaluation of body weight and scores including clinical arthritis scores, claw circumference, and kinematics score. The inflammation associated angiogenesis is also reduced which revealed by 68 Ga-labeled arginine-glycine-aspartic acid peptide micro-positron emission tomography imaging. Cartilage degradation and bone erosion in the joints are also inhibited by the nanodrug, along with the inhibition of proinflammatory cytokines. In addition, the biosafety of this nanodrug is also verified. This nanodrug with excellent immunomodulation properties can be used not only for OA therapy but also for other inflammatory diseases associated with excess oxidative stress and macrophage polarization.
Collapse
Affiliation(s)
- Xinxin Li
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Qingfeng Liu
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Fang Wang
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Yuhang Liu
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Xiaotian Li
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
- Department of Radiopharmaceuticals School of Pharmacy Nanjing Medical University Nanjing 211166 China
| |
Collapse
|
80
|
Wang Z, Wang S, Wang K, Wu X, Tu C, Gao C. Stimuli-Sensitive Nanotherapies for the Treatment of Osteoarthritis. Macromol Biosci 2021; 21:e2100280. [PMID: 34396698 DOI: 10.1002/mabi.202100280] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 01/04/2023]
Abstract
Osteoarthritis (OA) is a common chronic inflammatory disease in the joints. It is one of the leading causes of disability with increasing morbidity, which has become one of the serious clinical issues. Current treatments would only provide temporary relief due to the lack of early diagnosis and effective therapy, and thus the replacement of joints may be needed when the OA deteriorates. Although the intra-articular injection and oral administration of drugs are helpful for OA treatment, they are suffering from systemic toxicity, short retention time in joint, and insufficient bioavailability. Nanomedicine is potential to improve the drug delivery efficiency and targeting ability. In this focused progress review, the particle-based drug loading systems that can achieve targeted and triggered release are summarized. Stimuli-responsive nanocarriers that are sensitive to endogenous microenvironmental signals such as reactive oxygen species, enzymes, pH, and temperature, as well as external stimuli such as light for OA therapy are introduced in this review. Furthermore, the nanocarriers associated with targeted therapy and imaging for OA treatment are summarized. The potential applications of nanotherapies for OA treatment are finally discussed.
Collapse
Affiliation(s)
- Zhaoyi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kai Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinyu Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chenxi Tu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
81
|
Chen L, Tiwari SR, Zhang Y, Zhang J, Sun Y. Facile Synthesis of Hollow MnO 2 Nanoparticles for Reactive Oxygen Species Scavenging in Osteoarthritis. ACS Biomater Sci Eng 2021; 7:1686-1692. [PMID: 33787210 DOI: 10.1021/acsbiomaterials.1c00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Osteoarthritis (OA) is a progressive degenerative joint disease whose molecular mechanism has not been revealed clearly, and there is still no effective approach to cure OA completely. Recently, reactive oxygen species (ROS) are exposed as an important mediator of OA's inflammatory response, and it has been regarded as a therapeutic target for OA treatment. MnO2 nanoparticles possess good biocompatibility and can act as an artificial nanoenzyme to scavenge ROS in various diseases effectively. In this study, the modified Stöber method was applied to synthesize hollow MnO2 (H-MnO2) and H-MnO2 was modified with NH2-PEG-NH2, which possesses excellent biological stability and biocompatibility. It induced a change in the articular cartilage structure changes in vivo, with the knee tissue staining and micro-CT scanning of the whole knee suggesting that H-MnO2 nanoparticles could effectively remove ROS and significantly relieve the inflammatory response of OA without obvious side effects. This study reveals the therapeutic effects of MnO2-based nanomedicine toward OA, which provides potential alternative therapeutic options for patients with inflammation tissue.
Collapse
Affiliation(s)
- Lei Chen
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P. R. China
| | - Shashi Ranjan Tiwari
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P. R. China
| | - Yingqi Zhang
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P. R. China
| | - Jincheng Zhang
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P. R. China
| | - Yeqing Sun
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, P. R. China
| |
Collapse
|
82
|
|