51
|
Vlachakis D, Papakonstantinou E, Mitsis T, Pierouli K, Diakou I, Chrousos G, Bacopoulou F. Molecular mechanisms of the novel coronavirus SARS-CoV-2 and potential anti-COVID19 pharmacological targets since the outbreak of the pandemic. Food Chem Toxicol 2020; 146:111805. [PMID: 33038452 PMCID: PMC7543766 DOI: 10.1016/j.fct.2020.111805] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
The novel coronavirus SARS-CoV-2 has emerged as a severe threat against public health and global economies. COVID-19, the disease caused by this virus, is highly contagious and has led to an ongoing pandemic. SARS-CoV-2 affects, mainly, the respiratory system, with most severe cases primarily showcasing acute respiratory distress syndrome. Currently, no targeted therapy exists, and since the number of infections and death toll keeps rising, it has become a necessity to study possible therapeutic targets. Antiviral drugs can target various stages of the viral infection, and in the case of SARS-CoV-2, both structural and non-structural proteins have been proposed as potential drug targets. This review focuses on the most researched SARS-CoV-2 proteins, their structure, function, and possible therapeutic approaches.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece; University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 8 Levadias Street, Athens, 11527, Greece; Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, Athens, 11527, Greece; Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, Strand, London WC2R 2LS, UK
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - George Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 8 Levadias Street, Athens, 11527, Greece; Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, Athens, 11527, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 8 Levadias Street, Athens, 11527, Greece.
| |
Collapse
|
52
|
Abstract
In the following continuation article, the author will expand on how the mechanisms discussed in Part One capitalise on host characteristics to produce the organ specific damage seen in severe coronavirus disease (COVID-19), with specific reference to pulmonary and cardiac manifestations. Pneumonia is the primary manifestation of COVID-19; presentation varies from a mild, self-limiting pneumonitis to a fulminant and progressive respiratory failure. Features of disease severity tend to directly correlate with patient age, with elderly populations faring poorest. Advancing age parallels an increasingly pro-oxidative pulmonary milieu, a consequence of increasing host expression of phospholipase A2 Group IID. Virally induced expression of NADPH oxidase intensifies this pro-oxidant environment. The virus avails of the host response by exploiting caveolin-1 to assist in disabling host defenses and adopting a glycolytic metabolic pathway to self-replicate.
Collapse
|
53
|
Lang Y, Chen K, Li Z, Li H. The nucleocapsid protein of zoonotic betacoronaviruses is an attractive target for antiviral drug discovery. Life Sci 2020; 282:118754. [PMID: 33189817 PMCID: PMC7658559 DOI: 10.1016/j.lfs.2020.118754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 11/10/2020] [Indexed: 12/02/2022]
Abstract
Betacoronaviruses are in one genera of coronaviruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome-related coronavirus (MERS-CoV), etc. These viruses threaten public health and cause dramatic economic losses. The nucleocapsid (N) protein is a structural protein of betacoronaviruses with multiple functions such as forming viral capsids with viral RNA, interacting with viral membrane protein to form the virus core with RNA, binding to several cellular kinases for signal transductions, etc. In this review, we highlighted the potential of the N protein as a suitable antiviral target from different perspectives, including structure, functions, and antiviral strategies for combatting betacoronaviruses.
Collapse
Affiliation(s)
- Yuekun Lang
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Ke Chen
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, 1 University Place, Rensselaer, NY 12144, USA.
| |
Collapse
|
54
|
Hong W, Chen Y, You K, Tan S, Wu F, Tao J, Chen X, Zhang J, Xiong Y, Yuan F, Yang Z, Chen T, Chen X, Peng P, Tai Q, Wang J, Zhang F, Li YX. Celebrex Adjuvant Therapy on Coronavirus Disease 2019: An Experimental Study. Front Pharmacol 2020; 11:561674. [PMID: 33312125 PMCID: PMC7703865 DOI: 10.3389/fphar.2020.561674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/13/2020] [Indexed: 01/08/2023] Open
Abstract
Background: The pandemic of coronavirus disease 2019 (COVID-19) resulted in grave morbidity and mortality worldwide. There is currently no effective drug to cure COVID-19. Based on analyses of available data, we deduced that excessive prostaglandin E2 (PGE2) produced by cyclooxygenase-2 was a key pathological event of COVID-19. Methods: A prospective clinical study was conducted in one hospital for COVID-19 treatment with Celebrex to suppress the excessive PGE2 production. A total of 44 COVID-19 cases were enrolled, 37 cases in the experimental group received Celebrex as adjuvant (full dose: 0.2 g, bid; half dose: 0.2 g, qd) for 7-14 days, and the dosage and duration was adjusted for individuals, while seven cases in the control group received the standard therapy. The clinical outcomes were evaluated by measuring the urine PGE2 levels, lab tests, CT scans, vital signs, and other clinical data. The urine PGE2 levels were measured by mass spectrometry. The study was registered and can be accessed at http://www.chictr.org.cn/showproj.aspx?proj=50474. Results: The concentrations of PGE2 in urine samples of COVID-19 patients were significantly higher than those of PGE2 in urine samples of healthy individuals (mean value: 170 ng/ml vs 18.8 ng/ml, p < 0.01) and positively correlated with the progression of COVID-19. Among those 37 experimental cases, there were 10 cases with age over 60 years (27%, 10/37) and 13 cases (35%, 13/37) with preexisting conditions including cancer, atherosclerosis, and diabetes. Twenty-five cases had full dose, 11 cases with half dose of Celebrex, and one case with ibuprofen. The remission rates in midterm were 100%, 82%, and 57% of the full dose, half dose, and control group, respectively, and the discharged rate was 100% at the endpoint with Celebrex treatment. Celebrex significantly reduced the PGE2 levels and promoted recovery of ordinary and severe COVID-19. Furthermore, more complications, severity, and death rate were widely observed and reported in the COVID-19 group of elders and with comorbidities; however, this phenomenon did not appear in this particular Celebrex adjunctive treatment study. Conclusion: This clinical study indicates that Celebrex adjuvant treatment promotes the recovery of all types of COVID-19 and further reduces the mortality rate of elderly and those with comorbidities.
Collapse
Affiliation(s)
- Wenxin Hong
- The Eighth People's Hospital of Guangzhou, Guangzhou, China
| | - Yan Chen
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Kai You
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shenglin Tan
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feima Wu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiawang Tao
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xudan Chen
- The Eighth People's Hospital of Guangzhou, Guangzhou, China
| | - Jiaye Zhang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yue Xiong
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang Yuan
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Yang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Chen
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinwen Chen
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Ping Peng
- The Eighth People's Hospital of Guangzhou, Guangzhou, China
| | - Qiang Tai
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Wang
- The Eighth People's Hospital of Guangzhou, Guangzhou, China
| | - Fuchun Zhang
- The Eighth People's Hospital of Guangzhou, Guangzhou, China
| | - Yin-Xiong Li
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
55
|
Elkahloun AG, Saavedra JM. Candesartan could ameliorate the COVID-19 cytokine storm. Biomed Pharmacother 2020; 131:110653. [PMID: 32942152 PMCID: PMC7439834 DOI: 10.1016/j.biopha.2020.110653] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Angiotensin receptor blockers (ARBs) reducing inflammation and protecting lung and brain function, could be of therapeutic efficacy in COVID-19 patients. METHODS Using GSEA, we compared our previous transcriptome analysis of neurons injured by glutamate and treated with the ARB Candesartan (GSE67036) with transcriptional signatures from SARS-CoV-2 infected primary human bronchial epithelial cells (NHBE) and lung postmortem (GSE147507), PBMC and BALF samples (CRA002390) from COVID-19 patients. RESULTS Hundreds of genes upregulated in SARS-CoV-2/COVID-19 transcriptomes were similarly upregulated by glutamate and normalized by Candesartan. Gene Ontology analysis revealed expression profiles with greatest significance and enrichment, including proinflammatory cytokine and chemokine activity, the NF-kappa B complex, alterations in innate and adaptive immunity, with many genes participating in the COVID-19 cytokine storm. CONCLUSIONS There are similar injury mechanisms in SARS-CoV-2 infection and neuronal injury, equally reduced by ARB treatment. This supports the hypothesis of a therapeutic role for ARBs, ameliorating the COVID-19 cytokine storm.
Collapse
Affiliation(s)
- Abdel G Elkahloun
- Comparative Genomics and Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC 20057, USA.
| |
Collapse
|
56
|
Robb CT, Goepp M, Rossi AG, Yao C. Non-steroidal anti-inflammatory drugs, prostaglandins, and COVID-19. Br J Pharmacol 2020; 177:4899-4920. [PMID: 32700336 PMCID: PMC7405053 DOI: 10.1111/bph.15206] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the novel coronavirus disease 2019 (COVID-19), a highly pathogenic and sometimes fatal respiratory disease responsible for the current 2020 global pandemic. Presently, there remains no effective vaccine or efficient treatment strategies against COVID-19. Non-steroidal anti-inflammatory drugs (NSAIDs) are medicines very widely used to alleviate fever, pain, and inflammation (common symptoms of COVID-19 patients) through effectively blocking production of prostaglandins (PGs) via inhibition of cyclooxyganase enzymes. PGs can exert either proinflammatory or anti-inflammatory effects depending on the inflammatory scenario. In this review, we survey the potential roles that NSAIDs and PGs may play during SARS-CoV-2 infection and the development and progression of COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Calum T. Robb
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Marie Goepp
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Adriano G. Rossi
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Chengcan Yao
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| |
Collapse
|
57
|
Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem Pharmacol 2020; 180:114147. [PMID: 32653589 PMCID: PMC7347500 DOI: 10.1016/j.bcp.2020.114147] [Citation(s) in RCA: 659] [Impact Index Per Article: 164.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Owing to the efficacy in reducing pain and inflammation, non-steroidal anti-inflammatory drugs (NSAIDs) are amongst the most popularly used medicines confirming their position in the WHO's Model List of Essential Medicines. With escalating musculoskeletal complications, as evident from 2016 Global Burden of Disease data, NSAID usage is evidently unavoidable. Apart from analgesic, anti-inflammatory and antipyretic efficacies, NSAIDs are further documented to offer protection against diverse critical disorders including cancer and heart attacks. However, data from multiple placebo-controlled trials and meta-analyses studies alarmingly signify the adverse effects of NSAIDs in gastrointestinal, cardiovascular, hepatic, renal, cerebral and pulmonary complications. Although extensive research has elucidated the mechanisms underlying the clinical hazards of NSAIDs, no review has extensively collated the outcomes on various multiorgan toxicities of these drugs together. In this regard, the present review provides a comprehensive insight of the existing knowledge and recent developments on NSAID-induced organ damage. It precisely encompasses the current understanding of structure, classification and mode of action of NSAIDs while reiterating on the emerging instances of NSAID drug repurposing along with pharmacophore modification aimed at safer usage of NSAIDs where toxic effects are tamed without compromising the clinical benefits. The review does not intend to vilify these 'wonder drugs'; rather provides a careful understanding of their side-effects which would be beneficial in evaluating the risk-benefit threshold while rationally using NSAIDs at safer dose and duration.
Collapse
Affiliation(s)
- Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101 India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India; Division of Molecular Medicine, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kankurgachi, Kolkata, West Bengal 700054 India.
| |
Collapse
|
58
|
Fiorino S, Gallo C, Zippi M, Sabbatani S, Manfredi R, Moretti R, Fogacci E, Maggioli C, Travasoni Loffredo F, Giampieri E, Corazza I, Dickmans C, Denitto C, Cammarosano M, Battilana M, Orlandi PE, Del Forno F, Miceli F, Visani M, Acquaviva G, De Leo A, Leandri P, Hong W, Brand T, Tallini G, Jovine E, Jovine R, de Biase D. Cytokine storm in aged people with CoV-2: possible role of vitamins as therapy or preventive strategy. Aging Clin Exp Res 2020; 32:2115-2131. [PMID: 32865757 PMCID: PMC7456763 DOI: 10.1007/s40520-020-01669-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND In December 2019, a novel human-infecting coronavirus, SARS-CoV-2, had emerged. The WHO has classified the epidemic as a "public health emergency of international concern". A dramatic situation has unfolded with thousands of deaths, occurring mainly in the aged and very ill people. Epidemiological studies suggest that immune system function is impaired in elderly individuals and these subjects often present a deficiency in fat-soluble and hydrosoluble vitamins. METHODS We searched for reviews describing the characteristics of autoimmune diseases and the available therapeutic protocols for their treatment. We set them as a paradigm with the purpose to uncover common pathogenetic mechanisms between these pathological conditions and SARS-CoV-2 infection. Furthermore, we searched for studies describing the possible efficacy of vitamins A, D, E, and C in improving the immune system function. RESULTS SARS-CoV-2 infection induces strong immune system dysfunction characterized by the development of an intense proinflammatory response in the host, and the development of a life-threatening condition defined as cytokine release syndrome (CRS). This leads to acute respiratory syndrome (ARDS), mainly in aged people. High mortality and lethality rates have been observed in elderly subjects with CoV-2-related infection. CONCLUSIONS Vitamins may shift the proinflammatory Th17-mediated immune response arising in autoimmune diseases towards a T-cell regulatory phenotype. This review discusses the possible activity of vitamins A, D, E, and C in restoring normal antiviral immune system function and the potential therapeutic role of these micronutrients as part of a therapeutic strategy against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sirio Fiorino
- UO of Internal Medicine Unit, Hospital of Budrio, Via Benni 44, 40065, Budrio, Bologna, Italy.
- Internal Medicine Unit, Maggiore Hospital of Bologna, Bologna, Italy.
| | - Claudio Gallo
- Physician Specialist in Infectious Diseases, AUSL Bologna, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Petrini Hospital, Rome, Italy
| | | | | | - Renzo Moretti
- UO of Internal Medicine Unit, Hospital of Budrio, Via Benni 44, 40065, Budrio, Bologna, Italy
| | - Elisa Fogacci
- UO of Internal Medicine Unit, Hospital of Budrio, Via Benni 44, 40065, Budrio, Bologna, Italy
| | - Caterina Maggioli
- UO of Internal Medicine Unit, Hospital of Budrio, Via Benni 44, 40065, Budrio, Bologna, Italy
| | | | - Enrico Giampieri
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Ivan Corazza
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Christoph Dickmans
- UO of Internal Medicine Unit, Hospital of Budrio, Via Benni 44, 40065, Budrio, Bologna, Italy
| | - Claudio Denitto
- UO of Internal Medicine Unit, Hospital of Budrio, Via Benni 44, 40065, Budrio, Bologna, Italy
| | - Michele Cammarosano
- UO of Internal Medicine Unit, Hospital of Budrio, Via Benni 44, 40065, Budrio, Bologna, Italy
| | - Michele Battilana
- UO of Internal Medicine Unit, Hospital of Budrio, Via Benni 44, 40065, Budrio, Bologna, Italy
| | | | | | - Francesco Miceli
- UO Farmacia Centralizzata OM, Farmacia Ospedale Di Budrio, Budrio, Bologna, Italy
| | - Michela Visani
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), Molecular Diagnostic Unit, University of Bologna, Azienda USL di Bologna, Bologna, Italy
| | - Giorgia Acquaviva
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), Molecular Diagnostic Unit, University of Bologna, Azienda USL di Bologna, Bologna, Italy
| | - Antonio De Leo
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), Molecular Diagnostic Unit, University of Bologna, Azienda USL di Bologna, Bologna, Italy
| | - Paolo Leandri
- Internal Medicine Unit, Maggiore Hospital of Bologna, Bologna, Italy
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, The People's Republic of China
| | - Thomas Brand
- Regenerative Medicine Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Giovanni Tallini
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), Molecular Diagnostic Unit, University of Bologna, Azienda USL di Bologna, Bologna, Italy
| | - Elio Jovine
- Surgery Unit, Maggiore Hospital, Bologna, Italy
| | - Roberto Jovine
- Physical Medicine and Rehabilitation Unit, Maggiore Hospital, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| |
Collapse
|
59
|
Baghaki S, Yalcin CE, Baghaki HS, Aydin SY, Daghan B, Yavuz E. COX2 inhibition in the treatment of COVID-19: Review of literature to propose repositioning of celecoxib for randomized controlled studies. Int J Infect Dis 2020; 101:29-32. [PMID: 33007455 PMCID: PMC7525269 DOI: 10.1016/j.ijid.2020.09.1466] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Coronavirus-triggered pulmonary and systemic disease, i.e. systemic inflammatory response to virally triggered lung injury, named COVID-19, and ongoing discussions on refining immunomodulation in COVID-19 without COX2 inhibition prompted us to search the related literature to show a potential target (COX2) and a weapon (celecoxib). The concept of selectively targeting COX2 and closely related cascades might be worth trying in the treatment of COVID-19 given the substantial amount of data showing that COX2, p38 MAPK, IL-1b, IL-6 and TGF-β play pivotal roles in coronavirus-related cell death, cytokine storm and pulmonary interstitial fibrosis. Considering the lack of definitive treatment and importance of immunomodulation in COVID-19, COX2 inhibition might be a valuable adjunct to still-evolving treatment strategies. Celecoxib has properties that should be evaluated in randomized controlled studies and is also available for off-label use.
Collapse
Affiliation(s)
- Semih Baghaki
- Istanbul University Cerrahpasa - Cerrahpasa Medical Faculty, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey.
| | - Can Ege Yalcin
- Istanbul University Cerrahpasa - Cerrahpasa Medical Faculty, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey
| | - Hayriye Sema Baghaki
- Bakirkoy Sadi Konuk Research and Training Hospital, Department of Obstetrics and Gynecology, Istanbul, Turkey
| | - Servet Yekta Aydin
- Istanbul University Cerrahpasa - Cerrahpasa Medical Faculty, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey
| | - Basak Daghan
- Istanbul University Cerrahpasa - Cerrahpasa Medical Faculty, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey
| | - Ersin Yavuz
- Istanbul University Cerrahpasa - Cerrahpasa Medical Faculty, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey
| |
Collapse
|
60
|
Mann ER, Menon M, Knight SB, Konkel JE, Jagger C, Shaw TN, Krishnan S, Rattray M, Ustianowski A, Bakerly ND, Dark P, Lord G, Simpson A, Felton T, Ho LP, Feldmann M, Grainger JR, Hussell T. Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19. Sci Immunol 2020; 5:5/51/eabd6197. [PMID: 32943497 PMCID: PMC7857390 DOI: 10.1126/sciimmunol.abd6197] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
COVID-19 pathogenesis is associated with an exaggerated immune response. However, the specific cellular mediators and inflammatory components driving diverse clinical disease outcomes remain poorly understood. We undertook longitudinal immune profiling on both whole blood and peripheral blood mononuclear cells (PBMCs) of hospitalized patients during the peak of the COVID-19 pandemic in the UK. Here, we report key immune signatures present shortly after hospital admission that were associated with the severity of COVID-19. Immune signatures were related to shifts in neutrophil to T cell ratio, elevated serum IL-6, MCP-1 and IP-10, and most strikingly, modulation of CD14+ monocyte phenotype and function. Modified features of CD14+ monocytes included poor induction of the prostaglandin-producing enzyme, COX-2, as well as enhanced expression of the cell cycle marker Ki-67. Longitudinal analysis revealed reversion of some immune features back to the healthy median level in patients with a good eventual outcome. These findings identify previously unappreciated alterations in the innate immune compartment of COVID-19 patients and lend support to the idea that therapeutic strategies targeting release of myeloid cells from bone marrow should be considered in this disease. Moreover, they demonstrate that features of an exaggerated immune response are present early after hospital admission suggesting immune-modulating therapies would be most beneficial at early timepoints.
Collapse
Affiliation(s)
- Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK.,Maternal and Fetal Health Centre, Division of Developmental Biology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 5th Floor St. Mary's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK
| | - Sean Blandin Knight
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK.,Respiratory Department, Salford Royal NHS Foundation Trust, Stott Lane, M6 8HD, UK
| | - Joanne E Konkel
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK
| | - Christopher Jagger
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK
| | - Tovah N Shaw
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK
| | - Siddharth Krishnan
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK
| | - Magnus Rattray
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, UK
| | - Andrew Ustianowski
- Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester, UK.,Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK
| | - Nawar Diar Bakerly
- Respiratory Department, Salford Royal NHS Foundation Trust, Stott Lane, M6 8HD, UK
| | - Paul Dark
- Intensive Care Department, Salford Royal NHS Foundation Trust, Stott Lane, M6 8HD, UK
| | - Graham Lord
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, UK
| | - Timothy Felton
- Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford
| | | | - Marc Feldmann
- Kennedy Institute of Rheumatology, Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Science, Windmill Rd, Headington, Oxford, OX3 7LD, UK
| | | | - John R Grainger
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK.
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Room 2.16, Core Technology Facility, 46 Grafton Street, Manchester, M13 9PL, UK.
| |
Collapse
|
61
|
Chen JS, Alfajaro MM, Wei J, Chow RD, Filler RB, Eisenbarth SC, Wilen CB. Cyclooxgenase-2 is induced by SARS-CoV-2 infection but does not affect viral entry or replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.24.312769. [PMID: 32995789 PMCID: PMC7523115 DOI: 10.1101/2020.09.24.312769] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Identifying drugs that regulate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its symptoms has been a pressing area of investigation during the coronavirus disease 2019 (COVID-19) pandemic. Nonsteroidal anti-inflammatory drugs (NSAIDs), which are frequently used for the relief of pain and inflammation, could modulate both SARS-CoV-2 infection and the host response to the virus. NSAIDs inhibit the enzymes cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), which mediate the production of prostaglandins (PGs). PGE2, one of the most abundant PGs, has diverse biological roles in homeostasis and inflammatory responses. Previous studies have shown that NSAID treatment or inhibition of PGE2 receptor signaling leads to upregulation of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for SARS-CoV-2, thus raising concerns that NSAIDs could increase susceptibility to infection. COX/PGE2 signaling has also been shown to regulate the replication of many viruses, but it is not yet known whether it plays a role in SARS-CoV-2 replication. The purpose of this study was to dissect the effect of NSAIDs on COVID-19 in terms of SARS-CoV-2 entry and replication. We found that SARS-CoV-2 infection induced COX-2 upregulation in diverse human cell culture and mouse systems. However, suppression of COX-2/PGE2 signaling by two commonly used NSAIDs, ibuprofen and meloxicam, had no effect on ACE2 expression, viral entry, or viral replication. Our findings suggest that COX-2 signaling driven by SARS-CoV-2 may instead play a role in regulating the lung inflammation and injury observed in COVID-19 patients.
Collapse
Affiliation(s)
- Jennifer S. Chen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jin Wei
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan D. Chow
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Renata B. Filler
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie C. Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
62
|
Arca KN, Smith JH, Chiang C, Starling AJ, Robertson CE, Halker Singh RB, Schwedt TJ, Kissoon NR, Garza I, Rozen TD, Boes CJ, Whealy MA, VanderPluym JH. COVID-19 and Headache Medicine: A Narrative Review of Non-Steroidal Anti-Inflammatory Drug (NSAID) and Corticosteroid Use. Headache 2020; 60:1558-1568. [PMID: 32648592 PMCID: PMC7404408 DOI: 10.1111/head.13903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To summarize the current literature on non-steroidal anti-inflammatory drug and corticosteroid use during the coronavirus disease 2019 (COVID-19) pandemic, recognizing that these are commonly used treatments in the field of headache medicine. BACKGROUND The use of non-steroidal anti-inflammatory drugs and corticosteroids in patients during the COVID-19 pandemic has been a controversial topic within the medical community and international and national health organizations. Lay press and social media outlets have circulated opinions on this topic despite the fact that the evidence for or against the use of these medications is sparse. In the field of headache medicine, these medications are used commonly and both patients and clinicians may have questions or hesitations pertaining to their use during the COVID-19 pandemic. METHODS A detailed search of the scientific and popular literature was performed. RESULTS There is limited literature pertaining to the safety of non-steroidal anti-inflammatory drugs and corticosteroids during the COVID-19 pandemic. To date, there are no clear scientific data that preclude the use of non-steroidal anti-inflammatory drugs in the general population who may acquire COVID-19 or in those acutely infected with the virus. Several health organizations have concluded that treatment with corticosteroids during active infection should be avoided due to concerns of prolonged viral shedding in the respiratory tract and the lack of survival benefit based on the data from past coronaviruses and influenza virus; specific exceptions exist including treatment for underlying asthma or chronic obstructive pulmonary disease, septic shock, and acute respiratory distress syndrome. CONCLUSION Scientific information regarding the COVID-19 pandemic is constantly evolving, and limited or contradictory information can lead to confusion for both patients and clinicians. It is recommended that prior to prescribing non-steroidal anti-inflammatory drugs and steroids for the treatment of headache, clinicians have open discussions with their patients about the potential risks and benefits of using these medications during the COVID-19 pandemic. This manuscript summarizes the currently available evidence and understanding about these risks and benefits to help clinicians navigate such discussions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ivan Garza
- Department of NeurologyMayo ClinicRochesterMNUSA
| | - Todd D. Rozen
- Department of NeurologyMayo Clinic FloridaJacksonvilleFLUSA
| | | | | | | |
Collapse
|
63
|
Curran CS, Rivera DR, Kopp JB. COVID-19 Usurps Host Regulatory Networks. Front Pharmacol 2020; 11:1278. [PMID: 32922297 PMCID: PMC7456869 DOI: 10.3389/fphar.2020.01278] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 binds the angiotensin-converting enzyme 2 (ACE2) on the cell surface and this complex is internalized. ACE2 serves as an endogenous inhibitor of inflammatory signals associated with four major regulator systems: the renin-angiotensin-aldosterone system (RAAS), the complement system, the coagulation cascade, and the kallikrein-kinin system (KKS). Understanding the pathophysiological effects of SARS-CoV-2 on these pathways is needed, particularly given the current lack of proven, effective treatments. The vasoconstrictive, prothrombotic and pro-inflammatory conditions induced by SARS-CoV-2 can be ascribed, at least in part, to the activation of these intersecting physiological networks. Moreover, patients with immune deficiencies, hypertension, diabetes, coronary heart disease, and kidney disease often have altered activation of these pathways, either due to underlying disease or to medications, and may be more susceptible to SARS-CoV-2 infection. Certain characteristic COVID-associated skin, sensory, and central nervous system manifestations may also be linked to viral activation of the RAAS, complement, coagulation, and KKS pathways. Pharmacological interventions that target molecules along these pathways may be useful in mitigating symptoms and preventing organ or tissue damage. While effective anti-viral therapies are critically needed, further study of these pathways may identify effective adjunctive treatments and patients most likely to benefit.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Donna R Rivera
- Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
64
|
Davis PJ, Lin HY, Hercbergs A, Keating KA, Mousa SA. Coronaviruses and Integrin αvβ3: Does Thyroid Hormone Modify the Relationship? Endocr Res 2020; 45:210-215. [PMID: 32628899 DOI: 10.1080/07435800.2020.1767127] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Uptake of coronaviruses by target cells involves binding of the virus by cell ectoenzymes. For the etiologic agent of COVID-19 (SARS-CoV-2), a receptor has been identified as angiotensin-converting enzyme-2 (ACE2). Recently it has been suggested that plasma membrane integrins may be involved in the internalization and replication of clinically important coronaviruses. For example, integrin αvβ3 is involved in the cell uptake of a model porcine enteric α-coronavirus that causes human epidemics. ACE2 modulates the intracellular signaling generated by integrins. OBJECTIVE We propose that the cellular internalization of αvβ3 applies to uptake of coronaviruses bound to the integrin, and we evaluate the possibility that clinical host T4 may contribute to target cell uptake of coronavirus and to the consequence of cell uptake of the virus. DISCUSSION AND CONCLUSIONS The viral binding domain of the integrin is near the Arg-Gly-Asp (RGD) peptide-binding site and RGD molecules can affect virus binding. In this same locale on integrin αvβ3 is the receptor for thyroid hormone analogues, particularly, L-thyroxine (T4). By binding to the integrin, T4 has been shown to modulate the affinity of the integrin for other proteins, to control internalization of αvβ3 and to regulate the expression of a panel of cytokine genes, some of which are components of the 'cytokine storm' of viral infections. If T4 does influence coronavirus uptake by target cells, other thyroid hormone analogues, such as deaminated T4 and deaminated 3,5,3'-triiodo-L-thyronine (T3), are candidate agents to block the virus-relevant actions of T4 at integrin αvβ3 and possibly restrict virus uptake.
Collapse
Affiliation(s)
- Paul J Davis
- Department of Medicine, Albany Medical College , Albany, NY, USA
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences , Rensselaer, NY, USA
| | - Hung-Yun Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University , Taipei, Taiwan
- Taipei Cancer Center, Taipei Medical University , Taipei, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University , Taipei, Taiwan
| | - Aleck Hercbergs
- Department of Radiation Oncology, The Cleveland Clinic , Cleveland, OH, USA
| | - Kelly A Keating
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences , Rensselaer, NY, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences , Rensselaer, NY, USA
| |
Collapse
|
65
|
Satarker S, Nampoothiri M. Structural Proteins in Severe Acute Respiratory Syndrome Coronavirus-2. Arch Med Res 2020; 51:482-491. [PMID: 32493627 PMCID: PMC7247499 DOI: 10.1016/j.arcmed.2020.05.012] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
What began with a sign of pneumonia-related respiratory disorders in China has now become a pandemic named by WHO as Covid-19 known to be caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The SARS-CoV-2 are newly emerged β coronaviruses belonging to the Coronaviridae family. SARS-CoV-2 has a positive viral RNA genome expressing open reading frames that code for structural and non-structural proteins. The structural proteins include spike (S), nucleocapsid (N), membrane (M), and envelope (E) proteins. The S1 subunit of S protein facilitates ACE2 mediated virus attachment while S2 subunit promotes membrane fusion. The presence of glutamine, asparagine, leucine, phenylalanine and serine amino acids in SARS-CoV-2 enhances ACE2 binding. The N protein is composed of a serine-rich linker region sandwiched between N Terminal Domain (NTD) and C Terminal Domain (CTD). These terminals play a role in viral entry and its processing post entry. The NTD forms orthorhombic crystals and binds to the viral genome. The linker region contains phosphorylation sites that regulate its functioning. The CTD promotes nucleocapsid formation. The E protein contains a NTD, hydrophobic domain and CTD which form viroporins needed for viral assembly. The M protein possesses hydrophilic C terminal and amphipathic N terminal. Its long-form promotes spike incorporations and the interaction with E facilitates virion production. As each protein is essential in viral functioning, this review describes the insights of SARS-CoV-2 structural proteins that would help in developing therapeutic strategies by targeting each protein to curb the rapidly growing pandemic.
Collapse
Affiliation(s)
- Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
66
|
Gupta A, Kalantar-Zadeh K, Reddy ST. Ramatroban as a Novel Immunotherapy for COVID-19. J Mol Genet Med 2020; 14:10.37421/jmgm.2020.14.457. [PMID: 32952595 PMCID: PMC7500620 DOI: 10.37421/jmgm.2020.14.457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
SARS-CoV-2 virus suppresses host innate and adaptive immune responses, thereby allowing the virus to proliferate, and cause multiorgan failure, especially in the elderly. Respiratory viruses stimulate cyclooxygenase-2 (COX-2) to generate prostanoids including Prostaglandin D2 (PGD2) and thromboxane A2. Furthermore, PGD2 concentrations in the airways increase with aging. PGD2 action mediated via DP2 receptors suppresses both innate and adaptive immune responses, by inhibiting interferon-λ and stimulation of myeloid monocyte-derived suppressor cells respectively. PGD2 and thromboxane A2 actions via the TP receptors activate platelets leading to a prothrombotic state. Ramatroban, a small-molecule antagonist of DP2 and TP receptors, reverses viremia-associated proinflammatory, immunosuppressive5 and prothrombotic processes which are similar to those induced by SARS-Cov-2. Ramatroban, used for the treatment of allergic rhinitis in Japan for the past 20 years has an excellent safety profile. Therefore, Ramatroban merits investigation as a novel immunotherapy for the treatment of COVID-19 disease.
Collapse
Affiliation(s)
- Ajay Gupta
- Division of Nephrology, Hypertension and Kidney Transplantation and Department of Medicine, University of California Irvine (UCI) School of Medicine, United States
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Hypertension and Kidney Transplantation and Department of Medicine, University of California Irvine (UCI) School of Medicine, United States
| | - Srinivasa T. Reddy
- Departments of Medicine, and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| |
Collapse
|
67
|
Gupta A, Chander Chiang K. Prostaglandin D 2 as a mediator of lymphopenia and a therapeutic target in COVID-19 disease. Med Hypotheses 2020; 143:110122. [PMID: 32759007 PMCID: PMC7373045 DOI: 10.1016/j.mehy.2020.110122] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/16/2020] [Indexed: 01/30/2023]
Abstract
A characteristic feature of COVID-19 disease is lymphopenia. Lymphopenia occurs early in the clinical course and is a predictor of disease severity and outcomes. The mechanism of lymphopenia in COVID-19 is uncertain. It has been variously attributed to the release of inflammatory cytokines including IL-6 and TNF-α; direct infection of the lymphocytes by the virus; and rapid sequestration of lymphocytes in the tissues. Additionally, we postulate that prostaglandin D2 (PGD2) is a key meditator of lymphopenia in COVID-19. First, SARS-CoV infection is known to stimulate the production of PGD2 in the airways, which inhibits the host dendritic cell response via the DP1 receptor signaling. Second, PGD2 is known to upregulate monocytic myeloid-derived suppressor cells (MDSC) via the DP2 receptor signaling in group 2 innate lymphoid cells (ILC2). We propose targeting PGD2/DP2 signaling using a receptor antagonist such as ramatroban as an immunotherapy for immune dysfunction and lymphopenia in COVID-19 disease.
Collapse
Affiliation(s)
- Ajay Gupta
- Department of Medicine, University of California Irvine (UCI) School of Medicine, USA.
| | | |
Collapse
|
68
|
Wehbe Z, Hammoud S, Soudani N, Zaraket H, El-Yazbi A, Eid AH. Molecular Insights Into SARS COV-2 Interaction With Cardiovascular Disease: Role of RAAS and MAPK Signaling. Front Pharmacol 2020; 11:836. [PMID: 32581799 PMCID: PMC7283382 DOI: 10.3389/fphar.2020.00836] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
In December 2019, reports of viral pneumonia came out of Wuhan city in Hubei province in China. In early 2020, the causative agent was identified as a novel coronavirus (CoV) sharing some sequence similarity with SARS-CoV that caused the severe acute respiratory syndrome outbreak in 2002. The new virus, named SARS-CoV-2, is highly contagious and spread rapidly across the globe causing a pandemic of what became known as coronavirus infectious disease 2019 (COVID-19). Early observations indicated that cardiovascular disease (CVD) patients are at higher risk of progression to severe respiratory manifestations of COVID-19 including acute respiratory distress syndrome. Moreover, further observations demonstrated that SARS-CoV-2 infection can induce de novo cardiac and vascular damage in previously healthy individuals. Here, we offer an overview of the proposed molecular pathways shared by the pathogenesis of CVD and SARS-CoV infections in order to provide a mechanistic framework for the observed interrelation. We examine the crosstalk between the renin-angiotensin-aldosterone system and mitogen activated kinase pathways that potentially links cardiovascular predisposition and/or outcome to SARS-CoV-2 infection. Finally, we summarize the possible effect of currently available drugs with known cardiovascular benefit on these pathways and speculate on their potential utility in mitigating cardiovascular risk and morbidity in COVID-19 patients.
Collapse
Affiliation(s)
- Zena Wehbe
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Safaa Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Nadia Soudani
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon.,Department of Biomedical Sciences, College of Health, Qatar University, Doha, Qatar
| |
Collapse
|
69
|
Zabetakis I, Lordan R, Norton C, Tsoupras A. COVID-19: The Inflammation Link and the Role of Nutrition in Potential Mitigation. Nutrients 2020; 12:E1466. [PMID: 32438620 PMCID: PMC7284818 DOI: 10.3390/nu12051466] [Citation(s) in RCA: 308] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023] Open
Abstract
The novel coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has engulfed the world, affecting more than 180 countries. As a result, there has been considerable economic distress globally and a significant loss of life. Sadly, the vulnerable and immunocompromised in our societies seem to be more susceptible to severe COVID-19 complications. Global public health bodies and governments have ignited strategies and issued advisories on various handwashing and hygiene guidelines, social distancing strategies, and, in the most extreme cases, some countries have adopted "stay in place" or lockdown protocols to prevent COVID-19 spread. Notably, there are several significant risk factors for severe COVID-19 infection. These include the presence of poor nutritional status and pre-existing noncommunicable diseases (NCDs) such as diabetes mellitus, chronic lung diseases, cardiovascular diseases (CVD), obesity, and various other diseases that render the patient immunocompromised. These diseases are characterized by systemic inflammation, which may be a common feature of these NCDs, affecting patient outcomes against COVID-19. In this review, we discuss some of the anti-inflammatory therapies that are currently under investigation intended to dampen the cytokine storm of severe COVID-19 infections. Furthermore, nutritional status and the role of diet and lifestyle is considered, as it is known to affect patient outcomes in other severe infections and may play a role in COVID-19 infection. This review speculates the importance of nutrition as a mitigation strategy to support immune function amid the COVID-19 pandemic, identifying food groups and key nutrients of importance that may affect the outcomes of respiratory infections.
Collapse
Affiliation(s)
- Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland;
- Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland; (R.L.); (C.N.)
| | - Ronan Lordan
- Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland; (R.L.); (C.N.)
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA
| | - Catherine Norton
- Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland; (R.L.); (C.N.)
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland;
- Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland; (R.L.); (C.N.)
| |
Collapse
|
70
|
Affiliation(s)
- Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA.
| |
Collapse
|
71
|
Alfajaro MM, Cho EH, Park JG, Kim JY, Soliman M, Baek YB, Kang MI, Park SI, Cho KO. Feline calicivirus- and murine norovirus-induced COX-2/PGE2 signaling pathway has proviral effects. PLoS One 2018; 13:e0200726. [PMID: 30021004 PMCID: PMC6051663 DOI: 10.1371/journal.pone.0200726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Cyclooxygenases (COXs)/prostaglandin E2 (PGE2) signaling pathways are known to modulate a variety of homeostatic processes and are involved in various pathophysiological conditions. COXs/PGE2 signaling pathways have also been demonstrated to have proviral or antiviral effects, which appeared different even in the same virus family. A porcine sapovirus Cowden strain, a member of genus Sapovirus within the Caliciviridae family, induces strong COX-2/PGE2 but transient COX-1/PGE2 signaling to enhance virus replication. However, whether infections of other viruses in the different genera activate COXs/PGE2 signaling, and thus affect the replication of viruses, remains unknown. In the present study, infections of cells with the feline calicivirus (FCV) F9 strain in the genus Vesivirus and murine norovirus (MNV) CW-1 strain in the genus Norovirus only activated the COX-2/PGE2 signaling in a time-dependent manner. Treatment with pharmacological inhibitors or transfection of small interfering RNAs (siRNAs) against COX-2 enzyme significantly reduced the production of PGE2 as well as FCV and MNV replications. The inhibitory effects of these pharmacological inhibitors against COX-2 enzyme on the replication of both viruses were restored by the addition of PGE2. Silencing of COX-1 via siRNAs and inhibition of COX-1 via an inhibitor also decrease the production of PGE2 and replication of both viruses, which can be attributed to the inhibition COX-1/PGE2 signaling pathway. These data indicate that the COX-2/PGE2 signaling pathway has proviral effects for the replication of FCV and MNV, and pharmacological inhibitors against these enzymes serve as potential therapeutic candidates for treating FCV and MNV infections.
Collapse
Affiliation(s)
- Mia Madel Alfajaro
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Eun-Hyo Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jun-Gyu Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Yun Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Mahmoud Soliman
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Yeong-Bin Baek
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Mun-Il Kang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
72
|
Beidas M, Chehadeh W. PCR array profiling of antiviral genes in human embryonic kidney cells expressing human coronavirus OC43 structural and accessory proteins. Arch Virol 2018; 163:2065-2072. [PMID: 29619598 PMCID: PMC7086905 DOI: 10.1007/s00705-018-3832-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/22/2018] [Indexed: 10/26/2022]
Abstract
Human coronavirus OC43 (HCoV-OC43) is a respiratory virus that usually causes a common cold. However, it has the potential to cause severe infection in young children and immunocompromised adults. Both SARS-CoV and MERS-CoV were shown to express proteins with the potential to evade early innate immune responses. However, the ability of HCoV-OC43 to antagonise the intracellular antiviral defences has not yet been investigated. The potential role of the HCoV-OC43 structural (M and N) and accessory proteins (ns2a and ns5a) in the alteration of antiviral gene expression was investigated in this study. HCoV-OC43M, N, ns2a and ns5a proteins were expressed in human embryonic kidney 293 (HEK-293) cells before challenge with Sendai virus. The Human Antiviral Response PCR array was used to profile the antiviral gene expression in HEK-293 cells. Over 30 genes were downregulated in the presence of one of the HCoV-OC43 proteins, e.g. genes representing mitogen-activated protein kinases, toll-like receptors, interferons, interleukins, and signaling transduction proteins. Our findings suggest that similarly to SARS-CoV and MERS-CoV, HCoV-OC43 has the ability to downregulate the transcription of genes critical for the activation of different antiviral signaling pathways. Further studies are needed to confirm the role of HCoV-OC43 structural and accessory proteins in antagonising antiviral gene expression.
Collapse
Affiliation(s)
- Meshal Beidas
- Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, 13310, Safat, Kuwait
| | - Wassim Chehadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, PO Box 24923, 13310, Safat, Kuwait.
| |
Collapse
|
73
|
Hu T, Chen Y, Jiang Q, Lin J, Li H, Wang P, Feng L. Overexpressed eNOS upregulates SIRT1 expression and protects mouse pancreatic β cells from apoptosis. Exp Ther Med 2017; 14:1727-1731. [PMID: 28810642 DOI: 10.3892/etm.2017.4669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/03/2017] [Indexed: 11/06/2022] Open
Abstract
Loss of sirtuin 1 (SIRT1) activity may be associated with metabolic diseases, including diabetes. The aim of the present study was to investigate the potential effects of overexpressed endothelial nitric oxide synthase (eNOS) on cell proliferation and apoptosis with SIRT1 activation in the Min6 mouse pancreatic β cell line. A pcDNA3.0-eNOS plasmid was constructed and transfected into Min6 cells for 24 h prior to harvesting. eNOS expression was validated and SIRT1 expression was detected following plasmid transfection using reverse transcription-quantitative polymerase chain reaction and western blot analysis, which demonstrated that the expression levels of eNOS and SIRT1 were significantly upregulated. Furthermore, the cell proliferation and cell apoptosis of the Min6 cells were evaluated, using a cell counting kit-8 assay and flow cytometry, respectively. The results suggested that overexpressed eNOS promoted cell proliferation and inhibited cell apoptosis in Min6 cells. The interaction between eNOS and SIRT1 was explored through co-immunoprecipitation, and it found that there was a strong interaction between eNOS and SIRT1. In conclusion, overexpressed eNOS may induce SIRT1 activation, which is implied to play a protective role in Min6 cells, and eNOS may be a new therapeutic target for diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Ye Chen
- Graduate School of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Qian Jiang
- Department of Stomatology, The First Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Jun Lin
- Department of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Hewei Li
- Graduate School of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Ping Wang
- Graduate School of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Leping Feng
- Department of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
74
|
The Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Inhibits Type I Interferon Production by Interfering with TRIM25-Mediated RIG-I Ubiquitination. J Virol 2017; 91:JVI.02143-16. [PMID: 28148787 DOI: 10.1128/jvi.02143-16] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is a respiratory disease, caused by a coronavirus (SARS-CoV), that is characterized by atypical pneumonia. The nucleocapsid protein (N protein) of SARS-CoV plays an important role in inhibition of type I interferon (IFN) production via an unknown mechanism. In this study, the SARS-CoV N protein was found to bind to the SPRY domain of the tripartite motif protein 25 (TRIM25) E3 ubiquitin ligase, thereby interfering with the association between TRIM25 and retinoic acid-inducible gene I (RIG-I) and inhibiting TRIM25-mediated RIG-I ubiquitination and activation. Type I IFN production induced by poly I·C or Sendai virus (SeV) was suppressed by the SARS-CoV N protein. SARS-CoV replication was increased by overexpression of the full-length N protein but not N amino acids 1 to 361, which could not interact with TRIM25. These findings provide an insightful interpretation of the SARS-CoV-mediated host innate immune suppression caused by the N protein.IMPORTANCE The SARS-CoV N protein is essential for the viral life cycle and plays a key role in the virus-host interaction. We demonstrated that the interaction between the C terminus of the N protein and the SPRY domain of TRIM25 inhibited TRIM25-mediated RIG-I ubiquitination, which resulted in the inhibition of IFN production. We also found that the Middle East respiratory syndrome CoV (MERS-CoV) N protein interacted with TRIM25 and inhibited RIG-I signaling. The outcomes of these findings indicate the function of the coronavirus N protein in modulating the host's initial innate immune response.
Collapse
|
75
|
Activation of COX-2/PGE2 Promotes Sapovirus Replication via the Inhibition of Nitric Oxide Production. J Virol 2017; 91:JVI.01656-16. [PMID: 27881647 PMCID: PMC5244346 DOI: 10.1128/jvi.01656-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/15/2016] [Indexed: 12/23/2022] Open
Abstract
Enteric caliciviruses in the genera Norovirus and Sapovirus are important pathogens that cause severe acute gastroenteritis in both humans and animals. Cyclooxygenases (COXs) and their final product, prostaglandin E2 (PGE2), are known to play important roles in the modulation of both the host response to infection and the replicative cycles of several viruses. However, the precise mechanism(s) by which the COX/PGE2 pathway regulates sapovirus replication remains largely unknown. In this study, infection with porcine sapovirus (PSaV) strain Cowden, the only cultivable virus within the genus Sapovirus, markedly increased COX-2 mRNA and protein levels at 24 and 36 h postinfection (hpi), with only a transient increase in COX-1 levels seen at 24 hpi. The treatment of cells with pharmacological inhibitors, such as nonsteroidal anti-inflammatory drugs or small interfering RNAs (siRNAs) against COX-1 and COX-2, significantly reduced PGE2 production, as well as PSaV replication. Expression of the viral proteins VPg and ProPol was associated with activation of the COX/PGE2 pathway. We observed that pharmacological inhibition of COX-2 dramatically increased NO production, causing a reduction in PSaV replication that could be restored by inhibition of nitric oxide synthase via the inhibitor N-nitro-l-methyl-arginine ester. This study identified a pivotal role for the COX/PGE2 pathway in the regulation of NO production during the sapovirus life cycle, providing new insights into the life cycle of this poorly characterized family of viruses. Our findings also reveal potential new targets for treatment of sapovirus infection. IMPORTANCE Sapoviruses are among the major etiological agents of acute gastroenteritis in both humans and animals, but little is known about sapovirus host factor requirements. Here, using only cultivable porcine sapovirus (PSaV) strain Cowden, we demonstrate that PSaV induced the vitalization of the cyclooxygenase (COX) and prostaglandin E2 (PGE2) pathway. Targeting of COX-1/2 using nonsteroidal anti-inflammatory drugs (NSAIDs) such as the COX-1/2 inhibitor indomethacin and the COX-2-specific inhibitors NS-398 and celecoxib or siRNAs targeting COXs, inhibited PSaV replication. Expression of the viral proteins VPg and ProPol was associated with activation of the COX/PGE2 pathway. We further demonstrate that the production of PGE2 provides a protective effect against the antiviral effector mechanism of nitric oxide. Our findings uncover a new mechanism by which PSaV manipulates the host cell to provide an environment suitable for efficient viral growth, which in turn can be a new target for treatment of sapovirus infection.
Collapse
|
76
|
Wang L, Zhu S, Xu G, Feng J, Han T, Zhao F, She YL, Liu S, Ye L, Zhu Y. Gene Expression and Antiviral Activity of Interleukin-35 in Response to Influenza A Virus Infection. J Biol Chem 2016; 291:16863-76. [PMID: 27307042 DOI: 10.1074/jbc.m115.693101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 01/22/2023] Open
Abstract
Interleukin-35 (IL-35) is a newly described member of the IL-12 family. It has been reported to inhibit inflammation and autoimmune inflammatory disease and can increase apoptotic sensitivity. Little is known about the role of IL-35 during viral infection. Herein, high levels of IL-35 were found in peripheral blood mononuclear cells and throat swabs from patients with seasonal influenza A virus (IAV) relative to healthy individuals. IAV infection of human lung epithelial and primary cells increased levels of IL-35 mRNA and protein. Further studies demonstrated that IAV-induced IL-35 transcription is regulated by NF-κB. IL-35 expression was significantly suppressed by selective inhibitors of cyclooxygenase-2 (COX-2) and inducible nitric-oxide synthase, indicating their involvement in IL-35 expression. Interestingly, IL-35 production may have suppressed IAV RNA replication and viral protein synthesis via induction of type I and III interferons (IFN), leading to activation of downstream IFN effectors, including double-stranded RNA-dependent protein kinase, 2',5'-oligoadenylate synthetase, and myxovirus resistance protein. IL-35 exhibited extensive antiviral activity against the hepatitis B virus, enterovirus 71, and vesicular stomatitis virus. Our results demonstrate that IL-35 is a novel IAV-inducible cytokine, and its production elicits antiviral activity.
Collapse
Affiliation(s)
- Li Wang
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Shengli Zhu
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Gang Xu
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jian Feng
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Tao Han
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Fanpeng Zhao
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ying-Long She
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Shi Liu
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Linbai Ye
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ying Zhu
- From the The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
77
|
Lu L, Zhang Q, Wu K, Chen X, Zheng Y, Zhu C, Wu J. Hepatitis C virus NS3 protein enhances cancer cell invasion by activating matrix metalloproteinase-9 and cyclooxygenase-2 through ERK/p38/NF-κB signal cascade. Cancer Lett 2014; 356:470-8. [PMID: 25305454 DOI: 10.1016/j.canlet.2014.09.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/06/2014] [Accepted: 09/22/2014] [Indexed: 12/17/2022]
Abstract
Hepatitis C virus (HCV) infection causes acute and chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). However, the mechanisms by which HCV causes the diseases are largely unknown. Here, we elucidated the effects of HCV on the invasion and migration of hepatoma cells, with the aim to reveal the mechanism by which HCV infection induces HCC. We initially showed that matrix metalloproteinase-9 (MMP-9) was elevated in the sera of HCV-infected patients, and demonstrated that HCV nonstructural protein 3 (NS3) activated MMP-9 transcription through nuclear factor-κB (NF-κB) by stimulating translocation of NF-κB from cytosol to the nucleus to enhance its binding to MMP-9 promoter. In addition, cyclooxygenase-2 (COX-2) and extracellular signal-regulated kinase (ERK1/2)/mitogen-activated protein kinase (p38) pathway were involved in HCV-activated MMP-9 expression. Moreover, NS3 enhanced hepatoma cell invasion and migration through MMP-9 and COX-2. Thus, this study provides new insights into the roles of HCV NS3, MMP-9 and COX-2 in regulating cancer cell invasion.
Collapse
Affiliation(s)
- Lili Lu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qi Zhang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kailang Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xi Chen
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Zheng
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chengliang Zhu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China; Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Jianguo Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
78
|
McBride R, van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses 2014; 6:2991-3018. [PMID: 25105276 PMCID: PMC4147684 DOI: 10.3390/v6082991] [Citation(s) in RCA: 638] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/12/2022] Open
Abstract
The coronavirus nucleocapsid (N) is a structural protein that forms complexes with genomic RNA, interacts with the viral membrane protein during virion assembly and plays a critical role in enhancing the efficiency of virus transcription and assembly. Recent studies have confirmed that N is a multifunctional protein. The aim of this review is to highlight the properties and functions of the N protein, with specific reference to (i) the topology; (ii) the intracellular localization and (iii) the functions of the protein.
Collapse
Affiliation(s)
- Ruth McBride
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| | - Marjorie van Zyl
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| | - Burtram C Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape 7535, South Africa.
| |
Collapse
|
79
|
Shi D, Lv M, Chen J, Shi H, Zhang S, Zhang X, Feng L. Molecular characterizations of subcellular localization signals in the nucleocapsid protein of porcine epidemic diarrhea virus. Viruses 2014; 6:1253-73. [PMID: 24632575 PMCID: PMC3970149 DOI: 10.3390/v6031253] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/24/2014] [Accepted: 03/05/2014] [Indexed: 12/22/2022] Open
Abstract
The nucleolus is a dynamic subnuclear structure, which is crucial to the normal operation of the eukaryotic cell. The porcine epidemic diarrhea virus (PEDV), coronavirus nucleocapsid (N) protein, plays important roles in the process of virus replication and cellular infection. Virus infection and transfection showed that N protein was predominately localized in the cytoplasm, but also found in the nucleolus in Vero E6 cells. Furthermore, by utilizing fusion proteins with green fluorescent protein (GFP), deletion mutations or site-directed mutagenesis of PEDV N protein, coupled with live cell imaging and confocal microscopy, it was revealed that, a region spanning amino acids (aa), 71–90 in region 1 of the N protein was sufficient for nucleolar localization and R87 and R89 were critical for its function. We also identified two nuclear export signals (NES, aa221–236, and 325–364), however, only the nuclear export signal (aa325–364) was found to be functional in the context of the full-length N protein. Finally, the activity of this nuclear export signal (NES) was inhibited by the antibiotic Lepomycin B, suggesting that N is exported by a chromosome region maintenance 1-related export pathway.
Collapse
Affiliation(s)
- Da Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Maojie Lv
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Jianfei Chen
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Hongyan Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Sha Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Xin Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| |
Collapse
|
80
|
Paul AG, Chandran B, Sharma-Walia N. Cyclooxygenase-2-prostaglandin E2-eicosanoid receptor inflammatory axis: a key player in Kaposi's sarcoma-associated herpes virus associated malignancies. Transl Res 2013; 162:77-92. [PMID: 23567332 PMCID: PMC7185490 DOI: 10.1016/j.trsl.2013.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 02/13/2013] [Accepted: 03/15/2013] [Indexed: 12/28/2022]
Abstract
The role of cyclooxygenase-2 (COX-2), its lipid metabolite prostaglandin E2 (PGE2), and Eicosanoid (EP) receptors (EP; 1-4) underlying the proinflammatory mechanistic aspects of Burkitt's lymphoma, nasopharyngeal carcinoma, cervical cancer, prostate cancer, colon cancer, and Kaposi's sarcoma (KS) is an active area of investigation. The tumorigenic potential of COX-2 and PGE2 through EP receptors forms the mechanistic context underlying the chemotherapeutic potential of nonsteroidal anti-inflammatory drugs (NSAIDs). Although role of the COX-2 is described in several viral associated malignancies, the biological significance of the COX-2/PGE2/EP receptor inflammatory axis is extensively studied only in Kaposi's sarcoma-associated herpes virus (KSHV/HHV-8) associated malignancies such as KS, a multifocal endothelial cell tumor and primary effusion lymphoma (PEL), a B cell-proliferative disorder. The purpose of this review is to summarize the salient findings delineating the molecular mechanisms downstream of COX-2 involving PGE2 secretion and its autocrine and paracrine interactions with EP receptors (EP1-4), COX-2/PGE2/EP receptor signaling regulating KSHV pathogenesis and latency. KSHV infection induces COX-2, PGE2 secretion, and EP receptor activation. The resulting signal cascades modulate the expression of KSHV latency genes (latency associated nuclear antigen-1 [LANA-1] and viral-Fas (TNFRSF6)-associated via death domain like interferon converting enzyme-like- inhibitory protein [vFLIP]). vFLIP was also shown to be crucial for the maintenance of COX-2 activation. The mutually interdependent interactions between viral proteins (LANA-1/vFLIP) and COX-2/PGE2/EP receptors was shown to play key roles in the biological mechanisms involved in KS and PEL pathogenesis such as blockage of apoptosis, cell cycle regulation, transformation, proliferation, angiogenesis, adhesion, invasion, and immune-suppression. Understanding the COX-2/PGE2/EP axis is very important to develop new safer and specific therapeutic modalities for KS and PEL. In addition to COX-2 being a therapeutic target, EP receptors represent ideal targets for pharmacologic agents as PGE2 analogues and their blockers/antagonists possess antineoplastic activity, without the reported gastrointestinal and cardiovascular toxicity observed with few a NSAIDs.
Collapse
MESH Headings
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antineoplastic Agents/pharmacology
- Cyclooxygenase 2/metabolism
- Dinoprostone/metabolism
- Gene Expression Regulation, Viral
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/pathogenicity
- Humans
- Lymphoma, Primary Effusion/drug therapy
- Lymphoma, Primary Effusion/metabolism
- Receptors, Eicosanoid/metabolism
- Sarcoma, Kaposi/drug therapy
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/virology
- Signal Transduction
- Virus Latency/genetics
Collapse
Affiliation(s)
- Arun George Paul
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Ill
| | - Bala Chandran
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Ill
| | - Neelam Sharma-Walia
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Ill
| |
Collapse
|
81
|
Li Y, Xie J, Xu X, Liu L, Wan Y, Liu Y, Zhu C, Zhu Y. Inducible interleukin 32 (IL-32) exerts extensive antiviral function via selective stimulation of interferon λ1 (IFN-λ1). J Biol Chem 2013; 288:20927-20941. [PMID: 23729669 PMCID: PMC3774363 DOI: 10.1074/jbc.m112.440115] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/15/2013] [Indexed: 01/05/2023] Open
Abstract
Interleukin (IL)-32 has been recognized as a proinflammatory cytokine that participates in responses to viral infection. However, little is known about how IL-32 is induced in response to viral infection and the mechanisms of IL-32-mediated antiviral activities. We discovered that IL-32 is elevated by hepatitis B virus (HBV) infection both in vitro and in vivo and that HBV induced IL-32 expression at the level of both transcription and post-transcription. Furthermore, microRNA-29b was found to be a key factor in HBV-regulated IL-32 expression by directly targeting the mRNA 3'-untranslated region of IL-32. Antiviral analysis showed that IL-32 was not sufficient to alter HBV replication in HepG2.2.15 cells. To mimic the viremic phase of viral infection, freshly isolated peripheral blood mononuclear cells were treated with IL-32γ, the secretory isoform, and the supernatants were used for antiviral assays. Surprisingly, these supernatants exhibited extensive antiviral activity against multiplex viruses besides HBV. Thus, we speculated that the IL-32γ-treated peripheral blood mononuclear cells produced and secreted an unknown antiviral factor. Using antibody neutralization assays, we identified the factor as interferon (IFN)-λ1 and not IFN-α. Further studies indicated that IL-32γ effectively inhibited HBV replication in a hydrodynamic injection mouse model. Clinical data showed that elevated levels of IFN-λ1 both in serum and liver tissue of HBV patients were positively correlated to the increased levels of IL-32. Our results demonstrate that elevated IL-32 levels during viral infection mediate antiviral effects by stimulating the expression of IFN-λ1.
Collapse
Affiliation(s)
- Yongkui Li
- From The State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072, China and; the Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiajia Xie
- From The State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072, China and
| | - Xiupeng Xu
- From The State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072, China and
| | - Li Liu
- From The State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072, China and
| | - Yushun Wan
- From The State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072, China and
| | - Yingle Liu
- From The State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072, China and
| | - Chengliang Zhu
- From The State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072, China and
| | - Ying Zhu
- From The State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072, China and.
| |
Collapse
|
82
|
Abstract
Capsid proteins are obligatory components of infectious virions. Their primary structural function is to protect viral genomes during entry and exit from host cells. Evidence suggests that these proteins can also modulate the activity and specificity of viral replication complexes. More recently, it has become apparent that they play critical roles at the virus–host interface. Here, we discuss how capsid proteins of RNA viruses interact with key host cell proteins and pathways to modulate cell physiology in order to benefit virus replication. Capsid–host cell interactions may also have implications for viral disease. Understanding how capsids regulate virus–host interactions may lead to the development of novel antiviral therapies based on targeting the activities of cellular proteins.
Collapse
Affiliation(s)
- Steven Willows
- Department of Cell Biology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| | - Shangmei Hou
- Department of Cell Biology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| | - Tom C Hobman
- Department of Li Ka Shing Institute of Virology, University of Alberta, 5–14 Medical Sciences Building, Edmonton, T6G 2H7, Canada
| |
Collapse
|
83
|
Yu Y, Gong R, Mu Y, Chen Y, Zhu C, Sun Z, Chen M, Liu Y, Zhu Y, Wu J. Hepatitis B virus induces a novel inflammation network involving three inflammatory factors, IL-29, IL-8, and cyclooxygenase-2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:4844-60. [PMID: 21957142 DOI: 10.4049/jimmunol.1100998] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic inflammation induced by hepatitis B virus (HBV) is a major causative factor associated with the development of cirrhosis and hepatocellular carcinoma. In this study, we investigated the roles of three inflammatory factors, IL-8, IL-29 (or IFN-λ1), and cyclooxygenase-2 (COX-2), in HBV infection. We showed that the expression of IL-29, IL-8, and COX-2 genes was enhanced in HBV-infected patients or in HBV-expressing cells. In HBV-transfected human lymphocytes and hepatocytes, IL-29 activates the production of IL-8, which in turn enhances the expression of COX-2. In addition, COX-2 decreases the production of IL-8, which in turn attenuates the expression of IL-29. Thus, we proposed that HBV infection induces a novel inflammation cytokine network involving three inflammatory factors that regulate each other in the order IL-29/IL-8/COX-2, which involves positive regulation and negative feedback. In addition, we also demonstrated that COX-2 expression activated by IL-8 was mediated through CREB and C/EBP, which maintains the inflammatory environment associated with HBV infection. Finally, we showed that the ERK and the JNK signaling pathways were cooperatively involved in the regulation of COX-2. We also demonstrated that IL-29 inhibits HBV replication and that IL-8 attenuates the expression of IL-10R2 and the anti-HBV activity of IL-29, which favors the establishment of persistent viral infection. These new findings provide insights for our understanding of the mechanism by which inflammatory factors regulate each other in response to HBV infection.
Collapse
Affiliation(s)
- Yi Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Yue X, Yang F, Yang Y, Mu Y, Sun W, Li W, Xu D, Wu J, Zhu Y. Induction of cyclooxygenase-2 expression by hepatitis B virus depends on demethylation-associated recruitment of transcription factors to the promoter. Virol J 2011; 8:118. [PMID: 21401943 PMCID: PMC3066118 DOI: 10.1186/1743-422x-8-118] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/14/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The hepatitis B virus (HBV) is a major etiological factor of inflammation and damage to the liver resulting in hepatocellular carcinoma. Transcription factors play important roles in the disordered gene expression and liver injury caused by HBV. However, the molecular mechanisms behind this observation have not been defined. RESULTS In this study, we observed that circulating prostaglandin (PGE) 2 synthesis was increased in patients with chronic hepatitis B infection, and detected elevated cyclooxygenase (COX)-2 expression in HBV- and HBx-expressing liver cells. Likewise, the association of HBx with C/EBPβ contributed to the induction of COX-2. The COX-2 promoter was hypomethylated in HBV-positive cells, and specific demethylation of CpG dinucleotides within each of the two NF-AT sites in the COX-2 promoter resulted in the increased binding affinity of NF-AT to the cognate sites in the promoter, followed by increased COX-2 expression and PGE2 accumulation. The DNA methylatransferase DNMT3B played a key role in the methylation of the COX-2 promoter, and its decreased binding to the promoter was responsible for the regional demethylation of CpG sites, and for the increased binding of transcription factors in HBV-positive cells. CONCLUSION Our results indicate that upregulation of COX-2 by HBV and HBx is mediated by both demethylation events and recruitment of multiple transcription factors binding to the promoter.
Collapse
Affiliation(s)
- Xin Yue
- State Key Laboratory of Virology and College of Life Sciences, Chinese-French Liver Disease Research Institute of Wuhan University (Zhongnan Hospital), Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Mu Y, Yu Y, Yue X, Musarat I, Gong R, Zhu C, Liu Y, Liu F, Zhu Y, Wu J. The X protein of HBV induces HIV-1 long terminal repeat transcription by enhancing the binding of C/EBPβ and CREB1/2 regulatory proteins to the long terminal repeat of HIV-1. Virus Res 2011; 156:81-90. [DOI: 10.1016/j.virusres.2011.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 01/01/2011] [Accepted: 01/04/2011] [Indexed: 11/29/2022]
|
86
|
Cao YL, Wang Y, Guo R, Yang F, Zhang Y, Wang SH, Liu L. Identification and characterization of three novel small interference RNAs that effectively down-regulate the isolated nucleocapsid gene expression of SARS coronavirus. Molecules 2011; 16:1544-58. [PMID: 21317844 PMCID: PMC6259856 DOI: 10.3390/molecules16021544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 02/09/2011] [Indexed: 01/20/2023] Open
Abstract
Nucleocapsid (N) protein of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is a major pathological determinant in the host that may cause host cell apoptosis, upregulate the proinflammatory cytokine production, and block innate immune responses. Therefore, N gene has long been thought an ideal target for the design of small interference RNA (siRNA). siRNA is a class of small non-coding RNAs with a size of 21-25nt that functions post-transcriptionally to block targeted gene expression. In this study, we analyzed the N gene coding sequences derived from 16 different isolates, and found that nucleotide deletions and substitutions are mainly located at the first 440nt sequence. Combining previous reports and the above sequence information, we create three novel siRNAs that specifically target the conserved and unexploited regions in the N gene. We show that these siRNAs could effectively and specifically block the isolated N gene expression in mammal cells. Furthermore, we provide evidence to show that N gene can effectively up-regulate M gene mediated interferon β (IFNβ) production, while blocking N gene expression by specific siRNA significantly reduces IFNβ gene expression. Our data indicate that the inhibitory effect of siRNA on the isolated N gene expression might be influenced by the sequence context around the targeted sites.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Liu
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86 10 65592203; Fax: +86 10 62737136
| |
Collapse
|
87
|
SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 2010; 42:37-45. [PMID: 20976535 PMCID: PMC7088804 DOI: 10.1007/s11262-010-0544-x] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/13/2010] [Indexed: 11/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes a highly basic nucleocapsid (N) protein which can inhibit the synthesis of type I interferon (IFN), but the molecular mechanism of this antagonism remains to be identified. In this study, we demonstrated that the N protein of SARS-CoV could inhibit IFN-beta (IFN-β) induced by poly(I:C) or Sendai virus. However, we found that N protein could not inhibit IFN-β production induced by overexpression of downstream signaling molecules of two important IFN-β induction pathways, toll-like receptor 3 (TLR3)- and RIG-I-like receptors (RLR)-dependent pathways. These results indicate that SARS-CoV N protein targets the initial step, probably the cellular PRRs (pattern recognition receptors)-RNAs-recognition step in the innate immune pathways, to suppress IFN expression responses. In addition, co-immunoprecipitation assays revealed that N protein did not interact with RIG-I or MDA5. Further, an assay using truncated mutants revealed that the C-terminal domain of N protein was critical for its antagonism of IFN induction, and the N deletion mutant impaired for RNA-binding almost completely lost the IFN-β antagonist activity. These results contribute to our further understanding of the pathogenesis of SARS-CoV.
Collapse
|
88
|
Li W, Sun W, Liu L, Yang F, Li Y, Chen Y, Fang J, Zhang W, Wu J, Zhu Y. IL-32: a host proinflammatory factor against influenza viral replication is upregulated by aberrant epigenetic modifications during influenza A virus infection. THE JOURNAL OF IMMUNOLOGY 2010; 185:5056-65. [PMID: 20889550 DOI: 10.4049/jimmunol.0902667] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our previous studies with clinical data analysis have shown that the proinflammatory factor IL-32 is activated in response to influenza virus infection. However, little is known about how influenza virus induces IL-32 production, and the role of IL-32 in the host immune responses during viral infection remains unclear. In this study, we show that IL-32 production is stimulated by influenza A virus or dsRNA in human PBMCs from healthy volunteers. We demonstrate that the NF-κB and CREB pathways play key roles in the activation of IL-32 production in response to influenza virus infection in A549 human lung epithelial cells. We then show that aberrant epigenetic modifications in the IL32 promoter are important in the transcriptional regulation of IL-32 expression. Interestingly, one CpG demethylation within the CREB binding site increases the binding of CREB to the promoter, which is followed by IL32 transcriptional activation in influenza A virus-infected cells. Overexpression assays combined with RNA interference show that DNA methyltransferases DNMT1 and DNMT3b are critical for IL32 promoter methylation and gene silencing before viral infection. We have demonstrated the anti-influenza virus function of IL-32. Assays for each of the six IL-32 isoforms (α, β, γ, δ, ε, and ζ) during influenza virus infection indicated that all the isoforms have antiviral activity, with different inhibitory rates, and that the effect of IL-32γ is strongest. Our results indicate that the elevated IL-32 levels triggered by influenza virus infection in turn hamper viral replication.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Ilkow CS, Willows SD, Hobman TC. Rubella virus capsid protein: a small protein with big functions. Future Microbiol 2010; 5:571-84. [PMID: 20353299 DOI: 10.2217/fmb.10.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Virus replication occurs in the midst of a life or death struggle between the virus and the infected host cell. To limit virus replication, host cells can activate a number of antiviral pathways, the most drastic of which is programmed cell death. Whereas large DNA viruses have the luxury of encoding accessory proteins whose main function is to interfere with host cell defences, the genomes of RNA viruses are not large enough to encode proteins of this type. Recent studies have revealed that proteins encoded by RNA viruses often play multiple roles in the battles between viruses and host cells. In this article, we discuss the many functions of the rubella virus capsid protein. This protein has well-defined roles in virus assembly, but recent research suggests that it also functions to modulate virus replication and block host cell defences.
Collapse
Affiliation(s)
- Carolina S Ilkow
- Department of Cell Biology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | | | | |
Collapse
|
90
|
MicroRNome analysis unravels the molecular basis of SARS infection in bronchoalveolar stem cells. PLoS One 2009; 4:e7837. [PMID: 19915717 PMCID: PMC2773932 DOI: 10.1371/journal.pone.0007837] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/12/2009] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome (SARS), caused by the coronavirus SARS-CoV, is an acute infectious disease with significant mortality. A typical clinical feature associated with SARS is pulmonary fibrosis and associated lung failure. In the aftermath of the SARS epidemic, although significant progress towards understanding the underlying molecular mechanism of the infection has been made, a large gap still remains in our knowledge regarding how SARS-CoV interacts with the host cell at the onset of infection. The rapidly changing viral genome adds another variable to this equation. We have focused on a novel concept of microRNA (miRNA)–mediated host–virus interactions in bronchoalveolar stem cells (BASCs) at the onset of infection by correlating the “BASC–microRNome” with their targets within BASCs and viral genome. This work encompasses miRNA array data analysis, target prediction, and miRNA–mRNA enrichment analysis and develops a complex interaction map among disease-related factors, miRNAs, and BASCs in SARS pathway, which will provide some clues for diagnostic markers to view an overall interplay leading to disease progression. Our observation reveals the BASCs (Sca-1+ CD34+ CD45- Pecam-), a subset of Oct-4+ ACE2+ epithelial colony cells at the broncho-alveolar duct junction, to be the prime target cells of SARS-CoV infection. Upregulated BASC miRNAs-17*, -574-5p, and -214 are co-opted by SARS-CoV to suppress its own replication and evade immune elimination until successful transmission takes place. Viral Nucleocapsid and Spike protein targets seem to co-opt downregulated miR-223 and miR-98 respectively within BASCs to control the various stages of BASC differentiation, activation of inflammatory chemokines, and downregulation of ACE2. All these effectively accounts for a successful viral transmission and replication within BASCs causing continued deterioration of lung tissues and apparent loss of capacity for lung repair. Overall, this investigation reveals another mode of exploitation of cellular miRNA machinery by virus to their own advantage.
Collapse
|
91
|
The Nucleocapsid Protein of the SARS Coronavirus: Structure, Function and Therapeutic Potential. MOLECULAR BIOLOGY OF THE SARS-CORONAVIRUS 2009. [PMCID: PMC7176212 DOI: 10.1007/978-3-642-03683-5_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As in other coronaviruses, the nucleocapsid protein is one of the core components of the SARS coronavirus (CoV). It oligomerizes to form a closed capsule, inside which the genomic RNA is securely stored thus providing the SARS-CoV genome with its first line of defense from the harsh conditions of the host environment and aiding in replication and propagation of the virus. In addition to this function, several reports have suggested that the SARS-CoV nucleocapsid protein modulates various host cellular processes, so as to make the internal milieu of the host more conducive for survival of the virus. This article will analyze and discuss the available literature regarding these different properties of the nucleocapsid protein. Towards the end of the article, we will also discuss some recent reports regarding the possible clinically relevant use of the nucleocapsid protein, as a candidate diagnostic tool and vaccine against SARS-CoV infection.
Collapse
|
92
|
Abstract
Severe acute respiratory syndrome (SARS) is a respiratory illness with variable symptoms that was recognized as the first near-pandemic infectious disease of the twenty-first century. A novel human coronavirus, named SARS coronavirus (SARS-CoV), derived from SARS patients was reported as the etiologic agent of SARS. Studying the signaling pathways of SARS-infected cells is key to understanding the molecular mechanism of SARS viral infection. Cell death is observed in cultured Vero E6 cells after SARS-CoV infection. From SARS-CoV infection to cell death, p38 mitogen-activated protein kinase (MAPK) is a key participant in the determination of cell death and survival. Two signaling pathways comprising signal transducer and activator of transcription 3 (STAT3) and p90 ribosomal S6 kinase (p90RSK) are downstream of p38 MAPK. AKT and JNK (Jun NH2-terminal kinase) signaling pathways are important to establish persistent infection of SARS-CoV in Vero E6 cells. Expression studies of SARS-CoV proteins indicate that the viral proteins are able to activate signaling pathways of host cells. The study of signaling pathways in SARS-CoV patients is difficult to perform compared with in vitro studies due to the effects of the human immune system. This review highlights recent progress in characterizing signal transduction pathways in SARS-CoV-infected cells in vitro and in vivo.
Collapse
|
93
|
Construction of plasmids expressing Sars-CoV encoding proteins and their effects on transcription of hfgl2 prothrombinase. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2009; 29:318-23. [PMID: 19513614 PMCID: PMC7089052 DOI: 10.1007/s11596-009-0311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Indexed: 11/13/2022]
Abstract
SARS coronavirus (SARS-CoV) is the etiologic agent of severe acute respiratory syndrome. The aim of this study was to construct Sars-CoV membrane (M), nucleocapsid (N) and spike 2 (S2) gene eukaryotic expression plasmids, and identify their expression in vitro. Gene fragments encoding N protein, M protein and S2 protein of SARS-CoV were amplified by PCR using cDNA obtained from lung samples of SARS patients as template, and subcloned into pcDNA3.1 vector to form eukaryotic expression plasmids. SARS-CoV protein eukaryotic expression plasmids were transfected respectively into CHO cells. Immunohistochemistry was employed to detect the expression of the structural proteins of SARS-CoV in transfected cells. SARS-CoV protein eukaryotic expression plasmids were successfully constructed by identification with digestion of restriction enzymes and sequencing. M, N and S2 proteins of SARS-CoV were detected in the cytoplasm of transfected CHO cells. It was concluded that these recombinant eukaryotic expression plasmids were constructed successfully, and SARS-CoV encoding proteins could activate transcription and expression of hfgl2 gene.
Collapse
|
94
|
Siu KL, Chan CP, Chan C, Zheng BJ, Jin DY. Severe acute respiratory syndrome coronavirus nucleocapsid protein does not modulate transcription of the human FGL2 gene. J Gen Virol 2009. [PMID: 19423547 DOI: v10.1099/vir.0.009209-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Among the structural and nonstructural proteins of severe acute respiratory syndrome coronavirus (SARS-CoV), the nucleocapsid (N) protein plays pivotal roles in the biology and pathogenesis of viral infection. N protein is thought to dysregulate cell signalling and the transcription of cellular genes, including FGL2, which encodes a prothrombinase implicated in vascular thrombosis, fibrin deposition and pneumocyte necrosis. Here, we showed that N protein expressed in cultured human cells was predominantly found in the cytoplasm and was competent in repressing the transcriptional activity driven by interferon-stimulated response elements. However, the expression of N protein did not influence the transcription from the FGL2 promoter. More importantly, N protein did not modulate the expression of FGL2 mRNA or protein in transfected or SARS-CoV-infected cells. Taken together, our findings did not support the model in which SARS-CoV N protein specifically modulates transcription of the FGL2 gene to cause fibrosis and vascular thrombosis.
Collapse
Affiliation(s)
- Kam-Leung Siu
- Department of Biochemistry, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | | | | | | | | |
Collapse
|
95
|
Siu KL, Chan CP, Chan C, Zheng BJ, Jin DY. Severe acute respiratory syndrome coronavirus nucleocapsid protein does not modulate transcription of the human FGL2 gene. J Gen Virol 2009; 90:2107-13. [PMID: 19423547 DOI: 10.1099/vir.0.009209-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Among the structural and nonstructural proteins of severe acute respiratory syndrome coronavirus (SARS-CoV), the nucleocapsid (N) protein plays pivotal roles in the biology and pathogenesis of viral infection. N protein is thought to dysregulate cell signalling and the transcription of cellular genes, including FGL2, which encodes a prothrombinase implicated in vascular thrombosis, fibrin deposition and pneumocyte necrosis. Here, we showed that N protein expressed in cultured human cells was predominantly found in the cytoplasm and was competent in repressing the transcriptional activity driven by interferon-stimulated response elements. However, the expression of N protein did not influence the transcription from the FGL2 promoter. More importantly, N protein did not modulate the expression of FGL2 mRNA or protein in transfected or SARS-CoV-infected cells. Taken together, our findings did not support the model in which SARS-CoV N protein specifically modulates transcription of the FGL2 gene to cause fibrosis and vascular thrombosis.
Collapse
Affiliation(s)
- Kam-Leung Siu
- Department of Biochemistry, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | | | | | | | | |
Collapse
|
96
|
Involvement of mitogen-activated protein kinases and nuclear factor kappa B pathways in signaling COX-2 expression in chronic rhinosinusitis. Inflamm Res 2009; 58:649-58. [PMID: 19319478 DOI: 10.1007/s00011-009-0030-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 02/22/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE To investigate the signal pathways involved in cyclooxygenase-2 (COX-2) expression in chronic rhinosinusitis (CRS). METHODS The expressions of COX-2, p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase (ERK), and nuclear factor kappa B (NF-kappaB) in nasal mucosa were detected by immunohistological stain and polymerase chain reaction (PCR). Their expressions and prostaglandin E2 (PGE(2)) release were determined by PCR, Western blot and enzyme immunoassay (EIA) in human nasal epithelia (HNE) cells after lipopolysaccharide (LPS) induction, and/or small interfering RNA (siRNA) transfection. RESULTS Positive protein expressions of COX-2, p38MAPK, ERK, NF-kappaB subunits were detected in epithelial and inflammatory cells. Their mRNA levels were significantly higher in CRS than controls (P < 0.05). The expressions varied in time and concentration-dependent manner in LPS-induced HNE cells. COX-2 expression was suppressed by siRNAs of P38MAPK, ERK, and NF-kappaB; however, COX-2-specific siRNA had no blocking effect on them. SiRNAs of P38MAPK or ERK could block NF-kappaB, but NF-kappaB-specific siRNA had no blocking effect on the former. SiRNA of p38MAPK, or ERK did not inhibit each other. CONCLUSION Upregulation of COX-2 expression suggested its role as a mediator in CRS. ERK and p38MAPK pathways were involved in signaling COX-2 through NF-kappaB pathway.
Collapse
|
97
|
Wang SQ, Wu JG. Biological effects of HBV X protein on hepatocellular carcinogenesis in association with cellular factors. Virol Sin 2008. [PMCID: PMC7090866 DOI: 10.1007/s12250-008-2952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The X protein (HBx) of Human hepatitis B virus (HBV) acts as an indirect transcriptional transactivator to regulate the expression of many viral and cellular genes, as well as playing a critical role in pathogenesis and the development of Hepatocellular carcinoma (HCC). Here we described the biological effects of HBx in association with four cellular factors, including inflammatory factors (COX-2 and iNOS), oncoprotein (Ras), and a newly identified tumor suppressor (YueF). The characteristics of these effectors, which might be associated with hepatocellular carcinoma, are also discussed.
Collapse
|
98
|
Li W, Liu Y, Mukhtar MM, Gong R, Pan Y, Rasool ST, Gao Y, Kang L, Hao Q, Peng G, Chen Y, Chen X, Wu J, Zhu Y. Activation of interleukin-32 pro-inflammatory pathway in response to influenza A virus infection. PLoS One 2008; 3:e1985. [PMID: 18414668 PMCID: PMC2288676 DOI: 10.1371/journal.pone.0001985] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 02/28/2008] [Indexed: 11/19/2022] Open
Abstract
Background Interleukin (IL)-32 is a recently described pro-inflammatory cytokine that has been reported to be induced by bacteria treatment in culture cells. Little is known about IL-32 production by exogenous pathogens infection in human individuals. Methods and Findings In this study, we found that IL-32 level was increased by 58.2% in the serum samples from a cohort of 108 patients infected by influenza A virus comparing to that of 115 healthy individuals. Another pro-inflammatory factor cyclooxygenase (COX)-2-associated prostaglandin E2 was also upregulated by 2.7-fold. Expression of IL-32 in influenza A virus infected A549 human lung epithelial cells was blocked by either selective COX-2 inhibitor NS398 or Aspirin, a known anti-inflammatory drug, indicating IL-32 was induced through COX-2 in the inflammatory cascade. Interestingly, we found that COX-2-associate PGE2 production activated by influenza virus infection was significantly suppressed by over-expression of IL-32 but increased by IL-32-specific siRNA, suggesting there was a feedback mechanism between IL-32 and COX-2. Conclusions IL-32 is induced by influenza A virus infection via COX-2 in the inflammatory cascade. Our results provide that IL-32 is a potential target for anti-inflammatory medicine screening.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yan Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Muhammad Mahmood Mukhtar
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Rui Gong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Ying Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Sahibzada T. Rasool
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yecheng Gao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Lei Kang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Qian Hao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Guiqing Peng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yanni Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- * E-mail: (YZ); (JW)
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- * E-mail: (YZ); (JW)
| |
Collapse
|
99
|
Han M, Yan W, Huang Y, Yao H, Wang Z, Xi D, Li W, Zhou Y, Hou J, Luo X, Ning Q. The nucleocapsid protein of SARS-CoV induces transcription of hfgl2 prothrombinase gene dependent on C/EBP alpha. J Biochem 2008; 144:51-62. [PMID: 18390877 PMCID: PMC7109852 DOI: 10.1093/jb/mvn042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fibrin deposition was universal in the lungs of SARS patients and fgl2 prothrombinase gene, a novel procoagulant, was demonstrated to express highly in a clinically relevant SARS model. To investigate whether and which structural protein of SARS-CoV induced transcription of hfgl2 prothrombinase gene, three eukaryotic expression plasmids expressing nucleocapsid protein (N), membrane protein (M) and spike protein 2 (S2) of SARS-CoV were co-transfected with hfgl2 promoter luciferase-reporter plasmids and β-galactosidase plasmid in CHO cells, respectively. M, N and S2 protein of SARS-CoV were detected by western blotting and immunohistochemistry analysis. Further assays demonstrated that expression of hfgl2 gene was related with N protein, but not with M or S2 protein in THP-1 cells and Vero cells. N protein significantly induced functional procoagulant activity in comparison with control group. Luciferase assay showed that N protein of SARS-CoV could activate the transcription of hfgl2 promoter compared with the pcDNA3.1 empty vector. Site-directed mutagenesis and EMSA assay further demonstrated that transcription factor C/EBP alpha band with its cognate cis-element in hfgl2 promoter. The results showed that N protein of SARS-CoV induced hfgl2 gene transcription dependent on the transcription factor C/EBP alpha, which maybe contribute to the development of thrombosis in SARS.
Collapse
Affiliation(s)
- Meifang Han
- Department of Infectious Disease; Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Urbanowski MD, Ilkow CS, Hobman TC. Modulation of signaling pathways by RNA virus capsid proteins. Cell Signal 2008; 20:1227-36. [PMID: 18258415 PMCID: PMC7127581 DOI: 10.1016/j.cellsig.2007.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 12/18/2007] [Indexed: 01/16/2023]
Abstract
Capsid proteins are structural components of virus particles. They are nucleic acid-binding proteins whose main recognized function is to package viral genomes into protective structures called nucleocapsids. Research over the last 10 years indicates that in addition to their role as genome guardians, viral capsid proteins modulate host cell signaling networks. Disruption or alteration of intracellular signaling pathways by viral capsids may benefit replication of the virus by affecting innate immunity and in some cases, may underlie disease progression. In this review, we describe how the capsid proteins from medically relevant RNA viruses interact with host cell signaling pathways.
Collapse
Affiliation(s)
| | - Carolina S. Ilkow
- Department of Cell Biology, University of Alberta, Edmonton, Canada T6G 2H7
| | - Tom C. Hobman
- Department of Cell Biology, University of Alberta, Edmonton, Canada T6G 2H7
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada T6G 2H7
- Corresponding author. Department of Cell Biology, University of Alberta, Edmonton, Canada T6G 2H7. Tel.: +1 780 492 6485; fax: +1 780 492 0450.
| |
Collapse
|