51
|
HSPC117 is regulated by epigenetic modification and is involved in the migration of JEG-3 cells. Int J Mol Sci 2014; 15:10936-49. [PMID: 24941254 PMCID: PMC4100190 DOI: 10.3390/ijms150610936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 01/12/2023] Open
Abstract
The human hematopoietic stem/progenitor cell 117 (HSPC117) protein is an essential component of protein complexes and has been identified to be involved in many important functions. However, how this gene expression is regulated and whether the HSPC117 gene affects cell migration is still unknown. The aim of this study was to identify whether HSPC117 mRNA expression is regulated by epigenetic modification and whether HSPC117 expression level affects the expression of matrix metalloproteinase 2 (MMP 2), matrix metalloproteinase 14 (MMP 14), and tissue inhibitor of metalloproteinases 2 (TIMP 2), and further affects human placenta choriocarcinoma cell (JEG-3) migration speed. In our epigenetic modification experiment, JEG-3 cells were cultured in medium with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-dC), the histone deacetylase (HDAC) inhibitor trichostatin A (TSA), or both inhibitors. Then, the HSPC117 mRNA and protein expressions were assessed using real-time quantitative PCR (qPCR) and Western blot assay. The results showed that, compared to the control, HSPC117 mRNA expression was increased by TSA or 5-aza-dC. The highest HSPC117 expression level was found after treatment with both 5-aza-dC and TSA. Further, in order to investigate the effect of HSPC117 on MMP 2, MMP 14, and TIMP 2 mRNA expressions, pEGFP-C1-HSPC117 plasmids were transfected into JEG-3 cells to improve the expression of HSPC117 in the JEG-3 cells. Then, the mRNA expression levels of MMP 2, MMP 14, TIMP 2, and the speed of cell migration were assessed using the scratch wound assay. The results showed that over-expression of HSPC117 mRNA reduced MMP 2 and MMP 14 mRNA expression, while TIMP 2 mRNA expression was up-regulated. The scratch wound assay showed that the migration speed of JEG-3 cells was slower than the non-transfected group and the C1-transfected group. All of these results indicate that HSPC117 mRNA expression is regulated by epigenetic modification; over-expression of HSPC117 decreases MMP 2 and MMP 14 transcription, reduces cell migration speed, and increases TIMP 2 transcription.
Collapse
|
52
|
Riva G, Baronchelli S, Paoletta L, Butta V, Biunno I, Lavitrano M, Dalprà L, Bentivegna A. In vitro anticancer drug test: A new method emerges from the model of glioma stem cells. Toxicol Rep 2014; 1:188-199. [PMID: 28962238 PMCID: PMC5598297 DOI: 10.1016/j.toxrep.2014.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 11/03/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV astrocytoma and the most common malignant brain tumor. Current therapies provide a median survival of 12–15 months after diagnosis, due to the high recurrence rate. The failure of current therapies may be due to the presence, within the tumor, of cells characterized by enhanced self-renewal capacity, multilineage differentiation potential and elevated invasive behavior, called glioma stem cells (GSCs). To evaluate the pharmacological efficacy of selected drugs on six GSC lines, we set up a multiple drug responsivity assay based on the combined evaluation of cytomorphological and functional parameters, including the analysis of polymorphic nuclei, mitotic index and cell viability. In order to understand the real pharmacological efficacy of the tested drugs, we assigned a specific drug responsivity score to each GSC line, integrating the data produced by multiple assays. In this work we explored the antineoplastic effects of paclitaxel (PTX), an inhibitor of microtubule depolymerization, utilized as standard treatment in several cancers, and of valproic acid (VPA), an inhibitor of histone deacetylases (HDACs) with multiple anticancer properties. We classified the six GSC lines as responsive or resistant to these drugs, on the basis of their responsivity scores. This method can also be useful to identify the best way to combine two or more drugs. In particular, we utilized the pro-differentiating effect of VPA to improve the PTX effectiveness and we observed a significant reduction of cell viability compared to single treatments.
Collapse
Affiliation(s)
- Gabriele Riva
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Simona Baronchelli
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.,Institute for Genetic and Biomedical Research - National Research Council (IRGB-CNR), via Fantoli 16/15, 20138 Milan, Italy
| | - Laura Paoletta
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Valentina Butta
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Ida Biunno
- Institute for Genetic and Biomedical Research - National Research Council (IRGB-CNR), via Fantoli 16/15, 20138 Milan, Italy.,IRCCS MultiMedica, Science and Technology Pole, via Fantoli 16/15, 20138 Milan, Italy
| | - Marialuisa Lavitrano
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Leda Dalprà
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.,Medical Genetics Laboratory, S. Gerardo Hospital, via Pergolesi 33, 20900 Monza, Italy
| | - Angela Bentivegna
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| |
Collapse
|
53
|
Rotili D, Tarantino D, Marrocco B, Gros C, Masson V, Poughon V, Ausseil F, Chang Y, Labella D, Cosconati S, Di Maro S, Novellino E, Schnekenburger M, Grandjenette C, Bouvy C, Diederich M, Cheng X, Arimondo PB, Mai A. Properly substituted analogues of BIX-01294 lose inhibition of G9a histone methyltransferase and gain selective anti-DNA methyltransferase 3A activity. PLoS One 2014; 9:e96941. [PMID: 24810902 PMCID: PMC4014597 DOI: 10.1371/journal.pone.0096941] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/14/2014] [Indexed: 11/21/2022] Open
Abstract
Chemical manipulations performed on the histone H3 lysine 9 methyltransferases (G9a/GLP) inhibitor BIX-01294 afforded novel desmethoxyquinazolines able to inhibit the DNA methyltransferase DNMT3A at low micromolar levels without any significant inhibition of DNMT1 and G9a. In KG-1 cells such compounds, when tested at sub-toxic doses, induced the luciferase re-expression in a stable construct controlled by a cytomegalovirus (CMV) promoter silenced by methylation (CMV-luc assay). Finally, in human lymphoma U-937 and RAJI cells, the N-(1-benzylpiperidin-4-yl)-2-(4-phenylpiperazin-1-yl)quinazolin-4-amine induced the highest proliferation arrest and cell death induction starting from 10 µM, in agreement with its DNMT3A inhibitory potency.
Collapse
Affiliation(s)
- Dante Rotili
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, IT
| | - Domenico Tarantino
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, IT
| | - Biagina Marrocco
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, IT
| | | | | | | | | | - Yanqi Chang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Donatella Labella
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, IT
| | | | - Salvatore Di Maro
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Napoli, IT
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Napoli, IT
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Luxembourg, Luxembourg
| | - Cindy Grandjenette
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Luxembourg, Luxembourg
| | - Celine Bouvy
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Luxembourg, Luxembourg
| | - Marc Diederich
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Luxembourg, Luxembourg
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | | | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, IT
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Roma, IT
- * E-mail:
| |
Collapse
|
54
|
De Bellis F, Carafa V, Conte M, Rotili D, Petraglia F, Matarese F, Françoijs KJ, Ablain J, Valente S, Castellano R, Goubard A, Collette Y, Mandoli A, Martens JHA, de Thé H, Nebbioso A, Mai A, Stunnenberg HG, Altucci L. Context-selective death of acute myeloid leukemia cells triggered by the novel hybrid retinoid-HDAC inhibitor MC2392. Cancer Res 2014; 74:2328-39. [PMID: 24566867 DOI: 10.1158/0008-5472.can-13-2568] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HDAC inhibitors (HDACi) are widely used in the clinic to sensitize tumorigenic cells for treatment with other anticancer compounds. The major drawback of HDACi is the broad inhibition of the plethora of HDAC-containing complexes. In acute promyelocytic leukemia (APL), repression by the PML-RARα oncofusion protein is mediated by an HDAC-containing complex that can be dissociated by pharmacologic doses of all trans retinoic acid (ATRA) inducing differentiation and cell death at the expense of side effects and recurrence. We hypothesized that the context-specific close physical proximity of a retinoid and HDACi-binding protein in the repressive PML-RARα-HDAC complex may permit selective targeting by a hybrid molecule of ATRA with a 2-aminoanilide tail of the HDAC inhibitor MS-275, yielding MC2392. We show that MC2392 elicits weak ATRA and essentially no HDACi activity in vitro or in vivo. Genome-wide epigenetic analyses revealed that in NB4 cells expressing PML-RARα, MC2392 induces changes in H3 acetylation at a small subset of PML-RARα-binding sites. RNA-seq reveals that MC2392 alters expression of a number of stress-responsive and apoptotic genes. Concordantly, MC2392 induced rapid and massive, caspase-8-dependent cell death accompanied by RIP1 induction and ROS production. Solid and leukemic tumors are not affected by MC2392, but expression of PML-RARα conveys efficient MC2392-induced cell death. Our data suggest a model in which MC2392 binds to the RARα moiety and selectively inhibits the HDACs resident in the repressive complex responsible for the transcriptional impairment in APLs. Our findings provide proof-of-principle of the concept of a context-dependent targeted therapy.
Collapse
Affiliation(s)
- Floriana De Bellis
- Authors' Affiliations: Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli; Istituto di Genetica e Biofisica, IGB, Adriano Buzzati Traverso, Naples; Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, Rome, Italy; NCMLS, Radboud University, Nijmegen, the Netherlands; Inserm, CRCM, U1068, TrGET & ISCB, University of Marseille; and Laboratoire U944 and UMR 7212, University Paris-Diderot, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
A convenient preparation of N ε-methyl-l-lysine derivatives and its application to the synthesis of histone tail peptides. Amino Acids 2014; 46:1305-11. [DOI: 10.1007/s00726-014-1690-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
|
56
|
Maggisano V, Puppin C, Celano M, D'Agostino M, Sponziello M, Micali S, Navarra M, Damante G, Filetti S, Russo D. Cooperation of histone deacetylase inhibitors SAHA and valproic acid in promoting sodium/iodide symporter expression and function in rat Leydig testicular carcinoma cells. Endocrine 2014; 45:148-52. [PMID: 23636804 DOI: 10.1007/s12020-013-9972-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/24/2013] [Indexed: 01/28/2023]
Abstract
The presence of the sodium/iodide symporter (NIS) is the prerequisite for the use of the radioiodine in the treatment of thyroid cancer. Thus, stimulators of NIS expression and function are currently investigated in cellular models of various human malignancies, also including extrathyroid cancers. In this study, we analyzed the effects of the histone deacetylase inhibitors (HDACi), suberoylanilide hydroxamic acid (SAHA) and valproic acid (VPA), on NIS expression and function in rat Leydig testicular carcinoma cells (LC540). LC540 cells were exposed to SAHA 3 μM and VPA 3 mM (alone and in combination), and cell viability evaluated by MTT assay and cell counting, NIS mRNA and protein levels by using, respectively, real-time RT-PCR and western blotting. NIS function was evaluated by iodide uptake assay. We found that both HDACi were able to stimulate the transcription of NIS gene, but not its protein expression, while the association of SAHA and VPA increased both NIS transcript and protein levels, resulting in significant sixfold enhancement of radioiodine uptake capacity of LC540 cells. These data demonstrate the presence of an epigenetic control of NIS expression in Leydig tumor cells, suggesting the possibility to use the combination of these two HDACi for a radioiodine-based treatment of these malignancies.
Collapse
Affiliation(s)
- V Maggisano
- Department of Health Sciences, University of Catanzaro 'Magna Graecia', Viale Europa, loc. Germaneto, 88100, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Asgatay S, Champion C, Marloie G, Drujon T, Senamaud-Beaufort C, Ceccaldi A, Erdmann A, Rajavelu A, Schambel P, Jeltsch A, Lequin O, Karoyan P, Arimondo PB, Guianvarc’h D. Synthesis and Evaluation of Analogues of N-Phthaloyl-l-tryptophan (RG108) as Inhibitors of DNA Methyltransferase 1. J Med Chem 2014; 57:421-34. [DOI: 10.1021/jm401419p] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saâdia Asgatay
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - Christine Champion
- MNHN CNRS
UMR 7196, INSERM U565, 43 Rue Cuvier, 75005 Paris, France
- UPMC Université Paris 6, 75005 Paris, France
| | - Gaël Marloie
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - Thierry Drujon
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | | | - Alexandre Ceccaldi
- MNHN CNRS
UMR 7196, INSERM U565, 43 Rue Cuvier, 75005 Paris, France
- UPMC Université Paris 6, 75005 Paris, France
| | - Alexandre Erdmann
- USR ETaC CNRS-Pierre Fabre No. 3388, CRDPF BP 13562, 3 Avenue Hubert Curien, 31100 Toulouse, France
| | - Arumugam Rajavelu
- Institute of Biochemistry, Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Philippe Schambel
- Institut de Recherche Pierre
Fabre, Centre de Recherche Pierre Fabre, 17 Rue Jean Moulin, 81 106, Castres Cedex, France
| | - Albert Jeltsch
- Institute of Biochemistry, Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Olivier Lequin
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - Philippe Karoyan
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - Paola B. Arimondo
- MNHN CNRS
UMR 7196, INSERM U565, 43 Rue Cuvier, 75005 Paris, France
- USR ETaC CNRS-Pierre Fabre No. 3388, CRDPF BP 13562, 3 Avenue Hubert Curien, 31100 Toulouse, France
| | - Dominique Guianvarc’h
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
58
|
Feng T, Wang H, Su H, Lu H, Yu L, Zhang X, Sun H, You Q. Novel N-hydroxyfurylacrylamide-based histone deacetylase (HDAC) inhibitors with branched CAP group (Part 2). Bioorg Med Chem 2013; 21:5339-54. [DOI: 10.1016/j.bmc.2013.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 01/16/2023]
|
59
|
Wang X, Chen M, Wen C, Zhang Q, Ma J. Determination of chidamide in rat plasma by LC-MS and its application to pharmacokinetics study. Biomed Chromatogr 2013; 27:1801-6. [DOI: 10.1002/bmc.3001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/09/2013] [Accepted: 06/19/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Xianqin Wang
- Analytical and Testing Center of Wenzhou Medical University; Wenzhou 325035 China
| | - Mengchun Chen
- Analytical and Testing Center of Wenzhou Medical University; Wenzhou 325035 China
| | - Congcong Wen
- Analytical and Testing Center of Wenzhou Medical University; Wenzhou 325035 China
| | - Qingwei Zhang
- Shanghai Institute of Pharmaceutical Industry; Shanghai 200437 China
| | - Jianshe Ma
- Function Experiment Teaching Center; Wenzhou Medical University; Wenzhou 325035 China
| |
Collapse
|
60
|
Teiten MH, Dicato M, Diederich M. Curcumin as a regulator of epigenetic events. Mol Nutr Food Res 2013; 57:1619-29. [DOI: 10.1002/mnfr.201300201] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Marie-Hélène Teiten
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer; Hôpital Kirchberg, Luxembourg; Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer; Hôpital Kirchberg, Luxembourg; Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy; Seoul National University; Seoul Korea
| |
Collapse
|
61
|
Resveratrol activates the histone H2B ubiquitin ligase, RNF20, in MDA-MB-231 breast cancer cells. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
62
|
Steliou K, Boosalis MS, Perrine SP, Sangerman J, Faller DV. Butyrate histone deacetylase inhibitors. Biores Open Access 2013; 1:192-8. [PMID: 23514803 PMCID: PMC3559235 DOI: 10.1089/biores.2012.0223] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In addition to being a part of the metabolic fatty acid fuel cycle, butyrate is also capable of inducing growth arrest in a variety of normal cell types and senescence-like phenotypes in gynecological cancer cells, inhibiting DNA synthesis and cell growth in colonic tumor cell lines, suppressing hTERT mRNA expression and telomerase activity in human prostate cancer cells, and inducing stem cell differentiation and apoptosis by DNA fragmentation. It regulates gene expression by inhibiting histone deacetylases (HDACs), enhances memory recovery and formation in mice, stimulates neurogenesis in the ischemic brain, promotes osteoblast formation, selectively blocks cell replication in transformed cells (compared to healthy cells), and can prevent and treat diet-induced obesity and insulin resistance in mouse models of obesity, as well as stimulate fetal hemoglobin expression in individuals with hematologic diseases such as the thalassemias and sickle-cell disease, in addition to a multitude of other biochemical effects in vivo. However, efforts to exploit the potential of butyrate in the clinical treatment of cancer and other medical disorders are thwarted by its poor pharmacological properties (short half-life and first-pass hepatic clearance) and the multigram doses needed to achieve therapeutic concentrations in vivo. Herein, we review some of the methods used to overcome these difficulties with an emphasis on HDAC inhibition.
Collapse
Affiliation(s)
- Kosta Steliou
- PhenoMatriX, Inc. , Boston, Massachusetts. ; Cancer Research Center, Boston University School of Medicine , Boston, Massachusetts
| | | | | | | | | |
Collapse
|
63
|
Ceccaldi A, Rajavelu A, Ragozin S, Sénamaud-Beaufort C, Bashtrykov P, Testa N, Dali-Ali H, Maulay-Bailly C, Amand S, Guianvarc’h D, Jeltsch A, Arimondo PB. Identification of novel inhibitors of DNA methylation by screening of a chemical library. ACS Chem Biol 2013; 8:543-8. [PMID: 23294304 DOI: 10.1021/cb300565z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In order to discover new inhibitors of the DNA methyltransferase 3A/3L complex, we used a medium-throughput nonradioactive screen on a random collection of 1120 small organic compounds. After a primary hit detection against DNA methylation activity of the murine Dnmt3A/3L catalytic complex, we further evaluated the EC50 of the 12 most potent hits as well as their cytotoxicity on DU145 prostate cancer cultured cells. Interestingly, most of the inhibitors showed low micromolar activities and little cytotoxicity. Dichlone, a small halogenated naphthoquinone, classically used as pesticide and fungicide, showed the lowest EC50 at 460 nM. We briefly assessed the selectivity of a subset of our new inhibitors against hDNMT1 and bacterial Dnmts, including M. SssI and EcoDam, and the protein lysine methyltransferase PKMT G9a and the mode of inhibition. Globally, the tested molecules showed a clear preference for the DNA methyltransferases, but poor selectivity among them. Two molecules including Dichlone efficiently reactivated YFP gene expression in a stable HEK293 cell line by promoter demethylation. Their efficacy was comparable to the DNMT inhibitor of reference 5-azacytidine.
Collapse
Affiliation(s)
- Alexandre Ceccaldi
- CNRS-MNHN UMR 7196, 43 rue Cuvier, 75005
Paris, France
- INSERM UR565, 43 rue Cuvier, 75005 Paris, France
- Université Pierre et Marie Curie, Paris 6, place Jussieu, 75005
Paris, France
| | - Arumugam Rajavelu
- Institute
of Biochemistry, Faculty
of Chemistry, University Stuttgart, Pfaffenwaldring
55, 70569 Stuttgart, Germany
| | - Sergey Ragozin
- Institute
of Biochemistry, Faculty
of Chemistry, University Stuttgart, Pfaffenwaldring
55, 70569 Stuttgart, Germany
| | | | - Pavel Bashtrykov
- Institute
of Biochemistry, Faculty
of Chemistry, University Stuttgart, Pfaffenwaldring
55, 70569 Stuttgart, Germany
| | - Noé Testa
- CNRS-MNHN UMR 7196, 43 rue Cuvier, 75005
Paris, France
- INSERM UR565, 43 rue Cuvier, 75005 Paris, France
| | - Hana Dali-Ali
- CNRS-MNHN UMR 7196, 43 rue Cuvier, 75005
Paris, France
- INSERM UR565, 43 rue Cuvier, 75005 Paris, France
| | | | - Séverine Amand
- CNRS-MNHN UMR 7245 RDDM, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Dominique Guianvarc’h
- UPMC Paris 06−ENS−CNRS,
UMR 7203, Laboratoire des Biomolécules and FR2769 Chimie Moléculaire, Université Pierre et Marie Curie, 4 place Jussieu,
75005 Paris, France
| | - Albert Jeltsch
- Institute
of Biochemistry, Faculty
of Chemistry, University Stuttgart, Pfaffenwaldring
55, 70569 Stuttgart, Germany
| | - Paola B. Arimondo
- CNRS-MNHN UMR 7196, 43 rue Cuvier, 75005
Paris, France
- INSERM UR565, 43 rue Cuvier, 75005 Paris, France
| |
Collapse
|
64
|
Koutsounas I, Giaginis C, Theocharis S. Histone deacetylase inhibitors and pancreatic cancer: Are there any promising clinical trials? World J Gastroenterol 2013; 19:1173-81. [PMID: 23482354 PMCID: PMC3587473 DOI: 10.3748/wjg.v19.i8.1173] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/18/2011] [Accepted: 08/15/2012] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer, although not very frequent, has an exceptionally high mortality rate, making it one of the most common causes of cancer mortality in developed countries. Pancreatic cancer is difficult to diagnose, allowing few patients to have the necessary treatment at a relatively early stage. Despite a marginal benefit in survival, the overall response of pancreatic cancer to current systemic therapy continues to be poor, and new therapies are desperately needed. Histone deacetylase (HDAC) enzymes play an important role in the development and progression of cancer and HDAC inhibitors (HDACIs) have been shown to induce differentiation and cell cycle arrest, activate the extrinsic or intrinsic pathways of apoptosis, and inhibit invasion, migration and angiogenesis in different cancer cell lines. As a result of promising preclinical data, various HDACIs are being tested as either monotherapeutic agents or in combination regimens for both solid and hematological malignancies. Vorinostat was the first HDACI approved by the Food and Drug Administration for patients with cutaneous T-cell lymphoma. The use of HDACIs in clinical trials, in pretreated and relapsed patients suffering from advanced pancreatic cancer is discussed. Unfortunately, clinical data for HDACIs in patients with pancreatic cancer are inadequate, because only a few studies have included patients suffering from this type of neoplasm and the number of pancreatic cancer patients that entered HDACIs phase II/III trials, among others with advanced solid tumors, is very limited. More studies recruiting patients with pancreatic cancer remain to determine the efficiency of these therapies.
Collapse
|
65
|
Koutsounas I, Giaginis C, Patsouris E, Theocharis S. Current evidence for histone deacetylase inhibitors in pancreatic cancer. World J Gastroenterol 2013; 19:813-28. [PMID: 23430136 PMCID: PMC3574878 DOI: 10.3748/wjg.v19.i6.813] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/18/2011] [Accepted: 01/05/2013] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive human cancers, with more than 200 000 deaths worldwide every year. Despite recent efforts, conventional treatment approaches, such as surgery and classic chemotherapy, have only slightly improved patient outcomes. More effective and well-tolerated therapies are required to reverse the current poor prognosis of this type of neoplasm. Among new agents, histone deacetylase inhibitors (HDACIs) are now being tested. HDACIs have multiple biological effects related to acetylation of histones and many non-histone proteins that are involved in regulation of gene expression, apoptosis, cell cycle progression and angiogenesis. HDACIs induce cell cycle arrest and can activate the extrinsic and intrinsic pathways of apoptosis in different cancer cell lines. In the present review, the main mechanisms by which HDACIs act in pancreatic cancer cells in vitro, as well as their antiproliferative effects in animal models are presented. HDACIs constitute a promising treatment for pancreatic cancer with encouraging anti-tumor effects, at well-tolerated doses.
Collapse
|
66
|
Inhibition of SIRT2 potentiates the anti-motility activity of taxanes: implications for antineoplastic combination therapies. Neoplasia 2013; 14:846-54. [PMID: 23019416 DOI: 10.1593/neo.12728] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/06/2012] [Accepted: 08/06/2012] [Indexed: 12/11/2022] Open
Abstract
Taxanes are potent inhibitors of cell motility, a property implicated in their antiangiogenic and antimetastatic activity and unrelated to their antiproliferative effect. The molecular mechanism of this anti-motility activity is poorly understood. In this study, we found that paclitaxel induced tubulin acetylation in endothelial and tumor cells, at concentrations that affected cell motility but not proliferation (10(-8) to 10(-9) M, for 4 hours). Induction of tubulin acetylation correlated with inhibition of motility but not proliferation based on a comparison of highly and poorly cytotoxic taxanes (paclitaxel and IDN5390) and tumor cell lines sensitive and resistant to paclitaxel (1A9 and 1A9 PTX22). Consistent with the hypothesis that tubulin deacetylase activity might affect cell response to the anti-motility activity of taxanes, we found that overexpression of the tubulin deacetylase SIRT2 increased cell motility and reduced cell response to the anti-motility activity of paclitaxel. Conversely, the SIRT2 inhibitor splitomicin reduced cell motility and potentiated the anti-motility activity of paclitaxel. The inhibitory effect was further potentiated by the addition of the HDAC6 inhibitor trichostatin A. Paclitaxel and splitomicin promoted translocation into the nucleus--and hence activation--of FOXO3a, a negative regulator of cell motility. This study indicates a role for SIRT2 in the regulation of cell motility and suggests that therapies combining sirtuin inhibitors and taxanes could be used to treat cell motility-based pathologic processes such as tumor angiogenesis, invasion, and metastasis.
Collapse
|
67
|
Di Cerbo V, Schneider R. Cancers with wrong HATs: the impact of acetylation. Brief Funct Genomics 2013; 12:231-43. [DOI: 10.1093/bfgp/els065] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
68
|
Su ZY, Shu L, Khor TO, Lee JH, Fuentes F, Tony Kong AN. A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, nrf2, and epigenomics. Top Curr Chem (Cham) 2013; 329:133-62. [PMID: 22836898 PMCID: PMC3924422 DOI: 10.1007/128_2012_340] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxidative stress is caused by an imbalance of reactive oxygen species (ROS)/reactive nitrogen species (RNS) and the antioxidative stress defense systems in cells. ROS/RNS or carcinogen metabolites can attack intracellular proteins, lipids, and nucleic acids, which can result in genetic mutations, carcinogenesis, and other diseases. Nrf2 plays a critical role in the regulation of many antioxidative stress/antioxidant and detoxification enzyme genes, such as glutathione S-transferases (GSTs), NAD(P)H:quinone oxidoreductase 1 (NQO1), UDP-glucuronyl transferases (UGTs), and heme oxygenase-1 (HO-1), directly via the antioxidant response element (ARE). Recently, many studies have shown that dietary phytochemicals possess cancer chemopreventive potential through the induction of Nrf2-mediated antioxidant/detoxification enzymes and anti-inflammatory signaling pathways to protect organisms against cellular damage caused by oxidative stress. In addition, carcinogenesis can be caused by epigenetic alterations such as DNA methylation and histone modifications in tumor-suppressor genes and oncogenes. Interestingly, recent studies have shown that several naturally occurring dietary phytochemicals can epigenetically modify the chromatin, including reactivating Nrf2 via demethylation of CpG islands and the inhibition of histone deacetylases (HDACs) and/or histone acetyltransferases (HATs). The advancement and development of dietary phytochemicals in cancer chemoprevention research requires the integration of the known, and as-yet-unknown, compounds with the Nrf2-mediated antioxidant, detoxification, and anti-inflammatory systems and their in vitro and in vivo epigenetic mechanisms; human clinical efficacy studies must also be performed.
Collapse
Affiliation(s)
- Zheng-Yuan Su
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Limin Shu
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Tin Oo Khor
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Jong Hun Lee
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Francisco Fuentes
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA, Departamento de Agricultura del Desierto y Biotecnología, Universidad Arturo Prat, Casilla 121, Iquique, Chile
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
69
|
Kabro A, Lachance H, Marcoux-Archambault I, Perrier V, Doré V, Gros C, Masson V, Gregoire JM, Ausseil F, Cheishvili D, Laulan NB, St-Pierre Y, Szyf M, Arimondo PB, Gagnon A. Preparation of phenylethylbenzamide derivatives as modulators of DNMT3 activity. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00214d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
70
|
Abstract
There is considerable evidence suggesting that epigenetic mechanisms may mediate development of chronic inflammation by modulating the expression of pro-inflammatory cytokine TNF-α, interleukins, tumor suppressor genes, oncogenes and autocrine and paracrine activation of the transcription factor NF-κB. These molecules are constitutively produced by a variety of cells under chronic inflammatory conditions, which in turn leads to the development of major diseases such as autoimmune disorders, chronic obstructive pulmonary diseases, neurodegenerative diseases and cancer. Distinct or global changes in the epigenetic landscape are hallmarks of chronic inflammation driven diseases. Epigenetics include changes to distinct markers on the genome and associated cellular transcriptional machinery that are copied during cell division (mitosis and meiosis). These changes appear for a short span of time and they necessarily do not make permanent changes to the primary DNA sequence itself. However, the most frequently observed epigenetic changes include aberrant DNA methylation, and histone acetylation and deacetylation. In this chapter, we focus on pro-inflammatory molecules that are regulated by enzymes involved in epigenetic modifications such as arginine and lysine methyl transferases, DNA methyltransferase, histone acetyltransferases and histone deacetylases and their role in inflammation driven diseases. Agents that modulate or inhibit these epigenetic modifications, such as HAT or HDAC inhibitors have shown great potential in inhibiting the progression of these diseases. Given the plasticity of these epigenetic changes and their readiness to respond to intervention by small molecule inhibitors, there is a tremendous potential for the development of novel therapeutics that will serve as direct or adjuvant therapeutic compounds in the treatment of these diseases.
Collapse
|
71
|
Castellano S, Spannhoff A, Milite C, Dal Piaz F, Cheng D, Tosco A, Viviano M, Yamani A, Cianciulli A, Sala M, Cura V, Cavarelli J, Novellino E, Mai A, Bedford MT, Sbardella G. Identification of small-molecule enhancers of arginine methylation catalyzed by coactivator-associated arginine methyltransferase 1. J Med Chem 2012; 55:9875-90. [PMID: 23095008 PMCID: PMC3508294 DOI: 10.1021/jm301097p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Arginine methylation is a common post-translational modification that is crucial in modulating gene expression at multiple critical levels. The arginine methyltransferases (PRMTs) are envisaged as promising druggable targets, but their role in physiological and pathological pathways is far from being clear due to the limited number of modulators reported to date. In this effort, enzyme activators can be invaluable tools useful as gain-of-function reagents to interrogate the biological roles in cells and in vivo of PRMTs. Yet the identification of such molecules is rarely pursued. Herein we describe a series of aryl ureido acetamido indole carboxylates (dubbed "uracandolates"), able to increase the methylation of histone (H3) or nonhistone (polyadenylate-binding protein 1, PABP1) substrates induced by coactivator-associated arginine methyltransferase 1 (CARM1), both in in vitro and cellular settings. To the best of our knowledge, this is the first report of compounds acting as CARM1 activators.
Collapse
Affiliation(s)
- Sabrina Castellano
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Astrid Spannhoff
- University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Ciro Milite
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Fabrizio Dal Piaz
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Donghang Cheng
- University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Alessandra Tosco
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Monica Viviano
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Abdellah Yamani
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Agostino Cianciulli
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Marina Sala
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Vincent Cura
- Département de Biologie Structurale Intégrative, IGBMC (Institut de Génétique et Biologie Moléculaire et Cellulaire), UDS, CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Jean Cavarelli
- Département de Biologie Structurale Intégrative, IGBMC (Institut de Génétique et Biologie Moléculaire et Cellulaire), UDS, CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Ettore Novellino
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, I-80131 Napoli, Italy
| | - Antonello Mai
- Istituto Pasteur – Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le A. Moro 5, I-00185 Roma, Italy
| | - Mark T. Bedford
- University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Gianluca Sbardella
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| |
Collapse
|
72
|
Li KK, Luo C, Wang D, Jiang H, Zheng YG. Chemical and biochemical approaches in the study of histone methylation and demethylation. Med Res Rev 2012; 32:815-67. [PMID: 22777714 DOI: 10.1002/mrr.20228] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histone methylation represents one of the most critical epigenetic events in DNA function regulation in eukaryotic organisms. Classic molecular biology and genetics tools provide significant knowledge about mechanisms and physiological roles of histone methyltransferases and demethylases in various cellular processes. In addition to this stream line, development and application of chemistry and chemistry-related techniques are increasingly involved in biological study, and offer information otherwise difficult to obtain by standard molecular biology methods. Herein, we review recent achievements and progress in developing and applying chemical and biochemical approaches in the study of histone methylation, including chromatin immunoprecipitation, chemical ligation, mass spectrometry, biochemical methylation and demethylation assays, and inhibitor development. These technological advances allow histone methylation to be studied from genome-wide level to molecular and atomic levels. With ChIP technology, information can be obtained about precise mapping of histone methylation patterns at specific promoters, genes, or other genomic regions. MS is particularly useful in detecting and analyzing methylation marks in histone and nonhistone protein substrates. Chemical approaches that permit site-specific incorporation of methyl groups into histone proteins greatly facilitate the investigation of biological impacts of methylation at individual modification sites. Discovery and design of selective organic inhibitors of histone methyltransferases and demethylases provide chemical probes to interrogate methylation-mediated cellular pathways. Overall, these chemistry-related technological advances have greatly improved our understanding of the biological functions of histone methylation in normal physiology and diseased states, and also are of great potential to translate basic epigenetics research into diagnostic and therapeutic applications in the clinic.
Collapse
Affiliation(s)
- Keqin Kathy Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
73
|
Identification of PR-SET7 and EZH2 selective inhibitors inducing cell death in human leukemia U937 cells. Biochimie 2012; 94:2308-13. [DOI: 10.1016/j.biochi.2012.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/05/2012] [Indexed: 01/16/2023]
|
74
|
Trials with 'epigenetic' drugs: an update. Mol Oncol 2012; 6:657-82. [PMID: 23103179 DOI: 10.1016/j.molonc.2012.09.004] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/30/2012] [Indexed: 02/06/2023] Open
Abstract
Epigenetic inactivation of pivotal genes involved in correct cell growth is a hallmark of human pathologies, in particular cancer. These epigenetic mechanisms, including crosstalk between DNA methylation, histone modifications and non-coding RNAs, affect gene expression and are associated with disease progression. In contrast to genetic mutations, epigenetic changes are potentially reversible. Re-expression of genes epigenetically inactivated can result in the suppression of disease state or sensitization to specific therapies. Small molecules that reverse epigenetic inactivation, so-called epi-drugs, are now undergoing clinical trials. Accordingly, the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for cancer treatment have approved some of these drugs. Here, we focus on the biological features of epigenetic molecules, analyzing the mechanism(s) of action and their current use in clinical practice.
Collapse
|
75
|
Fahy J, Jeltsch A, Arimondo PB. DNA methyltransferase inhibitors in cancer: a chemical and therapeutic patent overview and selected clinical studies. Expert Opin Ther Pat 2012; 22:1427-42. [DOI: 10.1517/13543776.2012.729579] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
76
|
Plitta B, Adamska E, Giel-Pietraszuk M, Fedoruk-Wyszomirska A, Naskręt-Barciszewska M, Markiewicz WT, Barciszewski J. New cytosine derivatives as inhibitors of DNA methylation. Eur J Med Chem 2012; 55:243-54. [DOI: 10.1016/j.ejmech.2012.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 12/31/2022]
|
77
|
DNA methylation inhibitors in cancer: recent and future approaches. Biochimie 2012; 94:2280-96. [PMID: 22967704 DOI: 10.1016/j.biochi.2012.07.025] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 07/30/2012] [Indexed: 12/14/2022]
Abstract
This review presents the different human DNA methyltransferases (DNMTs), their biological roles, their mechanisms of action and their role in cancer. The description of assays for detecting DNMT inhibitors (DNMTi) follows. The different known DNMTi are reported along with their advantages, drawbacks and clinical trials. A discussion on the features of the future DNMT inhibitors will conclude this review.
Collapse
|
78
|
Cellai C, Balliu M, Laurenzana A, Guandalini L, Matucci R, Miniati D, Torre E, Nebbioso A, Carafa V, Altucci L, Romanelli MN, Paoletti F. The new low-toxic histone deacetylase inhibitor S-(2) induces apoptosis in various acute myeloid leukaemia cells. J Cell Mol Med 2012; 16:1758-65. [PMID: 22004558 PMCID: PMC3822689 DOI: 10.1111/j.1582-4934.2011.01464.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 09/05/2011] [Indexed: 02/05/2023] Open
Abstract
Histone deacetylase inhibitors (HDACi) induce tumour cell cycle arrest and/or apoptosis, and some of them are currently used in cancer therapy. Recently, we described a series of powerful HDACi characterized by a 1,4-benzodiazepine (BDZ) ring hybridized with a linear alkyl chain bearing a hydroxamate function as Zn(++)--chelating group. Here, we explored the anti-leukaemic properties of three novel hybrids, namely the chiral compounds (S)-2 and (R)-2, and their non-chiral analogue 4, which were first comparatively tested in promyelocytic NB4 cells. (S)-2 and partially 4--but not (R)-2--caused G0/G1 cell-cycle arrest by up-regulating cyclin G2 and p21 expression and down-regulating cyclin D2 expression, and also apoptosis as assessed by cell morphology and cytofluorimetric assay, histone H2AX phosphorylation and PARP cleavage. Notably, these events were partly prevented by an anti-oxidant. Moreover, novel HDACi prompted p53 and α-tubulin acetylation and, consistently, inhibited HDAC1 and 6 activity. The rank order of potency was (S)-2 > 4 > (R)-2, reflecting that of other biological assays and addressing (S)-2 as the most effective compound capable of triggering apoptosis in various acute myeloid leukaemia (AML) cell lines and blasts from patients with different AML subtypes. Importantly, (S)-2 was safe in mice (up to 150 mg/kg/week) as determined by liver, spleen, kidney and bone marrow histopathology; and displayed negligible affinity for peripheral/central BDZ-receptors. Overall, the BDZ-hydroxamate (S)-2 showed to be a low-toxic HDACi with powerful anti-proliferative and pro-apototic activities towards different cultured and primary AML cells, and therefore of clinical interest to support conventional anti-leukaemic therapy.
Collapse
Affiliation(s)
- C Cellai
- Department of Experimental Pathology and Oncology, University of FlorenceSesto Fiorentino, Italy
| | - M Balliu
- Department of Experimental Pathology and Oncology, University of FlorenceSesto Fiorentino, Italy
| | - A Laurenzana
- Department of Experimental Pathology and Oncology, University of FlorenceSesto Fiorentino, Italy
| | - L Guandalini
- Department of Pharmaceutical Sciences, University of FlorenceSesto Fiorentino, Italy
| | - R Matucci
- Department of Preclinical and Clinical Pharmacology, University of FlorenceSesto Fiorentino, Italy
| | - D Miniati
- Department of Preclinical and Clinical Pharmacology, University of FlorenceSesto Fiorentino, Italy
| | - E Torre
- Department of Experimental Pathology and Oncology, University of FlorenceSesto Fiorentino, Italy
| | - A Nebbioso
- Department of General Pathology, Seconda Università degli Studi di NapoliNaples, Italy
| | - V Carafa
- Department of General Pathology, Seconda Università degli Studi di NapoliNaples, Italy
| | - L Altucci
- Department of General Pathology, Seconda Università degli Studi di NapoliNaples, Italy
| | - M N Romanelli
- Department of Pharmaceutical Sciences, University of FlorenceSesto Fiorentino, Italy
| | - F Paoletti
- Department of Experimental Pathology and Oncology, University of FlorenceSesto Fiorentino, Italy
| |
Collapse
|
79
|
Frikeche J, Peric Z, Brissot E, Grégoire M, Gaugler B, Mohty M. Impact of HDAC inhibitors on dendritic cell functions. Exp Hematol 2012; 40:783-91. [PMID: 22728031 DOI: 10.1016/j.exphem.2012.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/10/2012] [Accepted: 06/14/2012] [Indexed: 12/18/2022]
Abstract
Histone deacetylase inhibitors are presently used in the routine clinic treatment against cancers. Recent data have established that some of these treatments have potent anti-inflammatory or immunomodulatory effects at noncytotoxic doses that might be of benefit in immuno-inflammatory disorders or post-transplantation. At least some of these effects result from the ability of histone deacetylase inhibitors to modulate the immune system. Dendritic cells are professional antigen presenting cells that play a major role in this immune system. Data summarized in this review brings some novel information on the impact of histone deacetylase inhibitors on dendritic cell functions, which may have broader implications for immunotherapeutic strategies.
Collapse
|
80
|
Cancer-type regulation of MIG-6 expression by inhibitors of methylation and histone deacetylation. PLoS One 2012; 7:e38955. [PMID: 22701735 PMCID: PMC3373526 DOI: 10.1371/journal.pone.0038955] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/15/2012] [Indexed: 12/31/2022] Open
Abstract
Epigenetic silencing is one of the mechanisms leading to inactivation of a tumor suppressor gene, either by DNA methylation or histone modification in a promoter regulatory region. Mitogen inducible gene 6 (MIG-6), mainly known as a negative feedback inhibitor of the epidermal growth factor receptor (EGFR) family, is a tumor suppressor gene that is associated with many human cancers. To determine if MIG-6 is inactivated by epigenetic alteration, we identified a group of human lung cancer and melanoma cell lines in which its expression is either low or undetectable and studied the effects of methylation and of histone deacetylation on its expression. The DNA methyltransferase (DNMT) inhibitor 5-aza-2′-deoxycytidine (5-aza-dC) induced MIG-6 expression in melanoma cell lines but little in lung cancer lines. By contrast, the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) induced MIG-6 expression in lung cancer lines but had little effect in melanoma lines. However, the MIG-6 promoter itself did not appear to be directly affected by either methylation or histone deacetylation, indicating an indirect regulatory mechanism. Luciferase reporter assays revealed that a short segment of exon 1 in the MIG-6 gene is responsible for TSA response in the lung cancer cells; thus, the MIG-6 gene can be epigenetically silenced through an indirect mechanism without having a physical alteration in its promoter. Furthermore, our data also suggest that MIG-6 gene expression is differentially regulated in lung cancer and melanoma.
Collapse
|
81
|
Cancer therapy and vaccination. J Immunol Methods 2012; 382:1-23. [PMID: 22658969 DOI: 10.1016/j.jim.2012.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/01/2012] [Accepted: 05/24/2012] [Indexed: 12/18/2022]
Abstract
Cancer remains one of the leading causes of death worldwide, both in developed and in developing nations. It may affect people at all ages, even fetuses, but the risk for most varieties increases with age. Current therapeutic approaches which include surgery, chemotherapy and radiotherapy are associated with adverse side effects arising from lack of specificity for tumors. The goal of any therapeutic strategy is to impact on the target tumor cells with limited detrimental effect to normal cell function. Immunotherapy is cancer specific and can target the disease with minimal impact on normal tissues. Cancer vaccines are capable of generating an active tumor-specific immune response and serve as an ideal treatment due to their specificity for tumor cells and long lasting immunological memory that may safeguard against recurrences. Cancer vaccines are designed to either prevent (prophylactic) or treat established cancer (therapeutic). Identification of tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs) has led to increased efforts to develop vaccination strategies. Vaccines may be composed of whole cells or cell extracts, genetically modified tumor cells to express costimulatory molecules, dendritic cells (DCs) loaded with TAAs, immunization with soluble proteins or synthetic peptides, recombinant viruses or bacteria encoding tumor-associated antigens, and plasmid DNA encoding TSAs or TAAs in conjunction with appropriate immunomodulators. All of these antitumor vaccination approaches aim to induce specific immunological responses and localized to TAAs, destroying tumor cells alone and leaving the vast majority of other healthy cells of the body untouched.
Collapse
|
82
|
Yacqub-Usman K, Richardson A, Duong CV, Clayton RN, Farrell WE. The pituitary tumour epigenome: aberrations and prospects for targeted therapy. Nat Rev Endocrinol 2012; 8:486-94. [PMID: 22525730 DOI: 10.1038/nrendo.2012.54] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Global and gene-specific changes in the epigenome are hallmarks of most tumour types, including those of pituitary origin. In contrast to genetic mutations, epigenetic changes (aberrant DNA methylation and histone modifications) are potentially reversible. Drugs that specifically target or inhibit DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) can be used to restore the expression of epigenetically silenced genes. These drugs can potentially increase the sensitivity of tumour cells to conventional treatment modalities, such as chemotherapy and radiotherapy. Drug-induced reversal of transcriptional silencing can also be used to restore dopamine-D(2)-receptor-negative, hormone-refractory tumours to their previous receptor-positive, hormone-responsive status. Synergy between HDAC and DNMT inhibitors makes these pharmacological agents more therapeutically effective when administered in combination than when used alone. Studies in pituitary tumour cell lines show that drug-induced re-expression of the epigenetically silenced dopamine D(2) receptor leads to an increase in apoptosis mediated by a receptor agonist. Collectively, the use of drugs to directly or indirectly reverse gene-specific epigenetic changes, in combination with conventional therapeutic interventions, has potential for the clinical management of multiple tumour types-including those of pituitary origin. Furthermore, these drugs can be used to identify epigenetically regulated genes that could be novel, tumour-specific therapeutic targets.
Collapse
Affiliation(s)
- Kiren Yacqub-Usman
- Human Disease and Genomics Group, Institute of Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK
| | | | | | | | | |
Collapse
|
83
|
Franci G, Miceli M, Altucci L. Targeting epigenetic networks with polypharmacology: a new avenue to tackle cancer. Epigenomics 2012; 2:731-42. [PMID: 22122079 DOI: 10.2217/epi.10.62] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The term 'epigenetic' fuses old and new concepts that refer to the modulation of gene expression in cellular heritability, fate, development and programming-reprogramming other than the DNA sequence itself. Epigenetic control of transcription is regulated by enzymes that mediate covalent modifications at gene-regulatory regions and histone proteins around which chromosomal DNA is wound. Many of the enzymes that mediate chromatin epigenetic reactions are deregulated in diseases such as cancer. Thus, small-molecule inhibitors that target chromatin-modifying enzymes represent a novel option for treatment, and DNA methyltransferase and histone deacetylase inhibitors have been approved for cancer treatment. Moreover, other classes of epi-enzymes (MS-275, SAHA) have been demonstrated to have strong disease association, and are currently being targeted for modulation. An epigenetic poly-pharmacological approach targeting multiple chromatin-modifying enzymes may represent a 'smart' option to treat cancer versus the current view on the selective and single pharmacological targeting of epigenetic enzymes.
Collapse
|
84
|
Abstract
Suberoylanilide hydroxamic acid (vorinostat) was the first of the histone deacetylase inhibitors (HDACi) to be entered as therapy for the treatment of cutaneous T-cell lymphoma. Since then, a number of HDACi belonging to the short-chain fatty acid, hydroxamate, cyclic peptide or benzamide classes have been investigated in Phase II or III clinical trials (alone or in combination) for the treatment of many kinds of tumors. In addition, HDACi can be useful in antimalarial and antifungal therapies, and can reactivate HIV-1 expression in latent cellular reservoirs, thus suggesting that they could be used in combination with highly active antiretroviral therapy. Moreover, they have also proved their efficacy in neurodegenerative diseases, such as Huntington's disease, Parkinson's disease and Friedreich's ataxia. In particular, a new series of bis-anilides demonstrating a peculiar mechanism of action displayed highly beneficial effects against Huntington's disease and Friedreich's ataxia. In addition, a number of sirtuin inhibitors demonstrated antiproliferative effects in cell assays as well as in mouse tumor models, thus suggesting a role of such compounds in therapy against cancer. Furthermore, the SIRT2-selective AGK-2 has been reported to have protective effects against Parkinson's disease, and resveratrol and other sirtuin activators can be useful for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Antonello Mai
- Pasteur Institute-Cenci Bolognetti Foundation, Drug Chemistry and Technologies Department, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome, Italy.
| |
Collapse
|
85
|
Abstract
Epigenetic gene silencing is a hallmark of cancer cells. Two important types of epigenetic changes are DNA methylation and histone modification. These modifications are catalysed by DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), resulting in chromatin structure changes and gene inactivation. Interestingly, inhibition of these enzymes is known to induce differentiation or apoptosis of cancer cells. Therefore, DNMTs and HDACs have become attractive therapeutic targets. In recent years, many different DNMT and HDAC inhibitors have been developed, and multiple molecular mechanisms through which these agents exert anti-cancer effects have been identified. While a large number of clinical trials are ongoing, hypomethylating agents and HDAC inhibitors seem to be promising for treating several types of cancer. Moreover, developing effective strategies of combining epigenetic therapy with conventional chemotherapy will be one of the major challenges in the future. We briefly review current advances in epigenetic therapies with a focus on recently reported clinical trials.
Collapse
Affiliation(s)
- Sang-Hyun Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | | | | |
Collapse
|
86
|
Kim HJ, Kim JH, Chie EK, Da Young P, Kim IA, Kim IH. DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity. Radiat Oncol 2012; 7:39. [PMID: 22429326 PMCID: PMC3375186 DOI: 10.1186/1748-717x-7-39] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 03/20/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Histone modifications and DNA methylation are two major factors in epigenetic phenomenon. Unlike the histone deacetylase inhibitors, which are known to exert radiosensitizing effects, there have only been a few studies thus far concerning the role of DNA methyltransferase (DNMT) inhibitors as radiosensitizers. The principal objective of this study was to evaluate the effects of DNMT inhibitors on the radiosensitivity of human cancer cell lines, and to elucidate the mechanisms relevant to that process. METHODS A549 (lung cancer) and U373MG (glioblastoma) cells were exposed to radiation with or without six DNMT inhibitors (5-azacytidine, 5-aza-2'-deoxycytidine, zebularine, hydralazine, epigallocatechin gallate, and psammaplin A) for 18 hours prior to radiation, after which cell survival was evaluated via clonogenic assays. Cell cycle and apoptosis were analyzed via flow cytometry. Expressions of DNMT1, 3A/3B, and cleaved caspase-3 were detected via Western blotting. Expression of γH2AX, a marker of radiation-induced DNA double-strand break, was examined by immunocytochemistry. RESULTS Pretreatment with psammaplin A, 5-aza-2'-deoxycytidine, and zebularine radiosensitized both A549 and U373MG cells. Pretreatment with psammaplin A increased the sub-G1 fraction of A549 cells, as compared to cells exposed to radiation alone. Prolongation of γH2AX expression was observed in the cells treated with DNMT inhibitors prior to radiation as compared with those treated by radiation alone. CONCLUSIONS Psammaplin A, 5-aza-2'-deoxycytidine, and zebularine induce radiosensitivity in both A549 and U373MG cell lines, and suggest that this effect might be associated with the inhibition of DNA repair.
Collapse
Affiliation(s)
- Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Ho Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Park Da Young
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Il Han Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
87
|
Singh B, Boopathy S, Somasundaram K, Umapathy S. Fourier transform infrared microspectroscopy identifies protein propionylation in histone deacetylase inhibitor treated glioma cells. JOURNAL OF BIOPHOTONICS 2012; 5:230-239. [PMID: 22259119 DOI: 10.1002/jbio.201100061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 12/26/2011] [Accepted: 12/28/2011] [Indexed: 05/31/2023]
Abstract
Histone deacetylase inhibitors (HDIs) have attracted considerable attention as potential drug molecules in tumour biology. In order to optimise chemotherapy, it is important to understand the mechanisms of regulation of histone deacetylase (HDAC) enzymes and modifications brought by various HDIs. In the present study, we have employed Fourier transform infrared microspectroscopy (FT-IRMS) to evaluate modifications in cellular macromolecules subsequent to treatment with various HDIs. In addition to CH(3) (methyl) stretching bands at 2872 and 2960 cm(-1) , which arises due to acetylation, we also found major changes in bands at 2851 and 2922 cm(-1) , which originates from stretching vibrations of CH(2) (methylene) groups, in valproic acid treated cells. We further demonstrate that the changes in CH(2) stretching are concentration-dependent and also induced by several other HDIs. Recently, HDIs have been shown to induce propionylation besides acetylation [1]. Since propionylation involves CH(2) groups, we hypothesized that CH(2) vibrational frequency changes seen in HDI treated cells could arise due to propionylation. As verification, pre-treatment of cells with propionyl CoA synthetase inhibitor resulted in loss of CH(2) vibrational changes in histones, purified from valproic acid treated cells. This was further proved by western blot using propionyl-lysine specific antibody. Thus we demonstrate for the first time that propionylation could be monitored by studying CH(2) stretching using IR spectroscopy and further provide a platform for monitoring HDI induced multiple changes in cells.
Collapse
Affiliation(s)
- Bhawana Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
88
|
Phase I study of chidamide (CS055/HBI-8000), a new histone deacetylase inhibitor, in patients with advanced solid tumors and lymphomas. Cancer Chemother Pharmacol 2012; 69:1413-22. [PMID: 22362161 DOI: 10.1007/s00280-012-1847-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/04/2012] [Indexed: 02/06/2023]
Abstract
PURPOSE Chidamide (CS055/HBI-8000) is a new benzamide class of histone deacetylase inhibitor with marked anti-tumor activity. This study reports the phase I results. METHODS Patients with advanced solid tumors or lymphomas received oral doses of 5, 10, 17.5, 25, 32.5, or 50 mg chidamide either twice (BIW) or three times (TIW) per week for 4 consecutive weeks every 6 weeks. Safety, characteristics of pharmacokinetics (PK) and pharmacodynamics (PD), and preliminary efficacy were evaluated. RESULTS A total of 31 patients were enrolled. No DLTs were identified in the BIW cohorts up to 50 mg. DLTs were grade 3 diarrhea and vomiting in two patients in the TIW cohort at 50 mg, respectively. PK analysis revealed t(1/2) of 16.8-18.3 h, T(max) of 1-2 h in most cases, and a dose-related increase in C(max) and AUC. Significant induction of histone H3 acetylation in peripheral white blood cells was observed after a single dose of chidamide. Four patients with T-cell lymphomas and 1 patient with submandibular adenoid cystic carcinoma achieved a partial response. CONCLUSIONS Chidamide was generally well tolerated in patients with advanced solid tumors or lymphomas in the tested regimens. Favorable PK and PD profiles, as well as encouraging preliminary anti-tumor activity, were demonstrated.
Collapse
|
89
|
Dell'Aversana C, Lepore I, Altucci L. HDAC modulation and cell death in the clinic. Exp Cell Res 2012; 318:1229-44. [PMID: 22336671 DOI: 10.1016/j.yexcr.2012.01.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 01/29/2023]
Abstract
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) are two opposing classes of enzymes, which finely regulate the balance of histone acetylation affecting chromatin packaging and gene expression. Imbalanced acetylation has been associated with carcinogenesis and cancer progression. In contrast to genetic mutations, epigenetic changes are potentially reversible. This implies that epigenetic alterations are amenable to pharmacological interventions. Accordingly, some epigenetic-based drugs (epidrugs) have been approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for cancer treatment. Here, we focus on the biological features of HDAC inhibitors (HDACis), analyzing the mechanism(s) of action and their current use in clinical practice.
Collapse
|
90
|
Valente S, Conte M, Tardugno M, Nebbioso A, Tinari G, Altucci L, Mai A. Developing novel non-hydroxamate histone deacetylaseinhibitors: the chelidamic warhead. MEDCHEMCOMM 2012. [DOI: 10.1039/c1md00249j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dimethyl 4-hydroxypyridine-2,6-dicarboxylate is a valuable scaffold for HDAC inhibitor design as a replacement of the well-known hydroxamate function.
Collapse
Affiliation(s)
- Sergio Valente
- Istituto Pasteur–Fondazione Cenci Bolognetti
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Università di Roma
- Roma
- Italy
| | - Mariarosaria Conte
- Dipartimento di Patologia Generale
- Seconda Università degli Studi di Napoli
- Napoli
- Italy
| | - Maria Tardugno
- Istituto Pasteur–Fondazione Cenci Bolognetti
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Università di Roma
- Roma
- Italy
| | - Angela Nebbioso
- Dipartimento di Patologia Generale
- Seconda Università degli Studi di Napoli
- Napoli
- Italy
| | - Gabriella Tinari
- Istituto Pasteur–Fondazione Cenci Bolognetti
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Università di Roma
- Roma
- Italy
| | - Lucia Altucci
- Dipartimento di Patologia Generale
- Seconda Università degli Studi di Napoli
- Napoli
- Italy
- CNR-IGB
| | - Antonello Mai
- Istituto Pasteur–Fondazione Cenci Bolognetti
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Università di Roma
- Roma
- Italy
| |
Collapse
|
91
|
Halby L, Champion C, Sénamaud-Beaufort C, Ajjan S, Drujon T, Rajavelu A, Ceccaldi A, Jurkowska R, Lequin O, Nelson WG, Guy A, Jeltsch A, Guianvarc'h D, Ferroud C, Arimondo PB. Rapid Synthesis of New DNMT Inhibitors Derivatives of Procainamide. Chembiochem 2011; 13:157-65. [DOI: 10.1002/cbic.201100522] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Indexed: 11/06/2022]
|
92
|
Rotili D, Mai A. Targeting Histone Demethylases: A New Avenue for the Fight against Cancer. Genes Cancer 2011; 2:663-79. [PMID: 21941621 DOI: 10.1177/1947601911417976] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In addition to genetic disorders, epigenetic alterations have been shown to be involved in cancer, through misregulation of histone modifications. Miswriting, misreading, and mis-erasing of histone acetylation as well as methylation marks can be actually associated with oncogenesis and tumor proliferation. Historically, methylation of Arg and Lys residues has been considered a stable, irreversible process due to the slow turnover of methyl groups in chromatin. The discovery in recent years of a large number of histone Lys demethylases (KDMs, belonging to either the amino oxidase or the JmjC family) totally changed this point of view and suggested a new role for dynamic histone methylation in biological processes. Since overexpression, alteration, or mutation of a number of KDMs has been found in many types of cancers, such enzymes could represent diagnostic tools as well as epigenetic targets to modulate for obtaining novel therapeutic weapons against cancer. The first little steps in this direction are described here.
Collapse
Affiliation(s)
- Dante Rotili
- Pasteur Institute-Cenci-Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
93
|
Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem Pharmacol 2011; 82:1073-8. [DOI: 10.1016/j.bcp.2011.07.065] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/01/2011] [Accepted: 07/06/2011] [Indexed: 12/15/2022]
|
94
|
Khan SI, Aumsuwan P, Khan IA, Walker LA, Dasmahapatra AK. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem Res Toxicol 2011; 25:61-73. [PMID: 21992498 DOI: 10.1021/tx200378c] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aberrant epigenetic alterations in the genome such as DNA methylation and chromatin remodeling play a significant role in breast cancer development. Since epigenetic alterations are considered to be more easily reversible compared to genetic changes, epigenetic therapy is potentially very useful in reversing some of these defects. Methylation of CpG islands is an important component of the epigenetic code, and a number of genes become abnormally methylated in breast cancer patients. Currently, several epigenetic-based synthetic drugs that can reduce DNA hypermethylation and histone deacetylation are undergoing preclinical and clinical trials. However, these chemicals are generally very toxic and do not have gene specificity. Epidemiological studies have shown that Asian women are less prone to breast cancer due to their high consumption of soy food than the Caucasian women of western countries. Moreover, complementary/and or alternative medicines are commonly used by Asian populations which are rich in bioactive ingredients known to be chemopreventive against tumorigenesis in general. Examples of such agents include dietary polyphenols, (-)-epigallocatechin-3-gallate (EGCG) from green tea, genistein from soybean, isothiocyanates from plant foods, curcumin from turmeric, resveratrol from grapes, and sulforaphane from cruciferous vegetables. These bioactive components are able to modulate epigenetic events, and their epigenetic targets are known to be associated with breast cancer prevention and therapy. This approach could facilitate the discovery and development of novel drugs for the treatment of breast cancer. In this brief review, we will summarize the epigenetic events associated with breast cancer and the potential of some of these bioactive dietary components to modulate these events and thus afford new therapeutic or preventive approaches.
Collapse
Affiliation(s)
- Shabana I Khan
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| | | | | | | | | |
Collapse
|
95
|
Immunotherapy augments the effect of 5-azacytidine on HPV16-associated tumours with different MHC class I-expression status. Br J Cancer 2011; 105:1533-41. [PMID: 22015556 PMCID: PMC3242529 DOI: 10.1038/bjc.2011.428] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Epigenetic mechanisms have important roles in the tumour escape from immune responses, such as in MHC class I downregulation or altered expression of other components involved in antigen presentation. Chemotherapy with DNA methyltransferase inhibitors (DNMTi) can thus influence the tumour cell interactions with the immune system and their sensitivity to immunotherapy. METHODS We evaluated the therapeutic effects of the DNMTi 5-azacytidine (5AC) against experimental MHC class I-deficient and -positive tumours. The 5AC therapy was combined with immunotherapy, using a murine model for HPV16-associated tumours. RESULTS We have demonstrated 5AC additive effects against MHC class I-positive and -deficient tumours when combined with unmethylated CpG oligodeoxynucleotides or with IL-12-producing cellular vaccine. The efficacy of the combined chemoimmunotherapy against originally MHC class I-deficient tumours was partially dependent on the CD8(+)-mediated immune responses. Increased cell surface expression of MHC class I cell molecules, associated with upregulation of the antigen-presenting machinery-related genes, as well as of genes encoding selected components of the IFNγ-signalling pathway in tumours explanted from 5AC-treated animals, were observed. CONCLUSION Our data suggest that chemotherapy of MHC class I-deficient tumours with 5AC combined with immunotherapy is an attractive setting in the treatment of MHC class I-deficient tumours.
Collapse
|
96
|
Bhansali P, Hanigan CL, Casero RA, Tillekeratne LMV. Largazole and analogues with modified metal-binding motifs targeting histone deacetylases: synthesis and biological evaluation. J Med Chem 2011; 54:7453-63. [PMID: 21936551 DOI: 10.1021/jm200432a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The histone deacetylase inhibitor largazole 1 was synthesized by a convergent approach that involved several efficient and high yielding single pot multistep protocols. Initial attempts using tert-butyl as thiol protecting group proved problematic, and synthesis was accomplished by switching to the trityl protecting group. This synthetic protocol provides a convenient approach to many new largazole analogues. Three side chain analogues with multiple heteroatoms for chelation with Zn(2+) were synthesized, and their biological activities were evaluated. They were less potent than largazole 1 in growth inhibition of HCT116 colon carcinoma cell line and in inducing increases in global H3 acetylation. Largazole 1 and the three side chain analogues had no effect on HDAC6, as indicated by the lack of increased acetylation of α-tubulin.
Collapse
Affiliation(s)
- Pravin Bhansali
- Department of Medicinal and Biological Chemistry, The University of Toledo, OH 43606, USA
| | | | | | | |
Collapse
|
97
|
Castellano S, Kuck D, Viviano M, Yoo J, López-Vallejo F, Conti P, Tamborini L, Pinto A, Medina-Franco JL, Sbardella G. Synthesis and Biochemical Evaluation of Δ2-Isoxazoline Derivatives as DNA Methyltransferase 1 Inhibitors. J Med Chem 2011; 54:7663-77. [DOI: 10.1021/jm2010404] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sabrina Castellano
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Dirk Kuck
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Monica Viviano
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Jakyung Yoo
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Fabian López-Vallejo
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Paola Conti
- Dipartimento di Scienze Farmaceutiche “Pietro Pratesi”, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | - Lucia Tamborini
- Dipartimento di Scienze Farmaceutiche “Pietro Pratesi”, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | - Andrea Pinto
- Dipartimento di Scienze Farmaceutiche “Pietro Pratesi”, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | - José L. Medina-Franco
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Gianluca Sbardella
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| |
Collapse
|
98
|
Nebbioso A, Pereira R, Khanwalkar H, Matarese F, García-Rodríguez J, Miceli M, Logie C, Kedinger V, Ferrara F, Stunnenberg HG, de Lera AR, Gronemeyer H, Altucci L. Death Receptor Pathway Activation and Increase of ROS Production by the Triple Epigenetic Inhibitor UVI5008. Mol Cancer Ther 2011; 10:2394-404. [DOI: 10.1158/1535-7163.mct-11-0525] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
99
|
Huhtiniemi T, Salo HS, Suuronen T, Poso A, Salminen A, Leppänen J, Jarho E, Lahtela-Kakkonen M. Structure-based design of pseudopeptidic inhibitors for SIRT1 and SIRT2. J Med Chem 2011; 54:6456-68. [PMID: 21895016 DOI: 10.1021/jm200590k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The lack of substrate-bound crystal structures of SIRT1 and SIRT2 complicates the drug design for these targets. In this work, we aim to study whether SIRT3 could serve as a target structure in the design of substrate based pseudopeptidic inhibitors of SIRT1 and SIRT2. We created a binding hypothesis for pseudopeptidic inhibitors, synthesized a series of inhibitors, and studied how well the fulfillment of the binding criteria proposed by the hypothesis correlated with the in vitro inhibitory activities. The chosen approach was further validated by studying docking results between 12 different SIRT3, Sir2Tm, SIRT1 and SIRT2 X-ray structures and homology models in different conformational forms. It was concluded that the created binding hypothesis can be used in the design of the substrate based inhibitors of SIRT1 and SIRT2 although there are some reservations, and it is better to use the substrate-bound structure of SIRT3 instead of the available apo-SIRT2 as the target structure.
Collapse
Affiliation(s)
- Tero Huhtiniemi
- School of Pharmacy, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Iwasa E, Hamashima Y, Fujishiro S, Hashizume D, Sodeoka M. Total syntheses of chaetocin and ent-chaetocin. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.05.081] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|