51
|
Icard P, Loi M, Wu Z, Ginguay A, Lincet H, Robin E, Coquerel A, Berzan D, Fournel L, Alifano M. Metabolic Strategies for Inhibiting Cancer Development. Adv Nutr 2021; 12:1461-1480. [PMID: 33530098 PMCID: PMC8321873 DOI: 10.1093/advances/nmaa174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment is a complex mix of cancerous and noncancerous cells (especially immune cells and fibroblasts) with distinct metabolisms. These cells interact with each other and are influenced by the metabolic disorders of the host. In this review, we discuss how metabolic pathways that sustain biosynthesis in cancer cells could be targeted to increase the effectiveness of cancer therapies by limiting the nutrient uptake of the cell, inactivating metabolic enzymes (key regulatory ones or those linked to cell cycle progression), and inhibiting ATP production to induce cell death. Furthermore, we describe how the microenvironment could be targeted to activate the immune response by redirecting nutrients toward cytotoxic immune cells or inhibiting the release of waste products by cancer cells that stimulate immunosuppressive cells. We also examine metabolic disorders in the host that could be targeted to inhibit cancer development. To create future personalized therapies for targeting each cancer tumor, novel techniques must be developed, such as new tracers for positron emission tomography/computed tomography scan and immunohistochemical markers to characterize the metabolic phenotype of cancer cells and their microenvironment. Pending personalized strategies that specifically target all metabolic components of cancer development in a patient, simple metabolic interventions could be tested in clinical trials in combination with standard cancer therapies, such as short cycles of fasting or the administration of sodium citrate or weakly toxic compounds (such as curcumin, metformin, lipoic acid) that target autophagy and biosynthetic or signaling pathways.
Collapse
Affiliation(s)
- Philippe Icard
- Université Caen Normandie, Medical School, CHU de Caen, Caen, France
- Normandie Université, UNICAEN, INSERM U1086, Interdisciplinary Research Unit for Cancer Prevention and Treatment, Centre de Lutte Contre le Cancer Centre François Baclesse, Caen, France
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Mauro Loi
- Radiotherapy Department, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Zherui Wu
- School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Antonin Ginguay
- Service de Biochimie, Hôpital Cochin, Hôpitaux Universitaires Paris-Centre, AP-HP, Paris, France
- EA4466 Laboratoire de Biologie de la Nutrition, Faculté de Pharmacie de Paris, Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Hubert Lincet
- INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
- ISPB, Faculté de Pharmacie, Université Lyon 1, Lyon, France
| | - Edouard Robin
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Antoine Coquerel
- INSERM U1075, Comete “Mobilités: Attention, Orientation, Chronobiologie”, Université Caen, Caen, France
| | - Diana Berzan
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Ludovic Fournel
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM U1138, Integrative Cancer Immunology, Paris, France
| |
Collapse
|
52
|
Extracellular Vesicle Transmission of Chemoresistance to Ovarian Cancer Cells Is Associated with Hypoxia-Induced Expression of Glycolytic Pathway Proteins, and Prediction of Epithelial Ovarian Cancer Disease Recurrence. Cancers (Basel) 2021; 13:cancers13143388. [PMID: 34298602 PMCID: PMC8305505 DOI: 10.3390/cancers13143388] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Ovarian cancer is one of the most lethal cancers affecting women worldwide. Its high mortality rate is often attributed to the non-specific nature of early symptoms of the disease. Developing a better understanding of the disease progression and identifying clinically useful biomarkers that aid in clinical management are requisite to reducing the mortality rate of ovarian cancer. Reduced oxygen tension (i.e., hypoxia) is not only a characteristic of solid tumors but may also enhance the metastatic capacity of tumors by inducing the release of tumor growth promoting factors. Recently, it has been proposed that small tumor-derived extracellular vesicles (sEVs) facilitate cancer progression. In this study, we established that sEVs produced under low oxygen tension induce a metabolic switch in ovarian cancer cells associated with changes in glycolytic pathway proteins that promote resistance to carboplatin. Significantly, we identified a suite of sEV-associated glycolysis pathway proteins that are present in patients with ovarian cancer that can predict disease recurrence with over 90% accuracy. Abstract Hypoxia is a key regulator of cancer progression and chemoresistance. Ambiguity remains about how cancer cells adapt to hypoxic microenvironments and transfer oncogenic factors to surrounding cells. In this study, we determined the effects of hypoxia on the bioactivity of sEVs in a panel of ovarian cancer (OvCar) cell lines. The data obtained demonstrate a varying degree of platinum resistance induced in OvCar cells when exposed to low oxygen tension (1% oxygen). Using quantitative mass spectrometry (Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectra, SWATH) and targeted multiple reaction monitoring (MRM), we identified a suite of proteins associated with glycolysis that change under hypoxic conditions in cells and sEVs. Interestingly, we identified a differential response to hypoxia in the OvCar cell lines and their secreted sEVs, highlighting the cells’ heterogeneity. Proteins are involved in metabolic reprogramming such as glycolysis, including putative hexokinase (HK), UDP-glucuronosyltransferase 1–6 (UD16), and 6-phosphogluconolactonase (6 PGL), and their presence correlates with the induction of platinum resistance. Furthermore, when normoxic cells were exposed to sEVs from hypoxic cells, platinum-resistance increased significantly (p < 0.05). Altered chemoresistance was associated with changes in glycolysis and fatty acid synthesis. Finally, sEVs isolated from a clinical cohort (n = 31) were also found to be enriched in glycolysis-pathway proteins, especially in patients with recurrent disease. These data support the hypothesis that hypoxia induces changes in sEVs composition and bioactivity that confers carboplatin resistance on target cells. Furthermore, we propose that the expression of sEV-associated glycolysis-pathway proteins is predictive of ovarian cancer recurrence and is of clinical utility in disease management.
Collapse
|
53
|
Dong P, Xiong Y, Konno Y, Ihira K, Kobayashi N, Yue J, Watari H. Long non-coding RNA DLEU2 drives EMT and glycolysis in endometrial cancer through HK2 by competitively binding with miR-455 and by modulating the EZH2/miR-181a pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:216. [PMID: 34174908 PMCID: PMC8235565 DOI: 10.1186/s13046-021-02018-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 01/27/2023]
Abstract
Background Epithelial-to-mesenchymal transition (EMT) and aerobic glycolysis are fundamental processes implicated in cancer metastasis. Although increasing evidence demonstrates an association between EMT induction and enhanced aerobic glycolysis in human cancer, the mechanisms linking these two conditions in endometrial cancer (EC) cells remain poorly defined. Methods We characterized the role and molecular mechanism of the glycolytic enzyme hexokinase 2 (HK2) in mediating EMT and glycolysis and investigated how long noncoding RNA DLEU2 contributes to the stimulation of EMT and glycolysis via upregulation of HK2 expression. Results HK2 was highly expressed in EC tissues, and its expression was associated with poor overall survival. Overexpression of HK2 effectively promoted EMT phenotypes and enhanced aerobic glycolysis in EC cells via activating FAK and its downstream ERK1/2 signaling. Moreover, microRNA-455 (miR-455) served as a tumor suppressor by directly interacting with HK2 mRNA and inhibiting its expression. Furthermore, DLEU2 displayed a significantly higher expression in EC tissues, and increased DLEU2 expression was correlated with worse overall survival. DLEU2 acted as an upstream activator for HK2-induced EMT and glycolysis in EC cells through two distinct mechanisms: (i) DLEU2 induced HK2 expression by competitively binding with miR-455, and (ii) DLEU2 also interacted with EZH2 to silence a direct inhibitor of HK2, miR-181a. Conclusions This study identified DLEU2 as an upstream activator of HK2-driven EMT and glycolysis in EC cells and provided significant mechanistic insights for the potential treatment of EC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02018-1.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan.
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan.
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 0608638, Japan
| |
Collapse
|
54
|
Wang L, Zhao X, Fu J, Xu W, Yuan J. The Role of Tumour Metabolism in Cisplatin Resistance. Front Mol Biosci 2021; 8:691795. [PMID: 34250022 PMCID: PMC8261055 DOI: 10.3389/fmolb.2021.691795] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Cisplatin is a chemotherapy drug commonly used in cancer treatment. Tumour cells are more sensitive to cisplatin than normal cells. Cisplatin exerts an antitumour effect by interfering with DNA replication and transcription processes. However, the drug-resistance properties of tumour cells often cause loss of cisplatin efficacy and failure of chemotherapy, leading to tumour progression. Owing to the large amounts of energy and compounds required by tumour cells, metabolic reprogramming plays an important part in the occurrence and development of tumours. The interplay between DNA damage repair and metabolism also has an effect on cisplatin resistance; the molecular changes to glucose metabolism, amino acid metabolism, lipid metabolism, and other metabolic pathways affect the cisplatin resistance of tumour cells. Here, we review the mechanism of action of cisplatin, the mechanism of resistance to cisplatin, the role of metabolic remodelling in tumorigenesis and development, and the effects of common metabolic pathways on cisplatin resistance.
Collapse
Affiliation(s)
- Lude Wang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiaoya Zhao
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jianfei Fu
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jianlie Yuan
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
55
|
Zahan T, Das PK, Akter SF, Habib R, Rahman MH, Karim MR, Islam F. Therapy Resistance in Cancers: Phenotypic, Metabolic, Epigenetic and Tumour Microenvironmental Perspectives. Anticancer Agents Med Chem 2021; 20:2190-2206. [PMID: 32748758 DOI: 10.2174/1871520620999200730161829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/02/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chemoresistance is a vital problem in cancer therapy where cancer cells develop mechanisms to encounter the effect of chemotherapeutics, resulting in cancer recurrence. In addition, chemotherapy- resistant leads to the formation of a more aggressive form of cancer cells, which, in turn, contributes to the poor survival of patients with cancer. OBJECTIVE In this review, we aimed to provide an overview of how the therapy resistance property evolves in cancer cells, contributing factors and their role in cancer chemoresistance, and exemplified the problems of some available therapies. METHODS The published literature on various electronic databases including, Pubmed, Scopus, Google scholar containing keywords cancer therapy resistance, phenotypic, metabolic and epigenetic factors, were vigorously searched, retrieved and analyzed. RESULTS Cancer cells have developed a range of cellular processes, including uncontrolled activation of Epithelial- Mesenchymal Transition (EMT), metabolic reprogramming and epigenetic alterations. These cellular processes play significant roles in the generation of therapy resistance. Furthermore, the microenvironment where cancer cells evolve effectively contributes to the process of chemoresistance. In tumour microenvironment immune cells, Mesenchymal Stem Cells (MSCs), endothelial cells and cancer-associated fibroblasts (CAFs) contribute to the maintenance of therapy-resistant phenotype via the secretion of factors that promote resistance to chemotherapy. CONCLUSION To conclude, as these factors hinder successful cancer therapies, therapeutic resistance property of cancer cells is a subject of intense research, which in turn could open a new horizon to aim for developing efficient therapies.
Collapse
Affiliation(s)
- Tasnim Zahan
- Molecular Mechanisms of Disease, Radboud University, Nijmegen, The Netherlands
| | - Plabon K Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Syeda F Akter
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Rowshanul Habib
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Habibur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Rezaul Karim
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh,Institute for Glycomics, Griffith University, Queensland, Australia
| |
Collapse
|
56
|
Lv P, Man S, Xie L, Ma L, Gao W. Pathogenesis and therapeutic strategy in platinum resistance lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188577. [PMID: 34098035 DOI: 10.1016/j.bbcan.2021.188577] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 12/20/2022]
Abstract
Platinum compounds (cisplatin and carboplatin) represent the most active anticancer agents in clinical use both of lung cancer in mono-and combination therapies. However, platinum resistance limits its clinical application. It is necessary to understand the molecular mechanism of platinum resistance, identify predictive markers, and develop newer, more effective and less toxic agents to treat platinum resistance in lung cancer. Here, it summarizes the main molecular mechanisms associated with platinum resistance in lung cancer and the development of new approaches to tackle this clinically relevant problem. Moreover, it could lead to the development of more effective treatment for refractory lung cancer in future.
Collapse
Affiliation(s)
- Panpan Lv
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Lu Xie
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
57
|
Ciscato F, Ferrone L, Masgras I, Laquatra C, Rasola A. Hexokinase 2 in Cancer: A Prima Donna Playing Multiple Characters. Int J Mol Sci 2021; 22:ijms22094716. [PMID: 33946854 PMCID: PMC8125560 DOI: 10.3390/ijms22094716] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hexokinases are a family of ubiquitous exose-phosphorylating enzymes that prime glucose for intracellular utilization. Hexokinase 2 (HK2) is the most active isozyme of the family, mainly expressed in insulin-sensitive tissues. HK2 induction in most neoplastic cells contributes to their metabolic rewiring towards aerobic glycolysis, and its genetic ablation inhibits malignant growth in mouse models. HK2 can dock to mitochondria, where it performs additional functions in autophagy regulation and cell death inhibition that are independent of its enzymatic activity. The recent definition of HK2 localization to contact points between mitochondria and endoplasmic reticulum called Mitochondria Associated Membranes (MAMs) has unveiled a novel HK2 role in regulating intracellular Ca2+ fluxes. Here, we propose that HK2 localization in MAMs of tumor cells is key in sustaining neoplastic progression, as it acts as an intersection node between metabolic and survival pathways. Disrupting these functions by targeting HK2 subcellular localization can constitute a promising anti-tumor strategy.
Collapse
Affiliation(s)
- Francesco Ciscato
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Correspondence: (F.C.); (A.R.)
| | - Lavinia Ferrone
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
| | - Ionica Masgras
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Institute of Neuroscience, National Research Council, 56124 Pias, Italy
| | - Claudio Laquatra
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Correspondence: (F.C.); (A.R.)
| |
Collapse
|
58
|
Metabolic Classification and Intervention Opportunities for Tumor Energy Dysfunction. Metabolites 2021; 11:metabo11050264. [PMID: 33922558 PMCID: PMC8146396 DOI: 10.3390/metabo11050264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
A comprehensive view of cell metabolism provides a new vision of cancer, conceptualized as tissue with cellular-altered metabolism and energetic dysfunction, which can shed light on pathophysiological mechanisms. Cancer is now considered a heterogeneous ecosystem, formed by tumor cells and the microenvironment, which is molecularly, phenotypically, and metabolically reprogrammable. A wealth of evidence confirms metabolic reprogramming activity as the minimum common denominator of cancer, grouping together a wide variety of aberrations that can affect any of the different metabolic pathways involved in cell physiology. This forms the basis for a new proposed classification of cancer according to the altered metabolic pathway(s) and degree of energy dysfunction. Enhanced understanding of the metabolic reprogramming pathways of fatty acids, amino acids, carbohydrates, hypoxia, and acidosis can bring about new therapeutic intervention possibilities from a metabolic perspective of cancer.
Collapse
|
59
|
Sobanski T, Rose M, Suraweera A, O’Byrne K, Richard DJ, Bolderson E. Cell Metabolism and DNA Repair Pathways: Implications for Cancer Therapy. Front Cell Dev Biol 2021; 9:633305. [PMID: 33834022 PMCID: PMC8021863 DOI: 10.3389/fcell.2021.633305] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
DNA repair and metabolic pathways are vital to maintain cellular homeostasis in normal human cells. Both of these pathways, however, undergo extensive changes during tumorigenesis, including modifications that promote rapid growth, genetic heterogeneity, and survival. While these two areas of research have remained relatively distinct, there is growing evidence that the pathways are interdependent and intrinsically linked. Therapeutic interventions that target metabolism or DNA repair systems have entered clinical practice in recent years, highlighting the potential of targeting these pathways in cancer. Further exploration of the links between metabolic and DNA repair pathways may open new therapeutic avenues in the future. Here, we discuss the dependence of DNA repair processes upon cellular metabolism; including the production of nucleotides required for repair, the necessity of metabolic pathways for the chromatin remodeling required for DNA repair, and the ways in which metabolism itself can induce and prevent DNA damage. We will also discuss the roles of metabolic proteins in DNA repair and, conversely, how DNA repair proteins can impact upon cell metabolism. Finally, we will discuss how further research may open therapeutic avenues in the treatment of cancer.
Collapse
Affiliation(s)
- Thais Sobanski
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Maddison Rose
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Amila Suraweera
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kenneth O’Byrne
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
60
|
SUMOylation controls the binding of hexokinase 2 to mitochondria and protects against prostate cancer tumorigenesis. Nat Commun 2021; 12:1812. [PMID: 33753739 PMCID: PMC7985146 DOI: 10.1038/s41467-021-22163-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Human hexokinase 2 is an essential regulator of glycolysis that couples metabolic and proliferative activities in cancer cells. The binding of hexokinase 2 to the outer membrane of mitochondria is critical for its oncogenic activity. However, the regulation of hexokinase 2 binding to mitochondria remains unclear. Here, we report that SUMOylation regulates the binding of hexokinase 2 to mitochondria. We find that hexokinase 2 can be SUMOylated at K315 and K492. SUMO-specific protease SENP1 mediates the de-SUMOylation of hexokinase 2. SUMO-defective hexokinase 2 preferably binds to mitochondria and enhances both glucose consumption and lactate production and decreases mitochondrial respiration in parallel. This metabolic reprogramming supports prostate cancer cell proliferation and protects cells from chemotherapy-induced cell apoptosis. Moreover, we demonstrate an inverse relationship between SENP1-hexokinase 2 axis and chemotherapy response in prostate cancer samples. Our data provide evidence for a previously uncovered posttranslational modification of hexokinase 2 in cancer cells, suggesting a potentially actionable strategy for preventing chemotherapy resistance in prostate cancer. The oncogenic activity of Hexokinase 2, the first rate-limiting enzyme of glycolysis, requires its mitochondrial localization. Here, the authors show that SUMOylation of hexokinase 2 disrupts its binding to mitochondria and protects cells from tumorigenesis in prostate cancer.
Collapse
|
61
|
Wu Z, Lee YF, Yeo XH, Loo SY, Tam WL. Shifting the Gears of Metabolic Plasticity to Drive Cell State Transitions in Cancer. Cancers (Basel) 2021; 13:1316. [PMID: 33804114 PMCID: PMC7999312 DOI: 10.3390/cancers13061316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer metabolism is a hallmark of cancer. Metabolic plasticity defines the ability of cancer cells to reprogram a plethora of metabolic pathways to meet unique energetic needs during the various steps of disease progression. Cell state transitions are phenotypic adaptations which confer distinct advantages that help cancer cells overcome progression hurdles, that include tumor initiation, expansive growth, resistance to therapy, metastasis, colonization, and relapse. It is increasingly appreciated that cancer cells need to appropriately reprogram their cellular metabolism in a timely manner to support the changes associated with new phenotypic cell states. We discuss metabolic alterations that may be adopted by cancer cells in relation to the maintenance of cancer stemness, activation of the epithelial-mesenchymal transition program for facilitating metastasis, and the acquisition of drug resistance. While such metabolic plasticity is harnessed by cancer cells for survival, their dependence and addiction towards certain metabolic pathways also present therapeutic opportunities that may be exploited.
Collapse
Affiliation(s)
- Zhengwei Wu
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (Z.W.); (X.H.Y.)
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore;
| | - Yi Fei Lee
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore;
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xun Hui Yeo
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (Z.W.); (X.H.Y.)
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore;
| | - Ser Yue Loo
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore;
| | - Wai Leong Tam
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore; (Z.W.); (X.H.Y.)
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore;
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
62
|
Zou M, Du Y, Liu R, Zheng Z, Xu J. Nanocarrier-delivered small interfering RNA for chemoresistant ovarian cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1648. [PMID: 33682310 DOI: 10.1002/wrna.1648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the fifth leading cause of cancer-related death in women in the United States. Because success in early screening is limited, and most patients with advanced disease develop resistance to multiple treatment modalities, the overall prognosis of ovarian cancer is poor. Despite the revolutionary role of surgery and chemotherapy in curing ovarian cancer, recurrence remains a major challenge in treatment. Thus, improving our understanding of the pathogenesis of ovarian cancer is essential for developing more effective treatments. In this review, we analyze the underlying molecular mechanisms leading to chemotherapy resistance. We discuss the clinical benefits and potential challenges of using nanocarrier-delivered small interfering RNA to treat chemotherapy-resistant ovarian cancer. We aim to elicit collaborative studies on nanocarrier-delivered small interfering RNA to improve the long-term survival rate and quality of life of patients with ovarian cancer. This article is categorized under: RNA Methods > RNA Nanotechnology Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Mingyuan Zou
- Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruizhen Liu
- The First People's Hospital of Wu'an, Wu'an, Hebei, China
| | - Zeliang Zheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
63
|
Li Y, Kang J, Fu J, Luo H, Liu Y, Li Y, Sun L. PGC1α Promotes Cisplatin Resistance in Ovarian Cancer by Regulating the HSP70/HK2/VDAC1 Signaling Pathway. Int J Mol Sci 2021; 22:ijms22052537. [PMID: 33802591 PMCID: PMC7961780 DOI: 10.3390/ijms22052537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial apoptosis is one of the main mechanisms for cancer cells to overcome chemoresistance. Hexokinase 2 (HK2) can resist cancer cell apoptosis by expressing on mitochondria and binding to voltage-dependent anion channel 1 (VDAC1). We previously reported that peroxisome proliferator-activated receptor coactivator 1 α (PGC1α) is highly expressed in ovarian cancer cisplatin-resistant cells. However, the underlying mechanism remains unclear. Therefore, we evaluated the interaction between PGC1α and HK2 in ovarian cancer cisplatin-resistant cells. We found that the knockdown of PGC1α promotes the apoptosis of ovarian cancer cisplatin-resistant cells and increases their sensitivity to cisplatin. In addition, we found that the knockdown of PGC1α affects the mitochondrial membrane potential and the binding of HK2 and VDAC1. As the heat shock protein 70 (HSP70) family can help protein transport, we detected it and found that PGC1α can promote HSP70 gene transcription. Furthermore, HSP70 can promote an increase of HK2 expression on mitochondria and an increase of binding to VDAC1. Based on these results, PGC1α may reduce apoptosis through the HSP70/HK2/VDAC1 signaling pathway, thus promoting cisplatin resistance of ovarian cancer. These findings provide strong theoretical support for PGC1α as a potential therapeutic target of cisplatin resistance in ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Li
- Correspondence: (Y.L.); (L.S.); Tel.: +86-431-8561-9101 (Y.L.)
| | - Liankun Sun
- Correspondence: (Y.L.); (L.S.); Tel.: +86-431-8561-9101 (Y.L.)
| |
Collapse
|
64
|
Tam C, Rao S, Waye MMY, Ng TB, Wang CC. Autophagy signals orchestrate chemoresistance of gynecological cancers. Biochim Biophys Acta Rev Cancer 2021; 1875:188525. [PMID: 33600824 DOI: 10.1016/j.bbcan.2021.188525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Gynecological cancers are characterized by a high mortality rate when chemoresistance develops. Autophagy collaborates with apoptosis and participates in homeostasis of chemoresistance. Recent findings supported that crosstalk of necrotic, apoptotic and autophagic factors, and chemotherapy-driven hypoxia, oxidative stress and ER stress play critical roles in chemoresistance in gynecological cancers. Meanwhile, current studies have shown that autophagy could be regulated by and cooperate with metabolic regulator, survival factors, stemness factors and specific post-translation modification in chemoresistant tumor cells. Meanwhile, non-coding RNA and autophagy crosstalk also contribute to the chemoresistance. Until now, analysis of individual autophagy factors towards the clinical significance and chemoresistance in gynecological cancer is still lacking. We suggest comprehensive integrated analysis of cellular homeostasis and tumor microenvironment to clarify the role of autophagy and the associated factors in cancer progression and chemoresistance. Panel screening of pan-autophagic factors will pioneer the development of risk models for predicting efficacy of chemotherapy and guidelines for systematic treatment and precision medicine.
Collapse
Affiliation(s)
- Chit Tam
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Shitao Rao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; School of Medical Technology and Engineering, Fujian Medical University, Fujian, China
| | - Mary Miu Yee Waye
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Reproduction and Development Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
65
|
Chu Y, Chang Y, Lu W, Sheng X, Wang S, Xu H, Ma J. Regulation of Autophagy by Glycolysis in Cancer. Cancer Manag Res 2020; 12:13259-13271. [PMID: 33380833 PMCID: PMC7767644 DOI: 10.2147/cmar.s279672] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a critical cellular process that generally protects cells and organisms from harsh environment, including limitations in adenosine triphosphate (ATP) availability or a lack of essential nutrients. Metabolic reprogramming, a hallmark of cancer, has recently gained interest in the area of cancer therapy. It is well known that cancer cells prefer to utilize glycolysis rather than oxidative phosphorylation (OXPHOS) as their major energy source to rapidly generate ATP even in aerobic environment called the Warburg effect. Both autophagy and glycolysis play essential roles in pathological processes of cancer. A mechanism of metabolic changes to drive tumor progression is its ability to regulate autophagy. This review will elucidate the role and the mechanism of glycolysis in regulating autophagy during tumor growth. Indeed, understanding how glycolysis can modulate cellular autophagy will enable more effective combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Ying Chu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Yi Chang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Wei Lu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Xiumei Sheng
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang212013, People’s Republic of China
| |
Collapse
|
66
|
Al-Ziaydi AG, Al-Shammari AM, Hamzah MI, kadhim HS, Jabir MS. Hexokinase inhibition using D-Mannoheptulose enhances oncolytic newcastle disease virus-mediated killing of breast cancer cells. Cancer Cell Int 2020; 20:420. [DOI: https:/doi.org/10.1186/s12935-020-01514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/24/2020] [Indexed: 01/17/2025] Open
Abstract
Abstract
Background
Most cancer cells exhibit increased glycolysis and use this metabolic pathway cell growth and proliferation. Targeting cancer cells’ metabolism is a promising strategy in inhibiting cancer cell progression. We used D-Mannoheptulose, a specific hexokinase inhibitor, to inhibit glycolysis to enhance the Newcastle disease virus anti-tumor effect.
Methods
Human breast cancer cells were treated by NDV and/or hexokinase inhibitor. The study included cell viability, apoptosis, and study levels of hexokinase enzyme, pyruvate, ATP, and acidity. The combination index was measured to determine the synergism of NDV and hexokinase inhibitor.
Results
The results showed synergistic cytotoxicity against breast cancer cells by combination therapy but no cytotoxic effect against normal cells. The effect was accompanied by apoptotic cell death and hexokinase downregulation and inhibition to glycolysis products, pyruvate, ATP, and acidity.
Conclusions
The combination treatment showed safe significant tumor cell proliferation inhibition compared to monotherapies suggesting a novel strategy for anti-breast cancer therapy through glycolysis inhibition by hexokinase downregulation.
Collapse
|
67
|
Alvarez-Meythaler JG, Garcia-Mayea Y, Mir C, Kondoh H, LLeonart ME. Autophagy Takes Center Stage as a Possible Cancer Hallmark. Front Oncol 2020; 10:586069. [PMID: 33194736 PMCID: PMC7643020 DOI: 10.3389/fonc.2020.586069] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide, despite significant advances in cancer research and improvements in anticancer therapies. One of the major obstacles to curing cancer is the difficulty of achieving the complete annihilation of resistant cancer cells. The resistance of cancer cells may not only be due to intrinsic factors or factors acquired during the evolution of the tumor but may also be caused by chemotherapeutic treatment failure. Conversely, autophagy is a conserved cellular process in which intracellular components, such as damaged organelles, aggregated or misfolded proteins and macromolecules, are degraded or recycled to maintain cellular homeostasis. Importantly, autophagy is an essential mechanism that plays a key role in tumor initiation and progression. Depending on the cellular context and microenvironmental conditions, autophagy acts as a double-edged sword, playing a role in inducing apoptosis or promoting cell survival. In this review, we propose several scenarios in which autophagy could contribute to cell survival or cell death. Moreover, a special focus on novel promising targets and therapeutic strategies based on autophagic resistant cells is presented.
Collapse
Affiliation(s)
- Jose G. Alvarez-Meythaler
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Hiroshi Kondoh
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Matilde E. LLeonart
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Spanish Biomedical Research Network Center in Oncology, CIBERONC, Barcelona, Spain
| |
Collapse
|
68
|
Al-Ziaydi AG, Al-Shammari AM, Hamzah MI, Kadhim HS, Jabir MS. Hexokinase inhibition using D-Mannoheptulose enhances oncolytic newcastle disease virus-mediated killing of breast cancer cells. Cancer Cell Int 2020; 20:420. [PMID: 32874134 PMCID: PMC7456035 DOI: 10.1186/s12935-020-01514-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Most cancer cells exhibit increased glycolysis and use this metabolic pathway cell growth and proliferation. Targeting cancer cells' metabolism is a promising strategy in inhibiting cancer cell progression. We used D-Mannoheptulose, a specific hexokinase inhibitor, to inhibit glycolysis to enhance the Newcastle disease virus anti-tumor effect. Methods Human breast cancer cells were treated by NDV and/or hexokinase inhibitor. The study included cell viability, apoptosis, and study levels of hexokinase enzyme, pyruvate, ATP, and acidity. The combination index was measured to determine the synergism of NDV and hexokinase inhibitor. Results The results showed synergistic cytotoxicity against breast cancer cells by combination therapy but no cytotoxic effect against normal cells. The effect was accompanied by apoptotic cell death and hexokinase downregulation and inhibition to glycolysis products, pyruvate, ATP, and acidity. Conclusions The combination treatment showed safe significant tumor cell proliferation inhibition compared to monotherapies suggesting a novel strategy for anti-breast cancer therapy through glycolysis inhibition by hexokinase downregulation.
Collapse
Affiliation(s)
- Ahmed Ghdhban Al-Ziaydi
- Department of Medical Chemistry, College of Medicine, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Ahmed Majeed Al-Shammari
- Experimental Therapy, Iraqi Center for Cancer and Medical Genetics Research, Mustansiriyah University, Baghdad, Iraq
| | | | - Haider Sabah Kadhim
- Department of Microbiology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Majid Sakhi Jabir
- Division of Biotechnology, Department of Applied Science, University of Technology, Baghdad, Iraq
| |
Collapse
|
69
|
Shi H, Li K, Feng J, Liu G, Feng Y, Zhang X. LncRNA-DANCR Interferes With miR-125b-5p/HK2 Axis to Desensitize Colon Cancer Cells to Cisplatin vis Activating Anaerobic Glycolysis. Front Oncol 2020; 10:1034. [PMID: 32766131 PMCID: PMC7379395 DOI: 10.3389/fonc.2020.01034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Colon cancer is one of the most prevalent malignancies that lead to high occurrence of cancer-related deaths. Currently, chemotherapies and radiotherapies remain the primary treatments for advanced colon cancer. Despite the initial effectiveness, a fraction of colon cancer patients developed cisplatin resistance, resulting in therapeutic failure. The long non-coding RNA differentiation antagonizing non-coding RNA (DANCR) has been shown to be upregulated in multiple cancers, indicating an oncogenic role of DANCR. This study aims to elucidate the roles of DANCR in regulating cisplatin (CDDP) resistance of colon cancer. We found DANCR was significantly upregulated in colon cancer tissues and cells compared with normal colon tissues and cells. DANCR was upregulated in cisplatin-resistant colon cancer cells. Moreover, overexpression of DANCR significantly desensitized colon cancer cells to cisplatin. On the other way, silencing DANCR dramatically overrode CDDP resistance of colon cancer cells. Bioinformatics prediction revealed DANCR could bind to seeding region of miR-125b-5p as a competitive endogenous RNA. This interference was further validated by luciferase assay. Moreover, we detected a negative correlation between DANCR and miR-125b-5p in colon cancer patient tissues: miR-125b-5p was clearly downregulated in colon cancer tissues and cells. Overexpression of miR-125b-5p significantly sensitized cisplatin-resistant cells. Interestingly, we observed the cisplatin-resistant cells were associated with a significantly increased glycolysis rate. We further identified glycolysis enzyme, hexokinase 2 (HK2), as a direct target of miR-125b-5p in colon cancer cells. Rescue experiments showed overexpression of miR-125b-5p suppressed cellular glycolysis rate and increased cisplatin sensitivity through direct targeting the 3' UTR of HK2. Importantly, silencing endogenous DANCR significantly induced the miR-125b-5p/HK2 axis, resulting in suppression of the glycolysis rate and increase in cisplatin sensitivity of colon cancer cell. Expectedly, these processes could be further rescued by inhibiting miR-125b-5p in the DANCR-silenced cells. Finally, we validated the DANCR-promoted cisplatin resistance via the miR-125b-5p/HK2 axis from an in vivo xenograft mice model. In summary, our study reveals a new mechanism of the DANCR-promoted cisplatin resistance, presenting the lncRNA-DANCR-miR-125b-5p/HK2 axis as a potential target for treating chemoresistant colon cancer.
Collapse
Affiliation(s)
- Huijuan Shi
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kejun Li
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jinxin Feng
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Gaojie Liu
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yanlin Feng
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiangliang Zhang
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
70
|
Shenmai Injection Supresses Glycolysis and Enhances Cisplatin Cytotoxicity in Cisplatin-Resistant A549/DDP Cells via the AKT-mTOR-c-Myc Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9243681. [PMID: 32685545 PMCID: PMC7327568 DOI: 10.1155/2020/9243681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Tumor cells, especially drug-resistant cells, predominately support growth by glycolysis even under the condition of adequate oxygen, which is known as the Warburg effect. Glucose metabolism reprogramming is one of the main factors causing tumor resistance. Previous studies on Shenmai injection (SMI), a Chinese herbal medicine, have shown enhanced efficacy in the treatment of tumors in combination with chemotherapy drugs, but the mechanism is not clear. In this study, we investigated the effect of SMI combined with cisplatin on cisplatin-resistant lung adenocarcinoma A549/DDP cells. Our results showed that cisplatin-resistant A549/DDP cells exhibited increased glucose consumption, lactate production, and expression levels of key glycolytic enzymes, including hexokinase 2 (HK2), pyruvate kinase M1/2 (PKM1/2), pyruvate kinase M2 (PKM2), glucose transporter 1 (GLUT1), and lactate dehydrogenase A (LDHA), compared with cisplatin-sensitive A549 cells. SMI combined with cisplatin in A549/DDP cells, led to significantly lower expression levels of key glycolytic enzymes, such as HK2, PKM1/2, GLUT1, and pyruvate dehydrogenase (PDH). In addition, we found that the combination of SMI and cisplatin could inhibit cell proliferation and promote apoptosis by reducing the expression levels of p-Akt, p-mTOR, and c-Myc, and then, it reduced the glycolysis level. These results suggest that SMI enhances the antitumor effect of cisplatin via glucose metabolism reprogramming. Therefore, the combination of SMI and cisplatin may be a potential therapeutic strategy to treat cisplatin-resistant nonsmall cell lung cancer.
Collapse
|
71
|
Li R, Yang W. Gomisin J inhibits the glioma progression by inducing apoptosis and reducing HKII-regulated glycolysis. Biochem Biophys Res Commun 2020; 529:15-22. [PMID: 32560813 DOI: 10.1016/j.bbrc.2020.05.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 01/13/2023]
Abstract
Glioma is a leading cause of central nervous system malignant tumor-associated deaths in the world. However, the molecular mechanisms for glioma progression are still unclear, lacking effective therapeutic strategies. Gomisin J (GomJ) is a derivative of lignan compound, and shows regulatory effects on virus, oxidative stress and tumor progression. However, the role of GomJ in the meditation of glioma progression has not been explored. In this study, we found that GomJ markedly reduced the proliferation of glioma cell lines. Mitochondrial apoptosis was highly induced by GomJ, as evidenced by the significantly up-regulated expression of cytoplastic Cyto-c and cleaved Caspase-3. In addition, mitochondrial membrane potential (MMP) and oxidative stress were highly triggered in GomJ-incubated glioma cells, accompanied with the glycolysis suppression. Importantly, we found that GomJ could dramatically reduce the expression of hexokinase II (HKII) in glioma cells. At the same time, the dissociation of HKII from voltage-dependent anion channel (VDAC) in mitochondria was markedly induced by GomJ, contributing to glycolytic repression. The in vivo experiments confirmed that GomJ obviously reduced the growth of glioma with HKII reduction and few side effects. Taken together, these results demonstrated that GomJ could inhibit the proliferation, induce apoptosis and restrain HKII-regulated glycolysis during glioma progression. Herein, GomJ with few toxicity might be served as a potential therapeutic strategy for the treatment of glioma in humans.
Collapse
Affiliation(s)
- Ruilong Li
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, 300052, China; Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, 030001, China
| | - Weidong Yang
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
72
|
Zampieri LX, Grasso D, Bouzin C, Brusa D, Rossignol R, Sonveaux P. Mitochondria Participate in Chemoresistance to Cisplatin in Human Ovarian Cancer Cells. Mol Cancer Res 2020; 18:1379-1391. [PMID: 32471883 DOI: 10.1158/1541-7786.mcr-19-1145] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/16/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022]
Abstract
Ovarian cancer is an aggressive disease that affects about 300,000 patients worldwide, with a yearly death count of about 185,000. Following surgery, treatment involves adjuvant or neoadjuvant administration of taxane with platinum compounds cisplatin or carboplatin, which alkylate DNA through the same chemical intermediates. However, although platinum-based therapy can cure patients in a number of cases, a majority of them discontinues treatment owing to side effects and to the emergence of resistance. In this study, we focused on resistance to cisplatin and investigated whether metabolic changes could be involved. As models, we used matched pairs of cisplatin-sensitive (SKOV-3 and COV-362) and cisplatin-resistant (SKOV-3-R and COV-362-R) human ovarian carcinoma cells that were selected in vitro following exposure to increasing doses of the chemotherapy. Metabolic comparison revealed that resistant cells undergo a shift toward a more oxidative metabolism. The shift goes along with a reorganization of the mitochondrial network, with a generally increased mitochondrial compartment. More functional mitochondria in cisplatin-resistant compared with cisplatin-sensitive cells were associated to enzymatic changes affecting either the electron transport chain (SKOV-3/SKOV-3-R model) or mitochondrial coupling (COV-362/COV-362-R model). Our findings further indicate that the preservation of functional mitochondria in these cells could be due to an increased mitochondrial turnover rate, suggesting mitophagy inhibition as a potential strategy to tackle cisplatin-resistant human ovarian cancer progression. IMPLICATIONS: Besides classical mechanisms related to drug efflux and target modification, we report that preserving functional mitochondria is a strategy used by human ovarian cancer cells to resist to cisplatin chemotherapy.
Collapse
Affiliation(s)
- Luca X Zampieri
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Debora Grasso
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- IREC imaging platform (2IP), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Davide Brusa
- IREC Flow Cytometry and Cell Sorting Platform, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | | | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
73
|
Li M, Gao F, Zhao Q, Zuo H, Liu W, Li W. Tanshinone IIA inhibits oral squamous cell carcinoma via reducing Akt-c-Myc signaling-mediated aerobic glycolysis. Cell Death Dis 2020; 11:381. [PMID: 32424132 PMCID: PMC7235009 DOI: 10.1038/s41419-020-2579-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Aerobic glycolysis is one of the hallmarks of human cancer cells. Overexpression of hexokinase 2 (HK2) plays a crucial role in the maintaining of unlimited tumor cell growth. In the present study, we found that the oral squamous cell carcinoma (OSCC) cells exhibited an aerobic glycolysis phenotype. Moreover, HK2 is highly expressed in OSCC patient derived-tissues and cell lines. Depletion of HK2 inhibited OSCC cell growth in vitro and in vivo. With a natural product screening, we identified Tanshinone IIA (Tan IIA) as a potential anti-tumor compound for OSCC through suppressing HK2-mediated glycolysis. Tan IIA decreased glucose consumption, lactate production, and promoted intrinsic apoptosis in OSCC cells. The mechanism study revealed that Tan IIA inhibited the Akt-c-Myc signaling and promoted E3 ligase FBW7-mediated c-Myc ubiquitination and degradation, which eventually reduced HK2 expression at the transcriptional level. In summary, these results indicate that targeting HK2-mediated aerobic glycolysis is a promising anti-tumor strategy for OSCC treatment.
Collapse
Affiliation(s)
- Ming Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, P.R. China.,Changsha Stomatological Hospital, 410004, Changsha, Hunan, P.R. China.,School of Stomatology, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, P.R. China.,Xiangya Stomatological Hospital & School of Stomatology, Central South University, 410000, Changsha, Hunan, P.R. China
| | - Feng Gao
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, P.R. China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China
| | - Qing Zhao
- Changsha Stomatological Hospital, 410004, Changsha, Hunan, P.R. China.,School of Stomatology, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, P.R. China
| | - Huilan Zuo
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, P.R. China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, 410013, Changsha, Hunan, P.R. China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, P.R. China. .,Department of Radiology, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China.
| |
Collapse
|
74
|
Bhardwaj V, He J. Reactive Oxygen Species, Metabolic Plasticity, and Drug Resistance in Cancer. Int J Mol Sci 2020; 21:ijms21103412. [PMID: 32408513 PMCID: PMC7279373 DOI: 10.3390/ijms21103412] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023] Open
Abstract
The metabolic abnormality observed in tumors is characterized by the dependence of cancer cells on glycolysis for their energy requirements. Cancer cells also exhibit a high level of reactive oxygen species (ROS), largely due to the alteration of cellular bioenergetics. A highly coordinated interplay between tumor energetics and ROS generates a powerful phenotype that provides the tumor cells with proliferative, antiapoptotic, and overall aggressive characteristics. In this review article, we summarize the literature on how ROS impacts energy metabolism by regulating key metabolic enzymes and how metabolic pathways e.g., glycolysis, PPP, and the TCA cycle reciprocally affect the generation and maintenance of ROS homeostasis. Lastly, we discuss how metabolic adaptation in cancer influences the tumor’s response to chemotherapeutic drugs. Though attempts of targeting tumor energetics have shown promising preclinical outcomes, the clinical benefits are yet to be fully achieved. A better understanding of the interaction between metabolic abnormalities and involvement of ROS under the chemo-induced stress will help develop new strategies and personalized approaches to improve the therapeutic efficiency in cancer patients.
Collapse
Affiliation(s)
- Vikas Bhardwaj
- College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Jun He
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Correspondence:
| |
Collapse
|
75
|
Yan XY, Qu XZ, Xu L, Yu SH, Tian R, Zhong XR, Sun LK, Su J. Insight into the role of p62 in the cisplatin resistant mechanisms of ovarian cancer. Cancer Cell Int 2020; 20:128. [PMID: 32322174 PMCID: PMC7164250 DOI: 10.1186/s12935-020-01196-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/28/2020] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is a platinum-based first-line drug for treating ovarian cancer. However, chemotherapy tolerance has limited the efficacy of cisplatin for ovarian cancer patients. Research has demonstrated that cisplatin causes changes in cell survival and death signaling pathways through its interaction with macromolecules and organelles, which indicates that investigation into the DNA off-target effects of cisplatin may provide critical insights into the mechanisms underlying drug resistance. The multifunctional protein p62 works as a signaling hub in the regulation of pro-survival transcriptional factors NF-κB and Nrf2 and connects autophagy and apoptotic signals, which play important roles in maintaining cell homeostasis. In this review, we discuss the role of p62 in cisplatin resistance by exploring p62-associated signaling pathways based on current studies and our work. Insights into these resistance mechanisms may lead to more effective therapeutic strategies for ovarian cancer by targeting p62.
Collapse
Affiliation(s)
- Xiao-Yu Yan
- 1Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021 China
| | - Xian-Zhi Qu
- 2Department of Hepatobiliary & Pancreatic Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| | - Long Xu
- 1Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021 China
| | - Si-Hang Yu
- 1Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021 China
| | - Rui Tian
- 1Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021 China
| | - Xin-Ru Zhong
- 1Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021 China
| | - Lian-Kun Sun
- 1Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021 China
| | - Jing Su
- 1Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021 China
| |
Collapse
|
76
|
Liu T, Guan F, Wang Y, Zhang Z, Li Y, Cui Y, Li Z, Liu H, Zhang Y, Wang Y, Ma S. MS-275 combined with cisplatin exerts synergistic antitumor effects in human esophageal squamous cell carcinoma cells. Toxicol Appl Pharmacol 2020; 395:114971. [PMID: 32217144 DOI: 10.1016/j.taap.2020.114971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
Abstract
MS-275 has been demonstrated to inhibit the growth of esophageal squamous cell carcinoma (ESCC) cells in our previous study, but its role in ESCC remains to be further explored. Cisplatin (cis-diamminedichloroplatinum II, DDP) is the first-line chemotherapeutic drug widely used in clinic for ESCC patients. However, the side effects of nephrotoxicity and drug resistance limit its clinical use. This study aimed to evaluate the anticancer effects of MS-275 combined with DDP on ESCC cell line EC9706 both in vitro and in vivo, and to investigate the possible mechanisms that mediate these effects. We found that MS-275 combined with DDP showed synergistic antitumor effects on EC9706 cells in vitro by decreasing cell proliferation, increasing apoptosis and oxidative damage, and inhibiting migration and stemness. The combination of MS-275 and DDP triggered pro-survival autophagy in EC9706. Moreover, MS-275 combined with DDP suppressed EC9706 xenografts growth and promoted apoptosis in vivo. Further study displayed that MS-275 combined with DDP suppressed Wnt/β-catenin signaling in EC9706 cells and xenografts. These results indicate that MS-275 combined with DDP exerts synergistic antitumor effects by enhancing the chemosensitivity of EC9706 cells to DDP, which may be a potential therapeutic strategy for the treatment of patients with ESCC.
Collapse
Affiliation(s)
- Tengfei Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China; Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yaping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenkun Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ya Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanbo Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhe Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongtao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Wang
- Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
77
|
Vallino L, Ferraresi A, Vidoni C, Secomandi E, Esposito A, Dhanasekaran DN, Isidoro C. Modulation of non-coding RNAs by resveratrol in ovarian cancer cells: In silico analysis and literature review of the anti-cancer pathways involved. J Tradit Complement Med 2020; 10:217-229. [PMID: 32670816 PMCID: PMC7340874 DOI: 10.1016/j.jtcme.2020.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Background and aim Non-coding RNAs control cell functioning through affecting gene expression and translation and their dysregulation is associated with altered cell homeostasis and diseases, including cancer. Nutraceuticals with anti-cancer therapeutic potential have been shown to modulate non-coding RNAs expression that could impact on the expression of genes involved in the malignant phenotype. Experimental procedure Here, we report on the microarray profiling of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and on the associated biochemical pathways and functional processes potentially modulated in OVCAR-3 ovarian cancer cells exposed for 24 h to Resveratrol (RV), a nutraceutical that has been shown to inhibit carcinogenesis and cancer progression in a variety of human and animal models, both in vitro and in vivo. Diana tools and Gene Ontology (GO) pathway analyses along with Pubmed literature search were employed to identify the cellular processes possibly affected by the dysregulated miRNAs and lncRNAs. Results and conclusion The present data consistently support the contention that RV could exert anti-neoplastic activity via non-coding RNAs epigenetic modulation of the pathways governing cell homeostasis, cell proliferation, cell death and cell motility. Nutraceuticals with anti-cancer therapeutic potential have been shown to modulate non-coding RNAs expression that could impact on the expression of genes involved in the malignant phenotype. Here, we report on the microarray profiling of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and on the associated biochemical pathways and functional processes potentially modulated in OVCAR-3 ovarian cancer cells exposed for 24 h to Resveratrol (RV), a nutraceutical that has been shown to inhibit carcinogenesis and cancer progression in a variety of human and animal models. The data here reported consistently support the contention that RV could exert anti-neoplastic activity via non-coding RNAs epigenetic modulation of the pathways governing cell homeostasis, cell proliferation, cell death and cell motility.
Collapse
Affiliation(s)
- Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Andrea Esposito
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
78
|
Li WC, Huang CH, Hsieh YT, Chen TY, Cheng LH, Chen CY, Liu CJ, Chen HM, Huang CL, Lo JF, Chang KW. Regulatory Role of Hexokinase 2 in Modulating Head and Neck Tumorigenesis. Front Oncol 2020; 10:176. [PMID: 32195170 PMCID: PMC7063098 DOI: 10.3389/fonc.2020.00176] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
To support great demand of cell growth, cancer cells preferentially obtain energy and biomacromolecules by glycolysis over mitochondrial oxidative phosphorylation (OxPhos). Among all glycolytic enzymes, hexokinase (HK), a rate-limiting enzyme at the first step of glycolysis to catalyze cellular glucose into glucose-6-phosphate, is herein emphasized. Four HK isoforms, HK1-HK4, were discovered in nature. It was shown that HK2 expression is enriched in many tumor cells and correlated with poorer survival rates in most neoplastic cells. HK2-mediated regulations for cell malignancy and mechanistic cues in regulating head and neck tumorigenesis, however, are not fully elucidated. Cellular malignancy index, such as cell growth, cellular motility, and treatment sensitivity, and molecular alterations were determined in HK2-deficient head and neck squamous cell carcinoma (HNSCC) cells. By using various cancer databases, HK2, but not HK1, positively correlates with HNSCC progression in a stage-dependent manner. A high HK2 expression was detected in head and neck cancerous tissues compared with their normal counterparts, both in mouse and human subjects. Loss of HK2 in HNSCC cells resulted in reduced cell (in vitro) and tumor (in vivo) growth, as well as decreased epithelial-mesenchymal transition–mediated cell movement; in contrast, HK2-deficient HNSCC cells exhibited greater sensitivity to chemotherapeutic drugs cisplatin and 5-fluorouracil but are more resistant to photodynamic therapy, indicating that HK2 expression could selectively define treatment sensitivity in HNSCC cells. At the molecular level, it was found that HK2 alteration drove metabolic reprogramming toward OxPhos and modulated oncogenic Akt and mutant TP53-mediated signals in HNSCC cells. In summary, the present study showed that HK2 suppression could lessen HNSCC oncogenicity and modulate therapeutic sensitivity, thereby being an ideal therapeutic target for HNSCCs.
Collapse
Affiliation(s)
- Wan-Chun Li
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Hsiang Huang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ta Hsieh
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Tsai-Ying Chen
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Li-Hao Cheng
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chang-Yi Chen
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Oral and Maxillofacial Surgery, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsin-Ming Chen
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Ling Huang
- Department of Health Technology and Informatics (HTI), The Hong Kong Polytechnic University (PolyU), Kowloon, Hong Kong
| | - Jeng-Fang Lo
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
79
|
Yi LT, Dong SQ, Wang SS, Chen M, Li CF, Geng D, Zhu JX, Liu Q, Cheng J. Curcumin attenuates cognitive impairment by enhancing autophagy in chemotherapy. Neurobiol Dis 2020; 136:104715. [PMID: 31843707 DOI: 10.1016/j.nbd.2019.104715] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/13/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022] Open
Abstract
Cisplatin, a commonly used chemotherapy drug, can increase the survival rate of cancer patients. However, it often causes various side effects, including neuronal deficit-induced cognitive impairment. Considering that curcumin is effective in neuronal protection, the action of curcumin on cognitive improvement was evaluated in cisplatin-treated C57BL/6 mice in the present study. Our results first showed that curcumin restored impaired cognitive behaviors. Consistent with this, neurogenesis and synaptogenesis were improved by curcumin. In addition, cisplatin-induced dysfunction of apoptosis-related proteins was partly reversed by curcumin. Moreover, cisplatin-induced autophagy was enhanced by curcumin. Our results also indicated that cisplatin induced autophagy through the endoplasmic reticulum (ER) stress-mediated ATF4-Akt-mTOR signaling pathway. Curcumin activated AMPK-JNK signaling, which mediated both mTOR inhibition and Bcl-2 upregulation and in turn enhanced autophagy and suppressed apoptosis, respectively. In contrast, pretreatment with the autophagy inhibitor 3-methyladenine (3-MA) completely abolished the effects of curcumin on cognitive improvement and improved neurogenesis, synaptogenesis and autophagy. Our results show that cognitive improvement induced by curcumin during chemotherapy is mediated by the enhancement of hippocampal autophagy.
Collapse
Affiliation(s)
- Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, People's Republic of China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, Fujian, People's Republic of China.
| | - Shu-Qi Dong
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, People's Republic of China
| | - Shuang-Shuang Wang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, People's Republic of China
| | - Min Chen
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, People's Republic of China
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, Fujian, People's Republic of China
| | - Di Geng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, People's Republic of China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, Fujian, People's Republic of China
| | - Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, People's Republic of China
| | - Qing Liu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, People's Republic of China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, Fujian, People's Republic of China
| | - Jie Cheng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, People's Republic of China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, Fujian, People's Republic of China
| |
Collapse
|
80
|
Shakibaie M, Vaezjalali M, Rafii-Tabar H, Sasanpour P. Phototherapy alters the oncogenic metabolic activity of breast cancer cells. Photodiagnosis Photodyn Ther 2020; 30:101695. [PMID: 32109618 DOI: 10.1016/j.pdpdt.2020.101695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Metabolic reprogramming in cancer cells is a strategy to attain a high proliferation rate, invasion, and metastasis. In this study, the effects of phototherapy at different wavelengths were investigated on the metabolic activity of breast cancer cells. METHODS The states of the MCF7 cells proliferation and viability were measured by the MTT assay. Glucose consumption and the lactate formation in the LED-irradiated cells culture were analyzed by biochemical assay kits. The Amino acid concentration in the culture media of the MCF7 cells was analyzed using HPLC. Moreover, the gene expression of some glycolytic, TCA cycle and pentose phosphate cycleenzymes were assessed by real time PCR. RESULTS Phototherapy at wavelength of 435 nm decreased the cell viability by 23 % when the energy dose was 17.5 J/cm2 compared to the control group. The expression of the LDHA and GLS was up-regulated in 629 nm-treated cells while the expression of these genes was down-regulated in the MCF7 cells irradiated at 435 nm in comparison with the control group. Consequently, the glucose consumption and the lactate formation were diminished respectively by 22 % and 15 % in the 435 nm-irradiated cells while the glucose consumption and the lactate formation were increased in the 629 nm-irradiated cells by 112 % and 107 % in comparison with the control group. In addition, the analysis of the glutamine concentration by the HPLC indicated that the blue light irradiation decreased the glutamine consumption while the red light increased it in comparison with the control group.
Collapse
Affiliation(s)
- Mehdi Shakibaie
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vaezjalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; The Physics Branch of Iran Academy of Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran.
| |
Collapse
|
81
|
Garcia SN, Guedes RC, Marques MM. Unlocking the Potential of HK2 in Cancer Metabolism and Therapeutics. Curr Med Chem 2020; 26:7285-7322. [PMID: 30543165 DOI: 10.2174/0929867326666181213092652] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
Abstract
Glycolysis is a tightly regulated process in which several enzymes, such as Hexokinases (HKs), play crucial roles. Cancer cells are characterized by specific expression levels of several isoenzymes in different metabolic pathways and these features offer possibilities for therapeutic interventions. Overexpression of HKs (mostly of the HK2 isoform) have been consistently reported in numerous types of cancer. Moreover, deletion of HK2 has been shown to decrease cancer cell proliferation without explicit side effects in animal models, which suggests that targeting HK2 is a viable strategy for cancer therapy. HK2 inhibition causes a substantial decrease of glycolysis that affects multiple pathways of central metabolism and also destabilizes the mitochondrial outer membrane, ultimately enhancing cell death. Although glycolysis inhibition has met limited success, partly due to low selectivity for specific isoforms and excessive side effects of the reported HK inhibitors, there is ample ground for progress. The current review is focused on HK2 inhibition, envisaging the development of potent and selective anticancer agents. The information on function, expression, and activity of HKs is presented, along with their structures, known inhibitors, and reported effects of HK2 ablation/inhibition. The structural features of the different isozymes are discussed, aiming to stimulate a more rational approach to the design of selective HK2 inhibitors with appropriate drug-like properties. Particular attention is dedicated to a structural and sequence comparison of the structurally similar HK1 and HK2 isoforms, aiming to unveil differences that could be explored therapeutically. Finally, several additional catalytic- and non-catalytic roles on different pathways and diseases, recently attributed to HK2, are reviewed and their implications briefly discussed.
Collapse
Affiliation(s)
- Sara N Garcia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.,iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Rita C Guedes
- iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - M Matilde Marques
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
82
|
Links between cancer metabolism and cisplatin resistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:107-164. [PMID: 32475471 DOI: 10.1016/bs.ircmb.2020.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cisplatin is one of the most potent and widely used chemotherapeutic agent in the treatment of several solid tumors, despite the high toxicity and the frequent relapse of patients due to the onset of drug resistance. Resistance to chemotherapeutic agents, either intrinsic or acquired, is currently one of the major problems in oncology. Thus, understanding the biology of chemoresistance is fundamental in order to overcome this challenge and to improve the survival rate of patients. Studies over the last 30 decades have underlined how resistance is a multifactorial phenomenon not yet completely understood. Recently, tumor metabolism has gained a lot of interest in the context of chemoresistance; accumulating evidence suggests that the rearrangements of the principal metabolic pathways within cells, contributes to the sensitivity of tumor to the drug treatment. In this review, the principal metabolic alterations associated with cisplatin resistance are highlighted. Improving the knowledge of the influence of metabolism on cisplatin response is fundamental to identify new possible metabolic targets useful for combinatory treatments, in order to overcome cisplatin resistance.
Collapse
|
83
|
Dong C, Yin F, Zhu D, Cai X, Chen C, Liu X. NCALD affects drug resistance and prognosis by acting as a ceRNA of CX3CL1 in ovarian cancer. J Cell Biochem 2020; 121:4470-4483. [PMID: 32030795 DOI: 10.1002/jcb.29670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/10/2020] [Indexed: 01/01/2023]
Abstract
Drug resistance, an impenetrable barrier in the treatment of ovarian cancer (OC), is often associated with poor outcomes. Hence, it is urgent to discover new factors controlling drug resistance and survival. The association between neurocalcin delta (NCALD) and cancer drug resistance is poorly understood. Here, we reveal that NCALD messenger RNA expression, probably regulated by DNA methylation and microRNAs, was significantly downregulated in at least three independent microarrays covering 633 ovarian carcinomas and 16 normal controls, which includes the Cancer Genome Atlas (TCGA) ovarian cohort. In the sub-groups of the TCGA cohort, NCALD was suppressed in 90 platinum-resistant tissues vs in 197 sensitive tissues. It is consistent with the quantitative reverse transcription polymerase chain reaction results revealing gene downregulation in carboplatin-resistant SKOV3 and HeyA8 OC cells as compared with that in controls. Low expression of NCALD predicted poor overall survival (OS) in sub-groups of 1656 patients, progression-free survival (PFS) in 1435 patients, and post-progression survival (PPS) in 782 patients according to Kaplan-Meier plotter covering 1815 OC patients. Comprehensive bioinformatic analyses strongly implicated NCALD in the regulation of drug resistance, probably via competing for endogenous RNA (ceRNA) interactions with CX3CL1 and tumor immune-microenvironment. NCALD acted as a ceRNA for CX3CL1 in 21 different cancers includes OC according to Starbase. These two genes negatively correlated with tumor purity and positively correlated with infiltration levels of neutrophils and dendritic cells in OC. The combined low expression of NCALD and CX3CL1 showed better prognosis potential for OS, PFS, and PPS in the 1815 OC patients than any of the individually tested genes. In summary, NCALD acts as a ceRNA for CX3CL1, and its downregulation may affect drug resistance and prognosis in OC. Thus, NCALD could be a new therapeutic target for anticancer therapy and a new biomarker for survival prediction in OC.
Collapse
Affiliation(s)
- Caihua Dong
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Dan Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiangxue Cai
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Cuilan Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
84
|
Modulation of Mitochondrial Metabolic Reprogramming and Oxidative Stress to Overcome Chemoresistance in Cancer. Biomolecules 2020; 10:biom10010135. [PMID: 31947673 PMCID: PMC7023176 DOI: 10.3390/biom10010135] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, carried out by cancer cells to rapidly adapt to stress such as hypoxia and limited nutrient conditions, is an emerging concepts in tumor biology, and is now recognized as one of the hallmarks of cancer. In contrast with conventional views, based on the classical Warburg effect, these metabolic alterations require fully functional mitochondria and finely-tuned regulations of their activity. In turn, the reciprocal regulation of the metabolic adaptations of cancer cells and the microenvironment critically influence disease progression and response to therapy. This is also realized through the function of specific stress-adaptive proteins, which are able to relieve oxidative stress, inhibit apoptosis, and facilitate the switch between metabolic pathways. Among these, the molecular chaperone tumor necrosis factor receptor associated protein 1 (TRAP1), the most abundant heat shock protein 90 (HSP90) family member in mitochondria, is particularly relevant because of its role as an oncogene or a tumor suppressor, depending on the metabolic features of the specific tumor. This review highlights the interplay between metabolic reprogramming and cancer progression, and the role of mitochondrial activity and oxidative stress in this setting, examining the possibility of targeting pathways of energy metabolism as a therapeutic strategy to overcome drug resistance, with particular emphasis on natural compounds and inhibitors of mitochondrial HSP90s.
Collapse
|
85
|
Du F, Bai L, He M, Zhang WY, Gu YY, Yin H, Liu YJ. Design, synthesis and biological evaluation of iridium(III) complexes as potential antitumor agents. J Inorg Biochem 2019; 201:110822. [DOI: 10.1016/j.jinorgbio.2019.110822] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
|
86
|
Sirt5 Attenuates Cisplatin-Induced Acute Kidney Injury through Regulation of Nrf2/HO-1 and Bcl-2. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4745132. [PMID: 31815138 PMCID: PMC6878818 DOI: 10.1155/2019/4745132] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/11/2019] [Accepted: 08/29/2019] [Indexed: 12/30/2022]
Abstract
Cisplatin- (CDDP) induced acute kidney injury (AKI) limits the clinical use of cisplatin. Several sirtuin (SIRT) family proteins are involved in AKI, while the roles of Sirt5 in cisplatin-induced AKI remain unknown. In the present study, we characterized the role and mechanism of Sirt5 in cisplatin-induced apoptosis using the human kidney 2 (HK-2) cell line. CDDP treatment decreased Sirt5 expression of HK-2 cells in a dose-dependent manner. In addition, Sirt5 overexpression enhanced the metabolic activity in CDDP-treated HK-2 cells while Sirt5 siRNA attenuated it. Forced expression of Sirt5 inhibited CDDP-induced apoptosis while Sirt5 siRNA showed the opposite effects. Accordingly, Sirt5 overexpression inhibited the level of caspase 3 cleavage and cytochrome c levels. Furthermore, we found that Sirt5 increased mitochondrial membrane potentials and ameliorated intracellular ROS production. Mitotracker Red staining indicated that Sirt5 overexpression was able to maintain the mitochondrial density during CDDP treatment. We also investigated possible downstream targets of Sirt5 and found that Sirt5 increased Nrf2, HO-1, and Bcl-2 while it decreased Bax protein expression. Sirt5 siRNA showed the opposite effect on these proteins. The levels of Nrf2, HO-1, and Bcl-2 proteins in HK-2 cells were also decreased after CDDP treatment. Moreover, Nrf2 and Bcl-2 siRNA partly abolished the protecting effect of Sirt5 on CDDP-induced apoptosis and cytochrome c release. Catalase inhibitor 3-AT also abolished the cytoprotective effect of Sirt5. Together, the results demonstrated that Sirt5 attenuated cisplatin-induced apoptosis and mitochondrial injury in human kidney HK-2 cells, possibly through the regulation of Nrf2/HO-1 and Bcl-2.
Collapse
|
87
|
Liu X, Miao W, Huang M, Li L, Dai X, Wang Y. Elevated Hexokinase II Expression Confers Acquired Resistance to 4-Hydroxytamoxifen in Breast Cancer Cells. Mol Cell Proteomics 2019; 18:2273-2284. [PMID: 31519767 PMCID: PMC6823848 DOI: 10.1074/mcp.ra119.001576] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/26/2019] [Indexed: 12/11/2022] Open
Abstract
Tamoxifen has been clinically used in treating estrogen receptor (ER)-positive breast cancer for over 30 years. The most challenging aspect associated with tamoxifen therapy is the development of resistance in initially responsive breast tumors. We applied a parallel-reaction monitoring (PRM)-based quantitative proteomic method to examine the differential expression of kinase proteins in MCF-7 and the isogenic tamoxifen-resistant (TamR) cells. We were able to quantify the relative protein expression levels of 315 kinases, among which hexokinase 2 (HK2) and mTOR were up-regulated in TamR MCF-7 cells. We also observed that the TamR MCF-7 cells exhibited elevated rate of glycolysis than the parental MCF-7 cells. In addition, we found that phosphorylation of S6K - a target of mTOR - was much lower in TamR MCF-7 cells, and this phosphorylation level could be restored upon genetic depletion or pharmacological inhibition of HK2. Reciprocally, the level of S6K phosphorylation was diminished upon overexpression of HK2 in MCF-7 cells. Moreover, we observed that HK2 interacts with mTOR, and this interaction inhibits mTOR activity. Lower mTOR activity led to augmented autophagy, which conferred resistance of MCF-7 cells toward tamoxifen. Together, our study demonstrates that elevated expression of HK2 promotes autophagy through inhibiting the mTOR-S6K signaling pathway and results in resistance of MCF-7 breast cancer cells toward tamoxifen; thus, our results uncovered, for the first time, HK2 as a potential therapeutic target for overcoming tamoxifen resistance.
Collapse
Affiliation(s)
- Xiaochuan Liu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521
| | - Weili Miao
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521
| | - Ming Huang
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521
| | - Lin Li
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521
| | - Xiaoxia Dai
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521; Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521.
| |
Collapse
|
88
|
Nakajima K, Kawashima I, Koshiisi M, Kumagai T, Suzuki M, Suzuki J, Mitsumori T, Kirito K. Glycolytic enzyme hexokinase II is a putative therapeutic target in B-cell malignant lymphoma. Exp Hematol 2019; 78:46-55.e3. [PMID: 31560931 DOI: 10.1016/j.exphem.2019.09.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 12/29/2022]
Abstract
Hexokinase II (HXKII) is a key regulator of glucose metabolism that converts glucose to glucose 6-phosphate. Furthermore, HXKII blocks mitochondria-dependent apoptosis by inhibiting the release of cytochrome c. HXKII overexpression is frequently observed in several types of cancer and confers chemoresistance to cancer cells. In the present study, we found that compared with cell lines generated from diffuse large-B-cell lymphoma (DLBCL) patients, cell lines with features of Burkitt lymphoma have higher levels of HXKII because of the activation of both c-MYC and HIF-1. Under normoxia, HXKII levels were correlated with the growth ability of each B-cell lymphoma cell line. HXKII levels were further enhanced when the B-cell lymphoma cells were cultured under hypoxia. The high levels of HXKII induced by hypoxia conferred cisplatin resistance in all tested B-cell lymphoma cell lines. The HDAC inhibitor panobinostat significantly suppressed HXKII expression under both normoxic and hypoxic conditions. Importantly, panobinostat reversed the anti-lymphoma action of cisplatin, and this effect was diminished by hypoxia. These data suggest that HXKII plays different roles, including in the regulation of glycolysis and inhibition of apoptosis, depending on its expression levels. Furthermore, inhibition of HXKII expression by panobinostat may represent a new and attractive strategy to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Kei Nakajima
- Department of Hematology/Oncology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Ichiro Kawashima
- Department of Hematology/Oncology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Megumi Koshiisi
- Department of Hematology/Oncology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Takuma Kumagai
- Department of Hematology/Oncology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Megumi Suzuki
- Department of Hematology/Oncology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jun Suzuki
- Department of Hematology/Oncology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Toru Mitsumori
- Department of Hematology/Oncology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Keita Kirito
- Department of Hematology/Oncology, University of Yamanashi, Chuo, Yamanashi, Japan.
| |
Collapse
|
89
|
What sustains the multidrug resistance phenotype beyond ABC efflux transporters? Looking beyond the tip of the iceberg. Drug Resist Updat 2019; 46:100643. [PMID: 31493711 DOI: 10.1016/j.drup.2019.100643] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Identification of multidrug (MDR) efflux transporters that belong to the ATP-Binding Cassette (ABC) superfamily, represented an important breakthrough for understanding cancer multidrug resistance (MDR) and its possible overcoming. However, recent data indicate that drug resistant cells have a complex intracellular physiology that involves constant changes in energetic and oxidative-reductive metabolic pathways, as well as in the molecular circuitries connecting mitochondria, endoplasmic reticulum (ER) and lysosomes. The aim of this review is to discuss the key molecular mechanisms of cellular reprogramming that induce and maintain MDR, beyond the presence of MDR efflux transporters. We specifically highlight how cancer cells characterized by high metabolic plasticity - i.e. cells able to shift the energy metabolism between glycolysis and oxidative phosphorylation, to survive both the normoxic and hypoxic conditions, to modify the cytosolic and mitochondrial oxidative-reductive metabolism, are more prone to adapt to exogenous stressors such as anti-cancer drugs and acquire a MDR phenotype. Similarly, we discuss how changes in mitochondria dynamics and mitophagy rates, changes in proteome stability ensuring non-oncogenic proteostatic mechanisms, changes in ubiquitin/proteasome- and autophagy/lysosome-related pathways, promote the cellular survival under stress conditions, along with the acquisition or maintenance of MDR. After dissecting the complex intracellular crosstalk that takes place during the development of MDR, we suggest that mapping the specific adaptation pathways underlying cell survival in response to stress and targeting these pathways with potent pharmacologic agents may be a new approach to enhance therapeutic efficacy against MDR tumors.
Collapse
|
90
|
Yu X, Wang R, Zhang Y, Zhou L, Wang W, Liu H, Li W. Skp2-mediated ubiquitination and mitochondrial localization of Akt drive tumor growth and chemoresistance to cisplatin. Oncogene 2019; 38:7457-7472. [PMID: 31435020 DOI: 10.1038/s41388-019-0955-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 11/09/2022]
Abstract
The E3 ligase S-phase kinase-associated protein 2(Skp2) is overexpressed in human cancers and correlated with poor prognosis, but its contributions to tumorigenesis and chemoresistance in nasopharyngeal carcinoma (NPC) are not evident. Herein we show that Skp2 is highly expressed in NPC tumor tissues and cell lines. Knockdown of Skp2 suppresses tumor cell growth, colony formation, glycolysis, and in vivo tumor growth. Skp2 promotes Akt K63-mediated ubiquitination and activation, which is required for EGF-induced Akt mitochondrial localization. Importantly, K63-linked ubiquitination enhances the interaction between Akt and HK2 and eventually increases HK2 phosphorylation on Thr473 and mitochondrial localization. Overexpression of Skp2 impaired the intrinsic apoptotic pathway and confers cisplatin resistance. Moreover, ectopic expression of Myr-Akt1 or phosphomimetic HK2-T473D rescued cisplatin-induced tumor suppression in Skp2 knockdown stable cells. Also, depletion of Akt ubiquitination enhances the antitumor efficacy of cisplatin in vitro and in vivo. Finally, we demonstrated that Skp2 is positively correlated with p-Akt and HK2 in NPC tumor tissues. This study highlights the clinical value of Skp2 targeting in NPC treatment.
Collapse
Affiliation(s)
- Xinfang Yu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Ruike Wang
- Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, PR China
| | - Yangnan Zhang
- Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, PR China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, PR China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410000, Hunan, PR China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China. .,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China.
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410000, Hunan, PR China.
| |
Collapse
|
91
|
Molina V, Rodríguez-Vázquez L, Martí J. Patterns of Apoptosis and Autophagy Activation After Hydroxyurea Exposure in the Rat Cerebellar External Granular Layer: an Immunoperoxidase and Ultrastructural Analysis. Neurotox Res 2019; 37:93-99. [DOI: 10.1007/s12640-019-00094-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022]
|
92
|
Chen W, Wang P, Lu Y, Jin T, Lei X, Liu M, Zhuang P, Liao J, Lin Z, Li B, Peng Y, Pan G, Lv X, Zhang H, Ou Z, Xie S, Lin X, Sun S, Ferrone S, Tannous BA, Ruan Y, Li J, Fan S. Decreased expression of mitochondrial miR-5787 contributes to chemoresistance by reprogramming glucose metabolism and inhibiting MT-CO3 translation. Am J Cancer Res 2019; 9:5739-5754. [PMID: 31534516 PMCID: PMC6735381 DOI: 10.7150/thno.37556] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) have been recently found in the mitochondria, and were named “mitomiRs”, but their function has remained elusive. Here, we aimed to assess the presence and function(s) of mitomiRs in tongue squamous cell carcinoma (TSCC). Methods: miRNA microarray was performed in paired TSCC cell lines, Cal27 and its chemoresistant counterpart, Cal27-re. Decreased expression of mitomiRs in chemoresistant cells was characterized. The functions of mitomiRs were investigated by a series of in vitro and in vivo experiments. Results: Differential microarray analysis identified downregulation of mitomiR-5787 in Cal27-re cells. We knocked down mitomiR-5787 in parental cells and upregulated its expression in cisplatin-resistant cells. The sensitivity of TSCC cells to cisplatin was regulated by miR-5787. The glucose metabolism assay suggested that reduced expression of miR-5787 changed the balance of glucose metabolism by shifting it from oxidative phosphorylation to aerobic glycolysis. Xenograft experiments in BALB/c-nu mice further verified the in vitro results. Reduced expression of miR-5787 contributes to chemoresistance in TSCC cells by inhibiting the translation of mitochondrial cytochrome c oxidase subunit 3 (MT-CO3). The prognostic analysis of 126 TSCC patients showed that the patients with low expression of miR-5787 and/or MT-CO3 had poor cisplatin sensitivity and prognosis. Conclusions: Mitochondrial miR-5787 could regulate cisplatin resistance of TSCC cells and affect oxidative phosphorylation and aerobic glycolysis. Downregulation of miR-5787 inhibited the translation of MT-CO3 to regulate cisplatin resistance of TSCC. Mitochondrial miR-5787 and MT-CO3 can be used as predictive biomarkers or therapeutic targets for cisplatin chemotherapy resistance.
Collapse
|
93
|
Montrose DC, Galluzzi L. Drugging cancer metabolism: Expectations vs. reality. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:1-26. [PMID: 31451211 DOI: 10.1016/bs.ircmb.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As compared to their normal counterparts, neoplastic cells exhibit a variety of metabolic changes that reflect not only genetic and epigenetic defects underlying malignant transformation, but also the nutritional and immunobiological conditions of the tumor microenvironment. Such alterations, including the so-called Warburg effect (an increase in glucose uptake largely feeding anabolic and antioxidant metabolism), have attracted considerable attention as potential targets for the development of novel anticancer therapeutics. However, very few drugs specifically conceived to target bioenergetic cancer metabolism are currently approved by regulatory agencies for use in humans. This reflects the elevated degree of heterogeneity and redundancy in the metabolic circuitries exploited by neoplastic cells from different tumors (even of the same type), as well as the resemblance of such metabolic pathways to those employed by highly proliferating normal cells. Here, we summarize the major metabolic alterations that accompany oncogenesis, the potential of targeting bioenergetic metabolism for cancer therapy, and the obstacles that still prevent the clinical translation of such a promising therapeutic paradigm.
Collapse
Affiliation(s)
- David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Department of Dermatology, Yale School of Medicine, New Haven, CT, United States; Université Paris Descartes/Paris V, Paris, France.
| |
Collapse
|
94
|
Ardakani AA, Ghader A, Asgari H, Keshavarz M, Tazehmahalleh FE, Majles Ara MH, Malekzadeh M, Ghaznavi H, Shakeri-Zadeh A. The capability of nonlinear optical characteristics as a predictor for cellular uptake of nanoparticles and cell damage. Photodiagnosis Photodyn Ther 2019; 27:442-448. [PMID: 31362112 DOI: 10.1016/j.pdpdt.2019.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 11/19/2022]
Abstract
Current methods for determining the cellular effects of a treatment modality need expensive materials and much time to provide a researcher with results. The aim of this study was to evaluate the potential of nonlinear optical characteristics of cancer cells using Z-scan technique to monitor the level of cellular uptake and cell damage caused by a nanotechnology based treatment modality. Two nanocomplexes were synthesized and characterized. The first one was made of alginate hydrogel co-loaded with cisplatin and gold nanoparticles (AuNPs) named as ACA nanocomplex. The second one, named as AA nanocomplex, was the same as ACA, but without cisplatin and this AA nanocomplex was considered as the control for ACA. Different groups of CT26 mouse colon cancer cell line received various treatments of cisplatin, ACA, and AA nanocomplexes and then the samples were prepared for Z-scan studies. The MTT assay was used to evaluate the cytotoxicity induced by different treatment modalities. Transmission electron microscopy (TEM) and inductively coupled plasma-mass spectrometry (ICP-MS) were used for qualitative and quantitative assessments of the level of AuNPs cellular uptake. The trend of nonlinear optical properties changes for treated cells was in agreement with MTT, TEM and ICP-MS results. Z-scan technique was able to successfully indicate the occurrence of cell damage. It was also capable to determine the intensity of cell damage induced by ACA nanocomplex in comparison to free cisplatin. Furthermore, Z-scan results showed that it was able to discriminate the differences of optical properties of the cells incubated with ACA nanocomplex for various incubation times. Nonlinear optical characteristics of a cell may be considered as a reliable indicator to predict the level of cellular effects induced by a nanotechnology based treatment modality. The protocol suggested in this article does not waste materials, not take much time to provide the results, and it is inexpensive technique.
Collapse
Affiliation(s)
- Ali Abbasian Ardakani
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Alireza Ghader
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hamid Asgari
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Marzieh Keshavarz
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Hosein Majles Ara
- Department of Physics, Biophotonics Lab, Applied Science Research Center (ASRC), Kharazmi University, Karaj, Iran
| | - Malekeh Malekzadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Habib Ghaznavi
- Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran.
| | - Ali Shakeri-Zadeh
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
95
|
Siu MKY, Jiang YX, Wang JJ, Leung THY, Han CY, Tsang BK, Cheung ANY, Ngan HYS, Chan KKL. Hexokinase 2 Regulates Ovarian Cancer Cell Migration, Invasion and Stemness via FAK/ERK1/2/MMP9/NANOG/SOX9 Signaling Cascades. Cancers (Basel) 2019; 11:E813. [PMID: 31212816 PMCID: PMC6627345 DOI: 10.3390/cancers11060813] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 01/10/2023] Open
Abstract
Metabolic reprogramming is a common phenomenon in cancers. Thus, glycolytic enzymes could be exploited to selectively target cancer cells in cancer therapy. Hexokinase 2 (HK2) converts glucose to glucose-6-phosphate, the first committed step in glucose metabolism. Here, we demonstrated that HK2 was overexpressed in ovarian cancer and displayed significantly higher expression in ascites and metastatic foci. HK2 expression was significantly associated with advanced stage and high-grade cancers, and was an independent prognostic factor. Functionally, knockdown of HK2 in ovarian cancer cell lines and ascites-derived tumor cells hindered lactate production, cell migration and invasion, and cell stemness properties, along with reduced FAK/ERK1/2 activation and metastasis- and stemness-related genes. 2-DG, a glycolysis inhibitor, retarded cell migration and invasion and reduced stemness properties. Inversely, overexpression of HK2 promoted cell migration and invasion through the FAK/ERK1/2/MMP9 pathway, and enhanced stemness properties via the FAK/ERK1/2/NANOG/SOX9 cascade. HK2 abrogation impeded in vivo tumor growth and dissemination. Notably, ovarian cancer-associated fibroblast-derived IL-6 contributed to its up-regulation. In conclusion, HK2, which is regulated by the tumor microenvironment, controls lactate production and contributes to ovarian cancer metastasis and stemness regulation via FAK/ERK1/2 signaling pathway-mediated MMP9/NANOG/SOX9 expression. HK2 could be a potential prognostic marker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Department of Obstetrics and Gynecology, University of Hong Kong, Hong Kong, China.
| | - Yu-Xin Jiang
- Department of Obstetrics and Gynecology, University of Hong Kong, Hong Kong, China.
| | - Jing-Jing Wang
- Department of Obstetrics and Gynecology, University of Hong Kong, Hong Kong, China.
| | - Thomas H Y Leung
- Department of Obstetrics and Gynecology, University of Hong Kong, Hong Kong, China.
| | - Chae Young Han
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada.
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| | - Benjamin K Tsang
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada.
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China.
| | - Annie N Y Cheung
- Department of Pathology, University of Hong Kong, Hong Kong, China.
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynecology, University of Hong Kong, Hong Kong, China.
| | - Karen K L Chan
- Department of Obstetrics and Gynecology, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
96
|
Mansour MA, Ibrahim WM, Shalaan ES, Salama AF. Combination of arsenic trioxide and cisplatin synergistically inhibits both hexokinase activity and viability of Ehrlich ascites carcinoma cells. J Biochem Mol Toxicol 2019; 33:e22350. [DOI: 10.1002/jbt.22350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/07/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Mohammed A. Mansour
- Biochemistry Division, Department of Chemistry, Faculty of ScienceTanta University Tanta Egypt
- Institute of Cancer SciencesUniversity of Glasgow Glasgow UK
- CRUK Beatson InstituteUniversity of Glasgow Glasgow UK
| | - Wafaa M. Ibrahim
- Medical Biochemistry Department, Faculty of MedicineTanta University Tanta Egypt
| | - Eman S. Shalaan
- Biochemistry Division, Department of Chemistry, Faculty of ScienceTanta University Tanta Egypt
| | - Afrah F. Salama
- Biochemistry Division, Department of Chemistry, Faculty of ScienceTanta University Tanta Egypt
| |
Collapse
|
97
|
Salaroglio IC, Mungo E, Gazzano E, Kopecka J, Riganti C. ERK is a Pivotal Player of Chemo-Immune-Resistance in Cancer. Int J Mol Sci 2019; 20:ijms20102505. [PMID: 31117237 PMCID: PMC6566596 DOI: 10.3390/ijms20102505] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/08/2019] [Accepted: 05/18/2019] [Indexed: 12/16/2022] Open
Abstract
The extracellular signal-related kinases (ERKs) act as pleiotropic molecules in tumors, where they activate pro-survival pathways leading to cell proliferation and migration, as well as modulate apoptosis, differentiation, and senescence. Given its central role as sensor of extracellular signals, ERK transduction system is widely exploited by cancer cells subjected to environmental stresses, such as chemotherapy and anti-tumor activity of the host immune system. Aggressive tumors have a tremendous ability to adapt and survive in stressing and unfavorable conditions. The simultaneous resistance to chemotherapy and immune system responses is common, and ERK signaling plays a key role in both types of resistance. In this review, we dissect the main ERK-dependent mechanisms and feedback circuitries that simultaneously determine chemoresistance and immune-resistance/immune-escape in cancer cells. We discuss the pros and cons of targeting ERK signaling to induce chemo-immune-sensitization in refractory tumors.
Collapse
Affiliation(s)
- Iris C Salaroglio
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Eleonora Mungo
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Elena Gazzano
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| |
Collapse
|
98
|
Colombo M, Platonova N, Giannandrea D, Palano MT, Basile A, Chiaramonte R. Re-establishing Apoptosis Competence in Bone Associated Cancers via Communicative Reprogramming Induced Through Notch Signaling Inhibition. Front Pharmacol 2019; 10:145. [PMID: 30873026 PMCID: PMC6400837 DOI: 10.3389/fphar.2019.00145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/06/2019] [Indexed: 12/12/2022] Open
Abstract
Notch and its ligands on adjacent cells are key mediators of cellular communication during developmental choice in embryonic and adult tissues. This communication is frequently altered in the pathological interaction between cancer cells and healthy cells of the microenvironment due to the aberrant expression of tumor derived Notch receptors or ligands, that results in homotypic or heterotypic Notch signaling activation in tumor cells or surrounding stromal cells. A deadly consequence of this pathological communication is pharmacological resistance that results in patient's relapse. We will provide a survey of the role of Notch signaling in the bone marrow (BM), a microenvironment with a very high capacity to support several types of cancer, including primary cancers such as osteosarcoma or multiple myeloma and bone metastases from carcinomas. Moreover, in the BM niche several hematological malignancies maintain a reservoir of cancer stem cells, characterized by higher intrinsic drug resistance. Cell-cell communication in BM-tumor interaction triggers signaling pathways by direct contact and paracrine communication through soluble growth factors or extracellular vesicles, which can deliver specific molecules such as mRNAs, miRNAs, proteins, metabolites, etc. enabling tumor cells to reprogram the healthy cells of the microenvironment inducing them to support tumor growth. In this review we will explore how the dysregulated Notch activity contributes to tumor-mediated reprogramming of the BM niche and drug resistance, strengthening the rationale of a Notch-directed therapy to re-establish apoptosis competence in cancer.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | | | | | - Andrea Basile
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | |
Collapse
|
99
|
Ma Z, Bao X, Gu J. Furowanin A-induced autophagy alleviates apoptosis and promotes cell cycle arrest via inactivation STAT3/Mcl-1 axis in colorectal cancer. Life Sci 2019; 218:47-57. [PMID: 30562490 DOI: 10.1016/j.lfs.2018.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022]
Abstract
Aim Furowanin A (Fur A) is a flavonoid isolated from Millettia pachycarpa Benth. Studies show its potent anti-neoplastic effects against leukemia cells. The aim of the present study was to determine the potential therapeutic effect of Fur A against colorectal cancer (CRC), and elucidate the underlying mechanism. MATERIAL AND METHODS Cell Counting Kit-8 (CCK-8) assay was used to determine cell, and TUNEL and Annexin-V/PI staining was used to detect apoptosis and the cell cycle distribution. The expression levels of specific proteins in the CRC cells were analyzed by Western blotting. A xenograft model was also established to evaluate the therapeutic effect of Fur A in vivo. KEY FINDINGS Fur A suppressed proliferation, blocked cell cycle progression, induced apoptosis and promoted autophagy in CRC cells. Interestingly, Fur A-induced autophagy functioned not only as a survival mechanism against apoptosis but also intensified the cell cycle arrest in CRC cells. In addition, Fur A mediated its effects via the inactivation of the STAT3/Mcl-1 axis. SIGNIFICANCE Fur A is a promising drug candidate for the treatment and prevention of CRC.
Collapse
Affiliation(s)
- Zhao Ma
- Gastrointestinal Surgery Department, The People's Hospital of Zhengzhou University (People's Hospital of Henan Province), Zhengzhou, China
| | - Xuebin Bao
- Gastrointestinal Surgery Department, The People's Hospital of Zhengzhou University (People's Hospital of Henan Province), Zhengzhou, China.
| | - Junbao Gu
- Gastrointestinal Surgery Department, The People's Hospital of Zhengzhou University (People's Hospital of Henan Province), Zhengzhou, China
| |
Collapse
|
100
|
Chen L, Wang C, Hu N, Zhao H. Artesunate enhances adriamycin cytotoxicity by inhibiting glycolysis in adriamycin-resistant chronic myeloid leukemia K562/ADR cells. RSC Adv 2019; 9:1004-1014. [PMID: 35547242 PMCID: PMC9087932 DOI: 10.1039/c8ra08041k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/26/2018] [Indexed: 01/16/2023] Open
Abstract
Adriamycin (ADR) is a widely used drug in multiple cancers including leukemia.
Collapse
Affiliation(s)
- Li Chen
- Department of Hematology
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Chao Wang
- Department of Hematology
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Ning Hu
- Department of Hematology
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Hongmian Zhao
- Department of Hematology
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| |
Collapse
|