52
|
Zhang Y, Chen Y, Li Y, Huang F, Luo B, Yuan Y, Xia B, Ma X, Yang T, Yu F, Liu J, Liu B, Song Z, Chen J, Yan S, Wu L, Pan T, Zhang X, Li R, Huang W, He X, Xiao F, Zhang J, Zhang H. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι. Proc Natl Acad Sci U S A 2021; 118:e2024202118. [PMID: 34021074 PMCID: PMC8201919 DOI: 10.1073/pnas.2024202118] [Citation(s) in RCA: 269] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic and has claimed over 2 million lives worldwide. Although the genetic sequences of SARS-CoV and SARS-CoV-2 have high homology, the clinical and pathological characteristics of COVID-19 differ significantly from those of SARS. How and whether SARS-CoV-2 evades (cellular) immune surveillance requires further elucidation. In this study, we show that SARS-CoV-2 infection leads to major histocompability complex class Ι (MHC-Ι) down-regulation both in vitro and in vivo. The viral protein encoded by open reading frame 8 (ORF8) of SARS-CoV-2, which shares the least homology with SARS-CoV among all viral proteins, directly interacts with MHC-Ι molecules and mediates their down-regulation. In ORF8-expressing cells, MHC-Ι molecules are selectively targeted for lysosomal degradation via autophagy. Thus, SARS-CoV-2-infected cells are much less sensitive to lysis by cytotoxic T lymphocytes. Because ORF8 protein impairs the antigen presentation system, inhibition of ORF8 could be a strategy to improve immune surveillance.
Collapse
Affiliation(s)
- Yiwen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yingshi Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yuzhuang Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Feng Huang
- Department of Respiratory Diseases, Guangzhou Women and Children Hospital, 510010, Guangzhou, Guangdong, China
| | - Baohong Luo
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yaochang Yuan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Baijin Xia
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Xiancai Ma
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Tao Yang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Fei Yu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Jun Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Zheng Song
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Jingliang Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Shumei Yan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Liyang Wu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Ting Pan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Xu Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Rong Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Wenjing Huang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510000, Guangzhou, Guangdong, China
| | - Xin He
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Fei Xiao
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, 519000, Zhuhai, Guangdong, China
| | - Junsong Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510000, Guangzhou, Guangdong, China;
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China;
| |
Collapse
|
53
|
Salem AA, Ismail AFM. Protective impact of Spirulina platensis against γ-irradiation and thioacetamide-induced nephrotoxicity in rats mediated by regulation of micro-RNA 1 and micro-RNA 146a. Toxicol Res (Camb) 2021; 10:453-466. [PMID: 34141159 DOI: 10.1093/toxres/tfab037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/02/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic kidney disease develops popular and medical health problems, especially in developing countries. The objective of this study is to investigate the protective mechanism of Spirulina platensis against γ-irradiation (R) and/or thioacetamide (TAA)-induced nephrotoxicity in rats. Rats intoxicated with R or TAA showed alterations in kidney function markers (urea, creatinine, albumin, and total protein contents), oxidative stress markers (malondialdehyde, reduced glutathione), antioxidant enzymes (superoxide dismutase, catalase), and several inflammatory markers (including, the high-sensitivity C-reactive protein, hypoxia-inducible factor-1 alpha, tumor necrosis factor-alpha, interferon-gamma, some interleukins, and nuclear factor-kappa B). Rats also acquired apoptosis, evinced by high caspase-3 efficacy. This nephrotoxicity mediated by upregulation of the messenger RNA (mRNA) gene expression of the autophagy markers: Beclin-1, microtubule-associated protein LC3, p62 binding protein, immunoglobulin G receptor Fcγ receptor (FcγR), micro-RNA-1 (miR-1), protein expression of phospho-adenosine monophosphate-activated protein kinase, and phospho-mammalian target of rapamycin, along with downregulation of miR-146a mRNA gene expression and alteration of calcium and iron levels. The combined treatment R/TAA enhanced the observed oxidative stress, inflammation, apoptosis, and autophagy that mediated by higher upregulation of miR-1 and downregulation of miR-146a mRNA gene expression. Spirulina platensis administration exhibited a nephroprotective impact on R, TAA, and R/TAA toxicities via regulating miR-1 and miR-146a mRNA gene expression that monitored adenosine monophosphate-activated protein kinase/mammalian target of rapamycin signaling.
Collapse
Affiliation(s)
- Asmaa A Salem
- Regional Center for Food and Feed (RCFF), Agricultural Research Center, Giza 12619, Egypt
| | - Amel F M Ismail
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, 11787 Cairo, Egypt
| |
Collapse
|