51
|
Lee KM, Kim KH, Yoon H, Kim H. Chemical Design of Functional Polymer Structures for Biosensors: From Nanoscale to Macroscale. Polymers (Basel) 2018; 10:E551. [PMID: 30966585 PMCID: PMC6415446 DOI: 10.3390/polym10050551] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022] Open
Abstract
Over the past decades, biosensors, a class of physicochemical detectors sensitive to biological analytes, have drawn increasing interest, particularly in light of growing concerns about human health. Functional polymeric materials have been widely researched for sensing applications because of their structural versatility and significant progress that has been made concerning their chemistry, as well as in the field of nanotechnology. Polymeric nanoparticles are conventionally used in sensing applications due to large surface area, which allows rapid and sensitive detection. On the macroscale, hydrogels are crucial materials for biosensing applications, being used in many wearable or implantable devices as a biocompatible platform. The performance of both hydrogels and nanoparticles, including sensitivity, response time, or reversibility, can be significantly altered and optimized by changing their chemical structures; this has encouraged us to overview and classify chemical design strategies. Here, we have organized this review into two main sections concerning the use of nanoparticles and hydrogels (as polymeric structures) for biosensors and described chemical approaches in relevant subcategories, which act as a guide for general synthetic strategies.
Collapse
Affiliation(s)
- Kyoung Min Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Kyung Ho Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Hyungwoo Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| |
Collapse
|
52
|
Kenry, Liu B. Conductive Polymer‐Based Functional Structures for Neural Therapeutic Applications. CONJUGATED POLYMERS FOR BIOLOGICAL AND BIOMEDICAL APPLICATIONS 2018:243-267. [DOI: 10.1002/9783527342747.ch9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
53
|
Hesam Mahmoudinezhad M, Karkhaneh A, Jadidi K. Effect of PEDOT:PSS in tissue engineering composite scaffold on improvement and maintenance of endothelial cell function. J Biosci 2018. [DOI: 10.1007/s12038-018-9748-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
54
|
Chan EWC, Bennet D, Baek P, Barker D, Kim S, Travas-Sejdic J. Electrospun Polythiophene Phenylenes for Tissue Engineering. Biomacromolecules 2018; 19:1456-1468. [DOI: 10.1021/acs.biomac.8b00341] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Eddie Wai Chi Chan
- Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O.
Box 600, Wellington, New Zealand
| | - Devasier Bennet
- Department of Bionanotechnology, Gachon University, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 461-701, Republic of Korea
- Noll Laboratory, Department of Kinesiology, and Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Paul Baek
- Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O.
Box 600, Wellington, New Zealand
| | - David Barker
- Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Sanghyo Kim
- Department of Bionanotechnology, Gachon University, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 461-701, Republic of Korea
- Gachon Medical Research Institute, Gil Medical Center, Incheon, 405-760, Republic of Korea
| | - Jadranka Travas-Sejdic
- Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O.
Box 600, Wellington, New Zealand
| |
Collapse
|
55
|
Effective gamma-ray sterilization and characterization of conductive polypyrrole biomaterials. Sci Rep 2018; 8:3721. [PMID: 29487343 PMCID: PMC5829140 DOI: 10.1038/s41598-018-22066-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/15/2018] [Indexed: 11/08/2022] Open
Abstract
Conductive polymers, including polypyrrole (PPy), have been extensively explored to fabricate electrically conductive biomaterials for bioelectrodes and tissue engineering scaffolds. For their in vivo uses, a sterilization method without severe impairment of original material properties and performance is necessary. Gamma-ray radiation has been commonly applied for sterilization of medical products because of its simple and uniform sterilization without heat generation. Herein we describe the first study on gamma-ray sterilization of PPy bioelectrodes and its effects on their characteristics. We irradiated PPy bioelectrodes with different doses (0–75 kGy) of gamma-rays. Gamma-ray irradiation of the PPy (γ-PPy) increased the oxygenation and hydrophilicity of the surfaces. Interestingly, gamma-ray irradiation did not alter the electrical impedances and conductivities of the PPy substrates. Additionally, γ-PPy prepared with various dopants (e.g., para-toluene sulfonate, polystyrene sulfonate, and chlorine) showed the electrochemical properties similar to the non-irradiated control. Gamma-ray irradiation at doses of ≥15 kGy was required for effective sterilization as evidenced by complete eradication of gram positive and negative bacteria. γ-PPy substrates also showed cytocompatibility similar to untreated control PPy, indicating no substantial alteration of cytocompatibility. In conclusion, gamma ray sterilization is a viable method of sterilization of conducting polymer-based biomaterials for biomedical applications.
Collapse
|
56
|
Molino PJ, Garcia L, Stewart EM, Lamaze M, Zhang B, Harris AR, Winberg P, Wallace GG. PEDOT doped with algal, mammalian and synthetic dopants: polymer properties, protein and cell interactions, and influence of electrical stimulation on neuronal cell differentiation. Biomater Sci 2018; 6:1250-1261. [DOI: 10.1039/c7bm01156c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PEDOT films were electrochemically polymerised with synthetic and biological dopants, characterised, and their interactions with proteins and neuronal cells investigated.
Collapse
Affiliation(s)
- P. J. Molino
- ARC Centre of Excellence for Electromaterials Science (ACES)
- University of Wollongong
- Wollongong
- Australia
- ARC Research Hub for Australian Steel Manufacturing
| | - L. Garcia
- ARC Centre of Excellence for Electromaterials Science (ACES)
- University of Wollongong
- Wollongong
- Australia
| | - E. M. Stewart
- ARC Centre of Excellence for Electromaterials Science (ACES)
- University of Wollongong
- Wollongong
- Australia
| | - M. Lamaze
- ARC Centre of Excellence for Electromaterials Science (ACES)
- University of Wollongong
- Wollongong
- Australia
| | - B. Zhang
- ARC Centre of Excellence for Electromaterials Science (ACES)
- University of Wollongong
- Wollongong
- Australia
- HEARing CRC
| | - A. R. Harris
- ARC Centre of Excellence for Electromaterials Science (ACES)
- University of Wollongong
- Wollongong
- Australia
- HEARing CRC
| | - P. Winberg
- Venus Shell Systems Pty. Ltd
- Bomaderry
- Australia
- School of Medicine
- University of Wollongong
| | - G. G. Wallace
- ARC Centre of Excellence for Electromaterials Science (ACES)
- University of Wollongong
- Wollongong
- Australia
| |
Collapse
|
57
|
Liu Z, Dong L, Wang L, Wang X, Cheng K, Luo Z, Weng W. Mediation of cellular osteogenic differentiation through daily stimulation time based on polypyrrole planar electrodes. Sci Rep 2017; 7:17926. [PMID: 29263335 PMCID: PMC5738366 DOI: 10.1038/s41598-017-17120-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022] Open
Abstract
In electrical stimulation (ES), daily stimulation time means the interacting duration with cells per day, and is a vital factor for mediating cellular function. In the present study, the effect of stimulation time on osteogenic differentiation of MC3T3-E1 cells was investigated under ES on polypyrrole (Ppy) planar interdigitated electrodes (IDE). The results demonstrated that only a suitable daily stimulation time supported to obviously upregulate the expression of ALP protein and osteogenesis-related genes (ALP, Col-I, Runx2 and OCN), while a short or long daily stimulation time showed no significant outcomes. These might be attributed to the mechanism that an ES induced transient change in intracellular calcium ion concentration, which was responsible for activating calcium ion signaling pathway to enhance cellular osteogenic differentiation. A shorter daily time could lead to insufficient duration for the transient change in intracellular calcium ion concentration, and a longer daily time could give rise to cellular fatigue with no transient change. This work therefore provides new insights into the fundamental understanding of cell responses to ES and will have an impact on further designing materials to mediate cell behaviors.
Collapse
Affiliation(s)
- Zongguang Liu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Lingqing Dong
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Liming Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Xiaozhao Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Zhongkuan Luo
- Zhejiang-California International NanoSystems Institute, Hangzhou, 310058, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
58
|
Jiang L, Gentile C, Lauto A, Cui C, Song Y, Romeo T, Silva SM, Tang O, Sharma P, Figtree G, Gooding JJ, Mawad D. Versatile Fabrication Approach of Conductive Hydrogels via Copolymerization with Vinyl Monomers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44124-44133. [PMID: 29172417 DOI: 10.1021/acsami.7b15019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Functionalized poly(ethylene dioxythiophene) (f-PEDOT) was copolymerized with two vinyl monomers of different hydrophilicity, acrylic acid and hydroxyethyl methacrylate, to produce electroconductive hydrogels with a range of physical and electronic properties. These hydrogels not only possessed tailored physical properties, such as swelling ratios and mechanical properties, but also displayed electroactivity dependent on the chemical composition of the network. Raman spectroscopy indicated that the functional PEDOT in the hydrogels is in an oxidized form, most likely accounting for the good electrochemical response of the hydrogels observed in physiological buffer. In vitro cell studies showed that cardiac cells respond differently when seeded on hydrogel substrates with different compositions. This study presents a facile approach for the fabrication of electroconductive hydrogels with a range of properties, paving the way for scaffolds that can meet the requirements of different electroresponsive tissues.
Collapse
Affiliation(s)
| | - Carmine Gentile
- Cardiothoracic and Vascular Health, Kolling Institute, Sydney Medical School (Northern), University of Sydney , Sydney, New South Wales 2000, Australia
- Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Antonio Lauto
- Biomedical Engineering and Neuroscience (BENS) Research Group, University of Western Sydney , Penrith, New South Wales 2751, Australia
| | | | | | - Tony Romeo
- Electron Microscopy Centre, Innovation Campus, University of Wollongong , Squires Way, Fairy Meadow, Wollongong, New South Wales 2519, Australia
| | | | - Owen Tang
- Cardiothoracic and Vascular Health, Kolling Institute, Sydney Medical School (Northern), University of Sydney , Sydney, New South Wales 2000, Australia
| | - Poonam Sharma
- Cardiothoracic and Vascular Health, Kolling Institute, Sydney Medical School (Northern), University of Sydney , Sydney, New South Wales 2000, Australia
| | - Gemma Figtree
- Cardiothoracic and Vascular Health, Kolling Institute, Sydney Medical School (Northern), University of Sydney , Sydney, New South Wales 2000, Australia
| | | | | |
Collapse
|
59
|
RGD peptide doped polypyrrole film as a biomimetic electrode coating for impedimetric sensing of cell proliferation and cytotoxicity. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2017.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
60
|
Alarautalahti V, Hiltunen M, Onnela N, Nymark S, Kellomäki M, Hyttinen J. Polypyrrole-coated electrodes show thickness-dependent stability in different conditions during 42-day follow-up in vitro. J Biomed Mater Res B Appl Biomater 2017; 106:2202-2213. [PMID: 29058808 DOI: 10.1002/jbm.b.34024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/01/2017] [Accepted: 10/02/2017] [Indexed: 01/09/2023]
Abstract
Electroconductive polypyrrole/dodecylbenzenesulphonate (PPy/DBS) has been proposed as novel electrode coating for biomedical applications. However, as yet, little is known about its long-term stability in moist conditions. This study compares the stability of PPy/DBS-coated platinum electrodes that are either dry-stored, incubated, or both incubated and electrically stimulated. The electrical and material properties of three different coating thicknesses were monitored for 42 days. Initially, the PPy/DBS-coating decreased the low frequency impedance of the platinum electrodes by 52% to 79%. The dry-stored electrodes remained stable during the follow-up, whereas the properties of all the incubated electrodes were altered in three stages with thickness-dependent duration: stabilization, stable, and degradation. The coated electrodes would be applicable for short-term, low-frequency in vitro measurements of up to 14 days without electrical stimulation, and up to 7 days with stimulation. The coating thickness is bound to other coating properties, and should therefore be selected according to the specific target application. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2202-2213, 2018.
Collapse
Affiliation(s)
- V Alarautalahti
- Computational Biophysics and Imaging Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - M Hiltunen
- Biomaterials and Tissue Engineering Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - N Onnela
- Computational Biophysics and Imaging Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - S Nymark
- Biophysics of the Eye Research Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - M Kellomäki
- Biomaterials and Tissue Engineering Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - J Hyttinen
- Computational Biophysics and Imaging Group, BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
61
|
Aznar-Cervantes S, Pagán A, Martínez JG, Bernabeu-Esclapez A, Otero TF, Meseguer-Olmo L, Paredes JI, Cenis JL. Electrospun silk fibroin scaffolds coated with reduced graphene promote neurite outgrowth of PC-12 cells under electrical stimulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
62
|
Sezen-Edmonds M, Loo YL. Beyond Doping and Charge Balancing: How Polymer Acid Templates Impact the Properties of Conducting Polymer Complexes. J Phys Chem Lett 2017; 8:4530-4539. [PMID: 28853890 DOI: 10.1021/acs.jpclett.7b01785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polymer acids are increasingly used as dopants/counterions to access and stabilize the electrically conducting states of conducting polymers. Beyond doping and/or charge balancing, these polymer acids also serve as active components that impact the macroscopic properties of the conducting polymer complexes. Judicious selection of the polymer acid at the onset of synthesis or manipulation of the interactions between the polymer acid and the conducting polymer through processing significantly impacts the electrical conductivity, piezoresistivity, electrochromism, mechanical properties, and thermoelectric efficiency of conducting polymers. As polyelectrolytes, these polymer acids enable conducting polymer complexes to transport ions in addition to electrons/holes. Understanding the role of the polymer acid and its interactions with the conducting polymer generates processing-structure-function relationships for conducting polymer/polymer acid complexes, which can help overcome challenges that were associated with these materials, such as low electrical conductivity and sensitivity to humidity, and enable the design of conducting polymer complexes with desired functionalities.
Collapse
Affiliation(s)
- Melda Sezen-Edmonds
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Yueh-Lin Loo
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
63
|
Yan B, Wu Y, Guo L. Recent Advances on Polypyrrole Electroactuators. Polymers (Basel) 2017; 9:E446. [PMID: 30965751 PMCID: PMC6418990 DOI: 10.3390/polym9090446] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 02/05/2023] Open
Abstract
Featuring controllable electrochemomechanical deformation and excellent biocompatibility, polypyrrole electroactuators used as artificial muscles play a vital role in the design of biomimetic robots and biomedical devices. In the past decade, tremendous efforts have been devoted to their optimization on electroactivity, electrochemical stability, and actuation speed, thereby gradually filling the gaps between desired capabilities and practical performances. This review summarizes recent advances on polypyrrole electroactuators, with particular emphases on novel counterions and conformation-reinforcing skeletons. Progress and challenges are comparatively demonstrated and critically analyzed, to enlighten future developments of advanced electroactuators based on polypyrrole and other conducting polymers.
Collapse
Affiliation(s)
- Bingxi Yan
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Yu Wu
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Liang Guo
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
64
|
Hackett AJ, Malmström J, Travas-Sejdic J. Functionalization of conducting polymers for biointerface applications. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.03.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
65
|
Texidó R, Orgaz A, Ramos-Pérez V, Borrós S. Stretchable conductive polypyrrole films modified with dopaminated hyaluronic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:295-300. [DOI: 10.1016/j.msec.2017.03.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/12/2017] [Accepted: 03/10/2017] [Indexed: 10/20/2022]
|
66
|
Inal S, Hama A, Ferro M, Pitsalidis C, Oziat J, Iandolo D, Pappa AM, Hadida M, Huerta M, Marchat D, Mailley P, Owens RM. Conducting Polymer Scaffolds for Hosting and Monitoring 3D Cell Culture. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700052] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sahika Inal
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
- Biological and Environmental Science and Engineering; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Adel Hama
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - Magali Ferro
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - Charalampos Pitsalidis
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - Julie Oziat
- CEA; LETI; MINATEC Campus; 38054 Grenoble France
| | - Donata Iandolo
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - Anna-Maria Pappa
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - Mikhael Hadida
- Laboratoire Sainbiose; Ecole Nationale Supérieure des Mines; CIS-EMSE; St. Etienne 42023 France
| | - Miriam Huerta
- Department of Infectomics and Molecular Pathogenesis; Cinvestav 14-740, 070000 Mexico
| | - David Marchat
- Laboratoire Sainbiose; Ecole Nationale Supérieure des Mines; CIS-EMSE; St. Etienne 42023 France
| | | | - Róisín M. Owens
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| |
Collapse
|
67
|
Berti FV, Srisuk P, da Silva LP, Marques AP, Reis RL, Correlo VM. * Synthesis and Characterization of Electroactive Gellan Gum Spongy-Like Hydrogels for Skeletal Muscle Tissue Engineering Applications. Tissue Eng Part A 2017; 23:968-979. [PMID: 28152667 DOI: 10.1089/ten.tea.2016.0430] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Advances on materials' research for tissue engineering (TE) applications have shown that animal cells respond directly to the material physical, chemical, mechanical, and electrical stimuli altering a variety of cell signaling cascades, which consequently result in phenotypic and genotypic alterations. Gellan gum (GG) spongy-like hydrogels (SLH) with open microstructure, mechanical properties, and cell performance have shown promising results for soft TE applications. Taking advantage of intrinsic properties of GG-SLH and polypyrrole (PPy) electroactivity, we developed electroactive PPy-GG-SLH envisaging their potential use for skeletal muscle TE. Three different methods of in situ chemical oxidative polymerization were developed based on the availability of pyrrole: freely dissolved in solution (method I and III) or immobilized into GG hydrogels (method II). PPy was homogeneously distributed within (method I and III) and on the surface (method II) of GG-SLH, as also confirmed by Fourier Transform infrared spectra. PPy-GG-SLH showed higher conductivity than GG-SLH (p < 0.05) whereas PPy-GG-SLH (method I and II) showed the best conductivity among the 3 methods (∼1 to 2 × 10-4 S/cm). The microarchitecture of PPy-GG-SLH (method I) was similar to GG-SLH but PPy-GG-SLH (method II and III) presented smaller pore sizes and lower porosity. PPy-GG-SLH (method I and II) compressive modulus (∼450-500 KPa) and recovering capacity (∼75-90%) was higher than GG-SLH, nevertheless the mechanical properties of PPy-GG-SLH (method III) were lower. The water uptake of PPy-GG-SLH was rapidly up to 2500% and were stable along 60 days of degradation being the maximum weight loss 20%. Mechanically stable and electroactive PPy-GG-SLH (method I and II) were analyzed regarding cellular performance. PPy-GG-SLH were not cytotoxic for L929 cells. In addition, L929 and C2C12 myoblast cells were able to adhere and spread within PPy-GG-SLH, showing improved spreading in comparison to GG-SLH performance. Overall, PPy-GG-SLH show promising features as an alternative electroactive platform to analyze the influence of electrical stimulation on skeletal muscle cells.
Collapse
Affiliation(s)
- Fernanda V Berti
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Guimarães, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Guimarães, Portugal
| | - Pathomthat Srisuk
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Guimarães, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Guimarães, Portugal .,3 Faculty of Pharmaceutical Sciences, Division of Pharmaceutical Technology, Khon Kaen University , Khon Kaen, Thailand
| | - Lucília P da Silva
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Guimarães, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Guimarães, Portugal
| | - Alexandra P Marques
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Guimarães, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Guimarães, Portugal
| | - Rui L Reis
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Guimarães, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Guimarães, Portugal
| | - Vitor M Correlo
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Guimarães, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Guimarães, Portugal
| |
Collapse
|
68
|
Santos NF, Cicuéndez M, Holz T, Silva VS, Fernandes AJS, Vila M, Costa FM. Diamond-Graphite Nanoplatelet Surfaces as Conductive Substrates for the Electrical Stimulation of Cell Functions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1331-1342. [PMID: 28001360 DOI: 10.1021/acsami.6b14407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The nanocarbon allotropes constitute valid alternatives when designing control and actuation devices for electrically assisted tissue regeneration purposes, gathering among them important characteristics such as chemical inertness, biocompatibility, extreme mechanical properties, and, importantly, low and tailorable electrical resistivity. In this work, coatings of thin (100 nm) vertically aligned nanoplatelets composed of diamond (5 nm) and graphite were produced via a microwave plasma chemical vapor deposition (MPCVD) technique and used as substrates for electrical stimulation of MC3T3-E1 preosteoblasts. Increasing the amount of N2 up to 14.5 vol % during growth lowers the coatings' electrical resistivity by over 1 order of magnitude, triggers the nanoplatelet vertical growth, and leads to the higher crystalline quality of the nanographite phase. When preosteoblasts were cultured on these substrates and subjected to two consecutive daily cycles of 3 μA direct current stimulation, enhanced cell proliferation and metabolism were observed accompanied by high cell viability. Furthermore, in the absence of DC stimulation, alkaline phosphatase (ALP) activity is increased significantly, denoting an up-regulating effect of preosteoblastic maturation intrinsically exerted by the nanoplatelet substrates.
Collapse
Affiliation(s)
- N F Santos
- i3N and Physics Department, University of Aveiro , 3810-193 Aveiro, Portugal
| | - M Cicuéndez
- TEMA-NRG, Mechanical Engineering Department and CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro , 3810-193 Aveiro, Portugal
| | - T Holz
- i3N and Physics Department, University of Aveiro , 3810-193 Aveiro, Portugal
| | - V S Silva
- CESAM, Biology Department, University of Aveiro , 3810-193 Aveiro, Portugal
| | - A J S Fernandes
- i3N and Physics Department, University of Aveiro , 3810-193 Aveiro, Portugal
| | - M Vila
- TEMA-NRG, Mechanical Engineering Department, University of Aveiro , 3810-193 Aveiro, Portugal
| | - F M Costa
- i3N and Physics Department, University of Aveiro , 3810-193 Aveiro, Portugal
| |
Collapse
|
69
|
Spicer CD, Booth MA, Mawad D, Armgarth A, Nielsen CB, Stevens MM. Synthesis of Hetero-bifunctional, End-Capped Oligo-EDOT Derivatives. Chem 2017; 2:125-138. [PMID: 28149959 PMCID: PMC5268340 DOI: 10.1016/j.chempr.2016.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/09/2016] [Accepted: 12/09/2016] [Indexed: 11/17/2022]
Abstract
Conjugated oligomers of 3,4-ethylenedioxythiophene (EDOT) are attractive materials for tissue engineering applications and as model systems for studying the properties of the widely used polymer poly(3,4-ethylenedioxythiophene). We report here the facile synthesis of a series of keto-acid end-capped oligo-EDOT derivatives (n = 2-7) through a combination of a glyoxylation end-capping strategy and iterative direct arylation chain extension. Importantly, these structures not only represent the longest oligo-EDOTs reported but are also bench stable, in contrast to previous reports on such oligomers. The constructs reported here can undergo subsequent derivatization for integration into higher-order architectures, such as those required for tissue engineering applications. The synthesis of hetero-bifunctional constructs, as well as those containing mixed-monomer units, is also reported, allowing further complexity to be installed in a controlled manner. Finally, we describe the optical and electrochemical properties of these oligomers and demonstrate the importance of the keto-acid in determining their characteristics.
Collapse
Affiliation(s)
- Christopher D. Spicer
- Departments of Materials and Bioengineering, Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Marsilea A. Booth
- Departments of Materials and Bioengineering, Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Damia Mawad
- Departments of Materials and Bioengineering, Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Astrid Armgarth
- Departments of Materials and Bioengineering, Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Christian B. Nielsen
- Materials Research Institute and School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Molly M. Stevens
- Departments of Materials and Bioengineering, Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
70
|
Ngan CGY, Quigley A, Kapsa RMI, Choong PFM. Engineering skeletal muscle - from two to three dimensions. J Tissue Eng Regen Med 2017; 12:e1-e6. [PMID: 28066991 DOI: 10.1002/term.2265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/13/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Catherine G Y Ngan
- Department of Surgery, The University of Melbourne, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Anita Quigley
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW, Australia
| | - Robert M I Kapsa
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW, Australia
| | - Peter F M Choong
- Department of Surgery, The University of Melbourne, St Vincent's Hospital, Melbourne, VIC, Australia.,Department of Orthopaedics, St Vincent's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
71
|
Tallawi M, Dippold D, Rai R, D'Atri D, Roether J, Schubert D, Rosellini E, Engel F, Boccaccini A. Novel PGS/PCL electrospun fiber mats with patterned topographical features for cardiac patch applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:569-76. [DOI: 10.1016/j.msec.2016.06.083] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/24/2016] [Accepted: 06/25/2016] [Indexed: 10/21/2022]
|
72
|
Björninen M, Gilmore K, Pelto J, Seppänen-Kaijansinkko R, Kellomäki M, Miettinen S, Wallace G, Grijpma D, Haimi S. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering. Ann Biomed Eng 2016; 45:1015-1026. [DOI: 10.1007/s10439-016-1755-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023]
|
73
|
Lozano R, Gilmore KJ, Thompson BC, Stewart EM, Waters AM, Romero-Ortega M, Wallace GG. Electrical stimulation enhances the acetylcholine receptors available for neuromuscular junction formation. Acta Biomater 2016; 45:328-339. [PMID: 27554016 DOI: 10.1016/j.actbio.2016.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/18/2016] [Accepted: 08/05/2016] [Indexed: 01/17/2023]
Abstract
Neuromuscular junctions (NMJ) are specialized synapses that link motor neurons with muscle fibers. These sites are fundamental to human muscle activity, controlling swallowing and breathing amongst many other vital functions. Study of this synapse formation is an essential area in neuroscience; the understanding of how neurons interact and control their targets during development and regeneration are fundamental questions. Existing data reveals that during initial stages of development neurons target and form synapses driven by biophysical and biochemical cues, and during later stages they require electrical activity to develop their functional interactions. The aim of this study was to investigate the effect of exogenous electrical stimulation (ES) electrodes directly in contact with cells, on the number and size of acetylcholine receptor (AChR) clusters available for NMJ formation. We used a novel in vitro model that utilizes a flexible electrical stimulation system and allows the systematic testing of several stimulation parameters simultaneously as well as the use of alternative electrode materials such as conductive polymers to deliver the stimulation. Functionality of NMJs under our co-culture conditions was demonstrated by monitoring changes in the responses of primary myoblasts to chemical stimulants that specifically target neuronal signaling. Our results suggest that biphasic electrical stimulation at 250Hz, 100μs pulse width and current density of 1mA/cm2 for 8h, applied via either gold-coated mylar or the conductive polymer PPy, significantly increased the number and size of AChRs clusters available for NMJ formation. This study supports the beneficial use of direct electrical stimulation as a strategic therapy for neuromuscular disorders. STATEMENT OF SIGNIFICANCE The beneficial effects of electrical stimulation (ES) on human cells in vitro and in vivo have long been known. Although the effects of stimulation are clear and the therapeutic benefits are known, no uniform parameters exist with regard to the duration, frequency and amplitude of the ES. To this end, we are answering several important questions on the parameters for ES of nerve and muscle monocultures and co-cultures by probing the effects on the enhancement of acetylcholine receptors (AChR) clustering available for neuromuscular junction formation using a conductive platform. This work opens the possibility to combine electrical stimulus delivered via conductive polymer substrates, from which biomolecules could also be delivered, providing opportunities to further enhance the therapeutic effect.
Collapse
Affiliation(s)
- Rodrigo Lozano
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kerry J Gilmore
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Brianna C Thompson
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Elise M Stewart
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Aaron M Waters
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Mario Romero-Ortega
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
74
|
Ahmad H, Ali MA, Rahman MM, Alam MA, Tauer K, Minami H, Shabnam R. Novel carboxyl functional spherical electromagnetic polypyrrole nanocomposite polymer particles with good magnetic and conducting properties. POLYM INT 2016. [DOI: 10.1002/pi.5169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hasan Ahmad
- Department of Chemistry; Rajshahi University; Rajshahi 6205 Bangladesh
| | - Mohammad A Ali
- Department of Chemistry; Rajshahi University; Rajshahi 6205 Bangladesh
| | - Mohammad M Rahman
- Department of Chemistry; Rajshahi University; Rajshahi 6205 Bangladesh
| | - Mohammad A Alam
- Department of Chemistry; Rajshahi University; Rajshahi 6205 Bangladesh
| | - Klaus Tauer
- Graduate School of Engineering; Kobe University; Kobe 657-8501 Japan
| | - Hideto Minami
- Max Planck Institute of Colloid and Interfaces; Am Mühlenberg 14476 Golm Germany
| | - Rukhsana Shabnam
- Department of Chemistry; Rajshahi University; Rajshahi 6205 Bangladesh
| |
Collapse
|
75
|
Guo H, Qiao T, Jiang S, Li T, Song P, Zhang B, Song X. Aligned poly (glycolide-lactide) fiber membranes with conducting polypyrrole. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huiling Guo
- School of Chemistry and Life Science; Changchun University of Technology; Changchun 130012 China
| | - Tiankui Qiao
- School of Chemistry and Life Science; Changchun University of Technology; Changchun 130012 China
| | - Suchen Jiang
- School of Chemistry and Life Science; Changchun University of Technology; Changchun 130012 China
| | - Tongguo Li
- School of Chemistry and Life Science; Changchun University of Technology; Changchun 130012 China
| | - Ping Song
- School of Chemistry and Life Science; Changchun University of Technology; Changchun 130012 China
| | - Baochang Zhang
- School of Chemistry and Life Science; Changchun University of Technology; Changchun 130012 China
| | - Xiaofeng Song
- School of Chemistry and Life Science; Changchun University of Technology; Changchun 130012 China
| |
Collapse
|
76
|
Song J, Gao H, Zhu G, Cao X, Shi X, Wang Y. The construction of three-dimensional composite fibrous macrostructures with nanotextures for biomedical applications. Biofabrication 2016; 8:035009. [DOI: 10.1088/1758-5090/8/3/035009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
77
|
Gelmi A, Cieslar‐Pobuda A, de Muinck E, Los M, Rafat M, Jager EWH. Direct Mechanical Stimulation of Stem Cells: A Beating Electromechanically Active Scaffold for Cardiac Tissue Engineering. Adv Healthc Mater 2016; 5:1471-80. [PMID: 27126086 DOI: 10.1002/adhm.201600307] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 12/25/2022]
Abstract
The combination of stem cell therapy with a supportive scaffold is a promising approach to improving cardiac tissue engineering. Stem cell therapy can be used to repair nonfunctioning heart tissue and achieve myocardial regeneration, and scaffold materials can be utilized in order to successfully deliver and support stem cells in vivo. Current research describes passive scaffold materials; here an electroactive scaffold that provides electrical, mechanical, and topographical cues to induced human pluripotent stem cells (iPS) is presented. The poly(lactic-co-glycolic acid) fiber scaffold coated with conductive polymer polypyrrole (PPy) is capable of delivering direct electrical and mechanical stimulation to the iPS. The electroactive scaffolds demonstrate no cytotoxic effects on the iPS as well as an increased expression of cardiac markers for both stimulated and unstimulated protocols. This study demonstrates the first application of PPy as a supportive electroactive material for iPS and the first development of a fiber scaffold capable of dynamic mechanical actuation.
Collapse
Affiliation(s)
- Amy Gelmi
- Department of Physics, Chemistry and Biology Linköping University 581 83 Linköping Sweden
| | - Artur Cieslar‐Pobuda
- Department of Clinical and Experimental Medicine Division of Cell Biology Linköping University Hospital 581 85 Linköping Sweden
| | - Ebo de Muinck
- Department of Cardiology Linköping University Hospital 581 85 Linköping Sweden
- Faculty of Medicine and Health Sciences Division of Cardiovascular Medicine 581 85 Linköping Sweden
| | - Marek Los
- Department of Clinical and Experimental Medicine Division of Cell Biology Linköping University Hospital 581 85 Linköping Sweden
| | - Mehrdad Rafat
- Department of Biomedical Engineering Linkoping University 581 85 Linköping Sweden
| | - Edwin W. H. Jager
- Department of Physics, Chemistry and Biology Linköping University 581 83 Linköping Sweden
| |
Collapse
|
78
|
Park D, Ahn KO, Jeong KC, Choi Y. Polypyrrole-based nanotheranostics for activatable fluorescence imaging and chemo/photothermal dual therapy of triple-negative breast cancer. NANOTECHNOLOGY 2016; 27:185102. [PMID: 27004751 DOI: 10.1088/0957-4484/27/18/185102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here, we fabricated polypyrrole nanoparticles (PPys) (termed HA10-PPy, HA20-PPy, and HA40-PPy) doped with different average molecular weight hyaluronic acids (HAs) (10, 20, and 40 kDa, respectively), and evaluated the effect of molecular weight of doped HA on photothermal induction, fluorescence quenching, and drug loading efficiencies. Doxorubicin-loaded HA-doped PPys (DOX@HA-PPys) could be used for imaging and therapy of triple-negative breast cancer (TNBC). Fluorescence turn-on, stimuli-responsive drug release, and photo-induced heating of DOX@HA-PPys enabled not only activatable fluorescence imaging but also subsequent chemo/photothermal dual therapy for TNBC. In particular, we illustrated the potential usefulness of the photothermal effect of the nanoparticles for overcoming chemoresistance in TNBC.
Collapse
Affiliation(s)
- Dongjin Park
- Molecular Imaging and Therapy Branch, National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do 10408, Korea
| | | | | | | |
Collapse
|
79
|
Harris AR, Molino PJ, Paolini AG, Wallace GG. Effective Area and Charge Density of Chondroitin Sulphate Doped PEDOT Modified Electrodes. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
80
|
Aznar-Cervantes S, Martínez JG, Bernabeu-Esclapez A, Lozano-Pérez AA, Meseguer-Olmo L, Otero TF, Cenis JL. Fabrication of electrospun silk fibroin scaffolds coated with graphene oxide and reduced graphene for applications in biomedicine. Bioelectrochemistry 2016; 108:36-45. [DOI: 10.1016/j.bioelechem.2015.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 12/20/2022]
|
81
|
Wailes EM, MacNeill CM, McCabe E, Levi-Polyachenko NH. Shaping PEDOT nanoparticles for use in 3D tissue phantoms. J Appl Polym Sci 2016. [DOI: 10.1002/app.43378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Elizabeth M. Wailes
- Department of Plastic and Reconstructive Surgery; Wake Forest University School of Medicine, Medical Center Blvd; Winston Salem North Carolina 27157
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences; Wake Forest University; 575 N. Patterson Avenue Winston Salem North Carolina 27101
| | - Christopher M. MacNeill
- Department of Plastic and Reconstructive Surgery; Wake Forest University School of Medicine, Medical Center Blvd; Winston Salem North Carolina 27157
| | - Eleanor McCabe
- Department of Plastic and Reconstructive Surgery; Wake Forest University School of Medicine, Medical Center Blvd; Winston Salem North Carolina 27157
| | - Nicole H. Levi-Polyachenko
- Department of Plastic and Reconstructive Surgery; Wake Forest University School of Medicine, Medical Center Blvd; Winston Salem North Carolina 27157
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences; Wake Forest University; 575 N. Patterson Avenue Winston Salem North Carolina 27101
| |
Collapse
|
82
|
Yang HS, Lee B, Tsui JH, Macadangdang J, Jang SY, Im SG, Kim DH. Electroconductive Nanopatterned Substrates for Enhanced Myogenic Differentiation and Maturation. Adv Healthc Mater 2016; 5:137-45. [PMID: 25988569 PMCID: PMC5003176 DOI: 10.1002/adhm.201500003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/14/2015] [Indexed: 11/09/2022]
Abstract
Electrically conductive materials provide a suitable platform for the in vitro study of excitable cells, such as skeletal muscle cells, due to their inherent conductivity and electroactivity. Here it is demonstrated that bioinspired electroconductive nanopatterned substrates enhance myogenic differentiation and maturation. The topographical cues from the highly aligned collagen bundles that form the extracellular matrix of skeletal muscle tissue are mimicked using nanopatterns created with capillary force lithography. Electron beam deposition is then utilized to conformally coat nanopatterned substrates with a thin layer of either gold or titanium to create electroconductive substrates with well-defined, large-area nanotopographical features. C2C12 cells, a myoblast cell line, are cultured for 7 d on substrates and the effects of topography and electrical conductivity on cellular morphology and myogenic differentiation are assessed. It is found that biomimetic nanotopography enhances the formation of aligned myotubes and the addition of an electroconductive coating promotes myogenic differentiation and maturation, as indicated by the upregulation of myogenic regulatory factors Myf5, MyoD, and myogenin (MyoG). These results suggest the suitability of electroconductive nanopatterned substrates as a biomimetic platform for the in vitro engineering of skeletal muscle tissue.
Collapse
Affiliation(s)
- Hee Seok Yang
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Bora Lee
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Jonathan H Tsui
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jesse Macadangdang
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Seok-Young Jang
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
83
|
Dong B, Yang M, Ge S, Cao Y, Li B, Lu Y. Synthesis and photoluminescence modulating of polypyrrole fluorescent nano-spheres/dots. RSC Adv 2016. [DOI: 10.1039/c6ra01468b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polypyrrole fluorescent nanospheres/dots with tunable band gaps have been successfully synthesized, which showed the outstanding characteristics of low cytotoxicity, good biocompatibility and high luminescence stability.
Collapse
Affiliation(s)
- Ben Dong
- Department of Polymer Science and Engineering
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University)
- Ministry of Education
| | - Mei Yang
- Department of Polymer Science and Engineering
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University)
- Ministry of Education
| | - Shusheng Ge
- Department of Polymer Science and Engineering
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University)
- Ministry of Education
| | - Yi Cao
- Department of Polymer Science and Engineering
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University)
- Ministry of Education
| | - Baoyan Li
- Department of Polymer Science and Engineering
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University)
- Ministry of Education
| | - Yun Lu
- Department of Polymer Science and Engineering
- State Key Laboratory of Coordination Chemistry
- Collaborative Innovation Center of Chemistry for Life Sciences
- Key Laboratory of High Performance Polymer Materials and Technology (Nanjing University)
- Ministry of Education
| |
Collapse
|
84
|
Puckert C, Gelmi A, Ljunggren MK, Rafat M, Jager EWH. Optimisation of conductive polymer biomaterials for cardiac progenitor cells. RSC Adv 2016. [DOI: 10.1039/c6ra11682e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The characterisation of biomaterials for cardiac tissue engineering applications is vital for the development of effective treatments for the repair of cardiac function.
Collapse
Affiliation(s)
- C. Puckert
- Biosensors and Bioelectronics Centre
- Dept of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping 581 83
- Sweden
| | - A. Gelmi
- Biosensors and Bioelectronics Centre
- Dept of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping 581 83
- Sweden
| | - M. K. Ljunggren
- Integrative Regenerative Medicine Centre
- Department of Clinical and Experimental Medicine
- Linköping University
- Linköping 581 85
- Sweden
| | - M. Rafat
- Department of Biomedical Engineering
- Linköping University
- Linköping 581 85
- Sweden
| | - E. W. H. Jager
- Biosensors and Bioelectronics Centre
- Dept of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping 581 83
- Sweden
| |
Collapse
|
85
|
Xie M, Wang L, Guo B, Wang Z, Chen YE, Ma PX. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation. Biomaterials 2015; 71:158-167. [PMID: 26335860 PMCID: PMC4573316 DOI: 10.1016/j.biomaterials.2015.08.042] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 11/17/2022]
Abstract
Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA.
Collapse
Affiliation(s)
- Meihua Xie
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ling Wang
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baolin Guo
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter X Ma
- Center for Biomedical Engineering and Regenerative Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biologic and Materials Sciences, University of Michigan, 1011, North University Ave., Room 2209, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
86
|
Chen D, Gao M, Fu Y, Xu X, Hao Z. A facile approach to manipulation of osteogenic activity of orthopedic implants by in situ electrically controlled wettability. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.09.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
87
|
Hiltunen M, Pelto J, Ellä V, Kellomäki M. Uniform and electrically conductive biopolymer-doped polypyrrole coating for fibrous PLA. J Biomed Mater Res B Appl Biomater 2015; 104:1721-1729. [DOI: 10.1002/jbm.b.33514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/30/2015] [Accepted: 08/23/2015] [Indexed: 01/07/2023]
Affiliation(s)
- M. Hiltunen
- Department of Electronics and Communications Engineering; Tampere University of Technology, BioMediTech; Tampere Finland
| | - J. Pelto
- VTT Technical Research Centre of Finland; Tampere Finland
| | - V. Ellä
- Department of Electronics and Communications Engineering; Tampere University of Technology, BioMediTech; Tampere Finland
| | - M. Kellomäki
- Department of Electronics and Communications Engineering; Tampere University of Technology, BioMediTech; Tampere Finland
| |
Collapse
|
88
|
Xiong GM, Yuan S, Wang JK, Do AT, Tan NS, Yeo KS, Choong C. Imparting electroactivity to polycaprolactone fibers with heparin-doped polypyrrole: Modulation of hemocompatibility and inflammatory responses. Acta Biomater 2015; 23:240-249. [PMID: 25983317 DOI: 10.1016/j.actbio.2015.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/14/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
Hemocompatibility, anti-inflammation and anti-thrombogenicity of acellular synthetic vascular grafts remains a challenge in biomaterials design. Using electrospun polycaprolactone (PCL) fibers as a template, a coating of polypyrrole (PPy) was successfully polymerized onto the fiber surface. The fibers coated with heparin-doped PPy (PPy-HEP) demonstrated better electroactivity, lower surface resistivity (9-10-fold) and better anti-coagulation response (non-observable plasma recalcification after 30min vs. recalcification at 8-9min) as compared to fibers coated with pristine PPy. Red blood cell compatibility, measured by% hemolysis, was greatly improved on PPy-HEP-coated PCL in comparison to uncoated PCL (3.9±2.1% vs. 22.1±4.1%). PPy-HEP-coated PCL fibers also exhibited higher stiffness values (6.8±0.9MPa vs. 4.2±0.8MPa) as compared to PCL fibers, but similar tensile strengths. It was also observed that the application of a low alternating current led to a 4-fold reduction of platelet activation (as quantitated by CD62p expression) for the PPy-HEP-coated fibers as compared to non-stimulated conditions. In parallel, a reduction in the leukocyte adhesion to both pristine PPy-coated and PPy-HEP-coated fibers was observable with AC stimulation. Overall, a new strategy involving the use of hemocompatible conducting polymers and electrical stimulation to control thrombogenicity and inflammatory responses for synthetic vascular graft designs was demonstrated.
Collapse
|
89
|
Qazi TH, Mooney DJ, Pumberger M, Geissler S, Duda GN. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 2015; 53:502-21. [PMID: 25890747 DOI: 10.1016/j.biomaterials.2015.02.110] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany.
| | - David J Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, USA.
| | - Matthias Pumberger
- Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Center for Musculoskeletal Surgery, Charitè - Universitätsmedizin Berlin, Germany.
| | - Sven Geissler
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
| |
Collapse
|
90
|
Poly(3,4-ethylenedioxythiophene):dextran sulfate (PEDOT:DS) - a highly processable conductive organic biopolymer. Acta Biomater 2015; 14:33-42. [PMID: 25484333 DOI: 10.1016/j.actbio.2014.11.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 01/20/2023]
Abstract
A novel water-dispersible conducting polymer analogous to poly(3,4-dioxythiophene):polystyrene sulfonate (PEDOT:PSS) has been chemically synthesized in a single reaction in high yield. PEDOT:DS, a new member of the polythiophene family, is composed of a complex between PEDOT and the sulfonated polysaccharide polyanion dextran sulfate. Drop-cast films of aqueous suspensions of the material display a native conductivity of up to 7 ± 1 S cm(-1), increasing to 20 ± 2 S cm(-1) after treatment with ethylene glycol and thermal annealing. Mass ratios of the precursors NaDS and EDOT were varied from 5:1 to 2:1 and a decrease in the NaDS:EDOT ratio produces tougher, less hygroscopic films of higher conductivity. Ultraviolet-visible spectroelectrochemistry yields spectra typical of PEDOT complexes. Cyclic voltammetry reveals that PEDOT:DS is electrochemically active from -1.0 to 0.8 V vs. Ag/Ag(+) in acetonitrile, with similar characteristics to PEDOT:PSS. Water dispersions of PEDOT:DS are successfully processed by drop casting, spray coating, inkjet printing and extrusion printing. Furthermore, laser etching of dried films allows the creation of patterns with excellent definition. To assess the cytotoxicity of PEDOT:DS, L-929 cells were cultured with a polymer complex concentration range of 0.002 to 0.2 g l(-1) in cell culture medium. No significant difference is found between the proliferation rates of L-929 cells exposed to PEDOT:DS and those in plain medium after 96h. However, PEDOT:PSS shows around 25% less cell growth after 4 days, even at the lowest concentration. Taken together, these results suggest PEDOT:DS has exceptional potential as an electromaterial for the biointerface.
Collapse
|
91
|
Zhu Z, Wang Y, Liu J, Chen G, Zhu Y, Xu X. Facilely tuning the bioactivity of an orthopedic implant surface based on nanostructured polypyrrole/glycosaminoglycans. RSC Adv 2015. [DOI: 10.1039/c5ra09151a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The wettability of nanostructured polypyrrole/glycosaminoglycans can be controlled in situ by electrical stimulus to tune the bioactivity of implants.
Collapse
Affiliation(s)
- Zhaojin Zhu
- Department of Orthopedics
- Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200001
- China
| | - Yongping Wang
- Department of Orthopedics
- Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200001
- China
| | - Jingfeng Liu
- Department of Orthopedics
- Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200001
- China
| | - Gang Chen
- Department of Orthopedics
- North Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 201801
- China
| | - Yuan Zhu
- Department of Orthopedics
- Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200001
- China
| | - Xiangyang Xu
- Department of Orthopedics
- Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200001
- China
| |
Collapse
|
92
|
Sasaki M, Karikkineth BC, Nagamine K, Kaji H, Torimitsu K, Nishizawa M. Highly conductive stretchable and biocompatible electrode-hydrogel hybrids for advanced tissue engineering. Adv Healthc Mater 2014; 3:1919-27. [PMID: 24912988 DOI: 10.1002/adhm.201400209] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/21/2014] [Indexed: 11/08/2022]
Abstract
Hydrogel-based, molecular permeable electronic devices are considered to be promising for electrical stimulation and recording of living tissues, either in vivo or in vitro. This study reports the fabrication of the first hydrogel-based devices that remain highly electrically conductive under substantial stretch and bending. Using a simple technique involving a combination of chemical polymerization and electropolymerization of poly (3,4-ethylenedioxythiophene) (PEDOT), a tight bonding of a conductive composite of PEDOT and polyurethane (PU) to an elastic double-network hydrogel is achieved to make fully organic PEDOT/PU-hydrogel hybrids. Their response to repeated bending, mechanical stretching, hydration-dessication cycles, storage in aqueous condition for up to 6 months, and autoclaving is assessed, demonstrating excellent stability, without any mechanical or electrical damage. The hybrids exhibit a high electrical conductivity of up to 120 S cm(-1) at 100% elongation. The adhesion, proliferation, and differentiation of neural and muscle cells cultured on these hybrids are demonstrated, as well as the fabrication of 3D hybrids, advancing the field of tissue engineering with integrated electronics.
Collapse
Affiliation(s)
- Masato Sasaki
- Department of Bioengineering and Robotics; Graduate School of Engineering; Tohoku University; 6-6-01 Aoba Sendai 980-8579 Japan
| | - Bijoy Chandapillai Karikkineth
- Department of Bioengineering and Robotics; Graduate School of Engineering; Tohoku University; 6-6-01 Aoba Sendai 980-8579 Japan
| | - Kuniaki Nagamine
- Department of Bioengineering and Robotics; Graduate School of Engineering; Tohoku University; 6-6-01 Aoba Sendai 980-8579 Japan
| | - Hirokazu Kaji
- Department of Bioengineering and Robotics; Graduate School of Engineering; Tohoku University; 6-6-01 Aoba Sendai 980-8579 Japan
| | - Keiichi Torimitsu
- Department of Bioengineering and Robotics; Graduate School of Engineering; Tohoku University; 6-6-01 Aoba Sendai 980-8579 Japan
| | - Matsuhiko Nishizawa
- Department of Bioengineering and Robotics; Graduate School of Engineering; Tohoku University; 6-6-01 Aoba Sendai 980-8579 Japan
- JST-CREST, Sanbancho; Chiyoda-ku Tokyo 102-0075 Japan
| |
Collapse
|
93
|
Tian HC, Liu JQ, Kang XY, Wei DX, Zhang C, Du JC, Yang B, Chen X, Yang CS. Biotic and abiotic molecule dopants determining the electrochemical performance, stability and fibroblast behavior of conducting polymer for tissue interface. RSC Adv 2014. [DOI: 10.1039/c4ra07265k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
94
|
Baek S, Green RA, Poole-Warren LA. The biological and electrical trade-offs related to the thickness of conducting polymers for neural applications. Acta Biomater 2014; 10:3048-58. [PMID: 24726957 DOI: 10.1016/j.actbio.2014.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/26/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT) films have attracted substantial interest as coatings for platinum neuroprosthetic electrodes due to their excellent chemical stability and electrical properties. This study systematically examined PEDOT coatings formed with different amounts of charge and dopant ions, and investigated the combination of surface characteristics that were optimal for neural cell interactions. PEDOT samples were fabricated by varying the electrodeposition charge from 0.05 to 1 C cm(-2). Samples were doped with either poly(styrenesulfonate), tosylate (pTS) or perchlorate. Scanning electron micrographs revealed that both thickness and nodularity increased as the charge used to produce the sample was increased, and larger dopants produced smoother films across all thicknesses. X-ray photoelectron spectroscopy confirmed that the amount of charge directly corresponded to the thickness and amount of dopant in the samples. Additionally, with increased thickness and nodularity, the electrochemical properties of all PEDOT coatings improved. However, neural cell adhesion and outgrowth assays revealed that there is a direct biological tradeoff related to the thickness and nodularity. Cell attachment, growth and differentiation was poorer on the thicker, rougher samples, but thin, less nodular PEDOT films exhibited significant improvements over bare platinum. PEDOT/pTS fabricated with a charge density of <0.1Ccm(-2) provided superior electrochemical and biological properties over conventional platinum electrodes and would be the most suitable conducting polymer for neural interface applications.
Collapse
|
95
|
Shen C, Sun Y, Yao W, Lu Y. Facile synthesis of polypyrrole nanospheres and their carbonized products for potential application in high-performance supercapacitors. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.04.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
96
|
Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 2014; 10:2341-53. [PMID: 24556448 DOI: 10.1016/j.actbio.2014.02.015] [Citation(s) in RCA: 871] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 01/03/2023]
Abstract
Developing stimulus-responsive biomaterials with easy-to-tailor properties is a highly desired goal of the tissue engineering community. A novel type of electroactive biomaterial, the conductive polymer, promises to become one such material. Conductive polymers are already used in fuel cells, computer displays and microsurgical tools, and are now finding applications in the field of biomaterials. These versatile polymers can be synthesised alone, as hydrogels, combined into composites or electrospun into microfibres. They can be created to be biocompatible and biodegradable. Their physical properties can easily be optimized for a specific application through binding biologically important molecules into the polymer using one of the many available methods for their functionalization. Their conductive nature allows cells or tissue cultured upon them to be stimulated, the polymers' own physical properties to be influenced post-synthesis and the drugs bound in them released, through the application of an electrical signal. It is thus little wonder that these polymers are becoming very important materials for biosensors, neural implants, drug delivery devices and tissue engineering scaffolds. Focusing mainly on polypyrrole, polyaniline and poly(3,4-ethylenedioxythiophene), we review conductive polymers from the perspective of tissue engineering. The basic properties of conductive polymers, their chemical and electrochemical synthesis, the phenomena underlying their conductivity and the ways to tailor their properties (functionalization, composites, etc.) are discussed.
Collapse
|
97
|
Comparison of Chondroitin Sulfate and Hyaluronic Acid Doped Conductive Polypyrrole Films for Adipose Stem Cells. Ann Biomed Eng 2014; 42:1889-900. [DOI: 10.1007/s10439-014-1023-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
|
98
|
Thrivikraman G, Madras G, Basu B. Intermittent electrical stimuli for guidance of human mesenchymal stem cell lineage commitment towards neural-like cells on electroconductive substrates. Biomaterials 2014; 35:6219-35. [PMID: 24816362 DOI: 10.1016/j.biomaterials.2014.04.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 04/06/2014] [Indexed: 02/06/2023]
Abstract
In the context of the role of multiple physical factors in dictating stem cell fate, the present paper demonstrates the effectiveness of the intermittently delivered external electric field stimulation towards switching the stem cell fate to specific lineage, when cultured in the absence of biochemical growth factors. In particular, our findings present the ability of human mesenchymal stem cells (hMSCs) to respond to the electric stimuli by adopting extended neural-like morphology on conducting polymeric substrates. Polyaniline (PANI) is selected as the model system to demonstrate this effect, as the electrical conductivity of the polymeric substrates can be systematically tailored over a broad range (10(-9) to 10 S/cm) from highly insulating to conducting by doping with varying concentrations (10(-5) to 1 m) of HCl. On the basis of the culture protocol involving the systematic delivery of intermittent electric field (dc) stimulation, the parametric window of substrate conductivity and electric field strength was established to promote significant morphological extensions, with minimal cellular damage. A time dependent morphological change in hMSCs with significant filopodial elongation was observed after 7 days of electrically stimulated culture. Concomitant with morphological changes, a commensurate increase in the expression of neural lineage commitment markers such as nestin and βIII tubulin was recorded from hMSCs grown on highly conducting substrates, as revealed from the mRNA expression analysis using Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) as well as by immune-fluorescence imaging. Therefore, the present work establishes the key role of intermittent and systematic delivery of electric stimuli as guidance cues in promoting neural-like differentiation of hMSCs, when grown on electroconductive substrates.
Collapse
Affiliation(s)
- Greeshma Thrivikraman
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Giridhar Madras
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
99
|
Park S, Yang G, Madduri N, Abidian MR, Majd S. Hydrogel-mediated direct patterning of conducting polymer films with multiple surface chemistries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:2782-7. [PMID: 24623531 PMCID: PMC5805559 DOI: 10.1002/adma.201306093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/15/2014] [Indexed: 05/22/2023]
Abstract
A new methodology for selective electropolymerization of conducting polymer films using wet hydrogel stamps is presented. The ability of this simple method to generate patterned films of conducting polymers with multiple surface chemistries in a one-step process and to incorporate fragile biomolecules in these films is demonstrated.
Collapse
Affiliation(s)
- SooHyun Park
- Department of Biomedical Engineering, The Pennsylvania State University, 205 Hallowell Building, University Park, PA, 16802, USA
| | | | | | | | | |
Collapse
|
100
|
Farshi Azhar F, Olad A, Salehi R. Fabrication and characterization of chitosan–gelatin/nanohydroxyapatite–polyaniline composite with potential application in tissue engineering scaffolds. Des Monomers Polym 2014. [DOI: 10.1080/15685551.2014.907621] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Fahimeh Farshi Azhar
- Faculty of Chemistry, Polymer Composite Research Laboratory, Department of Applied Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Olad
- Faculty of Chemistry, Polymer Composite Research Laboratory, Department of Applied Chemistry, University of Tabriz, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|