51
|
Yuan M, Wang Y, Qin YX. Promoting neuroregeneration by applying dynamic magnetic fields to a novel nanomedicine: Superparamagnetic iron oxide (SPIO)-gold nanoparticles bounded with nerve growth factor (NGF). NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1337-1347. [PMID: 29627520 DOI: 10.1016/j.nano.2018.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/13/2018] [Accepted: 03/25/2018] [Indexed: 12/17/2022]
Abstract
Neuroregeneration imposes a significant challenge in neuroscience for treating neurodegenerative diseases. The objective of this study is to evaluate the hypothesis that the nerve growth factor (NGF) functionalized superparamagnetic iron oxide (SPIO)-gold (Au) nanomedicine can stimulate the neuron growth and differentiation under external magnetic fields (MFs), and dynamic MFs outperform their static counterparts. The SPIO-Au core-shell nanoparticles (NPs) (Diameter: 20.8 nm) possessed advantages such as uniform quasi-spherical shapes, narrow size distribution, excellent stabilities, and low toxicity (viability >96% for 5 days). NGF functionalization has enhanced the cellular uptake. The promotion of neuronal growth and orientation using NGF functionalized SPIO-Au NPs, driven by both the static and dynamic MFs, was revealed experimentally on PC-12 cells and theoretically on a cytoskeletal force model. More importantly, dynamic MFs via rotation performed better than the static ones, i.e., the cellular differentiation ratio increased 58%; the neurite length elongation increased 63%.
Collapse
Affiliation(s)
- Muzhaozi Yuan
- Department of Mechanical Engineering, State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Ya Wang
- Department of Mechanical Engineering, State University of New York at Stony Brook, Stony Brook, NY, United States.
| | - Yi-Xian Qin
- Department of Mechanical Engineering, State University of New York at Stony Brook, Stony Brook, NY, United States; Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, United States
| |
Collapse
|
52
|
Martins JP, Ferreira MP, Ezazi NZ, Hirvonen JT, Santos HA, Thrivikraman G, França CM, Athirasala A, Tahayeri A, Bertassoni LE. 3D printing: prospects and challenges. NANOTECHNOLOGIES IN PREVENTIVE AND REGENERATIVE MEDICINE 2018:299-379. [DOI: 10.1016/b978-0-323-48063-5.00004-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
53
|
Thompson Z, Rahman S, Yarmolenko S, Sankar J, Kumar D, Bhattarai N. Fabrication and Characterization of Magnesium Ferrite-Based PCL/Aloe Vera Nanofibers. MATERIALS 2017; 10:ma10080937. [PMID: 28800071 PMCID: PMC5578303 DOI: 10.3390/ma10080937] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022]
Abstract
Composite nanofibers of biopolymers and inorganic materials have been widely explored as tissue engineering scaffolds because of their superior structural, mechanical and biological properties. In this study, magnesium ferrite (Mg-ferrite) based composite nanofibers were synthesized using an electrospinning technique. Mg-ferrite nanoparticles were first synthesized using the reverse micelle method, and then blended in a mixture of polycaprolactone (PCL), a synthetic polymer, and Aloe vera, a natural polymer, to create magnetic nanofibers by electrospinning. The morphology, structural and magnetic properties, and cellular compatibility of the magnetic nanofibers were analyzed. Mg-ferrite/PCL/Aloe vera nanofibers showed good uniformity in fiber morphology, retained their structural integrity, and displayed magnetic strength. Experimental results, using cell viability assay and scanning electron microscopy imaging showed that magnetic nanofibers supported 3T3 cell viability. We believe that the new composite nanofibrous membranes developed in this study have the ability to mimic the physical structure and function of tissue extracellular matrix, as well as provide the magnetic and soluble metal ion attributes in the scaffolds with enhanced cell attachment, and thus improve tissue regeneration.
Collapse
Affiliation(s)
- Zanshe Thompson
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA.
- NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, Greensboro, NC 27411, USA.
| | - Shekh Rahman
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA.
- NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, Greensboro, NC 27411, USA.
| | - Sergey Yarmolenko
- NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, Greensboro, NC 27411, USA.
- Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA.
| | - Jagannathan Sankar
- NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, Greensboro, NC 27411, USA.
- Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA.
| | - Dhananjay Kumar
- NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, Greensboro, NC 27411, USA.
- Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA.
| | - Narayan Bhattarai
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA.
- NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, Greensboro, NC 27411, USA.
| |
Collapse
|
54
|
Zilony N, Rosenberg M, Holtzman L, Schori H, Shefi O, Segal E. Prolonged controlled delivery of nerve growth factor using porous silicon nanostructures. J Control Release 2017; 257:51-59. [DOI: 10.1016/j.jconrel.2016.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/30/2016] [Accepted: 12/08/2016] [Indexed: 12/22/2022]
|
55
|
Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer’s disease. Pharmacol Res 2017; 120:68-87. [DOI: 10.1016/j.phrs.2017.03.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/23/2017] [Accepted: 03/22/2017] [Indexed: 12/30/2022]
|
56
|
Li B, Ren K, Zhang H, Jia F, Wang J, Chang H, Wang Y, Ji J. Nanostructured Multilayer Films Assembled from Poly(dopamine)‐Coated Carbon Nanotubes for Controlling Cell Behavior. CHEMNANOMAT 2017; 3:319-327. [DOI: 10.1002/cnma.201700024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
AbstractNano‐topographic surfaces have been used as an effective tool to control cell behavior such as adhesion and proliferation. In this study, multilayer films with nano‐topographic features were fabricated by alternatively assembling poly(l‐lysine) (PLL) and poly(dopamine)‐coated carbon nanotubes (CNTs@PDA) layers. The growth of PLL/CNTs@PDA film presented a perfect linear relationship with the number of bilayers. A nanostructured morphology with interpenetrating CNT networks was observed by scanning electron microscopy (SEM). Adhesion and proliferation of endothelial cells (ECs) and smooth muscle cells (SMCs) on the PLL/CNTs@PDA multilayer films have been evaluated. The films support initial adhesion of both ECs and SMCs. Interestingly, the PLL/CNTs@PDA multilayer films were found to promote proliferation of SMCs and inhibited proliferation of ECs. Further, pheochromocytoma (PC12) cells were employed to evaluate the influence of PLL/CNTs@PDA multilayer films on the outgrowth of synapses. We found that the nanostructured surface significantly promoted the synapses of PC12 cell growth and formation. Our findings suggest that cytophilic surfaces with the nanostructured morphology have diverse effects on different cells, which sheds light on new design of biomaterial surfaces in cell‐based applications.
Collapse
Affiliation(s)
- Bo‐chao Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Ke‐feng Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - He Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Fan Jia
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Jin‐lei Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Hao Chang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Yun‐bing Wang
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 P.R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 P.R. China
| |
Collapse
|
57
|
Gold Nanoparticles for Modulating Neuronal Behavior. NANOMATERIALS 2017; 7:nano7040092. [PMID: 28441776 PMCID: PMC5408184 DOI: 10.3390/nano7040092] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 11/30/2022]
Abstract
Understanding the detailed functioning and pathophysiology of the brain and the nervous system continues to challenge the scientific community, particularly in terms of scaling up techniques for monitoring and interfacing with complex 3D networks. Nanotechnology has the potential to support this scaling up, where the eventual goal would be to address individual nerve cells within functional units of both the central and peripheral nervous system. Gold nanoparticles provide a variety of physical and chemical properties that have attracted attention as a light-activated nanoscale neuronal interface. This review provides a critical overview of the photothermal and photomechanical properties of chemically functionalized gold nanoparticles that have been exploited to trigger a range of biological responses in neuronal tissues, including modulation of electrical activity and nerve regeneration. The prospects and challenges for further development are also discussed.
Collapse
|
58
|
Huang L, Xia B, Liu Z, Cao Q, Huang J, Luo Z. Superparamagnetic Iron Oxide Nanoparticle-Mediated Forces Enhance the Migration of Schwann Cells Across the Astrocyte-Schwann Cell Boundary In vitro. Front Cell Neurosci 2017; 11:83. [PMID: 28400720 PMCID: PMC5368970 DOI: 10.3389/fncel.2017.00083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Abstract
Schwann cells (SCs) are one of the most promising cellular candidates for the treatment of spinal cord injury. However, SCs show poor migratory ability within the astrocyte-rich central nervous system (CNS) environment and exhibit only limited integration with host astrocytes. Our strategy for improving the therapeutic potential of SCs was to magnetically drive SCs to migrate across the astrocyte-SC boundary to intermingle with astrocytes. SCs were firstly magnetized with poly-L-lysine-coated superparamagnetic iron oxide nanoparticles (SPIONs). Internalization of SPIONs showed no effect upon the migration of SCs in the absence of a magnetic field (MF). In contrast, magnetized SCs exhibited enhanced migration along the direction of force in the presence of a MF. An inverted coverslip assay showed that a greater number of magnetized SCs migrated longer distances onto astrocytic monolayers under the force of a MF compared to other test groups. More importantly, a confrontation assay demonstrated that magnetized SCs intermingled with astrocytes under an applied MF. Furthermore, inhibition of integrin activation reduced the migration of magnetized SCs within an astrocyte-rich environment under an applied MF. Thus, SPION-mediated forces could act as powerful stimulants to enhance the migration of SCs across the astrocyte-SC boundary, via integrin-mediated mechanotransduction, and could represent a vital way of improving the therapeutic potential of SCs for spinal cord injuries.
Collapse
Affiliation(s)
- Liangliang Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Bing Xia
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Zhongyang Liu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Quanliang Cao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology Wuhan, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| |
Collapse
|
59
|
Karahaliloğlu Z, Yalçın E, Demirbilek M, Denkbaş EB. Magnetic silk fibroin e-gel scaffolds for bone tissue engineering applications. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517693635] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, the incorporation of magnetic nanoparticles into standard scaffolds has emerged as a promising approach for tissue engineering applications. This strategy can promote not only tissue regeneration but also reloading of scaffolds through an external supervising center that adsorbs growth factors, preserving their stability and biological activity. In this study, novel magnetic silk fibroin e-gel scaffolds were prepared by the electrogelation process of concentrated Bombyx mori silk fibroin (8 wt%) aqueous solution. In addition, basic fibroblast growth factor was conjugated physically to human serum albumin = Fe3O4 nanoparticles (71.52 ± 2.3 nm in size) with 97.5% binding yield. Scanning electron microscopy images of the prepared human serum albumin = Fe3O4-basic fibroblast growth factor-loaded silk fibroin e-gel scaffolds showed a three-dimensional porous morphology. In terms of water uptake, basic fibroblast growth factor-conjugated scaffolds had the highest water absorbability among all groups. In vitro cell culture studies showed that both the human serum albumin coating of Fe3O4 nanoparticle surface and basic fibroblast growth factor conjugation had an inductive effect on cell viability. One of the most used markers of bone formation and osteoblast differentiation is alkaline phosphatase activity; human serum albumin = Fe3O4-basic fibroblast growth factor-loaded silk fibroin e-gels showed significantly enhanced alkaline phosphatase activity (p < 0.05). SaOS-2 cells cultured on human serum albumin = Fe3O4-basic fibroblast growth factor-loaded silk fibroin e-gels deposited more calcium compared with those cultured on bare silk fibroin e-gels. These results indicated that the proposed e-gel scaffolds are valuable candidates for magnetic guiding in bone tissue regeneration, and they will present new perspectives for magnetic field application in regenerative medicine.
Collapse
Affiliation(s)
| | - Eda Yalçın
- Pharmaceuticals and Medical Devices Agency, Ankara, Turkey
| | - Murat Demirbilek
- Advanced Technologies Research and Application Center, Hacettepe University, Ankara, Turkey
| | - Emir Baki Denkbaş
- Biochemistry Division, Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
60
|
Mou Y, Lv S, Xiong F, Han Y, Zhao Y, Li J, Gu N, Zhou J. Effects of different doses of 2,3-dimercaptosuccinic acid-modified Fe 2 O 3 nanoparticles on intercalated discs in engineered cardiac tissues. J Biomed Mater Res B Appl Biomater 2016; 106:121-130. [PMID: 27889952 DOI: 10.1002/jbm.b.33757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022]
Abstract
Although iron oxide nanoparticles (IRONs) were applied in clinical magnetic resonance imaging in vivo and magnetic tissue engineering in vitro widely, the underlying effects of IRONs on the development of cardiomyocytes especially the intercellular junctions, intercalated discs (IDs), remain an unknown issue. Given the critical role of three-dimensional (3D) engineered cardiac tissues (ECTs) in evaluation of nanoparticles toxicology, it remained necessary to understand the effects of IRONs on IDs assembly of cardiomyocytes in 3D environment. In this study, we first reconstituted collagen/Matrigel based ECTs in vitro and prepared IRONs with 2,3-dimercaptosuccinic acid (DMSA-IRONs). We found that the internalization of DMSA-IRONs by cardiac cells in dose-dependent manner was not associated with the cell distribution in 3D environment by determination of Prussian blue staining and transmission electronic microscopy. Significantly, through determination of western blotting and immunofluorescence of connexin 43, N-cadherin, desmoplakin, and plakoglobin, DMSA-IRONs enhanced the assembly of gap junctions, decreased mechanical junctions (adherens junctions and desmosomes) of cardiac cells but not in dose-dependent manner in ECTs at seventh day. In addition, DMSA-IRONs increased the vesicles secretion of cardiac cells in ECTs apparently compared to control groups. Overall, we conclude that the internalization of DMSA-IRONs by cardiac cells in dose-dependent manner enhanced the assembly of electrochemical junctions and decreased the mechanical related microstructures. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 121-130, 2018.
Collapse
Affiliation(s)
- Yongchao Mou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Shuanghong Lv
- Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 People's Republic of China
| | - Yao Han
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Yuwei Zhao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Junjie Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Ning Gu
- Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Jin Zhou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
61
|
Islam M, Atmaramani R, Mukherjee S, Ghosh S, Iqbal SM. Enhanced proliferation of PC12 neural cells on untreated, nanotextured glass coverslips. NANOTECHNOLOGY 2016; 27:415501. [PMID: 27587351 DOI: 10.1088/0957-4484/27/41/415501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Traumatic injury to the central nervous system is a significant health problem. There is no effective treatment available partly because of the complexity of the system. Implementation of multifunctional micro- and nano-device based combinatorial therapeutics can provide biocompatible and tunable approaches to perform on-demand release of specific drugs. This can help the damaged cells to improve neuronal survival, regeneration of axons, and their reconnection to appropriate targets. Nano-topological features induced rapid cell growth is especially important towards the design of effective platforms to facilitate damaged neural circuit reconstruction. In this study, for the first time, feasibility of neuron-like PC12 cell growth on untreated and easy to prepare nanotextured surfaces has been carried out. The PC12 neuron-like cells were cultured on micro reactive ion etched nanotextured glass coverslips. The effect of nanotextured topology as physical cue for the growth of PC12 cells was observed exclusively, eliminating the possible influence(s) of the enhanced concentration of coated materials on the surface. The cell density was observed to increase by almost 200% on nanotextured coverslips compared to plain coverslips. The morphology study indicated that PC12 cell attachment and growth on the nanotextured substrates did not launch any apoptotic machinery of the cell. Less than 5% cells deformed and depicted condensed nuclei with apoptotic bodies on nanotextured surfaces which is typical for the normal cell handling and culture. Enhanced PC12 cell proliferation by such novel and easy to prepare substrates is not only attractive for neurite outgrowth and guidance, but may be used to increase the affinity of similar cancerous cells (ex: B35 neuroblastoma) and rapid proliferation thereafter-towards the development of combinatorial theranostics to diagnose and treat aggressive cancers like neuroblastoma.
Collapse
Affiliation(s)
- Muhymin Islam
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019, USA. Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76011, USA. Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | | |
Collapse
|
62
|
Marcus M, Karni M, Baranes K, Levy I, Alon N, Margel S, Shefi O. Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations. J Nanobiotechnology 2016; 14:37. [PMID: 27179923 PMCID: PMC4867999 DOI: 10.1186/s12951-016-0190-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Background The ability to direct and manipulate neuronal cells has important potential in therapeutics and neural network studies. An emerging approach for remotely guiding cells is by incorporating magnetic nanoparticles (MNPs) into cells and transferring the cells into magnetic sensitive units. Recent developments offer exciting possibilities of magnetic manipulations of MNPs-loaded cells by external magnetic fields. In the present study, we evaluated and characterized uptake properties for optimal loading of cells by MNPs. We examined the interactions between MNPs of different cores and coatings, with primary neurons and neuron-like cells. Results We found that uncoated-maghemite iron oxide nanoparticles maximally interact and penetrate into cells with no cytotoxic effect. We observed that the cellular uptake of the MNPs depends on the time of incubation and the concentration of nanoparticles in the medium. The morphology patterns of the neuronal cells were not affected by MNPs uptake and neurons remained electrically active. We theoretically modeled magnetic fluxes and demonstrated experimentally the response of MNP-loaded cells to the magnetic fields affecting cell motility. Furthermore, we successfully directed neurite growth orientation along regeneration. Conclusions Applying mechanical forces via magnetic mediators is a useful approach for biomedical applications. We have examined several types of MNPs and studied the uptake behavior optimized for magnetic neuronal manipulations. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0190-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michal Marcus
- Neuro-engineering lab, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan, Israel
| | - Moshe Karni
- Neuro-engineering lab, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan, Israel
| | - Koby Baranes
- Neuro-engineering lab, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan, Israel
| | - Itay Levy
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan, Israel
| | - Noa Alon
- Neuro-engineering lab, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan, Israel
| | - Shlomo Margel
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan, Israel
| | - Orit Shefi
- Neuro-engineering lab, Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel. .,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan, Israel.
| |
Collapse
|
63
|
André EM, Passirani C, Seijo B, Sanchez A, Montero-Menei CN. Nano and microcarriers to improve stem cell behaviour for neuroregenerative medicine strategies: Application to Huntington's disease. Biomaterials 2016; 83:347-62. [DOI: 10.1016/j.biomaterials.2015.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 12/22/2022]
|
64
|
|
65
|
Neubert J, Bräuer AU. Superparamagnetic iron oxide nanoparticles: promote neuronal regenerative capacity? Neural Regen Res 2015; 10:1568-9. [PMID: 26692842 PMCID: PMC4660738 DOI: 10.4103/1673-5374.165306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Jenni Neubert
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Anja U Bräuer
- Institute for Anatomy, Universitätsmedizin Rostock, Gertrudenstraße 9, 18057 Rostock, Germany
| |
Collapse
|
66
|
Paviolo C, Stoddart PR. Metallic nanoparticles for peripheral nerve regeneration: is it a feasible approach? Neural Regen Res 2015; 10:1065-6. [PMID: 26330826 PMCID: PMC4541234 DOI: 10.4103/1673-5374.160083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2015] [Indexed: 12/04/2022] Open
Affiliation(s)
- Chiara Paviolo
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Paul R Stoddart
- Industrial Research Institute Swinburne, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
67
|
Polak P, Shefi O. Nanometric agents in the service of neuroscience: Manipulation of neuronal growth and activity using nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1467-79. [DOI: 10.1016/j.nano.2015.03.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/05/2015] [Accepted: 03/15/2015] [Indexed: 11/29/2022]
|
68
|
Simkó M, Mattsson MO. Interactions between nanosized materials and the brain. Curr Med Chem 2015; 21:4200-14. [PMID: 25039776 PMCID: PMC4435026 DOI: 10.2174/0929867321666140716100449] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/04/2014] [Accepted: 07/11/2014] [Indexed: 12/21/2022]
Abstract
The current rapid development of nanotechnologies and engineered nanomaterials (ENM) will impact the society in a major fashion during the coming decades. This development also causes substantial safety concerns. Among the many promising applications of ENM, products that can be used for diagnosis and treatment of diseases, including conditions that affect the nervous system, are under development. ENM can pass the blood brain barrier (BBB) and accumulate within the brain. It seems that the nano-form rather than the bulk form of the chemicals pass the BBB, and that there is an inverse relationship between particle size and the ability to penetrate the BBB. Although translocation of ENM to the brain is possible during experimental conditions, the health relevance for real-life situations is far from clear. One major reason for this is that studies have been using nanoparticle concentrations that are far higher than the ones that can be expected during realistic exposures. However, very high exposure to the CNS can cause effects on neurotransmission, redox homeostasis and behavior. Available studies have been focusing on possible effects of the first generation of ENM. It will be necessary to study possible health effects also of expected novel sophisticated materials, independent of the outcome of present studies. The prospects for intended or targeted medical applications are promising since it has been shown that ENM can be made to pass the BBB and reach specific regions or cells within the brain.
Collapse
Affiliation(s)
| | - Mats-Olof Mattsson
- Health and Environment Department, Environmental Resources and Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria.
| |
Collapse
|
69
|
Alon N, Havdala T, Skaat H, Baranes K, Marcus M, Levy I, Margel S, Sharoni A, Shefi O. Magnetic micro-device for manipulating PC12 cell migration and organization. LAB ON A CHIP 2015; 15:2030-6. [PMID: 25792133 DOI: 10.1039/c5lc00035a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Directing neuronal migration and growth has an important impact on potential post traumatic therapies. Magnetic manipulation is an advantageous method for remotely guiding cells. In the present study, we have generated highly localized magnetic fields with controllable magnetic flux densities to manipulate neuron-like cell migration and organization at the microscale level. We designed and fabricated a unique miniaturized magnetic device composed of an array of rectangular ferromagnetic bars made of permalloy (Ni80Fe20), sputter-deposited onto glass substrates. The asymmetric shape of the magnets enables one to design a magnetic landscape with high flux densities at the poles. Iron oxide nanoparticles were introduced into PC12 cells, making the cells magnetically sensitive. First, we manipulated the cells by applying an external magnetic field. The magnetic force was strong enough to direct PC12 cell migration in culture. Based on time lapse observations, we analysed the movement of the cells and estimated the amount of MNPs per cell. We plated the uploaded cells on the micro-patterned magnetic device. The cells migrated towards the high magnetic flux zones and aggregated at the edges of the patterned magnets, corroborating that the cells with magnetic nanoparticles are indeed affected by the micro-magnets and attracted to the bars' magnetic poles. Our study presents an emerging method for the generation of pre-programmed magnetic micro-'hot spots' to locate and direct cellular growth, setting the stage for implanted magnetic devices.
Collapse
Affiliation(s)
- N Alon
- Faculty of Engineering, Bar Ilan University, Ramat Gan, 5290002, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Paviolo C, McArthur SL, Stoddart PR. Gold Nanorod-assisted Optical Stimulation of Neuronal Cells. J Vis Exp 2015:52566. [PMID: 25938822 PMCID: PMC4541599 DOI: 10.3791/52566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent studies have demonstrated that nerves can be stimulated in a variety of ways by the transient heating associated with the absorption of infrared light by water in neuronal tissue. This technique holds great potential for replacing or complementing standard stimulation techniques, due to the potential for increased localization of the stimulus and minimization of mechanical contact with the tissue. However, optical approaches are limited by the inability of visible light to penetrate deep into tissues. Moreover, thermal modelling suggests that cumulative heating effects might be potentially hazardous when multiple stimulus sites or high laser repetition rates are used. The protocol outlined below describes an enhanced approach to the infrared stimulation of neuronal cells. The underlying mechanism is based on the transient heating associated with the optical absorption of gold nanorods, which can cause triggering of neuronal cell differentiation and increased levels of intracellular calcium activity. These results demonstrate that nanoparticle absorbers can enhance and/or replace the process of infrared neural stimulation based on water absorption, with potential for future applications in neural prostheses and cell therapies.
Collapse
Affiliation(s)
- Chiara Paviolo
- Biotactical Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology;
| | - Sally L McArthur
- Biotactical Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology
| | - Paul R Stoddart
- Biotactical Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology
| |
Collapse
|
71
|
Han J, Kim B, Shin JY, Ryu S, Noh M, Woo J, Park JS, Lee Y, Lee N, Hyeon T, Choi D, Kim BS. Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells' therapeutic efficacy for myocardial infarction. ACS NANO 2015; 9:2805-19. [PMID: 25688594 DOI: 10.1021/nn506732n] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Electrophysiological phenotype development and paracrine action of mesenchymal stem cells (MSCs) are the critical factors that determine the therapeutic efficacy of MSCs for myocardial infarction (MI). In such respect, coculture of MSCs with cardiac cells has windowed a platform for cardiac priming of MSCs. Particularly, active gap junctional crosstalk of MSCs with cardiac cells in coculture has been known to play a major role in the MSC modification through coculture. Here, we report that iron oxide nanoparticles (IONPs) significantly augment the expression of connexin 43 (Cx43), a gap junction protein, of cardiomyoblasts (H9C2), which would be critical for gap junctional communication with MSCs in coculture for the generation of therapeutic potential-improved MSCs. MSCs cocultured with IONP-harboring H9C2 (cocultured MSCs: cMSCs) showed active cellular crosstalk with H9C2 and displayed significantly higher levels of electrophysiological cardiac biomarkers and a cardiac repair-favorable paracrine profile, both of which are responsible for MI repair. Accordingly, significantly improved animal survival and heart function were observed upon cMSC injection into rat MI models compared with the injection of unmodified MSCs. The present study highlights an application of IONPs in developing gap junctional crosstalk among the cells and generating cMSCs that exceeds the reparative potentials of conventional MSCs. On the basis of our finding, the potential application of IONPs can be extended in cell biology and stem cell-based therapies.
Collapse
Affiliation(s)
- Jin Han
- †School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea
| | | | - Jung-Youn Shin
- †School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea
| | - Seungmi Ryu
- §Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-744, Republic of Korea
| | - Myungkyung Noh
- †School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea
| | | | | | - Youjin Lee
- †School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea
- ∥Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-744, Republic of Korea
| | - Nohyun Lee
- ⊥School of Advanced Materials Engineering, Kookmin University, Seoul 136-702, Republic of Korea
| | - Taeghwan Hyeon
- †School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea
- ∥Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-744, Republic of Korea
| | | | - Byung-Soo Kim
- †School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea
- §Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-744, Republic of Korea
| |
Collapse
|
72
|
Neubert J, Wagner S, Kiwit J, Bräuer AU, Glumm J. New findings about iron oxide nanoparticles and their different effects on murine primary brain cells. Int J Nanomedicine 2015; 10:2033-49. [PMID: 25792834 PMCID: PMC4364595 DOI: 10.2147/ijn.s74404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physicochemical properties of superparamagnetic iron oxide nanoparticles (SPIOs) enable their application in the diagnostics and therapy of central nervous system diseases. However, since crucial information regarding side effects of particle–cell interactions within the central nervous system is still lacking, we investigated the influence of novel very small iron oxide particles or the clinically approved ferucarbotran or ferumoxytol on the vitality and morphology of brain cells. We exposed primary cell cultures of microglia and hippocampal neurons, as well as neuron–glia cocultures to varying concentrations of SPIOs for 6 and/or 24 hours, respectively. Here, we show that SPIO accumulation by microglia and subsequent morphological alterations strongly depend on the respective nanoparticle type. Microglial viability was severely compromised by high SPIO concentrations, except in the case of ferumoxytol. While ferumoxytol did not cause immediate microglial death, it induced severe morphological alterations and increased degeneration of primary neurons. Additionally, primary neurons clearly degenerated after very small iron oxide particle and ferucarbotran exposure. In neuron–glia cocultures, SPIOs rather stimulated the outgrowth of neuronal processes in a concentration- and particle-dependent manner. We conclude that the influence of SPIOs on brain cells not only depends on the particle type but also on the physiological system they are applied to.
Collapse
Affiliation(s)
- Jenni Neubert
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Susanne Wagner
- Institute for Radiology, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Jürgen Kiwit
- Clinic for Neurosurgery, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Anja U Bräuer
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Jana Glumm
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitaetsmedizin Berlin, Berlin, Germany ; Clinic for Neurosurgery, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| |
Collapse
|
73
|
Valdiglesias V, Kiliç G, Costa C, Fernández-Bertólez N, Pásaro E, Teixeira JP, Laffon B. Effects of iron oxide nanoparticles: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:125-48. [PMID: 25209650 DOI: 10.1002/em.21909] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/06/2014] [Indexed: 05/03/2023]
Abstract
Iron oxide nanoparticles (ION) with superparamagnetic properties hold great promise for use in various biomedical applications; specific examples include use as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Increasing potential applications raise concerns over their potential effects on human health. Nevertheless, very little is currently known about the toxicity associated with exposure to these nanoparticles at different levels of biological organization. This article provides an overview of recent studies evaluating ION cytotoxicity, genotoxicity, developmental toxicity and neurotoxicity. Although the results of these studies are sometimes controversial, they generally indicate that surface coatings and particle size seem to be crucial for the observed ION-induced effects, as they are critical determinants of cellular responses and intensity of effects, and influence potential mechanisms of toxicity. The studies also suggest that some ION are safe for certain biomedical applications, while other uses need to be considered more carefully. Overall, the available studies provide insufficient evidence to fully assess the potential risks for human health related to ION exposure. Additional research in this area is required including studies on potential long-term effects.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
74
|
Petters C, Dringen R. Accumulation of iron oxide nanoparticles by cultured primary neurons. Neurochem Int 2015; 81:1-9. [DOI: 10.1016/j.neuint.2014.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/03/2014] [Accepted: 12/09/2014] [Indexed: 01/13/2023]
|
75
|
Marcus M, Skaat H, Alon N, Margel S, Shefi O. NGF-conjugated iron oxide nanoparticles promote differentiation and outgrowth of PC12 cells. NANOSCALE 2015; 7:1058-66. [PMID: 25473934 DOI: 10.1039/c4nr05193a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The search for regenerative agents that promote neuronal differentiation and repair is of great importance. Nerve growth factor (NGF) which is an essential contributor to neuronal differentiation has shown high pharmacological potential for the treatment of central neurodegenerative diseases such as Alzheimer's and Parkinson's. However, growth factors undergo rapid degradation, leading to a short biological half-life. In our study, we describe a new nano-based approach to enhance the NGF activity resulting in promoted neuronal differentiation. We covalently conjugated NGF to iron oxide nanoparticles (NGF-NPs) and studied the effect of the novel complex on the differentiation of PC12 cells. We found that the NGF-NP treatment, at the same concentration as free NGF, significantly promoted neurite outgrowth and increased the complexity of the neuronal branching trees. Examination of neuronal differentiation gene markers demonstrated higher levels of expression in PC12 cells treated with the conjugated factor. By manipulating the NGF specific receptor, TrkA, we have demonstrated that NGF-NPs induce cell differentiation via the regular pathway. Importantly, we have shown that NGF-NPs undergo slower degradation than free NGF, extending their half-life and increasing NGF availability. Even a low concentration of conjugated NGF treatment has led to an effective response. We propose the use of the NGF-NP complex which has magnetic characteristics, also as a useful method to enhance NGF efficiency and activity, thus, paving the way for substantial neuronal repair therapeutics.
Collapse
Affiliation(s)
- M Marcus
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
| | | | | | | | | |
Collapse
|
76
|
Shin J, Lee KM, Lee JH, Lee J, Cha M. Magnetic manipulation of bacterial magnetic nanoparticle-loaded neurospheres. Integr Biol (Camb) 2014; 6:532-9. [PMID: 24638869 DOI: 10.1039/c3ib40195b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Specific targeting of cells to sites of tissue damage and delivery of high numbers of transplanted cells to lesion tissue in vivo are critical parameters for the success of cell-based therapies. Here, we report a promising in vitro model system for studying the homing of transplanted cells, which may eventually be applicable for targeted regeneration of damaged neurons in spinal cord injury. In this model system, neurospheres derived from human neuroblastoma SH-SY5Y cells labeled with bacterial magnetic nanoparticles were guided by a magnetic field and successfully accumulated near the focus site of the magnetic field. Our results demonstrate the effectiveness of using an in vitro model for testing bacterial magnetic nanoparticles to develop successful stem cell targeting strategies during fluid flow, which may ultimately be translated into in vivo targeted delivery of cells through circulation in various tissue-repair models.
Collapse
Affiliation(s)
- Jaeha Shin
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-744, South Korea
| | | | | | | | | |
Collapse
|
77
|
Hajikarimi Z, Khoei S, Khoee S, Mahdavi SR. Evaluation of the Cytotoxic Effects of PLGA Coated Iron Oxide Nanoparticles as a Carrier of 5- Fluorouracil and Mega-Voltage X-Ray Radiation in DU145 Prostate Cancer Cell Line. IEEE Trans Nanobioscience 2014; 13:403-8. [DOI: 10.1109/tnb.2014.2328868] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
78
|
Riggio C, Calatayud MP, Giannaccini M, Sanz B, Torres TE, Fernández-Pacheco R, Ripoli A, Ibarra MR, Dente L, Cuschieri A, Goya GF, Raffa V. The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1549-58. [DOI: 10.1016/j.nano.2013.12.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/23/2013] [Indexed: 12/15/2022]
|
79
|
Guan Y, Li M, Dong K, Ren J, Qu X. NIR-responsive upconversion nanoparticles stimulate neurite outgrowth in PC12 cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3655-3661. [PMID: 24839962 DOI: 10.1002/smll.201400612] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Nerve regeneration is of diagnostic importance in neuroscience in regards to the treatment of degenerative disease. Owing to the ability to release rare-earth ions and produce ROS during upconversion process, upconversion nanoparticles are first reported for promoting neurite outgrowth. Different charged coating materials which play a critical role in cell attachment, can further lead to different effects on cell differentiation.
Collapse
Affiliation(s)
- Yijia Guan
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | | | | | | | | |
Collapse
|
80
|
Jung IS, Kim HJ, Noh R, Kim SC, Kim CW. Effects of extremely low frequency magnetic fields on NGF induced neuronal differentiation of PC12 cells. Bioelectromagnetics 2014; 35:459-69. [DOI: 10.1002/bem.21861] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 04/25/2014] [Indexed: 12/21/2022]
Affiliation(s)
- In-Soo Jung
- College of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - Hyun-Jung Kim
- College of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - Ran Noh
- College of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - Soo-Chan Kim
- Department of Electrical Electronic and Control Engineering; Hankyong National University; Anseong-si Kyonggi-do Korea
| | - Chan-Wha Kim
- College of Life Sciences and Biotechnology; Korea University; Seoul Korea
| |
Collapse
|
81
|
Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A, Yan B. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 2014; 114:7740-81. [PMID: 24927254 PMCID: PMC4578874 DOI: 10.1021/cr400295a] [Citation(s) in RCA: 370] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qingxin Mu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
- Present address: Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas, 66047
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lingxin Chen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Hongyu Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, 30322, U.S.A
| | | | - Alexander Tropsha
- Laboratory for Molecular Modeling, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
| |
Collapse
|
82
|
Choi YK, Lee DH, Seo YK, Jung H, Park JK, Cho H. Stimulation of Neural Differentiation in Human Bone Marrow Mesenchymal Stem Cells by Extremely Low-Frequency Electromagnetic Fields Incorporated with MNPs. Appl Biochem Biotechnol 2014; 174:1233-1245. [DOI: 10.1007/s12010-014-1091-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/22/2014] [Indexed: 11/30/2022]
|
83
|
Petters C, Irrsack E, Koch M, Dringen R. Uptake and metabolism of iron oxide nanoparticles in brain cells. Neurochem Res 2014; 39:1648-60. [PMID: 25011394 DOI: 10.1007/s11064-014-1380-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 01/29/2023]
Abstract
Magnetic iron oxide nanoparticles (IONPs) are used for various applications in biomedicine, for example as contrast agents in magnetic resonance imaging, for cell tracking and for anti-tumor treatment. However, IONPs are also known for their toxic effects on cells and tissues which are at least in part caused by iron-mediated radical formation and oxidative stress. The potential toxicity of IONPs is especially important concerning the use of IONPs for neurobiological applications as alterations in brain iron homeostasis are strongly connected with human neurodegenerative diseases. Since IONPs are able to enter the brain, potential adverse consequences of an exposure of brain cells to IONPs have to be considered. This article describes the pathways that allow IONPs to enter the brain and summarizes the current knowledge on the uptake, the metabolism and the toxicity of IONPs for the different types of brain cells in vitro and in vivo.
Collapse
Affiliation(s)
- Charlotte Petters
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | | | | | | |
Collapse
|
84
|
Li M, Zhao C, Duan T, Ren J, Qu X. New insights into Alzheimer's disease amyloid inhibition: nanosized metallo-supramolecular complexes suppress aβ-induced biosynthesis of heme and iron uptake in PC12 cells. Adv Healthc Mater 2014; 3:832-6. [PMID: 24574275 DOI: 10.1002/adhm.201300470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/20/2013] [Indexed: 12/12/2022]
Abstract
Nanosized metallo-supramolecular compounds, [Ni2 L3 ](4+) and [Fe2 L3 ](4+) , can not only strongly inhibit Aβ aggregation but also reduce the peroxidase activity of Aβ-heme. Further studies demonstrate that through blocking the heme-binding site, these two compounds can suppress Aβ-induced biosynthesis of heme and iron uptake in PC12 cells. This work provides new insights into molecular mechanisms of Aβ inhibitors on Aβ-mediated neurotoxicity.
Collapse
Affiliation(s)
- Meng Li
- Laboratory of Chemical Biology; Division of Biological Inorganic Chemistry; State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology; Division of Biological Inorganic Chemistry; State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Taicheng Duan
- Laboratory of Chemical Biology; Division of Biological Inorganic Chemistry; State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; Changchun Jilin 130022 China
- National Analytical Research Center of Electrochemistry & Spectroscopy; Changchun Institute of Applied Chemistry; Chinese Academy of Science; Changchun Jilin 130022 China
| | - Jinsong Ren
- Laboratory of Chemical Biology; Division of Biological Inorganic Chemistry; State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology; Division of Biological Inorganic Chemistry; State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; Changchun Jilin 130022 China
| |
Collapse
|
85
|
Kim BM, You MH, Chen CH, Lee S, Hong Y, Hong Y, Kimchi A, Zhou XZ, Lee TH. Death-associated protein kinase 1 has a critical role in aberrant tau protein regulation and function. Cell Death Dis 2014; 5:e1237. [PMID: 24853415 PMCID: PMC4047864 DOI: 10.1038/cddis.2014.216] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/03/2014] [Accepted: 04/14/2014] [Indexed: 12/17/2022]
Abstract
The presence of tangles composed of phosphorylated tau is one of the neuropathological hallmarks of Alzheimer's disease (AD). Tau, a microtubule (MT)-associated protein, accumulates in AD potentially as a result of posttranslational modifications, such as hyperphosphorylation and conformational changes. However, it has not been fully understood how tau accumulation and phosphorylation are deregulated. In the present study, we identified a novel role of death-associated protein kinase 1 (DAPK1) in the regulation of the tau protein. We found that hippocampal DAPK1 expression is markedly increased in the brains of AD patients compared with age-matched normal subjects. DAPK1 overexpression increased tau protein stability and phosphorylation at multiple AD-related sites. In contrast, inhibition of DAPK1 by overexpression of a DAPK1 kinase-deficient mutant or by genetic knockout significantly decreased tau protein stability and abolished its phosphorylation in cell cultures and in mice. Mechanistically, DAPK1-enhanced tau protein stability was mediated by Ser71 phosphorylation of Pin1, a prolyl isomerase known to regulate tau protein stability, phosphorylation, and tau-related pathologies. In addition, inhibition of DAPK1 kinase activity significantly increased the assembly of MTs and accelerated nerve growth factor-mediated neurite outgrowth. Given that DAPK1 has been genetically linked to late onset AD, these results suggest that DAPK1 is a novel regulator of tau protein abundance, and that DAPK1 upregulation might contribute to tau-related pathologies in AD. Therefore, we offer that DAPK1 might be a novel therapeutic target for treating human AD and other tau-related pathologies.
Collapse
Affiliation(s)
- B M Kim
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M-H You
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - C-H Chen
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - S Lee
- 1] Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea [2] Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea
| | - Y Hong
- 1] Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea [2] Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea
| | - Y Hong
- 1] Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA [2] Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea [3] Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea
| | - A Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - X Z Zhou
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - T H Lee
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
86
|
Yuan XX, Yang LP, Yang ZL, Xiao WL, Sun HD, Wu GS, Luo HR. Effect of nigranoic acid on Ca²⁺ influx and its downstream signal mechanism in NGF-differentiated PC12 cells. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:725-731. [PMID: 24674947 DOI: 10.1016/j.jep.2014.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/12/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis has a long history of use as a famous traditional Chinese medicine. The plants of genus Schisandra, especially Schisandra neglecta, Schisandra rubriflora, and Schisandra sphaerandra are used in the same way as Schisandra chinensis in the folk medicine to treat insomnia, fatigue, increasing intelligence, and tranquilizing. Many studies showed that lignans were the major active components of Schisandra genus, whereas the bioactivity of abundant triterpenoids in Schisandra genus, such as nigranoic acid (SBB1, 3,4-secocycloartene triterpenoid), has not been examined yet in neuropathology. MATERIALS AND METHODS After treating with SBB1, intracellular Ca(2+) concentration was analyzed by Ca(2+) fluorescent indicator (Fluo-4 AM) in NGF-differentiated PC12 cells. Intracellular nitric oxide (NO) level was analyzed using NO fluorescent indicator (DAF-FM). The expression of extracellular signal regulated kinase 1 and 2 (ERK1/2) was analyzed by western blotting, and the temporal mRNA for BDNF and c-fos was analyzed using reverse transcription quantitative PCR. RESULT We found that SBB1 induced Ca(2+) influx in a time- and concentration-dependent manner, which was significantly attenuated in Ca(2+) free media. SBB1 promoted the intracellular NO production which depended on increasing cytoplasmic Ca(2+) level. Moreover, SBB1 stimulated activation of ERK1/2 through Ca(2+)-CaMKII pathway. In addition, we found that SBB1 increased the expression of BDNF and c-fos mRNA. CONCLUSION These results suggest that SBB1 is able to promote NO production and stimulate phosphorylation of ERK1/2 through Ca(2+) influx, further impact expression of BDNF and c-fos, which provides evidence for the effects of SBB1 that may be benefit to enhance mental and intellectual functions.
Collapse
Affiliation(s)
- Xiao-Xi Yuan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Li-Ping Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100039, China; Yunnan Institute of Traditional Chinese Medicine and Materia Medica, Kunming 650223, Yunnan, China
| | - Zhong-Lin Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei-Lie Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Gui-Sheng Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| |
Collapse
|
87
|
Ren F, Yang B, Cai J, Jiang Y, Xu J, Wang S. Toxic effect of zinc nanoscale metal-organic frameworks on rat pheochromocytoma (PC12) cells in vitro. JOURNAL OF HAZARDOUS MATERIALS 2014; 271:283-91. [PMID: 24637453 DOI: 10.1016/j.jhazmat.2014.02.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 05/10/2023]
Abstract
Metal-organic frameworks (MOFs) possess unique properties desirable for delivery of drugs and gaseous therapeutics, but their uncharacterized interactions with cells raise increasing concerns of their safety in such biomedical applications. We evaluated the adverse effects of zinc nanoscale MOFs on the cell morphology, cytoskeleton, cell viability and expression of neurotrophin signaling pathway-associated GAP-43 protein in rat pheochromocytoma PC12 cells. At the concentration of 25 μg/ml, zinc MOFs did not significantly affect morphology, viability and membrane integrity of the cells. But at higher concentrations (over 100 μg/ml), MOFs exhibited a time- and concentration-dependent cytotoxicity, indicating their entry into the cells via endocytosis where they release Zn(2+) into the cytosol to cause increased intracellular concentration of Zn(2+). We demonstrated that the toxicity of MOFs was associated with a disrupted cellular zinc homeostasis and down-regulation of GAP-43 protein, which might be the underlying mechanism for the improved differentiation in PC12 cells. These findings highlight the importance of cytotoxic evaluation of the MOFs before their biomedical application.
Collapse
Affiliation(s)
- Fei Ren
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Baochun Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing Cai
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yaodong Jiang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jun Xu
- Department of Health Economy Administration, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shan Wang
- Department of Pharmacy, Winthrop University Hospital, Mineola, NY 11501, USA
| |
Collapse
|
88
|
Kishore A, Biswas K, N VR, Shunmugam R, Sarma JD. Functionalized single walled carbon nanotubes facilitate efficient differentiation of neuroblastoma cells in vitro. RSC Adv 2014. [DOI: 10.1039/c4ra09540e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single-walled carbon nanotubes (SWNTs) have been increasingly used as scaffolds for neuronal growth and differentiation.
Collapse
Affiliation(s)
- Abhinoy Kishore
- Department of Biological Sciences
- Indian Institute of Science Education and Research-Kolkata (IISER-K)
- Nadia, India
| | - Kaushiki Biswas
- Department of Biological Sciences
- Indian Institute of Science Education and Research-Kolkata (IISER-K)
- Nadia, India
| | - Vijaykameswara Rao N
- Polymer Research Center
- Department of Chemical Sciences
- Indian Institute of Science Education and Research-Kolkata (IISER-K)
- Nadia, India
| | - Raja Shunmugam
- Polymer Research Center
- Department of Chemical Sciences
- Indian Institute of Science Education and Research-Kolkata (IISER-K)
- Nadia, India
| | - Jayasri Das Sarma
- Department of Biological Sciences
- Indian Institute of Science Education and Research-Kolkata (IISER-K)
- Nadia, India
| |
Collapse
|
89
|
Tiwari MN, Agarwal S, Bhatnagar P, Singhal NK, Tiwari SK, Kumar P, Chauhan LKS, Patel DK, Chaturvedi RK, Singh MP, Gupta KC. Nicotine-encapsulated poly(lactic-co-glycolic) acid nanoparticles improve neuroprotective efficacy against MPTP-induced parkinsonism. Free Radic Biol Med 2013; 65:704-718. [PMID: 23933227 DOI: 10.1016/j.freeradbiomed.2013.07.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/02/2013] [Accepted: 07/31/2013] [Indexed: 11/24/2022]
Abstract
For some instances of Parkinson disease (PD), current evidence in the literature is consistent with reactive oxygen species being involved in the etiology of the disease. The management of PD is still challenging owing to its ambiguous etiology and lack of permanent cure. Because nicotine offers neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism, the neuroprotective efficacy of nicotine-encapsulated poly(lactic-co-glycolic) acid (PLGA) nanoparticles and the underlying mechanism of improved efficacy, if any, over bulk nicotine were assessed in this study. The selected indicators of oxidative stress, dopaminergic neurodegeneration and apoptosis, were measured in both in vitro and rodent models of parkinsonism in the presence or absence of "nanotized" or bulk nicotine. The levels of dopamine and its metabolites were measured in the striatum, nicotine and its metabolite in the nigrostriatal tissues while the immunoreactivities of tyrosine hydroxylase (TH), metallothionein-III (MT-III), inducible nitric oxide synthase (iNOS) and microglial activation were checked in the substantia nigra of controls and treated mice. GSTA4-4, heme oxygenase (HO)-1, tumor suppressor protein 53 (p53), caspase-3, lipid peroxidation (LPO), and nitrite levels were measured in the nigrostriatal tissues. Nicotine-encapsulated PLGA nanoparticles improved the endurance of TH-immunoreactive neurons and the number of fiber outgrowths and increased the mRNA expression of TH, neuronal cell adhesion molecule, and growth-associated protein-43 over bulk against 1-methyl-4-phenyl pyridinium ion-induced degeneration in the in vitro model. MPTP reduced TH immunoreactivity and levels of dopamine and its metabolites and increased microglial activation, expression of GSTA4-4, iNOS, MT-III, HO-1, p53, and caspase-3, and levels of nitrite and LPO. Whereas both bulk nicotine and nicotine-encapsulated PLGA nanoparticles modulated the changes toward controls, the modulation was more pronounced in nicotine-encapsulated PLGA nanoparticle-treated parkinsonian mice. The levels of nicotine and cotinine were elevated in nicotine-encapsulated PLGA nanoparticle-treated PD mouse brain compared with bulk. The results obtained from this study demonstrate that nanotization of nicotine improves neuroprotective efficacy by enhancing its bioavailability and subsequent modulation in the indicators of oxidative stress and apoptosis.
Collapse
Affiliation(s)
| | - Swati Agarwal
- CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, UP, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Priyanka Bhatnagar
- CSIR-Institute of Genomics and Integrative Biology, CSIR, Delhi 110 007, India
| | | | - Shashi Kant Tiwari
- CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, UP, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Pradeep Kumar
- CSIR-Institute of Genomics and Integrative Biology, CSIR, Delhi 110 007, India
| | | | | | - Rajnish Kumar Chaturvedi
- CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, UP, India; Academy of Scientific and Innovative Research (AcSIR), India.
| | | | - Kailash Chand Gupta
- CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, UP, India; CSIR-Institute of Genomics and Integrative Biology, CSIR, Delhi 110 007, India.
| |
Collapse
|
90
|
Cho H, Choi YK, Lee DH, Park HJ, Seo YK, Jung H, Kim SC, Kim SM, Park JK. Effects of magnetic nanoparticle-incorporated human bone marrow-derived mesenchymal stem cells exposed to pulsed electromagnetic fields on injured rat spinal cord. Biotechnol Appl Biochem 2013; 60:596-602. [DOI: 10.1002/bab.1109] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/13/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Hyunjin Cho
- Research Institute of Biotechnology; Dongguk University; Seoul Korea
| | - Yun-Kyong Choi
- Department of Medical Biotechnology; Dongguk University; Seoul Korea
| | - Dong Heon Lee
- Advanced Functional Nanohybrid Material Lab, Department of Chemistry; Dongguk University; Seoul Korea
| | - Hee Jung Park
- Department of Medical Biotechnology; Dongguk University; Seoul Korea
| | - Young-Kwon Seo
- Research Institute of Biotechnology; Dongguk University; Seoul Korea
- Department of Medical Biotechnology; Dongguk University; Seoul Korea
| | - Hyun Jung
- Advanced Functional Nanohybrid Material Lab, Department of Chemistry; Dongguk University; Seoul Korea
- Department of Energy and Materials Engineering; Dongguk University; Seoul Korea
| | - Soo-Chan Kim
- Graduate School of Bio & Information Technology; Hankyong National University; Anseong-si Kyonggi-do Korea
| | - Sung-Min Kim
- Department of Medical Biotechnology; Dongguk University; Seoul Korea
| | - Jung-Keug Park
- Research Institute of Biotechnology; Dongguk University; Seoul Korea
- Department of Medical Biotechnology; Dongguk University; Seoul Korea
| |
Collapse
|
91
|
Shamshi Hassan M, Amna T, Hwang I, Khil MS. One-step facile construction of high aspect ratio Fe3O4 decorated CNFs with distinctive porous morphology: Potential multiuse expectations. Colloids Surf B Biointerfaces 2013; 106:170-5. [DOI: 10.1016/j.colsurfb.2013.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
92
|
Amna T, Hassan MS, Van Ba H, Khil MS, Lee HK, Hwang I. Electrospun Fe3O4/TiO2 hybrid nanofibers and their in vitro biocompatibility: Prospective matrix for satellite cell adhesion and cultivation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:707-13. [DOI: 10.1016/j.msec.2012.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/28/2012] [Accepted: 10/28/2012] [Indexed: 11/16/2022]
|
93
|
Calatayud MP, Riggio C, Raffa V, Sanz B, Torres TE, Ibarra MR, Hoskins C, Cuschieri A, Wang L, Pinkernelle J, Keilhoff G, Goya GF. Neuronal cells loaded with PEI-coated Fe3O4 nanoparticles for magnetically guided nerve regeneration. J Mater Chem B 2013; 1:3607-3616. [DOI: 10.1039/c3tb20336k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
94
|
Pan Y, Du X, Zhao F, Xu B. Magnetic nanoparticles for the manipulation of proteins and cells. Chem Soc Rev 2012; 41:2912-42. [PMID: 22318454 DOI: 10.1039/c2cs15315g] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the rapidly developing areas of nanobiotechnology, magnetic nanoparticles (MNPs) are one type of the most well-established nanomaterials because of their biocompatibility and the potential applications as alternative contrast enhancing agents for magnetic resonance imaging (MRI). While the development of MNPs as alternative contrast agents for MRI application has moved quickly to testing in animal models and clinical trials, other applications of biofunctional MNPs have been explored extensively at the stage of qualitative or conceptual demonstration. In this critical review, we summarize the development of two straightforward applications of biofunctional MNPs--manipulating proteins and manipulating cells--in the last five years or so and hope to provide a relatively comprehensive assessment that may help the future developments. Specifically, we start with the examination of the strategy for the surface functionalization of MNPs because the applications of MNPs essentially depend on the molecular interactions between the functional molecules on the MNPs and the intended biological targets. Then, we discuss the use of MNPs for manipulating proteins since protein interactions are critical for biological functions. Afterwards, we evaluate the development of the use of MNPs to manipulate cells because the response of MNPs to a magnetic field offers a unique way to modulate cellular behavior in a non-contact or "remote" mode (i.e. the magnet exerts force on the cells without direct contact). Finally, we provide a perspective on the future directions and challenges in the development of MNPs for these two applications. By reviewing the examples of the design and applications of biofunctional MNPs, we hope that this article will provide a reference point for the future development of MNPs that address the present challenges and lead to new opportunities in nanomedicine and nanobiotechnology (137 references).
Collapse
Affiliation(s)
- Yue Pan
- Department of Chemistry, Brandeis University, 415 South St, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
95
|
GhoshMitra S, Diercks DR, Mills NC, Hynds DL, Ghosh S. Role of engineered nanocarriers for axon regeneration and guidance: current status and future trends. Adv Drug Deliv Rev 2012; 64:110-25. [PMID: 22240258 DOI: 10.1016/j.addr.2011.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/28/2011] [Accepted: 12/22/2011] [Indexed: 02/07/2023]
Abstract
There are approximately 1.5 million people who experience traumatic injuries to the brain and 265,000 who experience traumatic injuries to the spinal cord each year in the United States. Currently, there are few effective treatments for central nervous system (CNS) injuries because the CNS is refractory to axonal regeneration and relatively inaccessible to many pharmacological treatments. Smart, remotely tunable, multifunctional micro- and nanocarriers hold promise for delivering treatments to the CNS and targeting specific neurons to enhance axon regeneration and synaptogenesis. Furthermore, assessing the efficacy of treatments could be enhanced by biocompatible nanovectors designed for imaging in vivo. Recent developments in nanoengineering offer promising alternatives for designing biocompatible micro- and nanovectors, including magnetic nanostructures, carbon nanotubes, and quantum dot-based systems for controlled release of therapeutic and diagnostic agents to targeted CNS cells. This review highlights recent achievements in the development of smart nanostructures to overcome the existing challenges for treating CNS injuries.
Collapse
|
96
|
Xu C, Mu L, Roes I, Miranda-Nieves D, Nahrendorf M, Ankrum JA, Zhao W, Karp JM. Nanoparticle-based monitoring of cell therapy. NANOTECHNOLOGY 2011; 22:494001. [PMID: 22101191 PMCID: PMC3334527 DOI: 10.1088/0957-4484/22/49/494001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exogenous cell therapy aims to replace/repair diseased or dysfunctional cells and promises to revolutionize medicine by restoring tissue and organ function. To develop effective cell therapy, the location, distribution and long-term persistence of transplanted cells must be evaluated. Nanoparticle (NP) based imaging technologies have the potential to track transplanted cells non-invasively. Here we summarize the most recent advances in NP-based cell tracking with emphasis on (1) the design criteria for cell tracking NPs, (2) protocols for cell labeling, (3) a comparison of available imaging modalities and their corresponding contrast agents, (4) a summary of preclinical studies on NP-based cell tracking and finally (5) perspectives and future directions.
Collapse
Affiliation(s)
- Chenjie Xu
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Luye Mu
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Isaac Roes
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - David Miranda-Nieves
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - James A Ankrum
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Weian Zhao
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Jeffrey M Karp
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Harvard-MIT, Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA 02139, USA
| |
Collapse
|
97
|
Rivet CJ, Yuan Y, Borca-Tasciuc DA, Gilbert RJ. Altering iron oxide nanoparticle surface properties induce cortical neuron cytotoxicity. Chem Res Toxicol 2011; 25:153-61. [PMID: 22111864 DOI: 10.1021/tx200369s] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Superparamagnetic iron oxide nanoparticles, with diameters in the range of a few tens of nanometers, display the ability to cross the blood-brain barrier and are envisioned as diagnostic and therapeutic tools in neuro-medicine. However, despite the numerous applications being explored, insufficient information is available on their potential toxic effect on neurons. While iron oxide has been shown to pose a decreased risk of toxicity, surface functionalization, often employed for targeted delivery, can significantly alter the biological response. This aspect is addressed in the present study, which investigates the response of primary cortical neurons to iron oxide nanoparticles with coatings frequently used in biomedical applications: aminosilane, dextran, and polydimethylamine. Prior to administering the particles to neuronal cultures, each particle type was thoroughly characterized to assess the (1) size of individual nanoparticles, (2) concentration of the particles in solution, and (3) agglomeration size and morphology. Culture results show that polydimethylamine functionalized nanoparticles induce cell death at all concentrations tested by swift and complete removal of the plasma membrane. Aminosilane coated particles affected metabolic activity only at higher concentrations while leaving the membrane intact, and dextran-coated nanoparticles partially altered viability at higher concentrations. These findings suggest that nanoparticle characterization and primary cell-based cytotoxicity evaluation should be completed prior to applying nanomaterials to the nervous system.
Collapse
Affiliation(s)
- Christopher J Rivet
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180-3590, United States
| | | | | | | |
Collapse
|
98
|
Skaat H, Ziv-Polat O, Shahar A, Margel S. Enhancement of the growth and differentiation of nasal olfactory mucosa cells by the conjugation of growth factors to functional nanoparticles. Bioconjug Chem 2011; 22:2600-10. [PMID: 22029397 DOI: 10.1021/bc200454k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Growth factors are critical components in the tissue engineering approach. Basic fibroblast growth factor (bFGF), a representative growth factor, stimulates the cellular functions of various cells and has been used extensively for the repair and regeneration of tissues. The in vivo half-life time of free bFGF is short, about 3-10 min, due to rapid enzymatic degradation. Stabilization of the bFGF was accomplished by the covalent or physical conjugation of this factor to fluorescent maghemite (γ-Fe(2)O(3)) nanoparticles. In the present study, nasal olfactory mucosa (NOM) cells from adult rats were cultured in suspension on chitosan microcarriers (MCs) in the presence of the nonconjugated or bFGF-conjugated nanoparticles, or the free factor. The floating cells/nonconjugated, conjugated, or free bFGF/MCs aggregates were then seeded in a viscous gel. In this manuscript, we are the first to report that the stabilization of the factor by its conjugation to these nanoparticles significantly improved NOM cell-proliferation properties (migration, growth, and differentiation), compared to the same concentration, or even five times higher, of the free factor. This novel approach may significantly contribute to the advancement of the tissue engineering field.
Collapse
Affiliation(s)
- Hadas Skaat
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat-Gan, Israel
| | | | | | | |
Collapse
|
99
|
Zhang Y, Xu Y, Li Z, Chen T, Lantz SM, Howard PC, Paule MG, Slikker W, Watanabe F, Mustafa T, Biris AS, Ali SF. Mechanistic toxicity evaluation of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC12 cells. ACS NANO 2011; 5:7020-7033. [PMID: 21866971 DOI: 10.1021/nn2016259] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We investigated and compared the concentration-dependent cytotoxicity of single-walled carbon nanotubes (SWCNTs) and SWCNTs functionalized with polyethylene glycol (SWCNT-PEGs) in neuronal PC12 cells at the biochemical, cellular, and gene expressional levels. SWCNTs elicited cytotoxicity in a concentration-dependent manner, and SWCNT-PEGs exhibited less cytotoxic potency than uncoated SWCNTs. Reactive oxygen species (ROS) were generated in both a concentration- and surface coating-dependent manner after exposure to these nanomaterials, indicating different oxidative stress mechanisms. More specifically, gene expression analysis showed that the genes involved in oxidoreductases and antioxidant activity, nucleic acid or lipid metabolism, and mitochondria dysfunction were highly represented. Interestingly, alteration of the genes is also surface coating-dependent with a good correlation with the biochemical data. These findings suggest that surface functionalization of SWCNTs decreases ROS-mediated toxicological response in vitro.
Collapse
Affiliation(s)
- Yongbin Zhang
- National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|