51
|
Zhang B, Jiang J, Yuan Y, Guan Y. Influence of Nucleotide-biased Fluorescence Emissions of SYBR Green II on the Result Consistence of Rolling Circle Amplification. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9223-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
52
|
Lee J, Le QV, Yang G, Oh YK. Cas9-edited immune checkpoint blockade PD-1 DNA polyaptamer hydrogel for cancer immunotherapy. Biomaterials 2019; 218:119359. [DOI: 10.1016/j.biomaterials.2019.119359] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 07/07/2019] [Accepted: 07/14/2019] [Indexed: 01/15/2023]
|
53
|
Xu Z, Ni R, Chen Y. Targeting breast cancer stem cells by a self-assembled, aptamer-conjugated DNA nanotrain with preloading doxorubicin. Int J Nanomedicine 2019; 14:6831-6842. [PMID: 31695364 PMCID: PMC6717853 DOI: 10.2147/ijn.s200482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/15/2019] [Indexed: 12/30/2022] Open
Abstract
Background Cancer relapse and metastasis is an obstacle to the treatment of breast cancer. Breast cancer stem cells (BCSCs), which can evade the killing effect of traditional chemotherapies, such as doxorubicin (DOX), may contribute to cancer development. Therefore, it is necessary to develop novel drugs that can target and eliminate BCSCs. While multiple strategies have been conceived, they are normally limited by the low drug loading capacity. Purpose An aptamer-conjugated DNA nanotrain TA6NT-AKTin-DOX, which consists of a CD44 aptamer TA6, DNA building blocks M1 and M2 conjugated with an AKT inhibitor peptide AKTin individually and DOX, was designed. Methods This DNA nanotrain was prepared through hybridization chain reactionand this highly ordered DNA duplex has plenty of sites where DOX and AKTin can be intercalated or anchored. By performing on MCF-7 BCSCs and tumors by xenografting BCSCs into nude mice, efficacy of the newly prepared drug was evaluated and compared with that of free DOX and various DNA nanotrains. Results TA6NT-AKTin-DOX showed better efficacy both in vitro and in vivo. To some extent, the enhanced efficacy could be attributed to the targeting effect of TA6 and the high drug loading capacity of the nanotrain (~20 DOX molecules). Besides, a synergistic response was demonstrated by combining DOX with AKTin, probably due to that the anchored AKTin can reverse the drug resistance of BCSCs including apoptosis resistance and ABC transporters overexpression via the AKT signaling pathway. Conclusion The aptamer-conjugated DNA nanotrain TA6NT-AKTin-DOX demonstrated its targeting capability to BCSCs.
Collapse
Affiliation(s)
- Zhiyuan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Ronghua Ni
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China.,State Key Laboratory of Reproductive Medicine, Nanjing 210029, People's Republic of China
| |
Collapse
|
54
|
Joffroy B, Uca YO, Prešern D, Doye JPK, Schmidt TL. Rolling circle amplification shows a sinusoidal template length-dependent amplification bias. Nucleic Acids Res 2019; 46:538-545. [PMID: 29237070 PMCID: PMC5778537 DOI: 10.1093/nar/gkx1238] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/30/2017] [Indexed: 01/29/2023] Open
Abstract
Biophysical properties of DNA such as its longitudinal and torsional persistence length govern many processes and phenomena in biology, DNA nanotechnology and biotechnology. It has, for example, long been known that the circularization efficiency of short DNA fragments shows a periodic pattern where fragments with integer helical turns circularize much more efficiently than those with odd helical half turns due to stronger stacking of duplex ends. Small DNA circles can serve as templates for rolling circle amplification (RCA), which is a common and extremely robust amplification mechanism for nucleic acids. We discovered a strong template length-dependent amplification efficiency bias of RCA with the same periodicity as B-DNA. However, stacking cannot explain the mechanism behind this bias as the presence of the polymerase in the bifurcation fork inhibits base stacking of ends. Instead, coarse-grained molecular dynamics simulations imply that different amplification efficiencies come from a varying fraying probability of the last two downstream base pairs. We conclude that an increased strain-promoted fraying probability can increase the polymerization rate compared to a relaxed template.
Collapse
Affiliation(s)
- Bastian Joffroy
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
| | - Yavuz O Uca
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
| | - Domen Prešern
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Jonathan P K Doye
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Thorsten L Schmidt
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany.,B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
55
|
Citartan M, Kaur H, Presela R, Tang TH. Aptamers as the chaperones (Aptachaperones) of drugs-from siRNAs to DNA nanorobots. Int J Pharm 2019; 567:118483. [PMID: 31260780 DOI: 10.1016/j.ijpharm.2019.118483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Abstract
Aptamers, nucleic acid ligands that are specific against their corresponding targets are increasingly employed in a variety of applications including diagnostics and therapeutics. The specificity of the aptamers against their targets is also used as the basis for the formulation of the aptamer-based drug delivery system. In this review, we aim to provide an overview on the chaperoning roles of aptamers in acting as the cargo or load carriers, delivering contents to the targeted sites via cell surface receptors. Internalization of the aptamer-biomolecule conjugates via receptor-mediated endocytosis and the strategies to augment the rate of endocytosis are underscored. The cargos chaperoned by aptamers, ranging from siRNAs to DNA origami are illuminated. Possible impediments to the aptamer-based drug deliveries such as susceptibility to nuclease resistance, potentiality for immunogenicity activation, tumor heterogeneity are speculated and the corresponding amendment strategies to address these shortcomings are discussed. We prophesy that the future of the aptamer-based drug delivery will take a trajectory towards DNA nanorobot-based assay.
Collapse
Affiliation(s)
- Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Harleen Kaur
- Aurobindo Biologics, Biologics R&D Center, Unit-17, Industrial Area, Survey No: 77 & 78, Indrakaran Village, Kandi(Mandal), Sangareddy (District), Hyderabad 502329, India
| | - Ravinderan Presela
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
56
|
Kim J, Jang D, Park H, Jung S, Kim DH, Kim WJ. Functional-DNA-Driven Dynamic Nanoconstructs for Biomolecule Capture and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707351. [PMID: 30062803 DOI: 10.1002/adma.201707351] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The discovery of sequence-specific hybridization has allowed the development of DNA nanotechnology, which is divided into two categories: 1) structural DNA nanotechnology, which utilizes DNA as a biopolymer; and 2) dynamic DNA nanotechnology, which focuses on the catalytic reactions or displacement of DNA structures. Recently, numerous attempts have been made to combine DNA nanotechnologies with functional DNAs such as aptamers, DNAzymes, amplified DNA, polymer-conjugated DNA, and DNA loaded on functional nanoparticles for various applications; thus, the new interdisciplinary research field of "functional DNA nanotechnology" is initiated. In particular, a fine-tuned nanostructure composed of functional DNAs has shown immense potential as a programmable nanomachine by controlling DNA dynamics triggered by specific environments. Moreover, the programmability and predictability of functional DNA have enabled the use of DNA nanostructures as nanomedicines for various biomedical applications, such as cargo delivery and molecular drugs via stimuli-mediated dynamic structural changes of functional DNAs. Here, the concepts and recent case studies of functional DNA nanotechnology and nanostructures in nanomedicine are reviewed, and future prospects of functional DNA for nanomedicine are indicated.
Collapse
Affiliation(s)
- Jinhwan Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
| | - Donghyun Jang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hyeongmok Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon, 57922, Korea
| | - Won Jong Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| |
Collapse
|
57
|
Alshaer W, Hillaireau H, Fattal E. Aptamer-guided nanomedicines for anticancer drug delivery. Adv Drug Deliv Rev 2018; 134:122-137. [PMID: 30267743 DOI: 10.1016/j.addr.2018.09.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 02/08/2023]
Abstract
Aptamers are versatile nucleic acid-based macromolecules characterized by their high affinity and specificity to a specific target. Taking advantage of such binding properties, several aptamers have been selected to bind tumor biomarkers and have been used as targeting ligands for the functionalization of nanomedicines. Different functionalization methods have been used to link aptamers to the surface drug nanocarriers. The pre-clinical data of such nanomedicines overall show an enhanced and selective delivery of therapeutic payloads to cancer cells, thereby accelerating steps towards more effective therapeutic systems. This review describes the current advances in the use of aptamers as targeting moieties for the delivery of therapeutic and imaging agents to tumors by conjugation to organic and inorganic nanocarriers.
Collapse
|
58
|
Zhang Z, Liu S, Zhou T, Zhang H, Wang F, Zhang G, Wang X, Liu T. Salt-Induced Assembly Transformation of DNA-AuNP Conjugates Based on RCA Origami: From Linear Arrays to Nanorings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8904-8909. [PMID: 29945443 DOI: 10.1021/acs.langmuir.8b01505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We developed a simple method to adjust the structural transformation of DNA-gold nanoparticles assemblies from linear arrays to nanorings by increasing salt concentrations. A DNA nanoladder constructing from RCA origami acted as templates to assemble periodic AuNPs arrays by a terminal thiol located on staple oligonucleotides. The linear AuNPs arrays could be transformed into nanorings only by changing the concentration of NaCl aqueous solution during the assembly process. It was proven that the electrostatic repulsion, being asymmetrically diminished by the high concentration of NaCl, caused the formation of nanoring architectures.
Collapse
Affiliation(s)
- Zhiqing Zhang
- College of Science , China University of Petroleum , Qingdao 266580 , China
| | - Shuzhen Liu
- College of Science , China University of Petroleum , Qingdao 266580 , China
| | - Ting Zhou
- College of Science , China University of Petroleum , Qingdao 266580 , China
| | - Hongzhi Zhang
- College of Science , China University of Petroleum , Qingdao 266580 , China
| | - Fang Wang
- College of Science , China University of Petroleum , Qingdao 266580 , China
| | - Guodong Zhang
- College of Science , China University of Petroleum , Qingdao 266580 , China
| | - Xiufeng Wang
- College of Science , China University of Petroleum , Qingdao 266580 , China
| | - Tingting Liu
- College of Science , China University of Petroleum , Qingdao 266580 , China
| |
Collapse
|
59
|
Vandghanooni S, Eskandani M, Barar J, Omidi Y. Bispecific therapeutic aptamers for targeted therapy of cancer: a review on cellular perspective. J Mol Med (Berl) 2018; 96:885-902. [PMID: 30056527 DOI: 10.1007/s00109-018-1669-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 06/03/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022]
Abstract
Aptamers (Aps), as short single-strand nucleic acids, can bind to their corresponding molecular targets with the high affinity and specificity. In comparison with the monoclonal antibodies (mAbs) and peptides, unique physicochemical and biological characteristics of Aps make them excellent targeting agents for different types of cancer molecular markers (CMMs). Much attention has been paid to the Ap-based multifunctional chimeric and therapeutic systems, which provide promising outcomes in the targeted therapy of various formidable diseases, including malignancies. In the Ap-based chimeric systems, a targeting Ap is conjugated to another therapeutic molecule (e.g., siRNA/miRNA, Ap, toxins, chemotherapeutic agents, DNAzyme/ribozymes) with a capability of binding to a specific cell surface receptor at the desired target site. Having been engineered as multifunctional nanosystems (NSs), Ap-based hybrid scaffolds can be used to concurrently target multiple markers/pathways in cancerous cells, causing drastic inhibitory effects on the growth and the progression of tumor cells. Multi/bispecific Aps composed of two/more Aps provide a versatile tool for the optimal and active targeting of cell surface receptor(s) with markedly high affinity and avidity. Targeting the optimum activity of key receptors and dominant signaling pathways in the activation of immunity, the multi/bispecific Ap-based therapeutics can also be used to enhance the antitumor activity of the immune system. Further, the bispecific systems can be designed to induce cytotoxicity in a heterogeneous population of cancer cells with different CMMs. In this review, we provide some important insights into the construction and applications of the Ap-based chimeric NSs and discuss the multifunctional Ap chimera and their effects on the signaling pathways in cancer.
Collapse
Affiliation(s)
- Somayeh Vandghanooni
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
60
|
Lei Y, Qiao Z, Tang J, He X, Shi H, Ye X, Yan L, He D, Wang K. DNA nanotriangle-scaffolded activatable aptamer probe with ultralow background and robust stability for cancer theranostics. Theranostics 2018; 8:4062-4071. [PMID: 30128036 PMCID: PMC6096399 DOI: 10.7150/thno.24683] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/16/2018] [Indexed: 12/23/2022] Open
Abstract
Activatable aptamers have emerged as promising molecular tools for cancer theranostics, but reported monovalent activatable aptamer probes remain problematic due to their unsatisfactory affinity and poor stability. To address this problem, we designed a novel theranostic strategy of DNA nanotriangle-scaffolded multivalent split activatable aptamer probe (NTri-SAAP), which combines advantages of programmable self-assembly, multivalent effect and target-activatable architecture. Methods: NTri-SAAP was assembled by conjugating multiple split activatable aptamer probes (SAAPs) on a planar DNA nanotriangle scaffold (NTri). Leukemia CCRF-CEM cell line was used as the model to investigate its detection, imaging and therapeutic effect both in vitro and in vivo. Binding affinity and stability were evaluated using flow cytometry and nuclease resistance assays. Results: In the free state, NTri-SAAP was stable with quenched signals and loaded doxorubicin, while upon binding to target cells, it underwent a conformation change with fluorescence activation and drug release after internalization. Compared to monovalent SAAP, NTri-SAAP displayed greatly-improved target binding affinity, ultralow nonspecific background and robust stability in harsh conditions, thus affording contrast-enhanced tumor imaging within an extended time window of 8 h. Additionally, NTri-SAAP increased doxorubicin loading capacity by ~5 times, which further realized a high anti-tumor efficacy in vivo with 81.95% inhibition but no obvious body weight loss. Conclusion: These results strongly suggest that the biocompatible NTri-SAAP strategy would provide a promising platform for precise and high-quality theranostics.
Collapse
|
61
|
Zhang Z, Zhang H, Wang F, Zhang G, Zhou T, Wang X, Liu S, Liu T. DNA Block Macromolecules Based on Rolling Circle Amplification Act as Scaffolds to Build Large-Scale Origami Nanostructures. Macromol Rapid Commun 2018; 39:e1800263. [PMID: 29952041 DOI: 10.1002/marc.201800263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/15/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Zhiqing Zhang
- College of Science; China University of Petroleum; No. 66, West Changjiang Road Qingdao 266580 China
| | - Hongzhi Zhang
- College of Science; China University of Petroleum; No. 66, West Changjiang Road Qingdao 266580 China
| | - Fang Wang
- College of Science; China University of Petroleum; No. 66, West Changjiang Road Qingdao 266580 China
| | - Guodong Zhang
- College of Science; China University of Petroleum; No. 66, West Changjiang Road Qingdao 266580 China
| | - Ting Zhou
- College of Science; China University of Petroleum; No. 66, West Changjiang Road Qingdao 266580 China
| | - Xiufeng Wang
- College of Science; China University of Petroleum; No. 66, West Changjiang Road Qingdao 266580 China
| | - Shuzhen Liu
- College of Science; China University of Petroleum; No. 66, West Changjiang Road Qingdao 266580 China
| | - Tingting Liu
- College of Science; China University of Petroleum; No. 66, West Changjiang Road Qingdao 266580 China
| |
Collapse
|
62
|
Gu L, Yan W, Liu L, Wang S, Zhang X, Lyu M. Research Progress on Rolling Circle Amplification (RCA)-Based Biomedical Sensing. Pharmaceuticals (Basel) 2018; 11:E35. [PMID: 29690513 PMCID: PMC6027247 DOI: 10.3390/ph11020035] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Enhancing the limit of detection (LOD) is significant for crucial diseases. Cancer development could take more than 10 years, from one mutant cell to a visible tumor. Early diagnosis facilitates more effective treatment and leads to higher survival rate for cancer patients. Rolling circle amplification (RCA) is a simple and efficient isothermal enzymatic process that utilizes nuclease to generate long single stranded DNA (ssDNA) or RNA. The functional nucleic acid unit (aptamer, DNAzyme) could be replicated hundreds of times in a short period, and a lower LOD could be achieved if those units are combined with an enzymatic reaction, Surface Plasmon Resonance, electrochemical, or fluorescence detection, and other different kinds of biosensor. Multifarious RCA-based platforms have been developed to detect a variety of targets including DNA, RNA, SNP, proteins, pathogens, cytokines, micromolecules, and diseased cells. In this review, improvements in using the RCA technique for medical biosensors and biomedical applications were summarized and future trends in related research fields described.
Collapse
Affiliation(s)
- Lide Gu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Wanli Yan
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Le Liu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Shujun Wang
- Marine Resources Development Institute of Jiangsu, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| | - Xu Zhang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
- Verschuren Centre for Sustainability in Energy & the Environment, Cape Breton University, Sydney, NS B1P 6L2, Canada.
| | - Mingsheng Lyu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
- Marine Resources Development Institute of Jiangsu, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| |
Collapse
|
63
|
Kim M, Kim DM, Kim KS, Jung W, Kim DE. Applications of Cancer Cell-Specific Aptamers in Targeted Delivery of Anticancer Therapeutic Agents. Molecules 2018; 23:E830. [PMID: 29617327 PMCID: PMC6017884 DOI: 10.3390/molecules23040830] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023] Open
Abstract
Aptamers are single-stranded oligonucleotides that specifically bind and interact with their corresponding targets, including proteins and cells, through unique three-dimensional structures. Numerous aptamers have been developed to target cancer biomarkers with high specificity and affinity, and some are employed as versatile guiding ligands for cancer-specific drug delivery and anti-cancer therapeutics. In this review, we list the aptamers that target tumor surface biomarkers and summarize the representative applications of aptamers as agonists and antagonists that activate anti-cancer and inactivate pro-cancer biomarkers, respectively. In addition, we describe applications of aptamer-drug or aptamer-oligonucleotide conjugates that can deliver therapeutic agents, including small interfering RNAs, micro RNAs, short hairpin RNAs, and chemotherapeutic molecules, to cancer cells. Moreover, we provide examples of aptamer- conjugated nano-vehicles, in which cancer-targeting oligonucleotide aptamers are conjugated with nano-vehicles such as liposomes, micelles, polymeric nanoparticles, and quantum dots. Conjugation of aptamers with anti-cancer drugs and nano-vehicles will facilitate innovative applications of aptamer-based cancer therapeutics.
Collapse
Affiliation(s)
- Minhee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Dong-Min Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Keun-Sik Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea.
| | - Woong Jung
- Department of Emergency Medicine Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea.
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
64
|
Kang YY, Song J, Jung HS, Kwak G, Yu G, Ahn JH, Kim SH, Mok H. Implication of multivalent aptamers in DNA and DNA–RNA hybrid structures for efficient drug delivery in vitro and in vivo. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
65
|
Wu D, Wang L, Li W, Xu X, Jiang W. DNA nanostructure-based drug delivery nanosystems in cancer therapy. Int J Pharm 2017; 533:169-178. [PMID: 28923770 DOI: 10.1016/j.ijpharm.2017.09.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/04/2023]
Abstract
DNA as a novel biomaterial can be used to fabricate different kinds of DNA nanostructures based on its principle of GC/AT complementary base pairing. Studies have shown that DNA nanostructure is a nice drug carrier to overcome big obstacles existing in cancer therapy such as systemic toxicity and unsatisfied drug efficacy. Thus, different types of DNA nanostructure-based drug delivery nanosystems have been designed in cancer therapy. To improve treating efficacy, they are also developed into more functional drug delivery nanosystems. In recent years, some important progresses have been made. The objective of this review is to make a retrospect and summary about these different kinds of DNA nanostructure-based drug delivery nanosystems and their latest progresses: (1) active targeting; (2) mutidrug co-delivery; (3) construction of stimuli-responsive/intelligent nanosystems.
Collapse
Affiliation(s)
- Dandan Wu
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmacy, Shandong University, Jinan, 250012, PR China
| | - Lei Wang
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmacy, Shandong University, Jinan, 250012, PR China
| | - Wei Li
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmacy, Shandong University, Jinan, 250012, PR China
| | - Xiaowen Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Wei Jiang
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmacy, Shandong University, Jinan, 250012, PR China; School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
66
|
Abstract
Leukemia is a cancer of blood cells and bone marrow, leading to death in many patients mainly in children. Over the last several years, aptamers generated by SELEX (Systematic evolution of ligands by exponential enrichment) method, have quickly become a new class of targeting ligands for drug delivery applications and recently have been widely exploited in different biomedical applications, due to several potent properties such as high binding affinity and selectivity, low or no immunogenicity and toxicity, low cost and thermal stability. In this review, we presented in details about aptamers involved in targeting, and treatment of leukemia. Moreover, some analytical approaches such as electrochemical and optical aptasensors were introduced for detection and diagnosis of leukemia. Finally, we discussed about the directions and challenges of aptamer application in this field.
Collapse
|
67
|
Tang J, Yu Y, Shi H, He X, Lei Y, Shangguan J, Yang X, Qiao Z, Wang K. Polyvalent and Thermosensitive DNA Nanoensembles for Cancer Cell Detection and Manipulation. Anal Chem 2017; 89:6637-6644. [DOI: 10.1021/acs.analchem.7b00864] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jinlu Tang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| | - Yanru Yu
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| | - Jingfang Shangguan
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| | - Xue Yang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| | - Zhenzhen Qiao
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| |
Collapse
|
68
|
|
69
|
Chandola C, Kalme S, Casteleijn MG, Urtti A, Neerathilingam M. Application of aptamers in diagnostics, drug-delivery and imaging. J Biosci 2017; 41:535-61. [PMID: 27581942 DOI: 10.1007/s12038-016-9632-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aptamers are small, single-stranded oligonucleotides (DNA or RNA) that bind to their target with high specificity and affinity. Although aptamers are analogous to antibodies for a wide range of target recognition and variety of applications, they have significant advantages over antibodies. Since aptamers have recently emerged as a class of biomolecules with an application in a wide array of fields, we need to summarize the latest developments herein. In this review we will discuss about the latest developments in using aptamers in diagnostics, drug delivery and imaging. We begin with diagnostics, discussing the application of aptamers for the detection of infective agents itself, antigens/ toxins (bacteria), biomarkers (cancer), or a combination. The ease of conjugation and labelling of aptamers makes them a potential tool for diagnostics. Also, due to the reduced off-target effects of aptamers, their use as a potential drug delivery tool is emerging rapidly. Hence, we discuss their use in targeted delivery in conjugation with siRNAs, nanoparticles, liposomes, drugs and antibodies. Finally, we discuss about the conjugation strategies applicable for RNA and DNA aptamers for imaging. Their stability and self-assembly after heating makes them superior over protein-based binding molecules in terms of labelling and conjugation strategies.
Collapse
Affiliation(s)
- Chetan Chandola
- 1Center for Cellular and Molecular Platforms, NCBS-TIFR, Bangalore 560 065, India
| | | | | | | | | |
Collapse
|
70
|
Sharma TK, Bruno JG, Dhiman A. ABCs of DNA aptamer and related assay development. Biotechnol Adv 2017; 35:275-301. [PMID: 28108354 DOI: 10.1016/j.biotechadv.2017.01.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/19/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
This review is intended to guide the novice in aptamer research and development to understand virtually all of the aptamer development options and currently available assay modalities. Aptamer development topics range from discussions of basic and advanced versions of Systematic Evolution of Ligands by EXponential Enrichment (SELEX) and SELEX variations involving incorporation of exotic unnatural nucleotides to expand library diversity for even greater aptamer affinity and specificity to improved next generation methods of DNA sequencing, screening and tracking aptamer development throughout the SELEX process and characterization of lead aptamer candidates. Aptamer assay development topics include descriptions of various colorimetric and fluorescent assays in microplates or on membranes including homogeneous beacon and multiplexed Fluorescence Resonance Energy Transfer (FRET) assays. Finally, a discussion of the potential for marketing successful aptamer-based assays or test kits is included.
Collapse
Affiliation(s)
- Tarun Kumar Sharma
- Center for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India; AptaBharat Innovation Private Limited, Translational Health Science and Technology Institute Incubator, Haryana 121001, India.
| | - John G Bruno
- Operational Technologies Corporation, 4100 NW Loop 410, Suite, 230, San Antonio, TX 78229, USA..
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India.; Faculty of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
71
|
Zhu YJ, Li WJ, Hong ZY, Tang AN, Kong DM. Stable, polyvalent aptamer-conjugated near-infrared fluorescent nanocomposite for high-performance cancer cell-targeted imaging and therapy. J Mater Chem B 2017; 5:9229-9237. [DOI: 10.1039/c7tb02218b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel nanocomposite with improved biostability has been designed and used for cancer cell-specific imaging and targeted therapy.
Collapse
Affiliation(s)
- Yan-Jun Zhu
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
- Tianjin
- P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
| | - Wen-Jing Li
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
- Tianjin
- P. R. China
- College of Life Science
| | - Zhang-Yong Hong
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
- Tianjin
- P. R. China
- College of Life Science
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
- Tianjin
- P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
- Tianjin
- P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
| |
Collapse
|
72
|
Hollenstein M, Damha MJ. Rolling Circle Amplification with Chemically Modified Nucleoside Triphosphates. ACTA ACUST UNITED AC 2016; 67:7.26.1-7.26.15. [PMID: 27911492 DOI: 10.1002/cpnc.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Modified nucleoside triphosphates (dN*TPs) represent facile and versatile precursors for the introduction of chemical diversity into nucleic acids. While dN*TPs have been utilized in a plethora of practical applications, very little attention has been devoted to the assessment of their compatibility with isothermal amplification strategies. In this context, rolling circle amplification (RCA) is a wide-spread enzymatic replication method in which small single-stranded DNA (ssDNA) circles serve as templates in primer extension reactions yielding very long, ssDNA products. RCA is a pivotal tool for the generation of biosensor and diagnostic devices and is currently evaluated for its usefulness to create novel drug delivery systems. This unit describes the experimental procedures for the synthesis of modified RCA products using dN*TPs bearing chemical alterations at any possible location of the nucleosidic scaffold. Two ligation methods are presented for the generation of the DNA nanocircles that serve as templates for RCA, followed by a description of the RCA method itself and an assessment of the nuclease resistance of the ensuing products. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Structural Biology and Chemistry, Pasteur Institute, Paris, France
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
73
|
Vorobyeva M, Vorobjev P, Venyaminova A. Multivalent Aptamers: Versatile Tools for Diagnostic and Therapeutic Applications. Molecules 2016; 21:molecules21121613. [PMID: 27898020 PMCID: PMC6274531 DOI: 10.3390/molecules21121613] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/11/2016] [Accepted: 11/18/2016] [Indexed: 11/24/2022] Open
Abstract
Nucleic acid aptamers generated through an in vitro selection are currently extensively applied as very valuable biomolecular tools thanks to their prominent advantages. Diversity of spatial structures, ease of production through chemical synthesis and a large variety of chemical modifications make aptamers convenient building blocks for the generation of multifunctional constructs. An opportunity to combine different aptamer functionalities with other molecules of interest such as reporter groups, nanoparticles, chemotherapeutic agents, siRNA or antisense oligonucleotides provides a widest range of applications of multivalent aptamers. The present review summarizes approaches to the design of multivalent aptamers, various examples of multifunctional constructs and the prospects of employing them as components of biosensors, probes for affinity capture, tools for cell research and potential therapeutic candidates.
Collapse
Affiliation(s)
- Mariya Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia.
| | - Pavel Vorobjev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia.
| | - Alya Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia.
| |
Collapse
|
74
|
Jeong H, Lee SH, Hwang Y, Yoo H, Jung H, Kim SH, Mok H. Multivalent Aptamer-RNA Conjugates for Simple and Efficient Delivery of Doxorubicin/siRNA into Multidrug-Resistant Cells. Macromol Biosci 2016; 17. [PMID: 27863037 DOI: 10.1002/mabi.201600343] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/07/2016] [Indexed: 01/08/2023]
Abstract
Multivalent aptamer-siRNA conjugates containing multiple mucin-1 aptamers and BCL2-specific siRNA are synthesized, and doxorubicin, an anthracycline anticancer drug, is loaded into these conjugates through intercalation with nucleic acids. These doxorubicin-incorporated multivalent aptamer-siRNA conjugates are transfected to mucin-1 overexpressing MCF-7 breast cancer cells and their multidrug-resistant cell lines. Doxorubicin-incorporated multivalent aptamer-siRNA conjugates exert promising anticancer effects, such as activation of caspase-3/7 and decrease of cell viability, on multidrug-resistant cancer cells because of their high intracellular uptake efficiency. Thus, this delivery system is an efficient tool for combination oncotherapy with chemotherapeutics and nucleic acid drugs to overcome multidrug resistance.
Collapse
Affiliation(s)
- Hyosook Jeong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Soo Hyeon Lee
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), 8093 Zurich, Switzerland
| | - Yeonju Hwang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Hyundong Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Heesun Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| |
Collapse
|
75
|
Feng C, Mao X, Yang Y, Zhu X, Yin Y, Li G. Rolling circle amplification in electrochemical biosensor with biomedical applications. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
76
|
Li W, Yang X, He L, Wang K, Wang Q, Huang J, Liu J, Wu B, Xu C. Self-Assembled DNA Nanocentipede as Multivalent Drug Carrier for Targeted Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25733-25740. [PMID: 27622459 DOI: 10.1021/acsami.6b08210] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An idea drug carrier, with good binding affinity, selectivity, drug payload capacity, and cellular internalized capability, will greatly improve the efficiency of target delivery. Herein a self-assembled and multivalent DNA nanostructure was developed as drug carrier for efficient and targeted delivery. The DNA structure was similar to that of a centipede, composed of trunk and legs: The trunk was a self-assembled DNA scaffold via hybridization chain reaction (HCR) from two biotinylated hairpin monomers created upon initiation by a trigger DNA, and the legs were biotinylated aptamers conjugated to the trunk via streptavidin-biotin affinity interaction. The long trunk of the "DNA nanocentipede" was loaded with doxorubicin (Dox), and the legs were SMMC-7721 cell-binding aptamers (Zy1) which functioned as targeting moieties to firmly and selectively grasp target cells. The results of agarose gel electrophoresis and fluorescence anisotropy confirmed that Zy1-based DNA nanocentipedes (Zy1-Nces) were successfully constructed. Flow cytometric analyses demonstrated that Zy1-Nces were more effective than free Zy1 in binding affinity and selectivity due to a multivalent effect. Confocal microscopy studies demonstrated that the internalization was highly dependent on the higher valences of DNA nanocentipedes without the loss of selectivity. Meanwhile, Zy1-Nces exhibited high drug-loading capacity and selective drug transport. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed enhanced cellular cytotoxicity of the Dox-loaded Zy1-Nces (Zy1-Nces-Dox) to the target SMMC-7721 cells but not negative control L02 cells. This approach is applicable to prepare drug carriers for other targets by construction of the nanocentipedes with relevant nucleic acid fragments.
Collapse
Affiliation(s)
- Wenshan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Leiliang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Bin Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Congcong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| |
Collapse
|
77
|
Mokhtarzadeh A, Tabarzad M, Ranjbari J, de la Guardia M, Hejazi M, Ramezani M. Aptamers as smart ligands for nano-carriers targeting. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
78
|
Jeong EH, Kim H, Jang B, Cho H, Ryu J, Kim B, Park Y, Kim J, Lee JB, Lee H. Technological development of structural DNA/RNA-based RNAi systems and their applications. Adv Drug Deliv Rev 2016; 104:29-43. [PMID: 26494399 DOI: 10.1016/j.addr.2015.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/01/2015] [Accepted: 10/12/2015] [Indexed: 01/04/2023]
Abstract
RNA interference (RNAi)-based gene therapy has drawn tremendous attention due to its highly specific gene regulation by selective degradation of any target mRNA. There have been multiple reports regarding the development of various cationic materials for efficient siRNA delivery, however, many studies still suffer from the conventional delivery problems such as suboptimal transfection performance, a lack of tissue specificity, and potential cytotoxicity. Despite the huge therapeutic potential of siRNAs, conventional gene carriers have failed to guarantee successful gene silencing in vivo, thus not warranting clinical trials. The relatively short double-stranded structure of siRNAs has resulted in uncompromising delivery formulations, as well as low transfection efficiency, compared with the conventional nucleic acid drugs such as plasmid DNAs. Recent developments in structural siRNA and RNAi nanotechnology have enabled more refined and reliable in vivo gene silencing with multiple advantages over naked siRNAs. This review focuses on recent progress in the development of structural DNA/RNA-based RNAi systems and their potential therapeutic applications. In addition, an extensive list of prior reports on various RNAi systems is provided and categorized by their distinctive molecular characters.
Collapse
|
79
|
Bai Y, Nguyen L, Song Z, Peng S, Lee J, Zheng N, Kapoor I, Hagler LD, Cai K, Cheng J, Chan HYE, Zimmerman SC. Integrating Display and Delivery Functionality with a Cell Penetrating Peptide Mimic as a Scaffold for Intracellular Multivalent Multitargeting. J Am Chem Soc 2016; 138:9498-507. [DOI: 10.1021/jacs.6b03697] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | - Shaohong Peng
- Laboratory
of Drosophila Research and School of Life Sciences, The Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong SAR, China
| | | | | | | | | | | | | | - H. Y. Edwin Chan
- Laboratory
of Drosophila Research and School of Life Sciences, The Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong SAR, China
| | | |
Collapse
|
80
|
|
81
|
Yazdian-Robati R, Ramezani M, Jalalian SH, Abnous K, Taghdisi SM. Targeted Delivery of Epirubicin to Cancer Cells by Polyvalent Aptamer System in vitro and in vivo. Pharm Res 2016; 33:2289-97. [PMID: 27283831 DOI: 10.1007/s11095-016-1967-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE The clinical use of Epirubicin (Epi), as an anthracycline drug, is limited because of its cardiotoxicity. Here, an Epirubicin (Epi)-modified polyvalent aptamer system (MPAS) conjugate was developed for the treatment of both murine colon carcinoma cells (C26) and breast cancer cells (MCF-7). METHODS Epi-MPAS conjugate formation was evaluated by fluorometric analysis. Release profiles of Epi from the developed conjugate were analyzed at pHs 5.4 and 7.4. For MTT assay (cytotoxic study) C26 and MCF-7 (target cells) and CHO cells (Chinese hamster ovary cell, nontarget) were treated with Epi, MPAS and Epi-MPAS conjugate. Internalization was assessed by fluorescence imaging and flow cytometry analysis. The designed conjugate was used for prohibition of tumor growth in vivo. RESULTS Release of Epi from the Epi-MPAS conjugated was pH-dependent (more release at pH 5.5). Flow cytometry analysis and MTT assay showed that Epi-MPAS conjugate could significantly enhance the cellular uptake of Epi and increase its cytotoxicity in target cells as compared with non-targeted cell (CHO). Additionally, this complex could efficiently prohibit the tumor growth in vivo. CONCLUSION In conclusion, the developed drug delivery system had the characteristics of efficient Epi loading, pH-dependent drug release and tumor targeting in vitro and in vivo.
Collapse
Affiliation(s)
- Rezvan Yazdian-Robati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Jalalian
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Academic Center for Education, Culture and Research (ACECR)-Mashhad Branch, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
82
|
Taghdisi SM, Danesh NM, Lavaee P, Emrani AS, Hassanabad KY, Ramezani M, Abnous K. Double targeting, controlled release and reversible delivery of daunorubicin to cancer cells by polyvalent aptamers-modified gold nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:753-61. [PMID: 26838906 DOI: 10.1016/j.msec.2016.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/28/2015] [Accepted: 01/03/2016] [Indexed: 12/16/2022]
Abstract
Clinical use of daunorubicin (Dau) in treatment of leukemia has been restricted because of its cardiotoxicity. Targeted delivery of anticancer drugs could decrease their off-target effects and enhance their efficacy. In this study a modified polyvalent aptamers (PA)-Daunorubicin (Dau)-Gold nanoparticles (AuNPs) complex was designed and its efficacy was assessed in Molt-4 cells (human acute lymphoblastic leukemia T-cell, target). Dau was efficiently loaded (10.5 μM) onto 1mL of PA-modified AuNPs. Dau was released from the PA-Dau-AuNPs complex in a pH-sensitive manner (faster release at pH5.5). The results of flow cytometry analysis indicated that the PA-Dau-AuNPs complex was efficiently internalized into target cells, but not into nontarget cells. The results of MTT assay were consistent with the internalization data. PA-Dau-AuNPs complex had less cytotoxicity in U266 cells compared to Dau alone and even Apt-Dau-AuNPs complex. The PA-Dau-AuNPs complex had more cytotoxicity in Molt-4 cells compared to Dau alone and even Apt-Dau-AuNPs complex. Cytotoxicity of PA-Dau-AuNPs complex was effectively antagonized using antisense of polyvalent aptamers. In conclusion, the designed drug delivery system inherited the properties of efficient drug loading, tumor targeting, pH-dependent drug release and controllable delivery of Dau to tumor cells.
Collapse
Affiliation(s)
- Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Noor Mohammad Danesh
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Research Institute of Sciences and New Technology, Mashhad, Iran
| | - Parirokh Lavaee
- Academic Center for Education, Culture and Research (ACECR), Mashhad Branch, Mashhad, Iran; Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Koroush Yousefi Hassanabad
- Department of Infectious Disease, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
83
|
Ma H, Liu J, Ali MM, Mahmood MAI, Labanieh L, Lu M, Iqbal SM, Zhang Q, Zhao W, Wan Y. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem Soc Rev 2015; 44:1240-56. [PMID: 25561050 DOI: 10.1039/c4cs00357h] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA oligomers, identified from a random sequence pool, with the ability to form unique and versatile tertiary structures that bind to cognate molecules with superior specificity. Their small size, excellent chemical stability and low immunogenicity enable them to rival antibodies in cancer imaging and therapy applications. Their facile chemical synthesis, versatility in structural design and engineering, and the ability for site-specific modifications with functional moieties make aptamers excellent recognition motifs for cancer biomarker discovery and detection. Moreover, aptamers can be selected or engineered to regulate cancer protein functions, as well as to guide anti-cancer drug design or screening. This review summarizes their applications in cancer, including cancer biomarker discovery and detection, cancer imaging, cancer therapy, and anti-cancer drug discovery. Although relevant applications are relatively new, the significant progress achieved has demonstrated that aptamers can be promising players in cancer research.
Collapse
Affiliation(s)
- Haitao Ma
- The Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Feng Chen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Qian Li
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China.,School of Life Science & Technology, ShanghaiTech University , Shanghai 200031, China
| |
Collapse
|
85
|
Wu Y, Yang C, Lai Q, Zhang Q, Wang W, Yuan Z. Fabrication of thermo-sensitive complex micelles for reversible cell targeting. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:255. [PMID: 26449445 DOI: 10.1007/s10856-015-5584-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
To ideally solve the contradiction between enhanced cellular uptake and prolonged blood circulation, reversible targeting polymeric micelles based on the expanding and shrinking behavior of a temperature-responsive polymer were developed. The micelle contained a hydrophobic PCL core and a mixed shell consisting of poly(N-isopropylacrylamide) (PNIPAAm) and biotin-terminated poly(ethylene glycol) (Biotin-PEG), and its targeting ability could be switched on/off by temperature. The cellular uptake of the complex polymeric micelles was studied. The results from a quantitative enzyme-linked immunosorbent assay (ELISA) indicated that the surface biotin content increased by as much as 11.6-fold when the temperature increased above the lower critical solution temperature (LCST). More importantly, the ELISA confirmed that biotin-mediated targeting on the surface was reversibly switched on and off for at least five cycles. In addition, the results from quantitative flow cytometry and confocal spectroscopy indicated that the cellular uptake of the targeted micelles at temperatures above the LCST was much higher than that at temperatures below the LCST. This complex polymeric micelle with reversible targeting property could be a promising alternative for drug delivery.
Collapse
Affiliation(s)
- Yukun Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Chengling Yang
- Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Quanyong Lai
- Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Qian Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| |
Collapse
|
86
|
WITHDRAWN: Polymer assembly: Promising carriers as co-delivery systems for cancer therapy. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2015.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
87
|
Kim JH, Jang M, Kim YJ, Ahn HJ. Design and Application of Rolling Circle Amplification for a Tumor-Specific Drug Carrier. J Med Chem 2015; 58:7863-73. [DOI: 10.1021/acs.jmedchem.5b01126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jong Hwan Kim
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-Gu, Seoul 136-791, South Korea
| | - Mihue Jang
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-Gu, Seoul 136-791, South Korea
| | - Young-Je Kim
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-Gu, Seoul 136-791, South Korea
| | - Hyung Jun Ahn
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-Gu, Seoul 136-791, South Korea
| |
Collapse
|
88
|
Cansiz S, Zhang L, Wu C, Wu Y, Teng IT, Hou W, Wang Y, Wan S, Cai R, Jin C, Liu Q, Tan W. DNA Aptamer Based Nanodrugs: Molecular Engineering for Efficiency. Chem Asian J 2015; 10:2084-94. [PMID: 26177853 DOI: 10.1002/asia.201500434] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 12/21/2022]
Abstract
In the past two decades, the study of cancer therapy has gradually advanced to the "nano" era. Numerous novel nanomaterials armed with unique physical properties have been introduced into biomedical research. At the same time, functional nucleic acid molecules, especially aptamers, have aroused broad attention from the biomedical community. Benefiting from the advancement of molecular engineering strategies, it is now feasible to combine the cancer-specific recognition capability of aptamers with various other special functions of nanomaterials to develop cancer-specific drugs at the nanoscale. Nanodrugs are now offering an unprecedented opportunity to achieve the goal of efficient targeted delivery as well as controlled release. This review highlights some achievements made in multiple aptamer-based nanodrug systems that have emerged in recent years, including studies in the infant stage of "proof-of-concept".
Collapse
Affiliation(s)
- Sena Cansiz
- Departments of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611-7200, USA
| | - Liqin Zhang
- Departments of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611-7200, USA
| | - Cuichen Wu
- Departments of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611-7200, USA.,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, 410082, P.R. China
| | - Yuan Wu
- Departments of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611-7200, USA.,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, 410082, P.R. China
| | - I-Ting Teng
- Departments of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611-7200, USA
| | - Weijia Hou
- Departments of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611-7200, USA
| | - Yanyue Wang
- Departments of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611-7200, USA
| | - Shuo Wan
- Departments of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611-7200, USA
| | - Ren Cai
- Departments of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611-7200, USA
| | - Chen Jin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, 410082, P.R. China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, 410082, P.R. China
| | - Weihong Tan
- Departments of Chemistry, Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611-7200, USA. .,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha, 410082, P.R. China.
| |
Collapse
|
89
|
Biomimetic DNA nanoballs for oligonucleotide delivery. Biomaterials 2015; 62:155-63. [DOI: 10.1016/j.biomaterials.2015.04.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 01/09/2023]
|
90
|
Ho LC, Wu WC, Chang CY, Hsieh HH, Lee CH, Chang HT. Aptamer-conjugated polymeric nanoparticles for the detection of cancer cells through "turn-on" retro-self-quenched fluorescence. Anal Chem 2015; 87:4925-32. [PMID: 25853548 DOI: 10.1021/acs.analchem.5b00569] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have developed a simple, sensitive, and rapid fluorescence assay for the detection of cancer cells, based on "turn-on" retro-self-quenched fluorescence inside the cells. 1,3-Phenylenediamine resin (DAR) nanoparticles (NPs) containing rhodamine 6G (R6G) are conjugated with aptamer (apt) sgc8c to prepare sgc8c-R6GDAR NPs, while that containing rhodamine 101 (R101) are conjugated with TD05 for the preparation of TD05-R101DAR NPs. The sgc8c-R6GDAR and TD05-R101DAR NPs separately recognize CCRF-CEM and Ramos cells. The fluorescence intensities of the two apt-DAR NPs are both weak due to self-quenching, but they increase inside the cells as a result of release of the fluorophores from the apt-DAR NPs. The apt-DAR NPs' structure becomes less compact at low pH value, leading to the release of the fluorophores. The sgc8c-R6GDAR and TD05-R101DAR NPs allow detection of as low as 44 CCRF-CEM cells and 79 Ramos cells mL(-1), respectively, using a commercial reader within 10 min. Practicality of the two probes have been validated by the quantitation and identification of CCRF-CEM and Ramos cells spiked in blood samples through conventional fluorescence and flow cytometry analysis, with advantages of sensitivity, selectivity, and rapidity.
Collapse
Affiliation(s)
- Lin-Chen Ho
- †Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, Taiwan
| | - Wei-Cheng Wu
- ‡Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan and National Tsing-Hua University, Hsinchu, Taiwan
| | - Chang-Yu Chang
- §Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan.,∥Public Health Center of Zhunan Township, Miaoli County, Taiwan
| | - Hao-Hsuan Hsieh
- †Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, Taiwan
| | - Ching-Hsiao Lee
- §Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan
| | - Huan-Tsung Chang
- †Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, Taiwan
| |
Collapse
|
91
|
Chang EK, Eckert MA, Ali MM, Riazifar H, Pone EJ, Liu L, Zhao W. Facile supermolecular aptamer inhibitors of L-selectin. PLoS One 2015; 10:e0123034. [PMID: 25826688 PMCID: PMC4380364 DOI: 10.1371/journal.pone.0123034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 02/25/2015] [Indexed: 12/24/2022] Open
Abstract
Multivalent interactions occur frequently in nature, where they mediate high-affinity interactions between cells, proteins, or molecules. Here, we report on a method to generate multivalent aptamers (Multi-Aptamers) that target L-selectin function using rolling circle amplification (RCA). We find that the L-selectin Multi-Aptamers have increased affinity compared to the monovalent aptamer, are specific to L-selectin, and are capable of inhibiting interactions with endogenous ligands. In addition, the Multi-Aptamers efficiently inhibit L-selectin mediated dynamic adhesion in vitro and homing to secondary lymphoid tissues in vivo. Importantly, our method of generating multivalent materials using RCA avoids many of the challenges associated with current multivalent materials in that the Multi-Aptamers are high affinity, easily produced and modified, and biocompatible. We anticipate that the Multi-Aptamers can serve as a platform technology to modulate diverse cellular processes.
Collapse
Affiliation(s)
- Elizabeth K. Chang
- Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Lifesciences Center for Advanced Cardiovascular Technology, Edwards Lifesciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, 92697, United States of America
| | - Mark A. Eckert
- Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Lifesciences Center for Advanced Cardiovascular Technology, Edwards Lifesciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, 92697, United States of America
| | - M. Monsur Ali
- Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Lifesciences Center for Advanced Cardiovascular Technology, Edwards Lifesciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, 92697, United States of America
| | - Hamidreza Riazifar
- Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Lifesciences Center for Advanced Cardiovascular Technology, Edwards Lifesciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, 92697, United States of America
| | - Egest J. Pone
- Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Lifesciences Center for Advanced Cardiovascular Technology, Edwards Lifesciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, 92697, United States of America
| | - Linan Liu
- Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Lifesciences Center for Advanced Cardiovascular Technology, Edwards Lifesciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, 92697, United States of America
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Lifesciences Center for Advanced Cardiovascular Technology, Edwards Lifesciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, 92697, United States of America
- * E-mail:
| |
Collapse
|
92
|
Yang L, Tseng YT, Suo G, Chen L, Yu J, Chiu WJ, Huang CC, Lin CH. Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-hybridized graphene oxide under NIR illumination. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5097-5106. [PMID: 25705789 DOI: 10.1021/am508117e] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The objective of this study was to synthesize a nanocomposite, aptamer-gold nanoparticle-hybridized graphene oxide (Apt-AuNP-GO), to facilitate targeted treatment of tumor cells by near-infrared (NIR) light-activatable photothermal therapy. We also investigated whether Apt-AuNP-GO with NIR illumination modulates heat shock proteins (HSPs) expression leading to therapeutic response in human breast cancer cells. These findings can provide strategies for improving the photothermal therapy efficacy of cancer. The self-assembled Apt-AuNP-GO nanocomposite could selectively target MUC1-positive human breast cancer cells (MCF-7) due to the specific interaction between the MUC1-binding-aptamer and the MUC1 (type I transmembrane mucin glycoprotein) on cell membrane. In addition, Apt-AuNP-GO has a high light-to-heat conversion capability for photoabsorption of NIR light, and it is able to exert therapeutic effects on MCF-7 cells at an ultralow concentration without inducing adverse effects in healthy cells. The Apt-AuNP-GO nanocomposites combine the advantages of GOs, AuNPs, and Apts, possess specific targeting capability, excellent biocompatibility, and tumor cell destruction ability, suggesting great potential for application in the photothermal therapy of breast cancer. Under NIR illumination, Apt-AuNP-GO induced transient increase in HSP70 expression, which decreased thereafter. This phenomenon may cause irreversible damage to Apt-AuNP-GO-treated MCF-7 cell under NIR illumination. We also demonstrated that the combination therapy of heat and HSP70 inhibitor could synergistically generate marked tumoricidal effects against breast cancer. These results suggest that the degree and duration of HSP70 protein expression are correlated with therapeutic effects against breast cancer for Apt-AuNP-GO-assisted photothermal therapy. We believe that such a nanocomposite can be readily extended to the construction of HSP70 inhibitors-loaded Apt-AuNP-GO, which could deliver both heat and HSP70 inhibitors to tumorigenic regions for the chemo-photothermal therapy.
Collapse
Affiliation(s)
- Lingyan Yang
- Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory for Nanotheranostics, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Wang DF, Rong WT, Lu Y, Hou J, Qi SS, Xiao Q, Zhang J, You J, Yu SQ, Xu Q. TPGS2k/PLGA nanoparticles for overcoming multidrug resistance by interfering mitochondria of human alveolar adenocarcinoma cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3888-3901. [PMID: 25644220 DOI: 10.1021/am508340m] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, we successfully synthesized d-α-tocopheryl polyethylene glycol 2000 succinate (TPGS2k) and prepared TPGS2k-modified poly(lactic-co-glycolic acid) nanoparticles (TPGS2k/PLGA NPs) loaded with 7-ethyl-10-hydroxycamptothecin (SN-38), designated TPGS2k/PLGA/SN-38 NPs. Characterization measurements showed that TPGS2k/PLGA/SN-38 NPs displayed flat and spheroidal particles with diameters of 80-104 nm. SN-38 was encapsulated in TPGS2k emulsified PLGA NPs with the entrapment efficiency and loading rates of SN-38 83.6 and 7.85%, respectively. SN-38 could release constantly from TPGS2k/PLGA/SN-38 NPs in vitro. TPGS2k/PLGA/SN-38 NPs induced significantly higher cytotoxicity on A549 cells and the multidrug resistance (MDR) cell line (A549/DDP cells and A549/Taxol cells) compared with free SN-38. Further studies on the mechanism of the NPs in increasing the death of MDR cells showed that following the SN-38 releasing into cytoplasm the remaining TPGS2k/PLGA NPs could reverse the P-gp mediated MDR via interfering with the structure and function of mitochondria and rather than directly inhibiting the enzymatic activity of P-gp ATPase. Therefore, TPGS2k/PLGA NPs can reduce the generation of ATP and the release of energy for the requisite of P-gp efflux transporters. The results indicated that TPGS2k/PLGA NPs could become the nanopharmaceutical materials with the capability to reversal MDR and improve anticancer effects of some chemotherapy drugs as P-gp substrates.
Collapse
Affiliation(s)
- Dong-Fang Wang
- Jiangsu Key Laboratory for Supramolecular Medicinal Materials and Applications, College of Life Sciences, Nanjing Normal University , Nanjing 210046, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Kim MG, Park JY, Miao W, Lee J, Oh YK. Polyaptamer DNA nanothread-anchored, reduced graphene oxide nanosheets for targeted delivery. Biomaterials 2015; 48:129-36. [PMID: 25701038 DOI: 10.1016/j.biomaterials.2015.01.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/21/2014] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Here, we report reduced graphene oxide (rGO) nanosheets anchoring receptor-specific polyaptamer nanothreads for targeted drug delivery. DNA polyaptamer nanothreads of protein tyrosine kinase 7 receptor (PTK7) were synthesized by rolling cycle amplification. To strengthen the anchoring of polyaptamer nanothreads onto rGO, oligoT bridge domain was introduced between each repeating PTK7 aptamer sequence. As compared to PTK7 polyaptamer nanothreads alone, PTK7 polyaptamer nanothreads with 22-mer oligoT bridges (PNT) showed higher anchoring capacity onto rGO nanosheets. Nanothread-coated surface morphology of PNTrGO was observed. Coating of PNT did not affect the sizes of rGO, but reduced the zeta potential. In PTK7-negative Ramos cells, the uptake of PNT-anchored rGO (PNTrGO) did not differ from that of oligoT-bridged scrambled polyaptamer-anchored rGO (SNTrGO). However, in CCRF-CEM leukemia cells overexpressing PTK7, the uptake of PNTrGO was 2.1-fold higher than that of SNTrGO after 15 min pulse. In vivo distribution to CCRF-CEM tumor tissues was 2.8-fold higher in PNTrGO than in SNTrGO at 48 h post-injection. In CCRF-CEM xenografted mice, intravenously administered doxorubicin (Dox)-loaded PNTrGO showed the higher antitumor activity than other groups, reducing the tumor weight down to 12% of tumor weights of untreated mice. These results suggest the potential of PNTrGO for target-specific drug delivery nanoplatform.
Collapse
Affiliation(s)
- Mi-Gyeong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Joo Yeon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Wenjun Miao
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jaiwoo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
95
|
Varner CT, Rosen T, Martin JT, Kane RS. Recent advances in engineering polyvalent biological interactions. Biomacromolecules 2015; 16:43-55. [PMID: 25426695 PMCID: PMC4294584 DOI: 10.1021/bm5014469] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/11/2014] [Indexed: 12/21/2022]
Abstract
Polyvalent interactions, where multiple ligands and receptors interact simultaneously, are ubiquitous in nature. Synthetic polyvalent molecules, therefore, have the ability to affect biological processes ranging from protein-ligand binding to cellular signaling. In this review, we discuss recent advances in polyvalent scaffold design and applications. First, we will describe recent developments in the engineering of polyvalent scaffolds based on biomolecules and novel materials. Then, we will illustrate how polyvalent molecules are finding applications as toxin and pathogen inhibitors, targeting molecules, immune response modulators, and cellular effectors.
Collapse
Affiliation(s)
- Chad T. Varner
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tania Rosen
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jacob T. Martin
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ravi S. Kane
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
96
|
Yang DK, Kuo CJ, Chen LC. Synthetic multivalent DNAzymes for enhanced hydrogen peroxide catalysis and sensitive colorimetric glucose detection. Anal Chim Acta 2014; 856:96-102. [PMID: 25542363 DOI: 10.1016/j.aca.2014.11.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/21/2022]
Abstract
A peroxidase-mimic DNAzyme is a G-quadruplex (G4) DNA-hemin complex, in which the G4-DNA resembles an apoenzyme, and hemin is the cofactor for hydrogen peroxide (H2O2) catalysis. Twenty-one-mer CatG4 is a well-proven G4-DNA as well as a hemin-binding aptamer for constituting a DNAzyme. This work studied if a multivalent DNAzyme with accelerated catalysis could be constructed using a multimeric CatG4 with hemin. We compared CatG4 monomer, dimer, trimer, and tetramer, which were prepared by custom oligo synthesis, for G4 structure formation. According to circular dichroism (CD) analysis, we found that a CatG4 multimer exhibited more active G4 conformation than the sum effect of equal-number CatG4 monomers. However, the DNAzyme kinetics was not improved monotonically along with the subunit number of a multimeric CatG4. It was the trivalent DNAzyme, trimeric CatG4:hemin, resulting in the rapidest H2O2 catalysis instead of a tetravalent one. We discovered that the trivalent DNAzyme's highest catalytic rate was correlated to its most stable hemin-binding G4 structure, evidenced by CD melting temperature analysis. Finally, a trivalent DNAzyme-based colorimetric glucose assay with a detection limit as low as 10 μM was demonstrated, and this assay did not need adenosine 5'-tri-phosphate disodium salt hydrate (ATP) as a DNAzyme boosting agent.
Collapse
Affiliation(s)
- Deng-Kai Yang
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Jung Kuo
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Lin-Chi Chen
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
97
|
Sun W, Jiang T, Lu Y, Reiff M, Mo R, Gu Z. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery. J Am Chem Soc 2014; 136:14722-5. [PMID: 25336272 PMCID: PMC4210150 DOI: 10.1021/ja5088024] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
A bioinspired cocoon-like anticancer
drug delivery system consisting
of a deoxyribonuclease (DNase)-degradable DNA nanoclew (NCl) embedded
with an acid-responsive DNase I nanocapsule (NCa) was developed for
targeted cancer treatment. The NCl was assembled from a long-chain
single-stranded DNA synthesized by rolling-circle amplification (RCA).
Multiple GC-pair sequences were integrated into the NCl for enhanced
loading capacity of the anticancer drug doxorubicin (DOX). Meanwhile,
negatively charged DNase I was encapsulated in a positively charged
acid-degradable polymeric nanogel to facilitate decoration of DNase
I into the NCl by electrostatic interactions. In an acidic environment,
the activity of DNase I was activated through the acid-triggered shedding
of the polymeric shell of the NCa, resulting in the cocoon-like self-degradation
of the NCl and promoting the release of DOX for enhanced therapeutic
efficacy.
Collapse
Affiliation(s)
- Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | | | | | | | |
Collapse
|
98
|
Kruspe S, Mittelberger F, Szameit K, Hahn U. Aptamers as drug delivery vehicles. ChemMedChem 2014; 9:1998-2011. [PMID: 25130604 DOI: 10.1002/cmdc.201402163] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/02/2014] [Indexed: 01/22/2023]
Abstract
The benefits of directed and selective therapy for systemic treatment are reasons for increased interest in exploiting aptamers for cell-specific drug delivery. Nucleic acid based pharmaceuticals represent an interesting and novel tool to counter human diseases. Combining inhibitory potential and cargo transfer upon internalization, nanocarriers as well as various therapeutics including siRNAs, chemotherapeutics, photosensitizers, or proteins can be imported via these synthetic nucleic acids. However, widespread clinical application is still hampered by obstacles that must be overcome. In this review, we give an overview of applications and recent advances in aptamer-mediated drug delivery. We also introduce prominent selection methods as well as useful approaches in choice of drug and conjugation method. We discuss the challenges that need to be considered and present strategies that have been applied to achieve intracellular delivery of effectors transported by readily internalized aptamers.
Collapse
Affiliation(s)
- Sven Kruspe
- Institut für Biochemie und Molekularbiologie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg (Germany)
| | | | | | | |
Collapse
|
99
|
Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y. Oligonucleotide aptamers: new tools for targeted cancer therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e182. [PMID: 25093706 PMCID: PMC4221593 DOI: 10.1038/mtna.2014.32] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Aptamers are a class of small nucleic acid ligands that are composed of RNA or single-stranded DNA oligonucleotides and have high specificity and affinity for their targets. Similar to antibodies, aptamers interact with their targets by recognizing a specific three-dimensional structure and are thus termed “chemical antibodies.” In contrast to protein antibodies, aptamers offer unique chemical and biological characteristics based on their oligonucleotide properties. Hence, they are more suitable for the development of novel clinical applications. Aptamer technology has been widely investigated in various biomedical fields for biomarker discovery, in vitro diagnosis, in vivo imaging, and targeted therapy. This review will discuss the potential applications of aptamer technology as a new tool for targeted cancer therapy with emphasis on the development of aptamers that are able to specifically target cell surface biomarkers. Additionally, we will describe several approaches for the use of aptamers in targeted therapeutics, including aptamer-drug conjugation, aptamer-nanoparticle conjugation, aptamer-mediated targeted gene therapy, aptamer-mediated immunotherapy, and aptamer-mediated biotherapy.
Collapse
Affiliation(s)
- Hongguang Sun
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Xun Zhu
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Jilin, China
| | | | - Roberto R Rosato
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Wen Tan
- School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, China
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
100
|
Lamanna G, Grillaud M, Macri C, Chaloin O, Muller S, Bianco A. Adamantane-based dendrons for trimerization of the therapeutic P140 peptide. Biomaterials 2014; 35:7553-61. [DOI: 10.1016/j.biomaterials.2014.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
|