51
|
Hamed ANE, Abouelela ME, El Zowalaty AE, Badr MM, Abdelkader MSA. Chemical constituents from Carica papaya Linn. leaves as potential cytotoxic, EGFR wt and aromatase (CYP19A) inhibitors; a study supported by molecular docking. RSC Adv 2022; 12:9154-9162. [PMID: 35424860 PMCID: PMC8985094 DOI: 10.1039/d1ra07000b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/14/2022] [Indexed: 12/26/2022] Open
Abstract
The phytochemical investigation of the hydromethanolic extract of Carica papaya Linn. leaves (Caricaceae) resulted in the isolation and characterization of ten compounds, namely; carpaine (1), methyl gallate (2), loliolide (3), rutin (4), clitorin (5), kaempferol-3-O-neohesperidoside (6), isoquercetin (7), nicotiflorin (8) and isorhamnetin-3-O-β-d-glucopyranoside (9). The compounds 2, 3, 5-7 and 9 were isolated for the first time from the genus Carica. An in vitro breast cancer cytotoxicity study was evaluated with an MCF-7 cell line using the MTT assay. Methyl gallate and clitorin demonstrated the most potent cytotoxic activities with an IC50 of 1.11 ± 0.06 and 2.47 ± 0.14 μM, respectively. Moreover, methyl gallate and nicotiflorin exhibited potential EGFRwt kinase inhibition activities with an IC50 of 37.3 ± 1.9 and 41.08 ± 2.1 nM, respectively, compared with the positive control erlotinib (IC50 = 35.94 ± 1.8 nM). On the other hand, clitorin and nicotiflorin displayed the strongest aromatase kinase inhibition activities with an IC50 of 77.41 ± 4.53 and 92.84 ± 5.44 nM, respectively. Clitorin was comparable to the efficacy of the standard drug letrozole (IC50 = 77.72 ± 4.55). Additionally, molecular docking simulations of the isolated compounds to EGFR and human placental aromatase cytochrome P450 (CYP19A1) were evaluated. Methyl gallate linked with the EGFR receptor through hydrogen bonding with a pose score of -4.5287 kcal mol-1 and RMSD value of 1.69 Å. Clitorin showed the strongest interaction with aromatase (CYP19A1) for the breast cancer receptor with a posing score of -14.2074 and RMSD value of 1.56 Å. Compounds (1-3) possessed a good bioavailability score with a 0.55 value.
Collapse
Affiliation(s)
- Ashraf N E Hamed
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| | - Mohamed E Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University Assiut-Branch Assiut 71524 Egypt
| | - Ahmed E El Zowalaty
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg 40530 Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg 40530 Gothenburg Sweden
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University 44519 Egypt
| | - Mohamed M Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University Menoufia 32511 Egypt
| | | |
Collapse
|
52
|
Sobh EA, Khalil NA, Faggal SI, Hassan MSA. New benzothienopyrimidine derivatives as dual EGFR/ARO inhibitors: Design, synthesis, and their cytotoxic effect on MCF-7 breast cancer cell line. Drug Dev Res 2022; 83:1075-1096. [PMID: 35286757 DOI: 10.1002/ddr.21934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 11/09/2022]
Abstract
New cytotoxic agents based on benzothienopyrimidine scaffold were designed, synthesized, and evaluated against the MCF-7 breast cancer line in comparison to erlotinib and letrozole as reference drugs. Eight compounds demonstrated up to 20-fold higher anticancer activity than erlotinib, and five of these compounds were up to 11-fold more potent than letrozole in MTT assay. The most promising compounds were evaluated for their inhibitory activity against EGFR and ARO enzymes. Compound 12, which demonstrated potent dual EGFR and ARO inhibitory activity with IC50 of 0.045 and 0.146 µM, respectively, was further evaluated for caspase-9 activation, cell cycle analysis, and apoptosis. The results revealed that the tested compound 12 remarkably induced caspase-9 activation (IC50 = 16.29 ng/ml) caused cell cycle arrest at the pre-G1 /G1 phase and significantly increased the concentration of cells at both early and late stage of apoptosis. In addition, it showed a higher safety profile on normal MCF-10A cells, and higher antiproliferative activity on cancer cells (IC50 = 8.15 µM) in comparison to normal cells (IC50 = 41.20 µM). It also revealed a fivefold higher selectivity index than erlotinib towards MCF-7 cancer cells. Docking studies were performed to rationalize the dual inhibitory activity of compound 12.
Collapse
Affiliation(s)
- Eman A Sobh
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Nadia A Khalil
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Samar I Faggal
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa S A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
53
|
Nematpour M, Rezaee E, Nazari M, Hosseini O, Tabatabai SA. Targeting EGFR Tyrosine Kinase: Design, Synthesis and Biological Evaluation of Novel Quinazolinone Derivatives. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e123826. [PMID: 35765503 PMCID: PMC9191221 DOI: 10.5812/ijpr.123826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 11/29/2022]
Abstract
Impaired cell cycle regulation and disturbance in signal transduction pathway are two major causes of a condition defined as cancer, one of the significant reasons for mortality worldwide. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been commonly used as anticancer agents, and the majority of this medications possess quinazoline moiety as a heteroaromatic core. In this study, two novel series of EGFR-TKIs containing quinazolinone core were designed and synthesized. Most compounds showed reasonable inhibitory activity against EGFR-TK compared to that of erlotinib, a reversible inhibitor of this enzyme. Compound 8b, 2-((2-chlorobenzyl)amino)-6-phenoxyquinazolin-4(1H)-one, with an IC50 value of 1.37 nM exhibited the highest potency. Molecular docking study of compound 8b showed that it had the same direction of erlotinib and formed proper hydrogen bonds and hydrophobic interactions with the important amino acid residues of the active site. Based on in-silico calculations of ADME properties, our novel compounds have the potential to be orally active agents.
Collapse
Affiliation(s)
- Manijeh Nematpour
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Nazari
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Hosseini
- Central Research Labretories, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
54
|
Karati D, Mahadik KR, Trivedi P, Kumar D. A Molecular Insight into Pyrazole Congeners as Antimicrobial, Anticancer, and Antimalarial Agents. Med Chem 2022; 18:1044-1059. [PMID: 35240964 DOI: 10.2174/1573406418666220303150640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pyrazole is a bioactive heterocyclic congener found in a wide range of biological and pharmacological applications. Due to their multiple prospective uses, developing innovative pyrazoles and analogues, disclosing revolutionary ways for synthesizing this nucleus, investigating diverse potencies of that heterocycle, and seeking for possible applications of pyrazoles are all growing more significant Objectives: Pyrazole scaffolds have been proven to be successful as antimicrobial, anticancer, antimalarial therapeutic against multiple targets like DNA gyrase, topoisomerase IV, Hsp90, and several kinase enzymes. Its moiety has absorbed the attention of many scientists to research chemical and pharmacological profile due to this miscellany in the biotic region. RESULTS The review covers pyrazole scaffolds with a variety of biological functions, as well as attempts to connect the structure-activity relationship. Multiple pyrazole analogues have been produced as lead compounds, and their activities have been evaluated. CONCLUSION The combination of pyrazole with other pharmacophores in a molecule might lead to novel potent therapeutic medicines, which could aid in the development of potent lead compounds.
Collapse
Affiliation(s)
- Dipanjan Karati
- Poona College of Pharmacy, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune- 411038, Maharashtra, India
| | - Kakasaheb Ramoo Mahadik
- Poona College of Pharmacy, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune- 411038, Maharashtra, India
| | - Piyush Trivedi
- Hon. Director, Center of Innovation and Translational Research, Poona College of Pharmacy, Bhartiya Vidyapeeth, Pune 411038, India
| | - Dileep Kumar
- Poona College of Pharmacy, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune- 411038, Maharashtra, India
| |
Collapse
|
55
|
Dawoud NTA, El-Fakharany EM, Abdallah AE, El-Gendi H, Lotfy DR. Synthesis, and docking studies of novel heterocycles incorporating the indazolylthiazole moiety as antimicrobial and anticancer agents. Sci Rep 2022; 12:3424. [PMID: 35236889 PMCID: PMC8891364 DOI: 10.1038/s41598-022-07456-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
The current study was directed toward developing a new series of fused heterocycles incorporating indazolylthiazole moiety. The newly synthesized compounds were characterized through elemental analysis and spectral data (IR, 1H-NMR, 13C-NMR, and Mass Spectrometry). The cytotoxic effect of the newly synthesized compounds was evaluated against normal human cells (HFB-4) and cancer cell lines (HepG-2 and Caco-2). Among the synthesized compounds, derivatives 4, and 6 revealed a significant selective antitumor activity, in a dose-dependent manner, against both HepG-2 and Caco-2 cell lines, with lower risk toward HFB-4 cells (normal cells). Derivative 8 revealed the maximum antitumor activity toward both tumor cell lines, with an SI value of about 26 and IC50 value of about 5.9 μg/mL. The effect of these derivatives (8, 4, and 6) upon the expression of 5 tumor regulating genes was studied through quantitative real-time PCR, where its interaction with these genes was simulated through the molecular docking study. Furthermore, the antimicrobial activity results revealed that compounds 2, 7, 8, and 9 have a potential antimicrobial activity, with maximum broad-spectrum activity through compound 3 against the three tested pathogens: Streptococcus mutans, Pseudomonas aeruginosa, and Candida albicans. The newly prepared compounds also revealed anti-biofilm formation activity with maximum activity against Streptococcus mutans, Pseudomonas aeruginosa, and Candida albicans, respectively.
Collapse
Affiliation(s)
- Nadia T A Dawoud
- Chemistry Department, Faculty of Science, Girl's, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, 21934, Egypt.
| | - Abdallah E Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, 21934, Egypt
| | - Doaa R Lotfy
- Chemistry Department, Faculty of Science, Girl's, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
56
|
Albratty M, Ahmad Alhazmi H. Novel pyridine and pyrimidine derivatives as promising anticancer agents: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
57
|
Nehra B, Mathew B, A Chawla P. A medicinal chemist's perspective towards structure activity relationship of heterocycle based anti-cancer agents. Curr Top Med Chem 2022; 22:493-528. [PMID: 35021975 DOI: 10.2174/1568026622666220111142617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
AIM To describe structure activity relationship of heterocyclic derivatives with multi-targeted anticancer activity. OBJECTIVES With the following goals in mind, this review tries to describe significant recent advances in the medicinal chemistry of heterocycle-based compounds: (1) To shed light on recent literature focused on heterocyclic derivatives' anticancer potential; (2) To discuss recent advances in the medicinal chemistry of heterocyclic derivatives, as well as their biological implications for cancer eradication; (3) To summarise the comprehensive correlation of structure activity relationship (SAR) with pharmacological outcomes in cancer therapy. BACKGROUND Cancer remains one of the major serious health issues devastating the world today. Cancer is a complex disease in which improperly altered cells proliferate at an uncontrolled, rapid, and severe rate. Variables such as poor dietary habits, high stress, age, and smoking, can all contribute to the development of cancer. Cancer can affect almost any organ or tissue, although the brain, breast, liver, and colon are the most frequently affected organs. From several years, surgical operations and irradiation are in use along with chemotherapy as a primary treatment of cancer but still effective treatment of cancer remains a huge challenge. Chemotherapy is now one of the most effective strategies to eradicate cancer, although it has been shown to have a number of cytotoxic and unfavourable effects on normal cells. Despite all of these cancer treatments, there are several other targets for anticancer drugs. Cancer can be effectively eradicated by focusing on these targets, which include both cell-specific and receptor-specific targets such as tyrosine kinase receptors (TKIs). Heterocyclic scaffolds also have a variety of applications in drug development and are a common moiety in the pharmaceutical, agrochemical, and textile industries. METHODS The association between structural activity relationship data of many powerful compounds and their anticancer potential in vitro and in vivo has been studied. SAR of powerful heterocyclic compounds can also be generated using molecular docking simulations, as reported vastly in literature. CONCLUSIONS Heterocycles have a wide range of applications, from natural compounds to synthesised derivatives with powerful anticancer properties. To avoid cytotoxicity or unfavourable effects on normal mammalian cells due to a lack of selectivity towards the target site, as well as to reduce the occurrence of drug resistance, safer anticancer lead compounds with higher potency and lower cytotoxicity are needed. This review emphasizes on design and development of heterocyclic lead compounds with promising anticancer potential.
Collapse
Affiliation(s)
- Bhupender Nehra
- University College of Pharmacy, Guru Kashi University, Talwandi Sabo, Bathinda, Punjab-151302, India
| | - Bijo Mathew
- Dept. of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682041, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga-142001, India
| |
Collapse
|
58
|
Islam F, Doshi A, Robles AJ, Quadery TM, Zhang X, Zhou X, Hamel E, Mooberry SL, Gangjee A. Design, Synthesis, and Biological Evaluation of 5,6,7,8-Tetrahydrobenzo[4,5]thieno[2,3- d]pyrimidines as Microtubule Targeting Agents. Molecules 2022; 27:321. [PMID: 35011550 PMCID: PMC8747035 DOI: 10.3390/molecules27010321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
A series of eleven 4-substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines were designed and synthesized and their biological activities were evaluated. Synthesis involved the Gewald reaction to synthesize ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate ring, and SNAr reactions. Compound 4 was 1.6- and ~7-fold more potent than the lead compound 1 in cell proliferation and microtubule depolymerization assays, respectively. Compounds 4, 5 and 7 showed the most potent antiproliferative effects (IC50 values < 40 nM), while compounds 6, 8, 10, 12 and 13 had lower antiproliferative potencies (IC50 values of 53-125 nM). Additionally, compounds 4-8, 10 and 12-13 circumvented Pgp and βIII-tubulin mediated drug resistance, mechanisms that diminish the clinical efficacy of paclitaxel (PTX). In the NCI-60 cell line panel, compound 4 exhibited an average GI50 of ~10 nM in the 40 most sensitive cell lines. Compound 4 demonstrated statistically significant antitumor effects in a murine MDA-MB-435 xenograft model.
Collapse
Affiliation(s)
- Farhana Islam
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA; (F.I.); (A.D.); (T.M.Q.); (X.Z.); (X.Z.)
| | - Arpit Doshi
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA; (F.I.); (A.D.); (T.M.Q.); (X.Z.); (X.Z.)
| | - Andrew J. Robles
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA;
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Tasdique M. Quadery
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA; (F.I.); (A.D.); (T.M.Q.); (X.Z.); (X.Z.)
| | - Xin Zhang
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA; (F.I.); (A.D.); (T.M.Q.); (X.Z.); (X.Z.)
| | - Xilin Zhou
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA; (F.I.); (A.D.); (T.M.Q.); (X.Z.); (X.Z.)
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Frederick National Laboratory for Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Susan L. Mooberry
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA;
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA; (F.I.); (A.D.); (T.M.Q.); (X.Z.); (X.Z.)
| |
Collapse
|
59
|
Wang Z, Dai H, Si X, Gao C, Liu L, Zhang L, Zhang Y, Song Y, Zhao P, Zheng J, Ke Y, Liu H, Zhang Q. Synthesis and Antitumor Activity of 2,4,6-Trisubstituted Novel Quinazoline Derivatives Containing Trifluoromethyl. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
60
|
Hagras M, El Deeb MA, Elzahabi HSA, Elkaeed EB, Mehany ABM, Eissa IH. Discovery of new quinolines as potent colchicine binding site inhibitors: design, synthesis, docking studies, and anti-proliferative evaluation. J Enzyme Inhib Med Chem 2021; 36:640-658. [PMID: 33588683 PMCID: PMC7889231 DOI: 10.1080/14756366.2021.1883598] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/26/2020] [Accepted: 01/25/2021] [Indexed: 01/03/2023] Open
Abstract
Discovering of new anticancer agents with potential activity against tubulin polymerisation is still a promising approach. Colchicine binding site inhibitors are the most relevant anti-tubulin polymerisation agents. Thus, new quinoline derivatives have been designed and synthesised to possess the same essential pharmacophoric features of colchicine binding site inhibitors. The synthesised compounds were tested in vitro against a panel of three human cancer cell lines (HepG-2, HCT-116, and MCF-7) using colchicine as a positive control. Comparing to colchicine (IC50 = 7.40, 9.32, and 10.41 µM against HepG-2, HCT-116, and MCF-7, respectively), compounds 20, 21, 22, 23, 24, 25, 26, and 28 exhibited superior cytotoxic activities with IC50 values ranging from 1.78 to 9.19 µM. In order to sightsee the proposed mechanism of anti-proliferative activity, the most active members were further evaluated in vitro for their inhibitory activities against tubulin polymerisation. Compounds 21 and 32 exhibited the highest tubulin polymerisation inhibitory effect with IC50 values of 9.11 and 10.5 nM, respectively. Such members showed activities higher than that of colchicine (IC50 = 10.6 nM) and CA-4 (IC50 = 13.2 nM). The impact of the most promising compound 25 on cell cycle distribution was assessed. The results revealed that compound 25 can arrest the cell cycle at G2/M phase. Annexin V and PI double staining assay was carried out to explore the apoptotic effect of the synthesised compounds. Compound 25 induced apoptotic effect on HepG-2 thirteen times more than the control cells. To examine the binding pattern of the target compounds against the tubulin heterodimers active site, molecular docking studies were carried out.
Collapse
Affiliation(s)
- Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Moshira A. El Deeb
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Heba S. A. Elzahabi
- Department of Pharmaceutical Medicinal Chemistry & Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh, Saudi Arabia
| | - Ahmed B. M. Mehany
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ibrahim H. Eissa
- Department of Pharmaceutical Medicinal Chemistry & Drug Design, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
61
|
Alsaif NA, Taghour MS, Alanazi MM, Obaidullah AJ, Al-Mehizia AA, Alanazi MM, Aldawas S, Elwan A, Elkady H. Discovery of new VEGFR-2 inhibitors based on bis([1, 2, 4]triazolo)[4,3- a:3',4'- c]quinoxaline derivatives as anticancer agents and apoptosis inducers. J Enzyme Inhib Med Chem 2021; 36:1093-1114. [PMID: 34056992 PMCID: PMC8168755 DOI: 10.1080/14756366.2021.1915303] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Herein, a new wave of bis([1, 2, 4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives have been successfully designed and synthesised. The synthesised derivatives were biologically investigated for their cytotoxic activities against HepG2 and MCF-7. Also, the tested compounds were further examined in vitro for their VEGFR-2 inhibitory activity. The most promising derivative 23j was further investigated for its apoptotic behaviour in HepG2 cell lines using flow cytometric and western-plot analyses. Additional in-silico studies were performed to predict how the synthesised compounds can bind to VEGFR-2 and to determine the drug-likeness profiling of these derivatives. The results revealed that compounds 23a, 23i, 23j, 23l, and 23n displayed the highest antiproliferative activities against the two cell lines with IC50 values ranging from 6.4 to 19.4 µM. Furthermore, compounds 23a, 23d, 23h, 23i, 23j, 23l, 23 m, and 23n showed the highest VEGFR-2 inhibitory activities with IC50 values ranging from 3.7 to 11.8 nM, comparing to sorafenib (IC50 = 3.12 nM). Moreover, compound 23j arrested the HepG2 cell growth at the G2/M phase and induced apoptosis by 40.12% compared to the control cells (7.07%). As well, such compound showed a significant increase in the level of caspase-3 (1.36-fold), caspase-9 (2.80-fold), and BAX (1.65-fold), and exhibited a significant decrease in Bcl-2 level (2.63-fold).
Collapse
Affiliation(s)
- Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Al-Mehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Manal M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Aldawas
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
62
|
Eldehna WM, Al-Rashood ST, Al-Warhi T, Eskandrani RO, Alharbi A, El Kerdawy AM. Novel oxindole/benzofuran hybrids as potential dual CDK2/GSK-3β inhibitors targeting breast cancer: design, synthesis, biological evaluation, and in silico studies. J Enzyme Inhib Med Chem 2021; 36:270-285. [PMID: 33327806 PMCID: PMC7751407 DOI: 10.1080/14756366.2020.1862101] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
The serine/threonine protein kinases CDK2 and GSK-3β are key oncotargets in breast cancer cell lines, therefore, in the present study three series of oxindole-benzofuran hybrids were designed and synthesised as dual CDK2/GSK-3β inhibitors targeting breast cancer (5a-g, 7a-h, and 13a-b). The N1 -unsubstituted oxindole derivatives, series 5, showed moderate to potent activity on both MCF-7 and T-47D breast cancer cell lines. Compounds 5d-f showed the most potent cytotoxic activity with IC50 of 3.41, 3.45 and 2.27 μM, respectively, on MCF-7 and of 3.82, 4.53 and 7.80 μM, respectively, on T-47D cell lines, in comparison to the used reference standard (staurosporine) IC50 of 4.81 and 4.34 μM, respectively. On the other hand, the N1 -substituted oxindole derivatives, series 7 and 13, showed moderate to weak cytotoxic activity on both breast cancer cell lines. CDK2 and GSK-3β enzyme inhibition assay of series 5 revealed that compounds 5d and 5f are showing potent dual CDK2/GSK-3β inhibitory activity with IC50 of 37.77 and 52.75 nM, respectively, on CDK2 and 32.09 and 40.13 nM, respectively, on GSK-3β. The most potent compounds 5d-f caused cell cycle arrest in the G2/M phase in MCF-7 cells inducing cell apoptosis because of the CDK2/GSK-3β inhibition. Molecular docking studies showed that the newly synthesised N1 -unsubstituted oxindole hybrids have comparable binding patterns in both CDK2 and GSK-3β. The oxindole ring is accommodated in the hinge region interacting through hydrogen bonding with the backbone CO and NH of the key amino acids Glu81 and Leu83, respectively, in CDK2 and Asp133 and Val135, respectively, in GSK-3β. Whereas, in series 7 and 13, the N1 -substitutions on the oxindole nucleus hinder the compounds from achieving these key interactions with hinge region amino acids what rationalises their moderate to low anti-proliferative activity.
Collapse
Affiliation(s)
- Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Razan O. Eskandrani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M. El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Giza University, Cairo, Egypt
| |
Collapse
|
63
|
Batran RZ, El‐Kashak WA, El‐Daly SM, Ahmed EY. Dual Kinase Inhibition of EGFR/HER2: Design, Synthesis and Molecular Docking of Thiazolylpyrazolyl‐Based Aminoquinoline Derivatives as Anticancer Agents**. ChemistrySelect 2021. [DOI: 10.1002/slct.202102917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rasha Z. Batran
- Chemistry of Natural Compounds Department Pharmaceutical and Drug Industries Research Division National Research Centre Dokki Cairo Egypt
| | - Walaa A. El‐Kashak
- Chemistry of Natural Compounds Department Pharmaceutical and Drug Industries Research Division National Research Centre Dokki Cairo Egypt
| | - Sherien M. El‐Daly
- Medical Biochemistry Department Medical Research Division National Research Centre Cairo Egypt
- Cancer Biology and Genetics Laboratory Centre of Excellence for Advanced Sciences National Research Centre Cairo Egypt
| | - Eman Y. Ahmed
- Chemistry of Natural Compounds Department Pharmaceutical and Drug Industries Research Division National Research Centre Dokki Cairo Egypt
| |
Collapse
|
64
|
Shaldam M, Nocentini A, Elsayed ZM, Ibrahim TM, Salem R, El-Domany RA, Capasso C, Supuran CT, Eldehna WM. Development of Novel Quinoline-Based Sulfonamides as Selective Cancer-Associated Carbonic Anhydrase Isoform IX Inhibitors. Int J Mol Sci 2021; 22:11119. [PMID: 34681794 PMCID: PMC8541628 DOI: 10.3390/ijms222011119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
A new series of quinoline-based benzenesulfonamides (QBS) were developed as potential carbonic anhydrase inhibitors (CAIs). The target QBS CAIs is based on the 4-anilinoquinoline scaffold where the primary sulphonamide functionality was grafted at C4 of the anilino moiety as a zinc anchoring group (QBS 13a-c); thereafter, the sulphonamide group was switched to ortho- and meta-positions to afford regioisomers 9a-d and 11a-g. Moreover, a linker elongation approach was adopted where the amino linker was replaced by a hydrazide one to afford QBS 16. All the described QBS have been synthesized and investigated for their CA inhibitory action against hCA I, II, IX and XII. In general, para-sulphonamide derivatives 13a-c displayed the best inhibitory activity against both cancer-related isoforms hCA IX (KIs = 25.8, 5.5 and 18.6 nM, respectively) and hCA XII (KIs = 9.8, 13.2 and 8.7 nM, respectively), beside the excellent hCA IX inhibitory activity exerted by meta-sulphonamide derivative 11c (KI = 8.4 nM). The most promising QBS were further evaluated for their anticancer and pro-apoptotic activities on two cancer cell lines (MDA-MB-231 and MCF-7). In addition, molecular docking simulation studies were applied to justify the acquired CA inhibitory action of the target QBS.
Collapse
Affiliation(s)
- Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.S.); (T.M.I.); (R.S.)
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Zainab M. Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Tamer M. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.S.); (T.M.I.); (R.S.)
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.S.); (T.M.I.); (R.S.)
| | - Ramadan A. El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, Italian National Research Council (CNR)CNR, Via Pietro Castellino 111, 80131 Napoli, Italy;
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.S.); (T.M.I.); (R.S.)
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| |
Collapse
|
65
|
Sharma B, Singh VJ, Chawla PA. Epidermal growth factor receptor inhibitors as potential anticancer agents: An update of recent progress. Bioorg Chem 2021; 116:105393. [PMID: 34628226 DOI: 10.1016/j.bioorg.2021.105393] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a vital intermediate in cell signaling pathway including cell proliferation, angiogenesis, apoptosis, and metastatic spread and also having four divergent members with similar structural features, such as EGFR (HER1/ErbB1), ErbB2 (HER2/neu), ErbB3 (HER3), and ErbB4 (HER4). Despite this, clinically exploited inhibitors of EGFR (including erlotinib, lapatinib, gefitinib, selumetinib, etc.) are not specific thus provoking unenviable adverse effects. Some of the paramount obstacles to generate and develop new lead molecules of EGFR inhibitors are drug resistance, mutation, and also selectivity which inspire medicinal chemists to generate novel chemotypes. The discovery of therapeutic agents that inhibit the precise stage in tumorous cells such as EGFR is one of the chief successful targets in many cancer therapies, including lung and breast cancers. This review aims to compile the various recent progressions (2016-2021) in the discovery and development of diverse epidermal growth factor receptor (EGFR) inhibitors belonging to distinct structural classes like pyrazoline, pyrazole, imidazole, pyrimidine, coumarin, benzothiazole, etc. We have summarized preclinical and clinical data, structure-activity relationships (SAR) containing mechanistic and in silico studies to provide proposals for the design and invention of new EGFR inhibitors with therapeutic significance. The detailed progress of the work in the field will provide inexorable scope for the development of novel drug candidates with greater selectivity and efficacy.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Vikram Jeet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India.
| |
Collapse
|
66
|
Amer HH, Alotaibi SH, Trawneh AH, Metwaly AM, Eissa IH. Anticancer activity, spectroscopic and molecular docking of some new synthesized sugar hydrazones, Arylidene and α-Aminophosphonate derivatives. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
67
|
Ma C, Taghour MS, Belal A, Mehany ABM, Mostafa N, Nabeeh A, Eissa IH, Al-Karmalawy AA. Design and Synthesis of New Quinoxaline Derivatives as Potential Histone Deacetylase Inhibitors Targeting Hepatocellular Carcinoma: In Silico, In Vitro, and SAR Studies. Front Chem 2021; 9:725135. [PMID: 34631658 PMCID: PMC8493129 DOI: 10.3389/fchem.2021.725135] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
Guided by the structural optimization principle and the promising anticancer effect of the quinoxaline nucleus, a new series of novel HDAC inhibitors were designed and synthesized. The synthesized compounds were designed to bear the reported pharmacophoric features of the HDAC inhibitors in addition to an extra moiety to occupy the non-used vacant deep pocket of the HDAC receptor. The newly prepared compounds were evaluated for their in vitro anti-proliferative activities against HepG-2 and HuH-7 liver cancer cell lines. The tested compounds showed promising anti-proliferative activities against both cell lines. The most active ten candidates (6 c , 6 d , 6 f , 6 g , 6 k , 6 l , 7 b , 8, 10 h , and 12) were further evaluated for their effect on the gene expression levels of Bax as an apoptotic marker and Bcl-2 as an anti-apoptotic one. Moreover, they were evaluated for their ability to inhibit histone deacetylase (HDAC1, HDAC4, and HDAC6) activities. Compound 6 c achieved the best cytotoxic activities on both HepG-2 and HuH-7 cell lines with IC50 values of 1.53 and 3.06 µM, respectively, and also it showed the most inhibitory activities on HDAC1, HDAC4, and HDAC6 with IC50 values of 1.76, 1.39, and 3.46 µM, respectively, compared to suberoylanilide hydroxamic acid (SAHA) as a reference drug (IC50 = 0.86, 0.97, and 0.93 µM, respectively). Furthermore, it achieved a more characteristic arrest in the growth of cell population of HepG-2 at both G0/G1 and S phases with 1.23-, and 1.18-fold, respectively, compared to that of the control, as determined by cell cycle analysis. Also, compound 6 c showed a marked elevation in the AnxV-FITC apoptotic HepG-2 cells percentage in both early and late phases increasing the total apoptosis percentage by 9.98-, and 10.81-fold, respectively, compared to the control. Furthermore, docking studies were carried out to identify the proposed binding mode of the synthesized compounds towards the prospective target (HDAC4). In silico ADMET and toxicity studies revealed that most of the synthesized compounds have accepted profiles of drug-likeness with low toxicity. Finally, an interesting SAR analysis was concluded to help the future design of more potent HDACIs in the future by medicinal chemists.
Collapse
Affiliation(s)
- Chao Ma
- Hepatobiliary and Pancreatic Surgery, Cancer Hospital of Zhengzhou University, Zhengzhou City, China
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Naglaa Mostafa
- Biophysics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed Nabeeh
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
68
|
EGFRisopred: a machine learning-based classification model for identifying isoform-specific inhibitors against EGFR and HER2. Mol Divers 2021; 26:1531-1543. [PMID: 34345964 DOI: 10.1007/s11030-021-10284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
The EGFR kinase pathway is one of the most frequently activated signaling pathways in human cancers. EGFR and HER2 are the two significant members of this pathway, which are attractive drug targets of clinical relevance in lung and breast cancer. Therefore, identifying EGFR- and HER2-specific inhibitors is one of the important challenges in cancer drug discovery. To address this issue, a dataset of 519 compounds having inhibitory activity against both the isoforms, i.e., EGFR and HER2, was collected from the literature and developed a knowledge-based computational classification model for predicting the specificity of a molecule for an isoform (EGFR/HER2) with precision. A total of seventy-two classification models using nine fingerprint types, four classifiers (IBK, NB, SMO and RF) and two different datasets (EGFR and HER2 isoform specific) were developed. It was observed that the models developed using random forest and IBK performed better for EGFR- and HER2-specific datasets, respectively. Scaffold and functional group analysis led to the identification of prevalent core and fragments in each of the datasets. The accuracy of the selected best performing models was also evaluated using the decoy dataset. We have also developed an application EGFRisopred, which integrates the best performing models and permits the user to predict the specificity of a compound as an EGFR-/HER2-specific anticancer agent. It is expected that the tool's availability as a free utility will allow researchers to identify new inhibitors against these targets important in cancer.
Collapse
|
69
|
Zou M, Li J, Jin B, Wang M, Chen H, Zhang Z, Zhang C, Zhao Z, Zheng L. Design, synthesis and anticancer evaluation of new 4-anilinoquinoline-3-carbonitrile derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorg Chem 2021; 114:105200. [PMID: 34375195 DOI: 10.1016/j.bioorg.2021.105200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/18/2021] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
Dual targeting of EGFR/HER2 receptor is an attractive strategy for cancer therapy. Four series of 4-anilinoquinoline-3-carbonitrile derivatives were designed and prepared by introducing various functional groups, including a polar hydrophilic group (carboxylic acid), a heterocyclic substituent possessing polarity to some extent, and an unpolar hydrophobic phenyl portion, at the C-6 position of the quinoline skeleton. All of the prepared derivatives were screened for their inhibitory activities against EGFR /HER2 receptors and their antiproliferative activities against the SK-BR-3 and A431 cell lines. Compounds 6a, 6 g and 6d exhibited significant activities against the target cell lines. In particular, the antiproliferative activity of 6d (IC50 = 1.930 μM) against SK-BR-3 was over 2-fold higher than that of neratinib (IC50 = 3.966 μM), and comparable to that of Lapatinib (IC50 = 2.737 μM). On the other hand, 6d (IC50 = 1.893 μM) was more active than the reference drug Neratinib (IC50 = 2.151 μM), and showed comparable potency to Lapatinib (IC50 = 1.285 μM) against A431. Cell cycle analysis and apoptosis assays indicated that 6d arrests the cell cycle in the S phase, and it is a potent apoptotic inducer. Moreover, molecular docking exhibited the binding modes of compound 6d in EGFR and HER2 binding sites, respectively. Compound 6d can be considered as a candidate for further investigation as a more potent anticancer agent.
Collapse
Affiliation(s)
- Min Zou
- Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Jiawen Li
- Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mingsheng Wang
- Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Huiping Chen
- Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zhuangli Zhang
- Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Changzheng Zhang
- Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zhihong Zhao
- Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Liyun Zheng
- Henan Key Laboratory for Pharmacology of Liver Diseases, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
70
|
Cuartas V, Aragón-Muriel A, Liscano Y, Polo-Cerón D, Crespo-Ortiz MDP, Quiroga J, Abonia R, Insuasty B. Anticancer activity of pyrimidodiazepines based on 2-chloro-4-anilinoquinazoline: synthesis, DNA binding and molecular docking. RSC Adv 2021; 11:23310-23329. [PMID: 35479808 PMCID: PMC9036565 DOI: 10.1039/d1ra03509f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 01/27/2023] Open
Abstract
Multidrug resistance to chemotherapy is a critical health problem associated with mutation of the therapeutic target. Therefore, the development of anticancer agents remains a challenge to overcome cancer cell resistance. Herein, a new series of quinazoline-based pyrimidodiazepines 16a-g were synthesized by the cyclocondensation reaction of 2-chloro-4-anilinoquinazoline-chalcones 14a-g with 2,4,5,6-tetraaminopyrimidine. All quinazoline derivatives 14a-g and 16a-g were selected by the U.S. National Cancer Institute (NCI) for testing their anticancer activity against 60 cancer cell lines of different panels of human tumors. Among the tested compounds, quinazoline-chalcone 14g displayed high antiproliferative activity with GI50 values between 0.622-1.81 μM against K-562 (leukemia), RPMI-8226 (leukemia), HCT-116 (colon cancer) LOX IMVI (melanoma), and MCF7 (breast cancer) cancer cell lines. Additionally, the pyrimidodiazepines 16a and 16c exhibited high cytostatic (TGI) and cytotoxic activity (LC50), where 16c showed high cytotoxic activity, which was 10.0-fold higher than the standard anticancer agent adriamycin/doxorubicin against ten cancer cell lines. COMPARE analysis revealed that 16c may possess a mechanism of action through DNA binding that is similar to that of CCNU (lomustine). DNA binding studies indicated that 14g and 16c interact with the calf thymus DNA by intercalation and groove binding, respectively. Compounds 14g, 16c and 16a displayed strong binding affinities to DNA, EGFR and VEGFR-2 receptors. None of the active compounds showed cytotoxicity against human red blood cells.
Collapse
Affiliation(s)
- Viviana Cuartas
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia +57-2339-3248 +57-315-484-6665.,Center for Bioinformatics and Photonics-CIBioFI A.A. 25360 Cali Colombia
| | - Alberto Aragón-Muriel
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Universidad del Valle Cali 760001 Colombia
| | - Yamil Liscano
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Universidad Santiago de Cali Cali 760035 Colombia
| | - Dorian Polo-Cerón
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Universidad del Valle Cali 760001 Colombia
| | - Maria Del Pilar Crespo-Ortiz
- Grupo de Biotecnología e Infecciones Bacterianas, Departamento de Microbiología, Universidad del Valle Cali 760043 Colombia
| | - Jairo Quiroga
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia +57-2339-3248 +57-315-484-6665
| | - Rodrigo Abonia
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia +57-2339-3248 +57-315-484-6665
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle A.A. 25360 Cali Colombia +57-2339-3248 +57-315-484-6665.,Center for Bioinformatics and Photonics-CIBioFI A.A. 25360 Cali Colombia
| |
Collapse
|
71
|
Mahapatra A, Prasad T, Sharma T. Pyrimidine: a review on anticancer activity with key emphasis on SAR. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00274-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
Cancer is a global health challenge, it impacts the quality of life and its treatment is associated with several side effects. Resistance of the cancer cells to the existing drugs has led to search for novel anticancer agents. Pyrimidine, a privileged scaffold, is part of living organisms and plays vital role in various biological procedures as well as in cancer pathogenesis. Due to resemblance in structure with the nucleotide base pair of DNA and RNA, it is recognized as valuable compound in the treatment of cancer.
Main text
Many novel pyrimidine derivatives have been designed and developed for their anticancer activity in the last few years. The present review aims to focus on the structure activity relationship (SAR) of pyrimidine derivatives as anticancer agent from the last decade.
Conclusion
This review intends to assist in the development of more potent and efficacious anticancer drugs with pyrimidine scaffold.
Graphical abstract
Collapse
|
72
|
Isolation and In Silico Anti-COVID-19 Main Protease (Mpro) Activities of Flavonoids and a Sesquiterpene Lactone from Artemisia sublessingiana. J CHEM-NY 2021. [DOI: 10.1155/2021/5547013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The emergence of the COVID-19 pandemic declared the huge need of humanity for new and effective antiviral drugs. The reported antimicrobial activities of Artemisia sublessingiana encouraged us to investigate the ethanol extract of its aerial parts which led to the isolation of six flavonoids and a sesquiterpenoid. The structures of the isolated compounds were elucidated by EI-MS, 1D, and 2D NMR spectroscopic methods to be (1) eupatilin, (2) 3′,4′-dimethoxyluteolin, (3) 5,7,3′-trihydroxy-6,4′,5′-trimethoxyflavone, (4) hispidulin, (5) apigenin, (6) velutin, and (7) sesquiterpene lactone 8α,14-dihydroxy-11,13-dihydromelampolide. The isolated compounds were in silico examined against the COVID-19 main protease (Mpro) enzyme. Compounds 1–6 exhibited promising binding modes showing free energies ranging from −6.39 to −6.81 (kcal/mol). The best binding energy was for compound 2. The obtained results give hope of finding a treatment for the COVID-19 pandemic.
Collapse
|
73
|
Eissa IH, Dahab MA, Ibrahim MK, Alsaif NA, Alanazi AZ, Eissa SI, Mehany ABM, Beauchemin AM. Design and discovery of new antiproliferative 1,2,4-triazin-3(2H)-ones as tubulin polymerization inhibitors targeting colchicine binding site. Bioorg Chem 2021; 112:104965. [PMID: 34020238 DOI: 10.1016/j.bioorg.2021.104965] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Thirty-five new colchicine binding site inhibitors have been designed and synthesized based on the 1,2,4-triazin-3(2H)-one nucleus. Such molecules were synthesized through a cascade reaction between readily accessible α-amino ketones and phenyl carbazate as a masked N-isocyanate precursor. The synthesized derivatives are cisoid restricted combretastatin A4 analogues containing 1,2,4-triazin-3(2H)-one in place of the olefinic bond, and they have the same essential pharmacophoric features of colchicine binding site inhibitors. The synthesized compounds were evaluated in vitro for their antiproliferative activities against a panel of three human cancer cell lines (MCF-7, HepG-2, and HCT-116), using colchicine as a positive control. Among them, two compounds 5i and 6i demonstrated a significant antiproliferative effect against all cell lines with IC50 ranging from 8.2 - 18.2 µM. Further investigation was carried out for the most active cytotoxic agents as tubulin polymerization inhibitors. Compounds 5i and 6i effectively inhibited microtubule assembly with IC50 values ranging from 3.9 to 7.8 µM. Tubulin polymerization assay results were found to be comparable with the cytotoxicity results. The cell cycle analysis revealed significant G2/M cell cycle arrest of the analogue 5i in HepG-2 cells. The most active compounds 4i, 4j, 5 g, 5i and 6i did not induce significant cell death in normal human lung cells Wl-38, suggesting their selectivity against cancer cells. Also, These compounds upregulated the level of active caspase-3 and boosted the levels of the pro-apoptotic protein Bax by five to seven folds in comparison to the control. Moreover, apoptosis analyses were conducted for compound 5i to evaluate its apoptotic potential. Finally, in silico studies were conducted to reveal the probable interaction with the colchicine binding site. ADME prediction study of the designed compounds showed that they are not only with promising tubulin polymerization inhibitory activity but also with favorable pharmacokinetic and drug-likeness properties.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt.
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt; Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ontario K1N6N5, Canada.
| | - Mohamed K Ibrahim
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - A Z Alanazi
- Department of pharmacology and toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sally I Eissa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh, 13713, Saudi Arabia
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - André M Beauchemin
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ontario K1N6N5, Canada
| |
Collapse
|
74
|
Ayati A, Moghimi S, Toolabi M, Foroumadi A. Pyrimidine-based EGFR TK inhibitors in targeted cancer therapy. Eur J Med Chem 2021; 221:113523. [PMID: 33992931 DOI: 10.1016/j.ejmech.2021.113523] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022]
Abstract
Despite significant improvements of new treatment options, cancer continues to represent as one of the most common and fatal disease. The EGFR signaling pathway is considered as a significant approach in targeted therapy of cancers. Blocking the EGFR-driven pathway by inhibiting the intracellular tyrosine kinase domain of EGFR have shown considerable improvement in cancer therapy. In an effort to identify EGFR tyrosine kinase inhibitors (TKI), several small molecules especially pyrimidine containing derivatives have been designed by applying molecular simulation and evaluated the emergence of epigenetic mutation and resistance problems restricted the long-term effectiveness of such medication and explained the need for further investigations in this field. In recent years, the studies have been focused on genetic alterations on EGFR tyrosine kinase domain, which led to the design and synthesis of more selective and effective inhibitors. Herein, we give an overview of the importance and status of EGFR inhibitors in cancer therapy. In addition, we provide an update of the recent advances in design, discovery and development of novel pyrimidine containing compounds as promising selective EGFR TK inhibitors.
Collapse
Affiliation(s)
- Adileh Ayati
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Toolabi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
75
|
El-Metwally SA, Abou-El-Regal MM, Eissa IH, Mehany ABM, Mahdy HA, Elkady H, Elwan A, Elkaeed EB. Discovery of thieno[2,3-d]pyrimidine-based derivatives as potent VEGFR-2 kinase inhibitors and anti-cancer agents. Bioorg Chem 2021; 112:104947. [PMID: 33964580 DOI: 10.1016/j.bioorg.2021.104947] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/05/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022]
Abstract
Vascular endothelial growth factor-2 (VEGFR-2) is considered one of the most important factors in tumor angiogenesis, and consequently a number of anticancer therapeutics have been developed to inhibit VEGFR-2 signaling. Accordingly, eighteen derivatives of thieno[2,3-d]pyrimidines having structural characteristics similar to VEGFR-2 inhibitors were designed and synthesized. Anticancer activities of the new derivatives were assessed against three human cancer cell lines (HCT-116, HepG2, and MCF-7) using MTT. Sorafenib was used as positive control. Compounds 17c-i, and 20b showed excellent anticancer activities against HCT-116 and HepG2 cell lines, while compounds 17i and 17g was found to be active against MCF-7 cell line. Compound 17f exhibited the highest cytotoxic activities against the examined cell lines, HCT-116 and HepG2, with IC50 values of 2.80 ± 0.16 and 4.10 ± 0.45 µM, respectively. Aiming at exploring the mechanism of action of these compounds, the most active cytotoxic derivatives were in vitro tested for their VEGFR-2 inhibitory activity. Compound 17f showed high activity against VEGFR-2 with an IC50 value of 0.23 ± 0.03 µM, that is equal to that of reference, sorafenib (IC50 = 0.23 ± 0.04 µM). Molecular docking studies also were performed to investigate the possible binding interactions of the target compounds with the active sites of VEGFR-2. The synthesized compounds were analyzed for their ADMET and toxicity properties. Results showed that most of the compounds have low to very low BBB penetration levels and they have non-inhibitory effect against CYP2D6. All compounds were predicted to be non-toxic against developmental toxicity potential model except compounds 17b and 20b.
Collapse
Affiliation(s)
- Souad A El-Metwally
- Department of Basic Science, Higher Technological Institute, 10th of Ramadan City 228, Egypt
| | - Mohsen M Abou-El-Regal
- Department of Chemistry, Faculty of Science, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Riyadh, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
76
|
In Vitro and In Silico Cytotoxic and Antibacterial Activities of a Diterpene from Cousinia alata Schrenk. J CHEM-NY 2021. [DOI: 10.1155/2021/5542455] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A biologically guided isolation of secondary metabolites from Cousinia alata Schrenk wild plant growing in Akmola region, Kazakhstan, led to the isolation of the bioactive diterpene grindelic acid (1). Six flavonoids were also isolated and identified as retusine (2), pachipodol (3), jaranol (4), penduletin (5), casticin (6), and 5, 7, 3′-trihydroxy-3, 4′-dimethoxyflavone (7). Penduletin (5) showed moderate cytotoxic activity assay. Grindelic acid exhibited promising cytotoxic activity against the Artemia salina nauplii and antibacterial activity against Staphylococcus aureus, Bacillus cereus, and Salmonella enteritidis. The presence of the essential pharmacophoric features of histone deacetylase (HDAC) inhibitors in the structure of grindelic acid encouraged us to run a molecular docking study against the HDAC enzyme to understand its mechanism of action on a molecular level. Grindelic acid showed a binding mode of interaction similar to that of the cocrystallized ligand and exhibited good binding affinity against HDAC with the binding free energy of −18.70 kcal/mol. The structures of isolated compounds were determined by MS, 1D, and 2D NMR spectroscopy methods. Compounds (1–7) were isolated for the first time from Cousinia genus.
Collapse
|
77
|
Liu Q, Luo Y, Li Z, Chen C, Fang L. Structural modifications on indole and pyrimidine rings of osimertinib lead to high selectivity towards L858R/T790M double mutant enzyme and potent antitumor activity. Bioorg Med Chem 2021; 36:116094. [PMID: 33667898 DOI: 10.1016/j.bmc.2021.116094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 12/01/2022]
Abstract
EGFR inhibitors represent a significant milestone for treatment of non-small cell lung cancer, however, they suffer from the acquired drug resistance. Utilizing osimertinib as the lead compound, this work has explored the structural modifications on the indole and pyrimidine rings of osimertinib to generate novel osimertinib derivatives. The in vitro enzymatic and cellular studies showed that the derivatives possessed high selectivity towards double mutant EGFR and potent antitumor activity. Particularly, compound 6b-1, the most active compound, exhibited excellent inhibitory activity against double mutant EGFR (IC50 = 0.18 nM) and wild-type EGFR (IC50 = 2.89 nM) as well as H1975 cells (IC50 = 1.44 nM). Western blot analysis showed that 6b-1 completely inhibited double mutant EGFR and Erk phosphorylation. In vivo test using xenograft model indicated that compound 6b-1 had better antitumor efficacy than osimertinib. More importantly, 6b-1 displayed many advantages in the pharmacokinetic study, including better oral bioavailability and metabolism character.
Collapse
Affiliation(s)
- Qiao Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yanli Luo
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zerui Li
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chen Chen
- School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
78
|
Abbas N, Matada GSP, Dhiwar PS, Patel S, Devasahayam G. Fused and Substituted Pyrimidine Derivatives as Profound Anti-Cancer Agents. Anticancer Agents Med Chem 2021; 21:861-893. [PMID: 32698738 DOI: 10.2174/1871520620666200721104431] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/06/2020] [Accepted: 05/17/2020] [Indexed: 11/22/2022]
Abstract
The rationale behind drug design is the strategic utilization of heterocyclic fragments with specific physicochemical properties to form molecular targeted agents. Among the heterocyclic molecules, pyrimidine has proved to be a privileged pharmacophore for various biological cancer targets. The anti-cancer potential of small molecules with fused and substituted pyrimidines can be enhanced through bioisosteric replacements and altering their ADME parameters. Although several small molecules are used in cancer chemotherapy, oncology therapeutics has various limitations, especially in their routes of administration and their concurrent side effects. Such pernicious effects may be overcome, via selective biological targeting. In this review, the biological targets, to inhibit cancer, have been discussed. The structural activity relationship of fused and substituted pyrimidines was studied. Eco-friendly synthetic approaches for pyrimidine derivatives have also been discussed. This review will give an insight to scientists and researchers of medicinal chemistry discipline to design small molecules having a pyrimidine scaffold with high anti-cancer potential.
Collapse
Affiliation(s)
- Nahid Abbas
- Department of Medicinal Chemistry, Acharya & BM Reddy College of Pharmacy, Bangalore 560107, India
| | | | - Prasad S Dhiwar
- Department of Medicinal Chemistry, Acharya & BM Reddy College of Pharmacy, Bangalore 560107, India
| | - Shilpa Patel
- Department of Medicinal Chemistry, Acharya & BM Reddy College of Pharmacy, Bangalore 560107, India
| | - Giles Devasahayam
- Department of Medicinal Chemistry, Acharya & BM Reddy College of Pharmacy, Bangalore 560107, India
| |
Collapse
|
79
|
El-Demerdash A, Metwaly AM, Hassan A, Abd El-Aziz TM, Elkaeed EB, Eissa IH, Arafa RK, Stockand JD. Comprehensive Virtual Screening of the Antiviral Potentialities of Marine Polycyclic Guanidine Alkaloids against SARS-CoV-2 (COVID-19). Biomolecules 2021; 11:460. [PMID: 33808721 PMCID: PMC8003478 DOI: 10.3390/biom11030460] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
The huge global expansion of the COVID-19 pandemic caused by the novel SARS-corona virus-2 is an extraordinary public health emergency. The unavailability of specific treatment against SARS-CoV-2 infection necessitates the focus of all scientists in this direction. The reported antiviral activities of guanidine alkaloids encouraged us to run a comprehensive in silico binding affinity of fifteen guanidine alkaloids against five different proteins of SARS-CoV-2, which we investigated. The investigated proteins are COVID-19 main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and a non-structural protein (nsp10) (PDB ID: 6W4H). The binding energies for all tested compounds indicated promising binding affinities. A noticeable superiority for the pentacyclic alkaloids particularly, crambescidin 786 (5) and crambescidin 826 (13) has been observed. Compound 5 exhibited very good binding affinities against Mpro (ΔG = -8.05 kcal/mol), nucleocapsid phosphoprotein (ΔG = -6.49 kcal/mol), and nsp10 (ΔG = -9.06 kcal/mol). Compound 13 showed promising binding affinities against Mpro (ΔG = -7.99 kcal/mol), spike glycoproteins (ΔG = -6.95 kcal/mol), and nucleocapsid phosphoprotein (ΔG = -8.01 kcal/mol). Such promising activities might be attributed to the long ω-fatty acid chain, which may play a vital role in binding within the active sites. The correlation of c Log P with free binding energies has been calculated. Furthermore, the SAR of the active compounds has been clarified. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) studies were carried out in silico for the 15 compounds; most examined compounds showed optimal to good range levels of ADMET aqueous solubility, intestinal absorption and being unable to pass blood brain barrier (BBB), non-inhibitors of CYP2D6, non-hepatotoxic, and bind plasma protein with a percentage less than 90%. The toxicity of the tested compounds was screened in silico against five models (FDA rodent carcinogenicity, carcinogenic potency TD50, rat maximum tolerated dose, rat oral LD50, and rat chronic lowest observed adverse effect level (LOAEL)). All compounds showed expected low toxicity against the tested models. Molecular dynamic (MD) simulations were also carried out to confirm the stable binding interactions of the most promising compounds, 5 and 13, with their targets. In conclusion, the examined 15 alkaloids specially 5 and 13 showed promising docking, ADMET, toxicity and MD results which open the door for further investigations for them against SARS-CoV-2.
Collapse
Affiliation(s)
- Amr El-Demerdash
- Metabolic Biology & Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed M. Metwaly
- Department of Pharmacognosy & Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Afnan Hassan
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza 12578, Egypt; (A.H.); (R.K.A.)
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA;
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Riyadh, Saudi Arabia;
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Reem K. Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza 12578, Egypt; (A.H.); (R.K.A.)
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
| | - James D. Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA;
| |
Collapse
|
80
|
Alsaif NA, Dahab MA, Alanazi MM, Obaidullah AJ, Al-Mehizia AA, Alanazi MM, Aldawas S, Mahdy HA, Elkady H. New quinoxaline derivatives as VEGFR-2 inhibitors with anticancer and apoptotic activity: Design, molecular modeling, and synthesis. Bioorg Chem 2021; 110:104807. [PMID: 33721808 DOI: 10.1016/j.bioorg.2021.104807] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 01/07/2023]
Abstract
New series of [1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one and [1,2,4]triazolo[4,3-a]quinoxaline derivatives have been designed, synthesized, and biologically assessed for their anti-proliferative activities against two selected tumor cell lines MCF-7 and HepG2. Comparing to sorafenib (IC50 = 2.17 ± 0.13 and 3.51 ± 0.21 µM against MCF-7 and HepG2, respectively), compound 25d, 25e, 25i, and 27e exhibited the highest activities against the examined cell lines with IC50 values extending from 4.1 ± 0.4 to 11.7 ± 1.1 µM. Furthermore, VEGFR-2 inhibitory activities were assessed for all the synthesized compounds as potential mechanisms for their anti-proliferative activities. Compounds 25d, 25e, 25i, and 27e displayed prominent inhibitory efficiency versus VEGFR-2 kinase with IC50 value ranging from 3.4 ± 0.3 to 6.8 ± 0.5 nM. Fascinatingly, the results of VEGFR-2 inhibitory assays were matched with that of the cytotoxicity data, where the most potent anti-proliferative derivatives exhibited promising VEGFR-2 inhibitory activities. Further studies displayed the ability of compound 25d to induce apoptosis in HepG2 cells and can arrest the growth of such cells at the G2/M phase. Also, compound 25d produced a significant increase in the level of BAX/Bcl-2 ratio (3.8-fold), caspase- 3 (1.8-fold), and caspase-9 (1.9-fold) compared to the control cells. Molecular docking studies were carried out to investigate the possible binding interaction inside the active site of the VEGFR-2.
Collapse
Affiliation(s)
- Nawaf A Alsaif
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed M Alanazi
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmad J Obaidullah
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A Al-Mehizia
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Manal M Alanazi
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Saleh Aldawas
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
81
|
Design, synthesis and biological evaluation of 2,3-dihydro-[1,4]dioxino[2,3-f]quinazoline derivatives as EGFR inhibitors. Bioorg Chem 2021; 110:104743. [PMID: 33714020 DOI: 10.1016/j.bioorg.2021.104743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/15/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor receptor (EGFR) is the most attractive target for drug research in non-small cell lung cancer (NSCLC). The first-generation EGFR tyrosine kinase inhibitors (TKIs) Gefetinib and Elotinib showed good clinical efficacy on lung adenocarcinoma tumors, but almost all patients developed resistance to these inhibitors over time. Quinazoline and quinoline derivatives are common targeted inhibitors of EGFR kinase, and their structural optimization is an important direction for the development of effective targeted anticancer drugs. Based on these facts, a series of heterocyclic 2,3-dihydro-[1,4]dioxino[2,3-f]quinazoline derivatives have been designed and synthesized and their structures were confirmed by spectral analyses. The cytotoxic activity of the newly synthesized compounds was evaluated against the human kidney epithelial T293 cell line, normal lung cell lines WI-38, non-small cell lung cancer A549 and NCI-H157 cell lines using MTT. The tested compounds showed an evident anticancer activity against the tested cell lines, especially compound 13c, which was the most potent anticancer agent with half maximal inhibitory concentrations (IC50) between 8.82 and 10.24 μM. Docking study showed that compound 13b could be nicely bound to the ATP binding pocket of EGFR. In addition, the inhibitory activity of the target compounds against epidermal growth factor receptor tyrosine kinase (EGFR-TK) was evaluated. Results indicated the ability of the target compounds to inhibit EGFR-TK with half maximal inhibitory concentrations (IC50) in the range of 10.29 nM to 652.3 nM. In view of the reported compound activity, the structure deserves further optimization as cancer treatment agents.
Collapse
|
82
|
Shaldam M, Eldehna WM, Nocentini A, Elsayed ZM, Ibrahim TM, Salem R, El-Domany RA, Capasso C, Abdel-Aziz HA, Supuran CT. Development of novel benzofuran-based SLC-0111 analogs as selective cancer-associated carbonic anhydrase isoform IX inhibitors. Eur J Med Chem 2021; 216:113283. [PMID: 33667848 DOI: 10.1016/j.ejmech.2021.113283] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/02/2023]
Abstract
In the present study, we describe the design of different series of benzofuran-based derivatives as potential carbonic anhydrase inhibitors (CAIs). The adopted design is based on bioisosteric replacement for the p-fluorophenyl SLC-0111 tail with the lipophilic 2-methylbenzofuran or 5-bromobenzofuran tails to furnish the 2-methylbenzofuran (MBF) sulfonamides (MBFS; 9, 11 and 13) and 5-bromobenzofuran (BBF) sulfonamides (BBFS; 27a-b, 28a-b and 29a-c), respectively. Thereafter, the urea spacer was either elongated to furnish MBFS (17 and 19), and BBFS (30) series, or replaced by a carbamate one to afford MBFS (15). All the designed compounds were synthesized and evaluated for their inhibitory activities against four human (h) CA isoforms: hCA I, II, IX and XII. MBFS (11b and 17) and BBFS (28b, 29a and 30) efficiently inhibited the tumor-related CA IX isoform in the single-digit nanomolar range (KIs = 8.4, 7.6, 5.5, 7.1 and 1.8 nM, respectively). In particular, MBFS 11b and BBFS 28b exhibited good selectivity toward hCA IX isoform over the main off-target hCA II isoform (S.I. = 26.4 and 58.9, respectively). As a consequence, 11b and 28b were examined for their anticancer and pro-apoptotic activities toward MDA-MB-231 and MCF-7 cancer cell lines.
Collapse
Affiliation(s)
- Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
83
|
Eldehna WM, El Hassab MA, Abo-Ashour MF, Al-Warhi T, Elaasser MM, Safwat NA, Suliman H, Ahmed MF, Al-Rashood ST, Abdel-Aziz HA, El-Haggar R. Development of isatin-thiazolo[3,2-a]benzimidazole hybrids as novel CDK2 inhibitors with potent in vitro apoptotic anti-proliferative activity: Synthesis, biological and molecular dynamics investigations. Bioorg Chem 2021; 110:104748. [PMID: 33684714 DOI: 10.1016/j.bioorg.2021.104748] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/09/2020] [Accepted: 02/13/2021] [Indexed: 12/14/2022]
Abstract
In the current medical era, human health is experiencing numerous challenges, particularly the human malignancies. Therefore, the therapeutic arsenal for these malignancies is to be inexorably enhanced with new treatments that target tumor cells in a selective manner. In this regard, the present work aims at developing a new set of small molecules featuring the privileged isatin scaffold conjugated with a thiazolo[3,2-a]benzimidazole (TBI) motif through a cleavable hydrazide linker (7a-e and 10a-i) as potential anticancer CDK2 inhibitors. The large tricyclic TBI motif is anticipated to achieve a plethora of hydrophobic interactions within the CDK2 binding site. The growth of the two examined cell lines was significantly inhibited by most the prepared hybrids with IC50 ranges; (2.60 ± 1.47-20.90 ± 1.17 µM, against MDA-MB-231) and (1.27 ± 0.06-16.83 ± 0.95 µM, against MCF-7). In particular, hybrids 7a, 7d and 10a displayed potent dual activity against the examined cell lines, and thus selected for further investigations. They exerted a significance alteration in the cell cycle progression, in addition to an apoptosis induction within both MDA-MB-231 and MCF-7 cells. Furthermore, 7a, 7d and 10a displayed potent CDK2 inhibitory action (IC50 = 96.46 ± 5.3, 26.24 ± 1.4 and 42.95 ± 2.3 nM, respectively). The docking simulations unveiled, as expected, the ability of the TBI ring to well-accommodate and establish several hydrophobic interactions within a hydrophobic pocket in the CDK2 binding site. Also, the docking simulations highlighted the significance of incorporation of the hydrazide linker and isatin unsubstituted (NH) functionality in the H-bonding interactions. Interestingly, the most potent CDK2 inhibitor 7d achieved the best binding score (-11.2 Kcal/mole) and formed the most stable complex with CDK2 enzyme (RMSD = 1.24 Å) in a 100 ns MD simulation. In addition, the MM-PBSA calculations ascribed the lowest binding free energy to the 7d-CDK2 complex (-323.69 ± 15.17 kJ/mol). This could be attributed to an incorporation of the 5-OCH3 group that was engaged in an extra hydrogen bonding with key THR14 amino acid residue. Finally, these results suggested hybrid 7d as a good candidate for further optimization as promising breast cancer antitumor agent and CDK2 inhibitor.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt.
| | - Mahmoud A El Hassab
- Department of Pharmaceutical Chemistry, School of Pharmacy, Badr University in Cairo, Badr City 11829, Cairo, Egypt
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Nesreen A Safwat
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Howayda Suliman
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa F Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza P.O. Box 12622, Egypt
| | - Radwan El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt
| |
Collapse
|
84
|
Eco-friendly sequential one-pot synthesis, molecular docking, and anticancer evaluation of arylidene-hydrazinyl-thiazole derivatives as CDK2 inhibitors. Bioorg Chem 2021; 108:104615. [PMID: 33484942 DOI: 10.1016/j.bioorg.2020.104615] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/19/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022]
Abstract
One current approach in the treatment of cancer is the inhibition of cyclin dependent kinase (CDK) enzymes with small molecules. CDK are a class of enzymes, which catalyze the transfer of the terminal phosphate of a molecule of ATP to a protein that acts as a substrate. Among CDK enzymes, CDK2 has been implicated in a variety of cancers, supporting its potential as a novel target for cancer therapy across many tumor types. Here the discovery and development of arylidene-hydrazinyl-thiazole as a potentially CDK2 inhibitors is described, including details of the design and successful synthesis of the series analogs (27a-r) using one-pot approach under eco-friendly ultrasound and microwave conditions. Most of the newly synthesized compounds showed good growth inhibition when assayed for their in-vitro anti-proliferative activity against three cancer cell lines (HepG2, MCF-7 and HCT-116) compared to the reference drug roscovitine, with little toxicity on the normal fibroblast cell lines (WI-38). Furthermore, the compounds exhibiting the highest anti-proliferative activities were tested against a panel of kinase enzymes. These derivatives displayed an outstanding CDK2 inhibitory potential with varying degree of inhibition in the range of IC50 0.35-1.49 μM when compared with the standard inhibitor roscovitine having an IC50 value 0.71 μM. The most promising CDK2 inhibitor (27f) was selected for further studies to determine its effect on the cell cycle progression and apoptosis in HepG2 cell line. The results indicated that this compound implied inhibition in the G2/M phase of the cell cycle, and it is a good apoptotic agent. Finally, Molecular docking study was performed to identify the structural elements which involved in the inhibitory activity with the prospective target, CDK2, and to rationalize the structure-activity relationship (SAR).
Collapse
|
85
|
Elrayess R, Abdel Aziz YM, Elgawish MS, Elewa M, Yassen ASA, Elhady SS, Elshihawy HA, Said MM. Discovery of Potent Dual EGFR/HER2 Inhibitors Based on Thiophene Scaffold Targeting H1299 Lung Cancer Cell Line. Pharmaceuticals (Basel) 2020; 14:9. [PMID: 33374155 PMCID: PMC7823583 DOI: 10.3390/ph14010009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023] Open
Abstract
Dual targeting of epidermal growth factor receptor (EGFR) and human EGFR-related receptor 2 (HER2) is a proven approach for the treatment of lung cancer. With the aim of discovering effective dual EGFR/HER2 inhibitors targeting non-small cell lung cancer cell line H1299, three series of thieno[2,3-d][1,2,3]triazine and acetamide derivatives were designed, synthesized, and biologically evaluated. The synthesized compounds displayed IC50 values ranging from 12 to 54 nM against H1299, which were superior to that of gefitinib (2) at 40 µM. Of the synthesized compounds, 2-(1H-pyrazolo[3,4-b]pyridin-3-ylamino)-N-(3-cyano4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)acetamide (21a) achieved the highest in vitro cytotoxic activity against H1299, with an IC50 value of 12.5 nM in situ, and 0.47 and 0.14 nM against EGFR and HER2, respectively, values comparable to the IC50 of the approved drug imatinib (1). Our synthesized compounds were promising, demonstrating high selectivity and affinity for EGFR/HER2, especially the hinge region forming a hydrophobic pocket, which was mediated by hydrogen bonding as well as hydrophobic and electrostatic interactions, as indicated by molecular modeling. Moreover, the designed compounds showed good affinity for T790M EGFR, one of the main mutants resulting in acquired drug resistance. Furthermore, both pharmacokinetic and physicochemical properties of the designed compounds were within the appropriate range for human usage as predicted by the in Silico ADME study. The designed compound (21a) might serve as an encouraging lead compound for the discovery of promising anti-lung cancer agents targeting EGFR/HER2.
Collapse
Affiliation(s)
- Ranza Elrayess
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.E.); (M.E.); (H.A.E.); (M.M.S.)
| | - Yasmine M. Abdel Aziz
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.E.); (M.E.); (H.A.E.); (M.M.S.)
| | - Mohamed Saleh Elgawish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Marwa Elewa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.E.); (M.E.); (H.A.E.); (M.M.S.)
| | - Asmaa S. A. Yassen
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.E.); (M.E.); (H.A.E.); (M.M.S.)
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hosam A. Elshihawy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.E.); (M.E.); (H.A.E.); (M.M.S.)
| | - Mohamed M. Said
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.E.); (M.E.); (H.A.E.); (M.M.S.)
| |
Collapse
|
86
|
Eissa IH, Ibrahim MK, Metwaly AM, Belal A, Mehany ABM, Abdelhady AA, Elhendawy MA, Radwan MM, ElSohly MA, Mahdy HA. Design, molecular docking, in vitro, and in vivo studies of new quinazolin-4(3H)-ones as VEGFR-2 inhibitors with potential activity against hepatocellular carcinoma. Bioorg Chem 2020; 107:104532. [PMID: 33334586 DOI: 10.1016/j.bioorg.2020.104532] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/09/2023]
Abstract
A series of new VEGFR-2 inhibitors were designed, synthesized and evaluated for their anti-proliferative activities against hepatocellular carcinoma (HepG-2 cell line). Compound 29b (IC50 = 4.33 ± 0.2 µg/ml) was found to be the most potent derivative as it has showed to be more active than doxorubicin (IC50 = 4.50 ± 0.2 µg/ml) and 78% of sorafenib activity (IC50 = 3.40 ± 0.25 µg/ml). The inhibitory profiles against VEGFR-2 were also assessed for the most promising candidates (16b, 20c, 22b, 24a, 24b, 28c, 28e, 29a, 29b and 29c). Compounds 29b, 29c and 29a exhibited potent inhibitory activities towards VEGFR-2 at IC50 values of 3.1 ± 0.04, 3.4 ± 0.05 and 3.7 ± 0.06 µM, respectively, comparing sorafenib (IC50 = 2.4 ± 0.05 µM). Furthermorer, compound 29b induced apoptosis and arrested the cell cycle growth at G2/M phase. Additionally, in vivo antitumor experiments revealed that compounds 29b and 29c have significant tumor growth inhibition. The test of immuno-histochemical expression of activated caspase-3 revealed that there is a time-dependent increase in cleaved caspase-3 protein expression upon exposure of HepG-2 cells to compound 29b. Moreover, the fibroblastic proliferative index test revealed that compound 29b could attenuate liver fibrosis. Docking studies also supported the results concluded from the biological screening via prediction of the possible binding interactions of the target compounds with VEGFR-2 active sites using the crystal structure of VEGFR-2 downloaded from the Protein Data Bank, (PDB ID: 2OH4) using Discovery Studio 2.5 software. Further structural optimization of the most active candidates may serve as a useful strategy for getting new lead compounds in search for powerful and selective antineoplastic agents.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Mohammed K Ibrahim
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | | | - Mostafa A Elhendawy
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Agriculture Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mohamed M Radwan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
87
|
Shaheen MA, El-Emam AA, El-Gohary NS. Design, synthesis and biological evaluation of new series of hexahydroquinoline and fused quinoline derivatives as potent inhibitors of wild-type EGFR and mutant EGFR (L858R and T790M). Bioorg Chem 2020; 105:104274. [PMID: 33339080 DOI: 10.1016/j.bioorg.2020.104274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022]
|
88
|
Alkhaldi AAM, Al-Sanea MM, Nocentini A, Eldehna WM, Elsayed ZM, Bonardi A, Abo-Ashour MF, El-Damasy AK, Abdel-Maksoud MS, Al-Warhi T, Gratteri P, Abdel-Aziz HA, Supuran CT, El-Haggar R. 3-Methylthiazolo[3,2-a]benzimidazole-benzenesulfonamide conjugates as novel carbonic anhydrase inhibitors endowed with anticancer activity: Design, synthesis, biological and molecular modeling studies. Eur J Med Chem 2020; 207:112745. [PMID: 32877804 DOI: 10.1016/j.ejmech.2020.112745] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/17/2023]
Abstract
Herein we describe design and synthesis of different series of novel small molecules featuring 3-methylthiazolo[3,2-a]benzimidazole moiety (as a tail) connected to the zinc anchoring benzenesulfonamide moiety via ureido (7), enaminone (12), hydrazone (14), or hydrazide (15) linkers. The newly prepared conjugates have been screened for their inhibitory activities toward four human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms: hCA I, II, IX and XII. Thereafter, the urea and enaminone linkers were elongated by one- or two-atoms spacers to afford the elongated counterparts 9 and 13, respectively. Finally, the zinc anchoring sulfonamide group was replaced by the carboxylic acid group to afford acids 17. Compounds 12d, 13b and 15 displayed single-digit nanomolar CA IX inhibitory activities (KIs = 6.2, 9.7 and 5.5 nM, respectively), along with good selectivity towards hCA IX over hCA I and II. Subsequently, they were screened for their growth inhibitory actions against breast cancer MCF-7 and MDA-MB-231 cell lines, and for their impact on cell cycle progression and induction of apoptosis. Moreover, a molecular docking study was conducted to gain insights for the plausible binding interactions of target sulfonamides within hCA isoforms II, IX and XII binding sites.
Collapse
Affiliation(s)
- Abdulsalam A M Alkhaldi
- Biology Department, College of Science, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Ashraf K El-Damasy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC (ID: 60014618)), Dokki, Giza, 12622, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Radwan El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795, Cairo, Egypt
| |
Collapse
|
89
|
Eissa IH, El-Helby AGA, Mahdy HA, Khalifa MM, Elnagar HA, Mehany AB, Metwaly AM, Elhendawy MA, Radwan MM, ElSohly MA, El-Adl K. Discovery of new quinazolin-4(3H)-ones as VEGFR-2 inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorg Chem 2020; 105:104380. [DOI: 10.1016/j.bioorg.2020.104380] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 10/12/2020] [Indexed: 02/05/2023]
|
90
|
Alesawy MS, Al-Karmalawy AA, Elkaeed EB, Alswah M, Belal A, Taghour MS, Eissa IH. Design and discovery of new 1,2,4-triazolo[4,3-c]quinazolines as potential DNA intercalators and topoisomerase II inhibitors. Arch Pharm (Weinheim) 2020; 354:e2000237. [PMID: 33226150 DOI: 10.1002/ardp.202000237] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 02/05/2023]
Abstract
A new series of 1,2,4-triazolo[4,3-c]quinazoline derivatives was designed and synthesized as Topo II inhibitors and DNA intercalators. The cytotoxic effect of the new members was evaluated in vitro against a group of cancer cell lines including HCT-116, HepG-2, and MCF-7. Compounds 14c , 14d , 14e , 14e , 15b , 18b , 18c , and 19b exhibited the highest activities with IC50 values ranging from 5.22 to 24.24 µM. Furthermore, Topo II inhibitory activities and DNA intercalating affinities of the most promising candidates were evaluated as a possible mechanism for the antiproliferative effect. The results of the Topo II inhibition and DNA binding tests were coherent with that of in vitro cytotoxicity. Additionally, the most promising compound 18c was analyzed in HepG-2 cells for its apoptotic effect and cell cycle arrest. It was found that 18c can induce apoptosis and arrest the cell cycle at the G2-M phase. Finally, molecular docking studies were carried out for the designed compounds against the crystal structure of the DNA-Topo II complex as a potential target to explore their binding modes. On the basis of these studies, it was hypothesized that the DNA binding and/or Topo II inhibition would participate in the noted cytotoxicity of the synthesized compounds.
Collapse
Affiliation(s)
- Mohamed S Alesawy
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Alswah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Belal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
91
|
El-Adl K, El-Helby AGA, Ayyad RR, Mahdy HA, Khalifa MM, Elnagar HA, Mehany ABM, Metwaly AM, Elhendawy MA, Radwan MM, ElSohly MA, Eissa IH. Design, synthesis, and anti-proliferative evaluation of new quinazolin-4(3H)-ones as potential VEGFR-2 inhibitors. Bioorg Med Chem 2020; 29:115872. [PMID: 33214036 DOI: 10.1016/j.bmc.2020.115872] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022]
Abstract
Inhibiting VEGFR-2 has been set up as a therapeutic strategy for treatment of cancer. Thus, nineteen new quinazoline-4(3H)-one derivatives were designed and synthesized. Preliminary cytotoxicity studies of the synthesized compounds were evaluated against three human cancer cell lines (HepG-2, MCF-7 and HCT-116) using MTT assay method. Doxorubicin and sorafenib were used as positive controls. Five compounds were found to have promising cytotoxic activities against all cell lines. Compound 16f, containing a 2-chloro-5-nitrophenyl group, has emerged as the most active member. It was approximately 4.39-, 5.73- and 1.96-fold more active than doxorubicin and 3.88-, 5.59- and 1.84-fold more active than sorafenib against HepG2, HCT-116 and MCF-7 cells, respectively. The most active cytotoxic agents were further evaluated in vitro for their VEGFR-2 inhibitory activities. The results of in vitro VEGFR-2 inhibition were consistent with that of the cytotoxicity data. Molecular docking of these compounds into the kinase domain, moreover, supported the results.
Collapse
Affiliation(s)
- Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt.
| | - Abdel-Ghany A El-Helby
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Rezk R Ayyad
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed M Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hamdy A Elnagar
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mostafa A Elhendawy
- Department of Agriculture Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt; National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Mohamed M Radwan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
92
|
El-Zahabi MA, Sakr H, El-Adl K, Zayed M, Abdelraheem AS, Eissa SI, Elkady H, Eissa IH. Design, synthesis, and biological evaluation of new challenging thalidomide analogs as potential anticancer immunomodulatory agents. Bioorg Chem 2020; 104:104218. [DOI: 10.1016/j.bioorg.2020.104218] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/04/2020] [Accepted: 08/22/2020] [Indexed: 01/06/2023]
|
93
|
Design, efficient synthesis, docking studies, and anticancer evaluation of new quinoxalines as potential intercalative Topo II inhibitors and apoptosis inducers. Bioorg Chem 2020; 104:104255. [DOI: 10.1016/j.bioorg.2020.104255] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/15/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
|
94
|
Nasser AA, Eissa IH, Oun MR, El-Zahabi MA, Taghour MS, Belal A, Saleh AM, Mehany ABM, Luesch H, Mostafa AE, Afifi WM, Rocca JR, Mahdy HA. Discovery of new pyrimidine-5-carbonitrile derivatives as anticancer agents targeting EGFR WT and EGFR T790M. Org Biomol Chem 2020; 18:7608-7634. [PMID: 32959865 DOI: 10.1039/d0ob01557a] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A new series of pyrimidine-5-carbonitrile derivatives has been designed as ATP mimicking tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR). These compounds were synthesized and evaluated for their in vitro cytotoxic activities against a panel of four human tumor cell lines, namely colorectal carcinoma (HCT-116), hepatocellular carcinoma (HepG-2), breast cancer (MCF-7), and non-small cell lung cancer cells (A549). Five of the synthesized compounds, 11a, 11b, 12b, 15b and 16a, were found to exhibit moderate antiproliferative activity against the tested cell lines and were more active than the EGFR inhibitor erlotinib. In particular, compound 11b showed 4.5- to 8.4-fold erlotinib activity against HCT-116, HepG-2, MCF-7, and A549 cells with IC50 values of 3.37, 3.04, 4.14, and 2.4 μM respectively. Moreover, the most cytotoxic compounds that showed promising IC50 values against the four cancer cell lines were subjected to further investigation for their kinase inhibitory activities against EGFRWT and EGFRT790M using homogeneous time resolved fluorescence (HTRF) assay. Compound 11b was also found to be the most active compound against both EGFRWT and mutant EGFRT790M, exhibiting IC50 values of 0.09 and 4.03 μM, respectively. The cell cycle and apoptosis analyses revealed that compound 11b can arrest the cell cycle at the G2/M phase and induce significant apoptotic effects in HCT-116, HepG-2, and MCF-7 cells. Additionally, compound 11b upregulated the level of caspase-3 by 6.5 fold in HepG-2 when compared with the control. Finally, molecular docking studies were carried out to examine the binding mode of the synthesized compounds against the proposed targets; EGFRWT and EGFRT790M. Additional in silico ADMET studies were performed to explore drug-likeness properties.
Collapse
Affiliation(s)
- Ahmed A Nasser
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
El-Helby AGA, Sakr H, Ayyad RR, Mahdy HA, Khalifa MM, Belal A, Rashed M, El-Sharkawy A, Metwaly AM, Elhendawy MA, Radwan MM, ElSohly MA, Eissa IH. Design, synthesis, molecular modeling, in vivo studies and anticancer activity evaluation of new phthalazine derivatives as potential DNA intercalators and topoisomerase II inhibitors. Bioorg Chem 2020; 103:104233. [DOI: 10.1016/j.bioorg.2020.104233] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
|
96
|
Design, synthesis, and biological evaluation of 1-(5-(benzylthio)-1,3,4-thiadiazol-2-yl)-3-phenylurea derivatives as anticancer agents. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02616-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
97
|
Sun ZG, Zhao LH, Li ZN, Zhu HL. Development and Challenges of the Discovery of HER2 Inhibitors. Mini Rev Med Chem 2020; 20:2123-2134. [PMID: 32727326 DOI: 10.2174/1389557520666200729162118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/01/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
The treatment of cancer has always been a major problem in the world. Some cancers cannot be treated with surgery, but only with cancer drugs. Among many cancer drugs, small molecule inhibitors play an irreplaceable role. HER2 is one of the HER families, and the development of HER2 inhibitors has made a huge contribution to the treatment of cancer. Some HER2 inhibitors are already on the market, and some HER2 inhibitors are undergoing clinical research. The design, synthesis and development of new HER2 inhibitors targeting different targets are also ongoing, and some are even under clinical research. The HER2 inhibitors that are on the market have developed resistance, which brings great challenges to the HER2 inhibitor development in the future. This article reviews the development and challenges of the discovery of HER2 inhibitors.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Central Laboratory, Linyi Central Hospital, No.17 Jiankang Road, Linyi 276400, China
| | - Liang-Hui Zhao
- Weifang Medical University, No. 7166 Baotong West Street, Weifang 261000, China
| | - Zhi-Na Li
- Central Laboratory, Linyi Central Hospital, No.17 Jiankang Road, Linyi 276400, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing 210023, China
| |
Collapse
|
98
|
Ahmed MH, El‐Hashash MA, Marzouk MI, El‐Naggar AM. Synthesis and antitumor activity of some nitrogen heterocycles bearing pyrimidine moiety. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marwa H. Ahmed
- Chemistry Department, Faculty of ScienceAin Shams University Abbassia, Cairo Egypt
| | - Maher A. El‐Hashash
- Chemistry Department, Faculty of ScienceAin Shams University Abbassia, Cairo Egypt
| | - Magda I. Marzouk
- Chemistry Department, Faculty of ScienceAin Shams University Abbassia, Cairo Egypt
| | - Abeer M. El‐Naggar
- Chemistry Department, Faculty of ScienceAin Shams University Abbassia, Cairo Egypt
| |
Collapse
|
99
|
Archna, Pathania S, Chawla PA. Thiophene-based derivatives as anticancer agents: An overview on decade's work. Bioorg Chem 2020; 101:104026. [PMID: 32599369 DOI: 10.1016/j.bioorg.2020.104026] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022]
Abstract
Heterocyclic compounds hold a pivotal place in medicinal chemistry due to their wide range of biological activities and thus, are exhaustively explored in the field of drug design and development. Continuous efforts are being carried out for the development of medicinal agents especially, for dreadful diseases like cancer. Thiophene, a sulfur containing heterocyclic scaffold, has emerged as one of the relatively well-explored scaffold for the development of library of molecules having potential anticancer profile. Thiophene analogs have been reported to bind with a wide range of cancer-specific protein targets, depending on the nature and position of substitutions. Accordingly, thiophene analogs have been reported to cause their biological action through inhibition of different signaling pathways involved in cancer. Functionally, different anticancer targets require different structural features, so researchers have tried to synthesize new thiophene derivatives with varied substitutions. In the present review, authors have presented the information available on thiophene-based molecules as anticancer agents with special focus on synthetic methodologies, biological profile and structure activity relationship (SAR) studies. Various patents granted for thiophene containing molecules as anticancer have also been included.
Collapse
Affiliation(s)
- Archna
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Shelly Pathania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India.
| |
Collapse
|
100
|
Screening of Some Sulfonamide and Sulfonylurea Derivatives as Anti-Alzheimer’s Agents Targeting BACE1 and PPARγ. J CHEM-NY 2020. [DOI: 10.1155/2020/1631243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
In the last few decades, Alzheimer’s disease (AD) has emerged as a serious global problem, and it has been considered as the most common type of dementia. PPARγ and beta-secretase 1 (BACE1) are considered as potential targets for Alzheimer’s disease management. In the same time, sulfonylureas and sulfonamides have been confirmed to have PPARγ agonistic activity. Aiming to obtain new anti-AD agents, thirty-five compounds of sulfonamide and sulfonylurea derivatives having the same essential pharmacophoric features of the reported PPARγ agonists have been subjected to virtual screening. Docking studies revealed that five compounds (1, 2, 3, 4, and 5) have promising affinities to PPARγ. They were also docked into the binding site of BACE1. In addition, ADMET and physicochemical properties of these compounds were considered. Additionally, these compounds were further evaluated against BACE1 and PPARγ. Compound 2 showed IC50 value of 1.64 μM against BACE1 and EC50 value of 0.289 μM against PPARγ.
Collapse
|