51
|
Patra S, Sahu N, Saxena S, Pradhan B, Nayak SK, Roychowdhury A. Effects of Probiotics at the Interface of Metabolism and Immunity to Prevent Colorectal Cancer-Associated Gut Inflammation: A Systematic Network and Meta-Analysis With Molecular Docking Studies. Front Microbiol 2022; 13:878297. [PMID: 35711771 PMCID: PMC9195627 DOI: 10.3389/fmicb.2022.878297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Dysbiosis/imbalance in the gut microbial composition triggers chronic inflammation and promotes colorectal cancer (CRC). Modulation of the gut microbiome by the administration of probiotics is a promising strategy to reduce carcinogenic inflammation. However, the mechanism remains unclear. Methods In this study, we presented a systematic network, meta-analysis, and molecular docking studies to determine the plausible mechanism of probiotic intervention in diminishing CRC-causing inflammations. Results We selected 77 clinical, preclinical, in vitro, and in vivo articles (PRISMA guidelines) and identified 36 probiotics and 135 training genes connected to patients with CRC with probiotic application. The meta-analysis rationalizes the application of probiotics in the prevention and treatment of CRC. An association network is generated with 540 nodes and 1,423 edges. MCODE cluster analysis identifies 43 densely interconnected modules from the network. Gene ontology (GO) and pathway enrichment analysis of the top scoring and functionally significant modules reveal stress-induced metabolic pathways (JNK, MAPK), immunomodulatory pathways, intrinsic apoptotic pathways, and autophagy as contributors for CRC where probiotics could offer major benefits. Based on the enrichment analyses, 23 CRC-associated proteins and 7 probiotic-derived bacteriocins were selected for molecular docking studies. Results indicate that the key CRC-associated proteins (e.g., COX-2, CASP9, PI3K, and IL18R) significantly interact with the probiotic-derived bacteriocins (e.g., plantaricin JLA-9, lactococcin A, and lactococcin mmfii). Finally, a model for probiotic intervention to reduce CRC-associated inflammation has been proposed. Conclusion Probiotics and/or probiotic-derived bacteriocins could directly interact with CRC-promoting COX2. They could modulate inflammatory NLRP3 and NFkB pathways to reduce CRC-associated inflammation. Probiotics could also activate autophagy and apoptosis by regulating PI3K/AKT and caspase pathways in CRC. In summary, the potential mechanisms of probiotic-mediated CRC prevention include multiple signaling cascades, yet pathways related to metabolism and immunity are the crucial ones.
Collapse
Affiliation(s)
- Sinjini Patra
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Nilanjan Sahu
- National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Shivam Saxena
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Biswaranjan Pradhan
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Saroj Kumar Nayak
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
- *Correspondence: Anasuya Roychowdhury /0000-0003-3735-3021
| |
Collapse
|
52
|
Debasmita D, Ghosh SS, Chattopadhyay A. Hierarchical Passage of Gold Nanoclusters in Living Bacteria. ACS APPLIED BIO MATERIALS 2022; 5:2543-2548. [PMID: 35609302 DOI: 10.1021/acsabm.2c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gold (Au) nanoclusters chemically synthesized on the cell surface of living Lactobacillus rhamnosus rendered them photoluminescent. Importantly, the bacteria were viable and the clusters were passed down the generations with the loss of luminescence in the first subculture onward. The clusters were agglomerated into spherical structures of 100-200 nm, without being converted to plasmonic Au nanoparticles, on the cell surfaces of the bacteria of all six subcultures studied. The results indicated the role of cell wall remodeling in transforming the Au nanoclusters into larger aggregates down the generations. This may hold important implications for using nanoparticle-studded bacteria in theranostics.
Collapse
|
53
|
Barta DG, Cornea-Cipcigan M, Margaoan R, Vodnar DC. Biotechnological Processes Simulating the Natural Fermentation Process of Bee Bread and Therapeutic Properties-An Overview. Front Nutr 2022; 9:871896. [PMID: 35571893 PMCID: PMC9097220 DOI: 10.3389/fnut.2022.871896] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Recent signs of progress in functional foods and nutraceuticals highlighted the favorable impact of bioactive molecules on human health and longevity. As an outcome of the fermentation process, an increasing interest is developed in bee products. Bee bread (BB) is a different product intended for humans and bees, resulting from bee pollen's lactic fermentation in the honeycombs, abundant in polyphenols, nutrients (vitamins and proteins), fatty acids, and minerals. BB conservation is correlated to bacteria metabolites, mainly created by Pseudomonas spp., Lactobacillus spp., and Saccharomyces spp., which give lactic acid bacteria the ability to outperform other microbial groups. Because of enzymatic transformations, the fermentation process increases the content of new compounds. After the fermentation process is finalized, the meaningful content of lactic acid and several metabolites prevent the damage caused by various pathogens that could influence the quality of BB. Over the last few years, there has been an increase in bee pollen fermentation processes to unconventional dietary and functional supplements. The use of the chosen starters improves the bioavailability and digestibility of bioactive substances naturally found in bee pollen. As a consequence of enzymatic changes, the fermentation process enhances BB components and preserves them against loss of characteristics. In this aspect, the present review describes the current biotechnological advancements in the development of BB rich in beneficial components derived from bee pollen fermentation and its use as a food supplement and probiotic product with increased shelf life and multiple health benefits.
Collapse
Affiliation(s)
- Daniel Gabriel Barta
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Mihaiela Cornea-Cipcigan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Rodica Margaoan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
54
|
Ma F, Sun M, Song Y, Wang A, Jiang S, Qian F, Mu G, Tuo Y. Lactiplantibacillus plantarum-12 Alleviates Inflammation and Colon Cancer Symptoms in AOM/DSS-Treated Mice through Modulating the Intestinal Microbiome and Metabolome. Nutrients 2022; 14:nu14091916. [PMID: 35565884 PMCID: PMC9100115 DOI: 10.3390/nu14091916] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
In our previous research, Lactiplantibacillus plantarum-12 alleviated inflammation in dextran sodium sulfate (DSS)-induced mice by regulating intestinal microbiota and preventing colon shortening (p < 0.05). The purpose of the present study was to evaluate whether L. plantarum-12 could ameliorate the colon cancer symptoms of azoxymethane (AOM)/DSS-treated C57BL/6 mice. The results showed that L. plantarum-12 alleviated colonic shortening (from 7.43 ± 0.15 to 8.23 ± 0.25) and weight loss (from 25.92 ± 0.21 to 27.75 ± 0.88) in AOM/DSS-treated mice. L. plantarum-12 oral administration down-regulated pro-inflammatory factors TNF-α (from 350.41 ± 15.80 to 247.72 ± 21.91), IL-8 (from 322.19 ± 11.83 to 226.08 ± 22.06), and IL-1β (111.43 ± 8.14 to 56.90 ± 2.70) levels and up-regulated anti-inflammatory factor IL-10 (from 126.08 ± 24.92 to 275.89 ± 21.87) level of AOM/DSS-treated mice. L. plantarum-12 oral administration restored the intestinal microbiota dysbiosis of the AOM/DSS treated mice by up-regulating beneficial Muribaculaceae, Lactobacillaceae, and Bifidobacteriaceae levels and down-regulating pathogenic Proteobacteria, Desulfovibrionaceae, and Erysipelotrichaceae levels. As a result, the fecal metabolites of the AOM/DSS-treated mice were altered, including xanthosine, uridine, 3,4-methylenesebacic acid, 3-hydroxytetradecanedioic acid, 4-hydroxyhexanoylglycine, beta-leucine, and glycitein, by L. plantarum-12 oral administration. Furthermore, L. plantarum-12 oral administration significantly ameliorated the colon injury of the AOM/DSS-treated mice by enhancing colonic tight junction protein level and promoting tumor cells death via down-regulating PCNA (proliferating cell nuclear antigen) and up-regulating pro-apoptotic Bax. (p < 0.05). Taken together, L. plantarum-12 oral administration could ameliorate the colon cancer burden and inflammation of AOM-DSS-treated C57BL/6 mice through regulating the intestinal microbiota, manipulating fecal metabolites, enhancing colon barrier function, and inhibiting NF-κB signaling. These results suggest that L. plantarum-12 might be an excellent probiotic candidate for the prevention of colon cancer.
Collapse
Affiliation(s)
- Fenglian Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (M.S.); (Y.S.); (A.W.); (S.J.); (F.Q.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (M.S.); (Y.S.); (A.W.); (S.J.); (F.Q.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (M.S.); (Y.S.); (A.W.); (S.J.); (F.Q.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Arong Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (M.S.); (Y.S.); (A.W.); (S.J.); (F.Q.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Shujuan Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (M.S.); (Y.S.); (A.W.); (S.J.); (F.Q.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (M.S.); (Y.S.); (A.W.); (S.J.); (F.Q.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (M.S.); (Y.S.); (A.W.); (S.J.); (F.Q.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (G.M.); (Y.T.); Tel./Fax: +86-0411-86324506 (G.M.); +86-0411-86322121 (Y.T.)
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (M.S.); (Y.S.); (A.W.); (S.J.); (F.Q.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (G.M.); (Y.T.); Tel./Fax: +86-0411-86324506 (G.M.); +86-0411-86322121 (Y.T.)
| |
Collapse
|
55
|
Isozaki S, Konishi H, Tanaka H, Yamamura C, Moriichi K, Ogawa N, Fujiya M. Probiotic-derived heptelidic acid exerts antitumor effects on extraintestinal melanoma through glyceraldehyde-3-phosphate dehydrogenase activity control. BMC Microbiol 2022; 22:110. [PMID: 35459092 PMCID: PMC9026996 DOI: 10.1186/s12866-022-02530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Several microorganisms inhabit the mammalian gastrointestinal tract and are associated with the pathogenesis of various diseases, including cancer. Recent studies have indicated that several probiotics produce antitumor molecules and inhibit host tumor progression. We demonstrated that heptelidic acid (HA), a sesquiterpene lactone derived from the probiotic Aspergillus oryzae, exerts antitumor effects against pancreatic cancer in vitro and in vivo. In this study, the antitumor effects of HA against extraintestinal melanoma were assessed in vitro and in vivo. Results Sulforhodamine B (SRB) assay revealed that the growth of B16F10 cells was significantly inhibited by HA in a concentration-dependent manner. The enzymatic activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) decreased in proportion with the growth inhibition effect of HA. Moreover, oral HA administration significantly suppressed the growth of transplanted B16F10 tumors without any significant changes in biochemical test values. Moreover, GAPDH activity in the transplanted tumor tissues in the HA group significantly decreased compared with that in the PBS group. Conclusion This study suggests that orally administered HA was absorbed in the gastrointestinal tract, reached the cancer cells transplanted in the skin, and inhibited GAPDH activity, thereby inhibiting the growth of extraintestinal melanoma cells. Thus, this study proposes a novel system for extraintestinal tumor regulation via gut bacteria-derived bioactive mediators. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02530-0.
Collapse
Affiliation(s)
- Shotaro Isozaki
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan.,Department of Forensic Medicine, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Hiroaki Konishi
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan. .,Department of Gastroenterology and Advanced Medical Sciences, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan.
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Chikage Yamamura
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Kentaro Moriichi
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Naoki Ogawa
- Center for Advanced Research and Education, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Mikihiro Fujiya
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan.,Department of Gastroenterology and Advanced Medical Sciences, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| |
Collapse
|
56
|
Bennedsen ALB, Furbo S, Bjarnsholt T, Raskov H, Gögenur I, Kvich L. The gut microbiota can orchestrate the signaling pathways in colorectal cancer. APMIS 2022; 130:121-139. [PMID: 35007370 DOI: 10.1111/apm.13206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Current evidence suggests that bacteria contribute to the development of certain cancers, such as colorectal cancer (CRC), partly by stimulating chronic inflammation. However, little is known about the bacterial impact on molecular pathways in CRC. Recent studies have demonstrated how specific bacteria can influence the major CRC-related pathways, i.e., Wnt, PI3K-Akt, MAPK, TGF-β, EGFR, mTOR, and p53. In order to advance the current understanding and facilitate the choice of pathways to investigate, we have systematically collected and summarized the current knowledge within bacterial altered major pathways in CRC. Several pro-tumorigenic and anti-tumorigenic bacterial species and their respective metabolites interfere with the major signaling pathways addressed in this review. Not surprisingly, some of these studies investigated known CRC drivers, such as Escherichia coli, Fusobacterium nucleatum, and Bacteroides fragilis. Interestingly, some metabolites produced by bacterial species typically considered pathogenic, e.g., Vibrio cholera, displayed anti-tumorigenic activities, emphasizing the caution needed when classifying healthy and unhealthy microorganisms. The results collectively emphasize the complexity of the relationship between the microbiota and the tumorigenesis of CRC, and future studies should verify these findings in more realistic models, such as organoids, which constitute a promising platform. Moreover, future trials should investigate the clinical potential of preventive modulation of the gut microbiota regarding CRC development.
Collapse
Affiliation(s)
- Astrid L B Bennedsen
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Sara Furbo
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Hans Raskov
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Ismail Gögenur
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Kvich
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark.,Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
57
|
Yue Y, Wang S, Shi J, Xie Q, Li N, Guan J, Evivie SE, Liu F, Li B, Huo G. Effects of Lactobacillus acidophilus KLDS1.0901 on Proliferation and Apoptosis of Colon Cancer Cells. Front Microbiol 2022; 12:788040. [PMID: 35250903 PMCID: PMC8895954 DOI: 10.3389/fmicb.2021.788040] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022] Open
Abstract
Colon cancer is the most common type of malignant tumor. The cytotoxicity effect of lactic acid bacteria may be active by inhibiting cancer cell proliferation, producing anticancer compounds, and inducing apoptosis in cancer cells, but the mechanism is unclear. Our previous study revealed that Lactobacillus acidophilus KLDS1.0901 has good probiotic properties. In this study, We screened out the highest inhibition rate of L. acidophilus KLDS1.0901 and assessed the effects on the proliferation of HT-29, Caco-2, and IEC-6 cells. Then, the apoptosis mechanism of HT-29 cells was studied when treated with L. acidophilus KLDS1.0901. Results showed that L. acidophilus KLDS1.0901 inhibited the proliferation of HT-29 and Caco-2 cells in a dose-dependent manner and reached the maximum under the condition of multiplicity of infection (MOI) = 100 (rate of Lactobacillus to cells) at 48 h. With the increase in time and MOI, reactive oxygen species in HT-29 cells, the apoptosis rates of HT-29 cells were increased, and the amount of blue fluorescence of the cells was also increased after Hoechst 33258 staining. Furthermore, L. acidophilus KLDS1.0901 reduced the mitochondrial membrane potential of HT-29 cells. Notably, 1,133 differentially expressed genes were screened by transcriptomics research, including 531 up-regulated genes and 602 down-regulated genes. These genes were involved in the nuclear factor κB and PI3K-AKT signaling pathways related to the apoptosis of HT-29 cells. These findings suggested that L. acidophilus KLDS1.0901 has the potential to be used in the development of a new type of functional foods for adjuvant treatment of colon cancer.
Collapse
Affiliation(s)
- Yingxue Yue
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Song Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Jialu Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co., Ltd., Qiqihaer, China
| | - Na Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Jiaqi Guan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Smith Etareri Evivie
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
- Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Food College, Northeast Agricultural University, Harbin, China
| |
Collapse
|
58
|
Pre-Administration of Berberine Exerts Chemopreventive Effects in AOM/DSS-Induced Colitis-Associated Carcinogenesis Mice via Modulating Inflammation and Intestinal Microbiota. Nutrients 2022; 14:nu14040726. [PMID: 35215376 PMCID: PMC8879943 DOI: 10.3390/nu14040726] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory activation and intestinal flora imbalance play an essential role in the development and progression of colorectal cancer (CRC). Berberine (BBR) has attracted great attention in recent years due to its heath-related benefits in inflammatory disorders and tumors, but the intricate mechanisms have not been fully elucidated. In this study, the effects and the mechanism of BBR on colon cancer were investigated in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colitis-associated carcinogenesis mice model. Our results showed that pre-administration of BBR showed a decrease in weight loss, disease activity index (DAI) score, and the number of colon tumors in mice, compared with the model group. The evidence from pathological examination indicated that the malignancy of intestinal tumors was ameliorated after pre-administration of BBR. Additionally, pre-administration with BBR suppressed the expression of pro-inflammatory factors (interleukin (IL)-6, IL-1β, cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)-α) and the cell-proliferation marker Ki67, while expression of the tight junction proteins (ZO-1 and occludin) were increased in colon tissue. Moreover, the levels of critical pathway proteins involved in the inflammatory process (p-STAT3 and p-JNK) and cell cycle regulation molecules (β-catenin, c-Myc and CylinD1) exhibited lower expression levels. Besides, 16S rRNA sequence analysis indicated that pre-administration of BBR increased the ratio of Firmicutes/Bacteroidetes (F:M) and the relative abundance of potentially beneficial bacteria, while the abundance of cancer-related bacteria was decreased. Gavage with Lactobacillus rhamnosus can improve the anti-tumor effect of BBR. Overall, pre-administration of BBR exerts preventive effects in colon carcinogenesis, and the mechanisms underlying these effects are correlated with the inhibition of inflammation and tumor proliferation and the maintenance of intestinal homeostasis.
Collapse
|
59
|
Bacteria and bacterial derivatives as delivery carriers for immunotherapy. Adv Drug Deliv Rev 2022; 181:114085. [PMID: 34933064 DOI: 10.1016/j.addr.2021.114085] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
There is growing interest in the role of microorganisms in human health and disease, with evidence showing that new types of biotherapy using engineered bacterial therapeutics, including bacterial derivatives, can address specific mechanisms of disease. The complex interactions between microorganisms and metabolic/immunologic pathways underlie many diseases with unmet medical needs, suggesting that targeting these interactions may improve patient treatment. Using tools from synthetic biology and chemical engineering, non-pathogenic bacteria or bacterial products can be programmed and designed to sense and respond to environmental signals to deliver therapeutic effectors. This review describes current progress in biotherapy using live bacteria and their derivatives to achieve therapeutic benefits against various diseases.
Collapse
|
60
|
Kim J, Lee HK. Potential Role of the Gut Microbiome In Colorectal Cancer Progression. Front Immunol 2022; 12:807648. [PMID: 35069592 PMCID: PMC8777015 DOI: 10.3389/fimmu.2021.807648] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
An increasing number of studies have revealed that the progression of colorectal cancer (CRC) is related to gut microbiome composition. Under normal conditions, the gut microbiome acts as a barrier to other pathogens or infections in the intestine and modulates inflammation by affecting the host immune system. These gut microbiota are not only related to the intestinal inflammation associated with tumorigenesis but also modulation of the anti-cancer immune response. Thus, they are associated with tumor progression and anti-cancer treatment efficacy. Studies have shown that the gut microbiota can be used as biomarkers to predict the effect of immunotherapy and improve the efficacy of immunotherapy in treating CRC through modulation. In this review, we discuss the role of the gut microbiome as revealed by recent studies of the growth and progression of CRC along with its synergistic effect with anti-cancer treatment modalities.
Collapse
Affiliation(s)
- Jaeho Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
61
|
Behrouzi A, Katebi A, Riazi-Rad F, Mazaheri H, Ajdary S. The role of microbiota and immune system crosstalk in cancer development and therapy. Acta Microbiol Immunol Hung 2022; 69:1-12. [PMID: 35080506 DOI: 10.1556/030.2022.01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/06/2022] [Indexed: 11/19/2022]
Abstract
Cancer is a multifactorial disease that is the second leading cause of death after cardiovascular disease in the world. In recent years, microbiota's role in the regulation and homeostasis of the immune system has been considered. Moreover, the immune system can affect the microbiota content. These interactions are critical to the functioning of the immune system. Numerous studies in animal and human models have shown the association of changes in microbiota components with the formation of an inhibitory microenvironment in the tumor and its escape from the immune system. Microbiota also plays a crucial role in the success of various anti-tumor treatments, and its modification leads to success in cancer treatment. The success of anti-tumor therapies that directly target the immune system, such as immune checkpoint blockade and T cell therapy, is also affected by the patient's microbiota composition. It seems that in addition to examining the patient's genetics, precision medicine should pay attention to the patient's microbiota in choosing the appropriate treatment method, and together with usual anti-tumor therapies, microbiota may be modified. This review discusses various aspects of the relationship between microbiota and anti-tumor immunity and its successful treatment.
Collapse
Affiliation(s)
- Ava Behrouzi
- 1 Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- 2 Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Asal Katebi
- 3 Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Riazi-Rad
- 3 Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Hoora Mazaheri
- 4 Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- 3 Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
62
|
Abstract
The association of gut microbiota with gastrointestinal carcinogenesis has been heavily investigated since the recent advance in sequencing technology. Accumulating evidence has revealed the critical roles of commensal microbes in cancer progression. Given by its importance, emerging studies have focussed on targeting microbiota to ameliorate therapeutic effectiveness. It is now clear that the microbial community is closely related to the efficacy of chemotherapy, while the correlation of microbiota with immunotherapy is much less studied. Herein, we review the up-to-date findings on the influence of gut microbiota on three common immunotherapies including adoptive cell transfer, immune checkpoint blockade, and CpG-oligodeoxynucleotide therapy. We then explore three microbiota-targeted strategies that may improve treatment efficacy, involving dietary intervention, probiotics supplementation, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Harry Cheuk Hay Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Joseph Jao-Yiu Sung
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Sha Tin, Hong Kong,CONTACT Jun Yu Institute of Digestive Disease, Department of Medicine and Therapeutics, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
63
|
Ma J, Li P, An L, Zhang T, Li G. Chemoprotective effect of theanine in 1,2-dimethylhydrazine-induced colorectal cancer in rats via suppression of inflammatory parameters. J Food Biochem 2022; 46:e14073. [PMID: 35014039 DOI: 10.1111/jfbc.14073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Colorectal cancer is considered as a major cancer among all types of cancers, especially in developed countries. The colorectal cancer has few to no symptoms and mostly the tumor is often diagnosed in the later stage of cancer. Oxidative stress and inflammatory reaction play an important role in the expansion and the progression of colorectal cancer. Theanine exhibits antioxidant and anti-inflammatory potential against various diseases. As a result of its antioxidant and anti-inflammatory nature, in this study, we estimated the protective effect of theanine against 1,2-dimethylhydrazine (DMH)-induced colorectal cancer and explored the possible mechanism. Subcutaneous injection (35 mg/kg) of DMH was used to induce colorectal cancer in rats. Rats were divided into different groups and were orally administrated with theanine (5, 10, and 20 mg/kg) for 16 weeks. Body weight, tumor size, and average tumor weight were determined at the end of the experimental study. Biochemical tests, antioxidant properties, phase I and phase II enzymes, and inflammatory mediators were estimated. The mRNA expression of p38 mitogen-activated protein kinase (p38MAPK), p53, and apoptosis was also estimated at the end of the experimental study. Theanine significantly (p < .001) increases the body weight and suppressed the average tumor size in DMH-induced colorectal cancer. Similarly, it significantly (p < .001) reduces the level of prostaglandin (PGE2 ), cyclooxygenase-2 (COX-2), and myeloperoxidase (MPO). It also decreases the oxidative stress by suppressing the level of malonaldehyde (MDA) and enhancing the level of SOD, GPx, CAT, and GR. Theanine considerably reduced tumor markers, such as lactate dehydrogenase (LDH) and carcinoembryonic antigen (CEA) and phase I and phase II enzymes in a dose-dependent manner. It also significantly (p < .001) suppressed the expression of p38-MAPK, p-53, caspase-3, caspase-8, and caspase-9 in a dose-dependent manner. Collectively, we can say that theanine exhibited the chemoprotective effect against the colorectal cancer by inhibiting the oxidative stress and inflammatory reaction. PRACTICAL APPLICATIONS: Theanine is the major amino acid phytoconstituent of green tea. It has a potent antioxidant activity and is also able to protect against various oxidative damage. In this experimental study, theanine exhibits a protective effect against colorectal cancer by suppressing the oxidative stress and inflammatory reaction. The results suggest that theanine may be used for colorectal cancer prevention and treatment.
Collapse
Affiliation(s)
- Jingjing Ma
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Peng Li
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Lipei An
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Teng Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Guodong Li
- School of Life Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
64
|
Sugimura N, Li Q, Chu ESH, Lau HCH, Fong W, Liu W, Liang C, Nakatsu G, Su ACY, Coker OO, Wu WKK, Chan FKL, Yu J. Lactobacillus gallinarum modulates the gut microbiota and produces anti-cancer metabolites to protect against colorectal tumourigenesis. Gut 2021; 71:gutjnl-2020-323951. [PMID: 34937766 PMCID: PMC9484392 DOI: 10.1136/gutjnl-2020-323951] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/07/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Using faecal shotgun metagenomic sequencing, we identified the depletion of Lactobacillus gallinarum in patients with colorectal cancer (CRC). We aimed to determine the potential antitumourigenic role of L. gallinarum in colorectal tumourigenesis. DESIGN The tumor-suppressive effect of L. gallinarum was assessed in murine models of CRC. CRC cell lines and organoids derived from patients with CRC were cultured with L. gallinarum or Escherichia coli MG1655 culture-supernatant to evaluate cell proliferation, apoptosis and cell cycle distribution. Gut microbiota was assessed by 16S ribosomal DNA sequencing. Antitumour molecule produced from L. gallinarum was identified by liquid chromatography mass spectrometry (LC-MS/MS) and targeted mass spectrometry. RESULTS L. gallinarum significantly reduced intestinal tumour number and size compared with E. coli MG1655 and phosphate-buffered saline in both male and female murine intestinal tumourigenesis models. Faecal microbial profiling revealed enrichment of probiotics and depletion of pathogenic bacteria in L. gallinarum-treated mice. Culturing CRC cells with L. gallinarum culture-supernatant (5%, 10% and 20%) concentration-dependently suppressed cell proliferation and colony formation. L. gallinarum culture-supernatant significantly promoted apoptosis in CRC cells and patient-derived CRC organoids, but not in normal colon epithelial cells. Only L. gallinarum culture-supernatant with fraction size <3 kDa suppressed proliferation in CRC cells. Using LC-MS/MS, enrichments of indole-3-lactic acid (ILA) was identified in both L. gallinarum culture-supernatant and the gut of L. gallinarum-treated mice. ILA displayed anti-CRC growth in vitro and inhibited intestinal tumourigenesis in vivo. CONCLUSION L. gallinarum protects against intestinal tumourigenesis by producing protective metabolites that can promote apoptosis of CRC cells.
Collapse
Affiliation(s)
- Naoki Sugimura
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Qing Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Eagle Siu Hong Chu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Winnie Fong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Weixin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Cong Liang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Geicho Nakatsu
- Department of Immunology and Infectious Diseases/Genetics and Complex Disease, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Anthony Chin Yang Su
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Olabisi Oluwabukola Coker
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis Ka Leung Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
65
|
Davoodvandi A, Fallahi F, Tamtaji OR, Tajiknia V, Banikazemi Z, Fathizadeh H, Abbasi-Kolli M, Aschner M, Ghandali M, Sahebkar A, Taghizadeh M, Mirzaei H. An Update on the Effects of Probiotics on Gastrointestinal Cancers. Front Pharmacol 2021; 12:680400. [PMID: 34992527 PMCID: PMC8724544 DOI: 10.3389/fphar.2021.680400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/26/2021] [Indexed: 12/28/2022] Open
Abstract
Because of their increasing prevalence, gastrointestinal (GI) cancers are regarded as an important global health challenge. Microorganisms residing in the human GI tract, termed gut microbiota, encompass a large number of living organisms. The role of the gut in the regulation of the gut-mediated immune responses, metabolism, absorption of micro- and macro-nutrients and essential vitamins, and short-chain fatty acid production, and resistance to pathogens has been extensively investigated. In the past few decades, it has been shown that microbiota imbalance is associated with the susceptibility to various chronic disorders, such as obesity, irritable bowel syndrome, inflammatory bowel disease, asthma, rheumatoid arthritis, psychiatric disorders, and various types of cancer. Emerging evidence has shown that oral administration of various strains of probiotics can protect against cancer development. Furthermore, clinical investigations suggest that probiotic administration in cancer patients decreases the incidence of postoperative inflammation. The present review addresses the efficacy and underlying mechanisms of action of probiotics against GI cancers. The safety of the most commercial probiotic strains has been confirmed, and therefore these strains can be used as adjuvant or neo-adjuvant treatments for cancer prevention and improving the efficacy of therapeutic strategies. Nevertheless, well-designed clinical studies are still needed for a better understanding of the properties and mechanisms of action of probiotic strains in mitigating GI cancer development.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Fallahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Omid Reza Tamtaji
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hadis Fathizadeh
- Department of Laboratory Sciences, Sirjan Faculty of Medicine Sciences, Sirjan, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
66
|
Rahimpour M, Ashabi G, Rahimi AM, Halimi S, Panahi M, Alemrajabi M, Nabavizadeh F. Lactobacillus rhamnosus R0011 Treatment Enhanced Efficacy of Capecitabine against Colon Cancer in Male Balb/c Mice. Nutr Cancer 2021; 74:2622-2631. [DOI: 10.1080/01635581.2021.2014901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Milad Rahimpour
- Department of Physiology, Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Medical School, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neurosciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Mustafa Rahimi
- Department of Physiology, School of Medicine, Alberoni University, Kohestan, Afghanistan
| | - Shahnaz Halimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Panahi
- Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Alemrajabi
- Department of Surgery, Firoozgar Hospital, Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Department of Physiology, Medical School, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neurosciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
67
|
Alternative beverages for probiotic foods. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
68
|
Wang T, Wang P, Ge W, Shi C, Xiao G, Wang X, Lü X. The probiotic Companilactobacillus crustorum MN047 alleviates colitis-associated tumorigenesis via modulating the intestinal microenvironment. Food Funct 2021; 12:11331-11342. [PMID: 34668003 DOI: 10.1039/d1fo01531a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Supplementation of probiotics is a promising method to alleviate colorectal cancer (CRC) via modulating the intestinal microenvironment. This study aimed to assess the potential anti-CRC effect of Companilactobacillus crustorum MN047 on an azoxymethane and dextran sulfate sodium-induced colitis-associated (CA)-CRC mouse model. Mice were gavaged with C. crustorum MN047 once daily (∼1 × 109 CFU per mouse). The CA-CRC ameliorating effect of this strain was investigated based on the gut microbiota, inflammation and intestinal barrier integrity. Results showed that C. crustorum MN047 could significantly attenuate tumorigenesis and inflammation via suppressing the TLR4/NF-κB pathway. Moreover, this probiotic could improve the intestinal barrier integrity by increasing the mRNA level of some tight junction-related proteins and reducing goblet cell loss. In addition, C. crustorum MN047 administration led to an increase in beneficial bacteria and a decrease in harmful bacteria, thereby increasing SCFAs and reducing LPS levels. These results suggested that C. crustorum MN047 could partially ameliorate the formation of CA-CRC by modulating the gut microbiota, attenuating inflammation and enhancing the intestinal barrier integrity. Therefore, C. crustorum MN047 was a promising probiotic supplement for attenuating CA-CRC.
Collapse
Affiliation(s)
- Tao Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.
| | - Panpan Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.
| | - Chao Shi
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.
| | - Gongnian Xiao
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
69
|
Cullin N, Azevedo Antunes C, Straussman R, Stein-Thoeringer CK, Elinav E. Microbiome and cancer. Cancer Cell 2021; 39:1317-1341. [PMID: 34506740 DOI: 10.1016/j.ccell.2021.08.006] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
The human microbiome constitutes a complex multikingdom community that symbiotically interacts with the host across multiple body sites. Host-microbiome interactions impact multiple physiological processes and a variety of multifactorial disease conditions. In the past decade, microbiome communities have been suggested to influence the development, progression, metastasis formation, and treatment response of multiple cancer types. While causal evidence of microbial impacts on cancer biology is only beginning to be unraveled, enhanced molecular understanding of such cancer-modulating interactions and impacts on cancer treatment are considered of major scientific importance and clinical relevance. In this review, we describe the molecular pathogenic mechanisms shared throughout microbial niches that contribute to the initiation and progression of cancer. We highlight advances, limitations, challenges, and prospects in understanding how the microbiome may causally impact cancer and its treatment responsiveness, and how microorganisms or their secreted bioactive metabolites may be potentially harnessed and targeted as precision cancer therapeutics.
Collapse
Affiliation(s)
- Nyssa Cullin
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Camila Azevedo Antunes
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl Street, 7610001 Rehovot, Israel
| | - Christoph K Stein-Thoeringer
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 7610001 Rehovot, Israel.
| |
Collapse
|
70
|
iTRAQ-based proteomic analysis of the differential effects of digested soy peptides and digested soy protein isolates on Lacticaseibacillus rhamnosus. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
71
|
The Effect of Probiotics on Various Diseases and their Therapeutic Role: An Update Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Probiotic bacteria play a critical and functional role in clinical and nutritional applications. In the present study, the ability of various probiotics and their metabolites in the prevention and treatment of different diseases, infections and disorders was reviewed. The issues that were noticed are included: Fibrocystic, diabetes, acne, colon cancer, cardiovascular, urinary tract infections, atopic eczema syndrome, food allergies and obesity. Enhancement in using drug treatment has led to the appearance of drug-resistance concern, thus probiotics can be a suitable choice. This review focuses on the effect of probiotic bacteria and their metabolites on immune-boosting, prevention and treatment of these diseases. For this purpose, after a short glance at each disease, infection and disorder, the mechanism of probiotic action and recent studies about that disease are reviewed. It could be recommended that probiotics consumption, perhaps from birth to all stages of life, would be effective in the life-long, development of health effects and disease treatments.
Collapse
|
72
|
Grega T, Vojtechova G, Gregova M, Zavoral M, Suchanek S. Pathophysiological Characteristics Linking Type 2 Diabetes Mellitus and Colorectal Neoplasia. Physiol Res 2021; 70:509-522. [PMID: 34062073 DOI: 10.33549/physiolres.934631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A substantial body of literature has provided evidence that type 2 diabetes mellitus (T2DM) and colorectal neoplasia share several common factors. Both diseases are among the leading causes of death worldwide and have an increasing incidence. In addition to usual risk factors such as sedentary lifestyle, obesity, and family history, common pathophysiological mechanisms involved in the development of these diseases have been identified. These include changes in glucose metabolism associated with adipose tissue dysfunction including insulin resistance resulting to hyperinsulinemia and chronic hyperglycemia. In addition to altered glucose metabolism, abdominal obesity has been associated with accented carcinogenesis with chronic subclinical inflammation. An increasing number of studies have recently described the role of the gut microbiota in metabolic diseases including T2DM and the development of colorectal cancer (CRC). Due to the interconnectedness of different pathophysiological processes, it is not entirely clear which factor is crucial in the development of carcinogenesis in patients with T2DM. The aim of this work is to review the current knowledge on the pathophysiological mechanisms of colorectal neoplasia development in individuals with T2DM. Here, we review the potential pathophysiological processes involved in the onset and progression of colorectal neoplasia in patients with T2DM. Uncovering common pathophysiological characteristics is essential for understanding the nature of these diseases and may lead to effective treatment and prevention.
Collapse
Affiliation(s)
- T Grega
- Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Military University Hospital in Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
73
|
Berezhnaya Y, Bikaeva I, Gachkovskaia A, Demidenko A, Klimenko N, Tyakht A, Volokh O, Alexeev D. Temporal dynamics of probiotic Lacticaseibacillus casei and rhamnosus abundance in a fermented dairy product evaluated using a combination of cultivation-dependent and -independent methods. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
74
|
Casas-Solís J, Huizar-López MDR, Irecta-Nájera CA, Pita-López ML, Santerre A. Immunomodulatory Effect of Lactobacillus casei in a Murine Model of Colon Carcinogenesis. Probiotics Antimicrob Proteins 2021; 12:1012-1024. [PMID: 31797281 DOI: 10.1007/s12602-019-09611-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We previously reported beneficial effects of the probiotic strain Lactobacillus casei 393 in hindering colon carcinogenesis in a 1,2-dimethylhydrazine (DMH)-induced BALB/c mouse model of colon cancer. In the present study, we investigated the effect of preventive administration of L. casei 393 on the levels of selected pro- and anti-inflammatory circulating cytokines, as well as subpopulations of splenic T cells. The resulting experimental data on IFNγ, TNFα, IL-10, and colon histological features demonstrated that administration of L. casei 2 weeks before DMH treatment impaired the pro-inflammatory effect of DMH, while maintaining the levels of the three cytokines as well as colon histology; it also modulated splenic CD4+, CD8+, and NK T cell subpopulations. The preventive administration of L. casei to DMH-treated mice increased IL-17A synthesis and Treg percentages, further indicating a tumor-protecting role. Together, the results suggest that the colon-cancer-protective properties of L. casei 393 involve the dampening of inflammation through cytokine homeostasis and the maintenance of a healthy T cell subpopulation dynamic. For these reasons, probiotics such as L. casei may contribute to the health of the host as they promote optimal control of the immune response. Further, they may be used as prophylactic agents in combination with standard therapies against colon cancer.
Collapse
Affiliation(s)
- Josefina Casas-Solís
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, CP, 45110, Zapopan, Jalisco, México
| | - María Del Rosario Huizar-López
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, CP, 45110, Zapopan, Jalisco, México
| | - Cesar Antonio Irecta-Nájera
- Departamento de Salud, El Colegio de La Frontera Sur, Carretera a Reforma Km15.5 s/n, Ra ElGuieno 2ª Sección, 86280, Villahermosa, Tabasco, México
| | - María Luisa Pita-López
- Departamento de Ciencias Básicas para la Salud, CIBIMEC, Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva 883, CP4900, Cd. Guzmán, Guadalajara, Jalisco, México
| | - Anne Santerre
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, CP, 45110, Zapopan, Jalisco, México.
| |
Collapse
|
75
|
Comparison of anti-inflammatory effects of Lonicerae Japonicae Flos and Lonicerae Flos based on network pharmacology. CHINESE HERBAL MEDICINES 2021; 13:332-341. [PMID: 36118930 PMCID: PMC9476724 DOI: 10.1016/j.chmed.2021.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/25/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
|
76
|
Owens JA, Saeedi BJ, Naudin CR, Hunter-Chang S, Barbian ME, Eboka RU, Askew L, Darby TM, Robinson BS, Jones RM. Lactobacillus rhamnosus GG Orchestrates an Antitumor Immune Response. Cell Mol Gastroenterol Hepatol 2021; 12:1311-1327. [PMID: 34111601 PMCID: PMC8463873 DOI: 10.1016/j.jcmgh.2021.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS In colorectal cancer, approximately 95% of patients are refractory to immunotherapy because of low antitumor immune responses. Therefore, there is an exigent need to develop treatments that increase antitumor immune responses and decrease tumor burden to enhance immunotherapy. METHODS The gut microbiome has been described as a master modulator of immune responses. We administered the human commensal, Lactobacillus rhamnosus GG (LGG), to mice and characterized the changes in the gut immune landscape. Because the presence of lactobacilli in the gut microbiome has been linked with decreased tumor burden and antitumor immune responses, we also supplemented a genetic and a chemical model of murine intestinal cancer with LGG. For clinical relevance, we therapeutically administered LGG after tumors had formed. We also tested for the requirement of CD8 T cells in LGG-mediated modulation of gut tumor burden. RESULTS We detected increased colonic CD8 T-cell responses specifically in LGG-supplemented mice. The CD8 T-cell induction was dependent on dendritic cell activation mediated via Toll-like receptor-2, thereby describing a novel mechanism in which a member of the human microbiome induces an intestinal CD8 T-cell response. We also show that LGG decreased tumor burden in the murine gut cancer models by a CD8 T-cell-dependent manner. CONCLUSIONS These data support the potential use of LGG to augment antitumor immune responses in colorectal cancer patients and ultimately for increasing the breadth and efficacy of immunotherapy.
Collapse
Affiliation(s)
- Joshua A. Owens
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Bejan J. Saeedi
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Crystal R. Naudin
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Sarah Hunter-Chang
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Maria E. Barbian
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Richard U. Eboka
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Lauren Askew
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Trevor M. Darby
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Brian S. Robinson
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Rheinallt M. Jones
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia,Emory Microbiome Research Center, Emory University School of Medicine, Atlanta, Georgia,Correspondence Address correspondence to: Rheinallt M. Jones, PhD, Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322. fax: (404) 727-8538.
| |
Collapse
|
77
|
Waziri A, Bharti C, Aslam M, Jamil P, Mirza A, Javed MN, Pottoo U, Ahmadi A, Alam MS. Probiotics for the Chemoprotective Role Against the Toxic Effect of Cancer Chemotherapy. Anticancer Agents Med Chem 2021; 22:654-667. [PMID: 33992067 DOI: 10.2174/1871520621666210514000615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The processes of chemo- and radiation therapy-based clinical management of different types of cancers are associated with toxicity and side effects of chemotherapeutic agents. So, there is always an unmet need to explore agents to reduce such risk factors. Among these, natural products have generated much attention because of their potent antioxidant and antitumor effects. In the past, some breakthrough outcomes established that various bacteria in the human intestinal gut are bearing growth-promoting attributes and suppressing the conversion of pro-carcinogens into carcinogens. Hence, probiotics integrated approaches are nowadays being explored as rationalized therapeutics in the clinical management of cancer. METHODS Here, published literature was explored to review chemoprotective roles of probiotics against toxic and side effects of chemotherapeutics. RESULTS Apart from excellent anti-cancer abilities, probiotics are bearing and alleviate toxicity and side effects of chemotherapeutics, with a high degree of safety and efficiency. CONCLUSION Preclinical and clinical evidence suggested that due to the chemoprotective roles of probiotics against side effects and toxicity of chemotherapeutics, their integration in chemotherapy would be a judicious approach.
Collapse
Affiliation(s)
- Aafrin Waziri
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Delhi, India
| | - Charu Bharti
- School of medical and Allied Sciences, K R Mangalam University, Haryana, India
| | - Mohammed Aslam
- Faculty of Pharmacy, AL Hawash Private University, Homs, Serbia
| | - Parween Jamil
- Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Aamir Mirza
- Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | | | - Uzma Pottoo
- Department of Food Science & Technology, School of Applied Sciences & Technology, University of Kashmir, JK, India
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Md Sabir Alam
- School of medical and Allied Sciences, K R Mangalam University, Haryana, India
| |
Collapse
|
78
|
AlAli M, Alqubaisy M, Aljaafari MN, AlAli AO, Baqais L, Molouki A, Abushelaibi A, Lai KS, Lim SHE. Nutraceuticals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations. Molecules 2021; 26:molecules26092540. [PMID: 33925346 PMCID: PMC8123587 DOI: 10.3390/molecules26092540] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 11/27/2022] Open
Abstract
Nutraceuticals are essential food constituents that provide nutritional benefits as well as medicinal effects. The benefits of these foods are due to the presence of active compounds such as carotenoids, collagen hydrolysate, and dietary fibers. Nutraceuticals have been found to positively affect cardiovascular and immune system health and have a role in infection and cancer prevention. Nutraceuticals can be categorized into different classes based on their nature and mode of action. In this review, different classifications of nutraceuticals and their potential therapeutic activity, such as anti-cancer, antioxidant, anti-inflammatory and anti-lipid activity in disease will be reviewed. Moreover, the different mechanisms of action of these products, applications, and safety upon consumers including current trends and future prospect of nutraceuticals will be included.
Collapse
Affiliation(s)
- Mudhi AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Maream Alqubaisy
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Mariam Nasser Aljaafari
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Asma Obaid AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Laila Baqais
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Aidin Molouki
- Department of Avian Disease Research and Diagnostic, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj 31585-854, Iran;
| | - Aisha Abushelaibi
- Dubai Colleges, Higher Colleges of Technology, Dubai 16062, United Arab Emirates;
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
- Correspondence: or ; Tel.: +971-56-389-3757
| |
Collapse
|
79
|
Rodríguez-Sorrento A, Castillejos L, López-Colom P, Cifuentes-Orjuela G, Rodríguez-Palmero M, Moreno-Muñoz JA, Luise D, Trevisi P, Martín-Orúe SM. Effects of the Administration of Bifidobacterium longum subsp. infantis CECT 7210 and Lactobacillus rhamnosus HN001 and Their Synbiotic Combination With Galacto-Oligosaccharides Against Enterotoxigenic Escherichia coli F4 in an Early Weaned Piglet Model. Front Microbiol 2021; 12:642549. [PMID: 33935999 PMCID: PMC8086512 DOI: 10.3389/fmicb.2021.642549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/23/2021] [Indexed: 01/09/2023] Open
Abstract
We evaluated the potential of multi-strain probiotic (Bifidobacterium longum subsp. infantis CECT 7210 and Lactobacillus rhamnosus HN001) with or without galacto-oligosaccharides against enterotoxigenic Escherichia coli (ETEC) F4 infection in post-weaning pigs. Ninety-six piglets were distributed into 32 pens assigned to five treatments: one non-challenged (CTR+) and four challenged: control diet (CTR-), with probiotics (>3 × 1010 CFU/kg body weight each, PRO), prebiotic (5%, PRE), or their combination (SYN). After 1 week, animals were orally inoculated with ETEC F4. Feed intake, weight, and clinical signs were recorded. On days 4 and 8 post-inoculation (PI), one animal per pen was euthanized and samples from blood, digesta, and tissues collected. Microbiological counts, ETEC F4 real-time PCR (qPCR) quantification, fermentation products, serum biomarkers, ileal histomorphometry, and genotype for mucin 4 (MUC4) polymorphism were determined. Animals in the PRO group had similar enterobacteria and coliform numbers to the CTR+ group, and the ETEC F4 prevalence, the number of mitotic cells at day 4 PI, and villus height at day 8 PI were between that observed in the CTR+ and CTR- groups. The PRO group exhibited reduced pig major acute-phase protein (Pig-MAP) levels on day 4 PI. The PRE diet group presented similar reductions in ETEC F4 and Pig-MAP, but there was no effect on microbial groups. The SYN group showed reduced fecal enterobacteria and coliform counts after the adaptation week but, after the inoculation, the SYN group showed lower performance and more animals with high ETEC F4 counts at day 8 PI. SYN treatment modified the colonic fermentation differently depending on the MUC4 polymorphism. These results confirm the potential of the probiotic strains and the prebiotic to fight ETEC F4, but do not show any synergy when administered together, at least in this animal model.
Collapse
Affiliation(s)
- Agustina Rodríguez-Sorrento
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lorena Castillejos
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Paola López-Colom
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | - Diana Luise
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Susana María Martín-Orúe
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
80
|
Chattopadhyay I, Dhar R, Pethusamy K, Seethy A, Srivastava T, Sah R, Sharma J, Karmakar S. Exploring the Role of Gut Microbiome in Colon Cancer. Appl Biochem Biotechnol 2021; 193:1780-1799. [PMID: 33492552 DOI: 10.1007/s12010-021-03498-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Dysbiosis of the gut microbiome has been associated with the development of colorectal cancer (CRC). Gut microbiota is involved in the metabolic transformations of dietary components into oncometabolites and tumor-suppressive metabolites that in turn affect CRC development. In a healthy colon, the major of microbial metabolism is saccharolytic fermentation pathways. The alpha-bug hypothesis suggested that oncogenic bacteria such as enterotoxigenic Bacteroides fragilis (ETBF) induce the development of CRC through direct interactions with colonic epithelial cells and alterations of microbiota composition at the colorectal site. Escherichia coli, E. faecalis, F. nucleatum, and Streptococcus gallolyticus showed higher abundance whereas Bifidobacterium, Clostridium, Faecalibacterium, and Roseburia showed reduced abundance in CRC patients. The alterations of gut microbiota may be used as potential therapeutic approaches to prevent or treat CRC. Probiotics such as Lactobacillus and Bifidobacterium inhibit the growth of CRC through inhibiting inflammation and angiogenesis and enhancing the function of the intestinal barrier through the secretion of short-chain fatty acids (SCFAs). Crosstalk between lifestyle, host genetics, and gut microbiota is well documented in the prevention and treatment of CRC. Future studies are required to understand the interaction between gut microbiota and host to the influence and prevention of CRC. However, a better understanding of bacterial dysbiosis in the heterogeneity of CRC tumors should also be considered. Metatranscriptomic and metaproteomic studies are considered a powerful omic tool to understand the anti-cancer properties of certain bacterial strains. The clinical benefits of probiotics in the CRC context remain to be determined. Metagenomic approaches along with metabolomics and immunology will open a new avenue for the treatment of CRC shortly. Dietary interventions may be suitable to modulate the growth of beneficial microbiota in the gut.
Collapse
Affiliation(s)
- Indranil Chattopadhyay
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India
| | - Ashikh Seethy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India
| | - Tryambak Srivastava
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India
| | - Ramkishor Sah
- Rajendra Prasad Center for Opthalmic Sciences, AIIMS, Ansari Nagar, New Delhi, USA
| | - Jyoti Sharma
- Department of Surgical Oncology, NCI AIIMS, Jhajjar, Haryana, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India.
| |
Collapse
|
81
|
The consumption of milk supplemented with probiotics decreases the occurrence of caries and the salivary concentration of hβD-3 in children. Clin Oral Investig 2021; 25:3823-3830. [PMID: 33404758 DOI: 10.1007/s00784-020-03712-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES This study evaluated the effect of milk supplemented with Lactobacillus rhamnosus SP1 on the occurrence of caries and the salivary concentration of human β-defensin-3 (hβD-3) in preschool children with high caries risk. MATERIALS AND METHODS A sample of 42 children was randomly assigned to two groups; children in the intervention group were given 150 mL of milk supplemented with 107 CFU/mL of Lactobacillus rhamnosus SP1, while children in the control group were given standard milk, for 10 months. The occurrence of dental caries was assessed using the International Caries Detection and Assessment System (ICDAS), and the concentration of hβD-3 was measured in unstimulated saliva using an ELISA test at baseline and after the intervention. RESULTS There was an increase in the number of teeth with carious lesions (dICDAS2-6 mft) in the control group, and this increase was statistically significant (p = 0.0489). The concentration of hβD-3 in saliva from the intervention group decreased from 597.91 to 126.29 pg/mL (p = 0.0061), unlike in the control group, where no change in hβD-3 salivary concentration was found. CONCLUSIONS These findings showed that regular intake of probiotic-supplemented milk in preschool children with high caries risk decreased the occurrence of caries and the salivary levels of hβD-3. CLINICAL RELEVANCE Our results suggest the need for developing and implementing probiotic supplementation, as adjuvants to the conventional treatments for caries and allow to considerate the salivary levels of hβD-3 as markers of oral tissue homeostasis.
Collapse
|
82
|
Vernia F, Longo S, Stefanelli G, Viscido A, Latella G. Dietary Factors Modulating Colorectal Carcinogenesis. Nutrients 2021; 13:nu13010143. [PMID: 33401525 PMCID: PMC7824178 DOI: 10.3390/nu13010143] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
The development of colorectal cancer, responsible for 9% of cancer-related deaths, is favored by a combination of genetic and environmental factors. The modification of diet and lifestyle may modify the risk of colorectal cancer (CRC) and prevent neoplasia in up to 50% of cases. The Western diet, characterized by a high intake of fat, red meat and processed meat has emerged as an important contributor. Conversely, a high intake of dietary fiber partially counteracts the unfavorable effects of meat through multiple mechanisms, including reduced intestinal transit time and dilution of carcinogenic compounds. Providing antioxidants (e.g., vitamins C and E) and leading to increased intraluminal production of protective fermentation products, like butyrate, represent other beneficial and useful effects of a fiber-rich diet. Protective effects on the risk of developing colorectal cancer have been also advocated for some specific micronutrients like vitamin D, selenium, and calcium. Diet-induced modifications of the gut microbiota modulate colonic epithelial cell homeostasis and carcinogenesis. This can have, under different conditions, opposite effects on the risk of CRC, through the production of mutagenic and carcinogenic agents or, conversely, of protective compounds. The aim of this review is to summarize the most recent evidence on the role of diet as a potential risk factor for the development of colorectal malignancies, as well as providing possible prevention dietary strategies.
Collapse
|
83
|
Guan X, Shao P, Li X. Chemoprotective effect of crocetin against 1,2 dimethyl hydrazine induced colorectal cancer in albino wistar rats through antioxidant pathway. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_311_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
84
|
Zhuang X, Gaudino N, Clark S, Acevedo NC. Novel lecithin-based oleogels and oleogel emulsions delay lipid oxidation and extend probiotic bacteria survival. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110353] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
85
|
Loo YS, Bose RJ, McCarthy JR, Mat Azmi ID, Madheswaran T. Biomimetic bacterial and viral-based nanovesicles for drug delivery, theranostics, and vaccine applications. Drug Discov Today 2020; 26:902-915. [PMID: 33383213 DOI: 10.1016/j.drudis.2020.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023]
Abstract
Smart nanocarriers obtained from bacteria and viruses offer excellent biomimetic properties which has led to significant research into the creation of advanced biomimetic materials. Their versatile biomimicry has application as biosensors, biomedical scaffolds, immobilization, diagnostics, and targeted or personalized treatments. The inherent natural traits of biomimetic and bioinspired bacteria- and virus-derived nanovesicles show potential for their use in clinical vaccines and novel therapeutic drug delivery systems. The past few decades have seen significant progress in the bioengineering of bacteria and viruses to manipulate and enhance their therapeutic benefits. From a pharmaceutical perspective, biomimetics enable the safe integration of naturally occurring bacteria and virus particles to achieve high, stable rates of cellular transfection/infection and prolonged circulation times. In addition, biomimetic technologies can overcome safety concerns associated with live-attenuated and inactivated whole bacteria or viruses. In this review, we provide an update on the utilization of bacterial and viral particles as drug delivery systems, theranostic carriers, and vaccine/immunomodulation modalities.
Collapse
Affiliation(s)
- Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
| | - Rajendran Jc Bose
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| | - Jason R McCarthy
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, International Medical University, No. 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| |
Collapse
|
86
|
The Role of Probiotics in Cancer Prevention. Cancers (Basel) 2020; 13:cancers13010020. [PMID: 33374549 PMCID: PMC7793079 DOI: 10.3390/cancers13010020] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Cancer is considered one of the leading causes of human mortality in the world and is the subject of much research. The risk of developing cancer depends on genetic factors, as well as the body’s immune status. The intestinal microbiome plays very important role in maintaining homeostasis in the human body. Probiotics have gained increasing medical significance due to the beneficial effect on the human body associated with the prevention and support of the treatment of many chronic diseases, including cancer in the absence of side effects. The aim of this review was to summarize the knowledge about the effect of probiotic microorganisms in the prevention of cancer. There is a lot of evidence that the use of probiotics can play an important role in cancer prevention and support anti-cancer therapies. Abstract The gut microbiome can play important role in maintaining homeostasis in the human body. An imbalance in the gut microbiome can lead to pro-inflammatory immune responses and the initiation of disease processes, including cancer. The research results prove some strains of probiotics by modulating intestinal microbiota and immune response can be used for cancer prevention or/and as adjuvant treatment during anticancer chemotherapy. This review presents the latest advances in research into the effectiveness of probiotics in the prevention and treatment support of cancer. The described issues concern to the anticancer activity of probiotic microorganisms and their metabolites. In addition, we described the potential mechanisms of probiotic chemoprevention and the advisability of using probiotics.
Collapse
|
87
|
da Silva Duarte V, dos Santos Cruz BC, Tarrah A, Sousa Dias R, de Paula Dias Moreira L, Lemos Junior WJF, Fidélis Silva LC, Rocha Santana G, Licursi de Oliveira L, Gouveia Peluzio MDC, Mantovani HC, Corich V, Giacomini A, de Paula SO. Chemoprevention of DMH-Induced Early Colon Carcinogenesis in Male BALB/c Mice by Administration of Lactobacillus Paracasei DTA81. Microorganisms 2020; 8:microorganisms8121994. [PMID: 33327620 PMCID: PMC7765108 DOI: 10.3390/microorganisms8121994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
We evaluated the effects of the probiotic candidate Lactobacillus paracasei DTA81 (DTA81) on liver oxidative stress, colonic cytokine profile, and gut microbiota in mice with induced early colon carcinogenesis (CRC) by 1,2-dimethylhydrazine (DMH). Animals were divided into four different groups (n = 6) and received the following treatments via orogastric gavage for 8 weeks: Group skim milk (GSM): 300 mg/freeze-dried skim milk/day; Group L. paracasei DTA81 (DTA81): 3 × 109 colony-forming units (CFU)/day; Group Lactobacillus rhamnosus GG (LGG): 3 × 109 CFU/day; Group non-intervention (GNI): 0.1 mL/water/day. A single DMH dose (20 mg/kg body weight) was injected intraperitoneally (i.p), weekly, in all animals (seven applications in total). At the end of the experimental period, DTA81 intake reduced hepatic levels of carbonyl protein and malondialdehyde (MDA). Moreover, low levels of the pro-inflammatory cytokines Interleukin-6 (IL-6) and IL-17, as well as a reduced expression level of the proliferating cell nuclear antigen (PCNA) were observed in colonic homogenates. Lastly, animals who received DTA81 showed an intestinal enrichment of the genus Ruminiclostridium and increased concentrations of caecal acetic acid and total short-chain fatty acids. In conclusion, this study indicates that the administration of the probiotic candidate DTA81 can have beneficial effects on the initial stages of CRC development.
Collapse
Affiliation(s)
- Vinícius da Silva Duarte
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Universitá, 16, 35020 Legnaro (PD), Italy; (V.d.S.D.); (A.T.); (L.d.P.D.M.); (V.C.)
- Department of Microbiology, Av. Peter Henry Rolfs, s/n, Campus Universitário, Universidade Federal de Viçosa, 36570-900 Vicosa, Brazil; (L.C.F.S.); (H.C.M.)
| | - Bruna Cristina dos Santos Cruz
- Department of Nutrition and Health, Av. Peter Henry Rolfs, s/n, Campus Universitário, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (B.C.d.S.C.); (M.d.C.G.P.)
| | - Armin Tarrah
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Universitá, 16, 35020 Legnaro (PD), Italy; (V.d.S.D.); (A.T.); (L.d.P.D.M.); (V.C.)
| | - Roberto Sousa Dias
- Department of General Biology, Av. Peter Henry Rolfs, s/n, Campus Universitario, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (R.S.D.); (G.R.S.); (L.L.d.O.)
| | - Luiza de Paula Dias Moreira
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Universitá, 16, 35020 Legnaro (PD), Italy; (V.d.S.D.); (A.T.); (L.d.P.D.M.); (V.C.)
| | | | - Lívia Carneiro Fidélis Silva
- Department of Microbiology, Av. Peter Henry Rolfs, s/n, Campus Universitário, Universidade Federal de Viçosa, 36570-900 Vicosa, Brazil; (L.C.F.S.); (H.C.M.)
| | - Gabriele Rocha Santana
- Department of General Biology, Av. Peter Henry Rolfs, s/n, Campus Universitario, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (R.S.D.); (G.R.S.); (L.L.d.O.)
| | - Leandro Licursi de Oliveira
- Department of General Biology, Av. Peter Henry Rolfs, s/n, Campus Universitario, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (R.S.D.); (G.R.S.); (L.L.d.O.)
| | - Maria do Carmo Gouveia Peluzio
- Department of Nutrition and Health, Av. Peter Henry Rolfs, s/n, Campus Universitário, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (B.C.d.S.C.); (M.d.C.G.P.)
| | - Hilario Cuquetto Mantovani
- Department of Microbiology, Av. Peter Henry Rolfs, s/n, Campus Universitário, Universidade Federal de Viçosa, 36570-900 Vicosa, Brazil; (L.C.F.S.); (H.C.M.)
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Universitá, 16, 35020 Legnaro (PD), Italy; (V.d.S.D.); (A.T.); (L.d.P.D.M.); (V.C.)
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Universitá, 16, 35020 Legnaro (PD), Italy; (V.d.S.D.); (A.T.); (L.d.P.D.M.); (V.C.)
- Correspondence: (A.G.); (S.O.d.P.); Tel.: +39-328-0390077 (A.G.); +55-31-3612-5016 (S.O.d.P.)
| | - Sérgio Oliveira de Paula
- Department of General Biology, Av. Peter Henry Rolfs, s/n, Campus Universitario, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (R.S.D.); (G.R.S.); (L.L.d.O.)
- Correspondence: (A.G.); (S.O.d.P.); Tel.: +39-328-0390077 (A.G.); +55-31-3612-5016 (S.O.d.P.)
| |
Collapse
|
88
|
The Protective Role of Probiotics against Colorectal Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8884583. [PMID: 33488940 PMCID: PMC7803265 DOI: 10.1155/2020/8884583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer-related deaths worldwide and a major global public health problem. With the rapid development of the economy, the incidence of CRC has increased linearly. Accumulating evidence indicates that changes in the gut microenvironment, such as undesirable changes in the microbiota composition, provide favorable conditions for intestinal inflammation and shaping the tumor growth environment, whereas administration of certain probiotics can reverse this situation to a certain extent. This review summarizes the roles of probiotics in the regulation of CRC, such as enhancing the immune barrier, regulating the intestinal immune state, inhibiting pathogenic enzyme activity, regulating CRC cell proliferation and apoptosis, regulating redox homeostasis, and reprograming intestinal microbial composition. Abundant studies have provided a theoretical foundation for the roles of probiotics in CRC prevention and treatment, but their mechanisms of action remain to be investigated, and further clinical trials are warranted for the application of probiotics in the target population.
Collapse
|
89
|
Loke YL, Chew MT, Ngeow YF, Lim WWD, Peh SC. Colon Carcinogenesis: The Interplay Between Diet and Gut Microbiota. Front Cell Infect Microbiol 2020; 10:603086. [PMID: 33364203 PMCID: PMC7753026 DOI: 10.3389/fcimb.2020.603086] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) incidence increases yearly, and is three to four times higher in developed countries compared to developing countries. The well-known risk factors have been attributed to low physical activity, overweight, obesity, dietary consumption including excessive consumption of red processed meats, alcohol, and low dietary fiber content. There is growing evidence of the interplay between diet and gut microbiota in CRC carcinogenesis. Although there appears to be a direct causal role for gut microbes in the development of CRC in some animal models, the link between diet, gut microbes, and colonic carcinogenesis has been established largely as an association rather than as a cause-and-effect relationship. This is especially true for human studies. As essential dietary factors influence CRC risk, the role of proteins, carbohydrates, fat, and their end products are considered as part of the interplay between diet and gut microbiota. The underlying molecular mechanisms of colon carcinogenesis mediated by gut microbiota are also discussed. Human biological responses such as inflammation, oxidative stress, deoxyribonucleic acid (DNA) damage can all influence dysbiosis and consequently CRC carcinogenesis. Dysbiosis could add to CRC risk by shifting the effect of dietary components toward promoting a colonic neoplasm together with interacting with gut microbiota. It follows that dietary intervention and gut microbiota modulation may play a vital role in reducing CRC risk.
Collapse
Affiliation(s)
- Yean Leng Loke
- Centre for Biomedical Physics, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Ming Tsuey Chew
- Centre for Biomedical Physics, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Yun Fong Ngeow
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia.,Centre for Research on Communicable Diseases, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Wendy Wan Dee Lim
- Department of Gastroenterology, Sunway Medical Centre, Petaling Jaya, Malaysia
| | - Suat Cheng Peh
- Ageing Health and Well-Being Research Centre, Sunway University, Petaling Jaya, Malaysia.,Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|
90
|
Memon FU, Yang Y, Lv F, Soliman AM, Chen Y, Sun J, Wang Y, Zhang G, Li Z, Xu B, Gadahi JA, Si H. Effects of probiotic and Bidens pilosa on the performance and gut health of chicken during induced Eimeria tenella infection. J Appl Microbiol 2020; 131:425-434. [PMID: 33170996 DOI: 10.1111/jam.14928] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
AIM In this study, we have examined the individual and combined protective mechanism of probiotic and Bidens pilosa on the performance and gut health of chickens during Eimeria tenella infection over a 29-day experimental trial. METHODS AND RESULTS A total of one hundred and fifty 1-day-old chickens were equally distributed into five treatment groups with three biological replicates: two groups were allocated as control groups (control group untreated unchallenged, CG and control positive untreated challenged, CPG) and three groups were fed diets with probiotic (PG), B. pilosa (BPG) and probiotic + B. pilosa (PG + BPG) and challenged with E. tenella. Birds of all groups were assessed for pre and post-infection body weights, oocysts shedding, caecal lesion scores and mRNA expression levels of apoptosis related proteins (Bcl-2, Bax and caspase-3), antioxidant enzymes (CAT and SOD 1), pro-inflammatory cytokines (IL-6 and IL-8) and tight junction proteins (CLDN 1 and ZO 1). Our results revealed that during infection (day 21-29), E. tenella challenged chickens significantly decreased the body weight compared with uninfected control chickens; however, there was no significant effect on body weight of chickens fed with probiotic, B. pilosa and probiotic + B. pilosa was observed. Eimeria tenella challenged untreated birds increased (P < 0·05) oocysts shedding, destructive ratio of caeca and mortality as compared to treated challenged birds. CPG group up-regulated the mRNA expression levels of anti-apoptosis protein Bcl-2 while down-regulated the pro-apoptosis protein Bax relative to PG, BPG and PG + BPG groups. Moreover chickens fed probiotic, B. pilosa and probiotic + B. pilosa diets enhanced the activities of antioxidant enzymes, pro-inflammatory cytokines and tight junction proteins with the comparison of control positive untreated challenged chickens. CONCLUSION These findings elaborated that feed supplementation of probiotic and B. pilosa (individually or in combination) appeared to be effective in inhibiting the occurrence of disease and decreasing the severity of Eimeria infection in chickens. SIGNIFICANCE AND IMPACT OF THE STUDY This study explained the underlying anti-coccidial mechanism in which probiotic and B. pilosa (individually and/or in combination) improve the performance of chicken and protect against gut inflammatory responses caused by E. tenella.
Collapse
Affiliation(s)
- F U Memon
- Department of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Y Yang
- Department of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - F Lv
- Department of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - A M Soliman
- Department of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Y Chen
- Department of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - J Sun
- Department of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Y Wang
- Department of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - G Zhang
- Department of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Z Li
- Department of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - B Xu
- Department of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - J A Gadahi
- Department of Veterinary Parasitology, Sindh Agriculture University Tando Jam, Sindh, Pakistan
| | - H Si
- Department of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
91
|
Vacante M, Ciuni R, Basile F, Biondi A. Gut Microbiota and Colorectal Cancer Development: A Closer Look to the Adenoma-Carcinoma Sequence. Biomedicines 2020; 8:E489. [PMID: 33182693 PMCID: PMC7697438 DOI: 10.3390/biomedicines8110489] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022] Open
Abstract
There is wide evidence that CRC could be prevented by regular physical activity, keeping a healthy body weight, and following a healthy and balanced diet. Many sporadic CRCs develop via the traditional adenoma-carcinoma pathway, starting as premalignant lesions represented by conventional, tubular or tubulovillous adenomas. The gut bacteria play a crucial role in regulating the host metabolism and also contribute to preserve intestinal barrier function and an effective immune response against pathogen colonization. The microbiota composition is different among people, and is conditioned by many environmental factors, such as diet, chemical exposure, and the use of antibiotic or other medication. The gut microbiota could be directly involved in the development of colorectal adenomas and the subsequent progression to CRC. Specific gut bacteria, such as Fusobacterium nucleatum, Escherichia coli, and enterotoxigenic Bacteroides fragilis, could be involved in colorectal carcinogenesis. Potential mechanisms of CRC progression may include DNA damage, promotion of chronic inflammation, and release of bioactive carcinogenic metabolites. The aim of this review was to summarize the current knowledge on the role of the gut microbiota in the development of CRC, and discuss major mechanisms of microbiota-related progression of the adenoma-carcinoma sequence.
Collapse
Affiliation(s)
- Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (R.C.); (F.B.); (A.B.)
| | | | | | | |
Collapse
|
92
|
Aponte M, Murru N, Shoukat M. Therapeutic, Prophylactic, and Functional Use of Probiotics: A Current Perspective. Front Microbiol 2020; 11:562048. [PMID: 33042069 PMCID: PMC7516994 DOI: 10.3389/fmicb.2020.562048] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Probiotics are considered as the twenty-first century panpharmacon due to their competent remedial power to cure from gastrointestinal dysbiosis, systematic metabolic diseases, and genetic impairments up to complicated neurodegenerative disorders. They paved the way for an innovative managing of various severe diseases through palatable food products. The probiotics' role as a "bio-therapy" increased their significance in food and medicine due to many competitive advantages over traditional treatment therapies. Their prophylactic and therapeutic potential has been assessed through hundreds of preclinical and clinical studies. In addition, the food industry employs probiotics as functional and nutraceutical ingredients to enhance the added value of food product in terms of increased health benefits. However, regardless of promising health-boosting effects, the probiotics' efficacy still needs an in-depth understanding of systematic mechanisms and factors supporting the healthy actions.
Collapse
Affiliation(s)
- Maria Aponte
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nicoletta Murru
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Mahtab Shoukat
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
93
|
Dikeocha IJ, Al-Kabsi AM, Hussin S, Alshawsh MA. Role of probiotics in patients with colorectal cancer: a systematic review protocol of randomised controlled trial studies. BMJ Open 2020; 10:e038128. [PMID: 32771989 PMCID: PMC7418674 DOI: 10.1136/bmjopen-2020-038128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Colorectal cancer is one of the leading causes of cancer-related morbidity worldwide and it has been reported to be associated with poor lifestyle habits which include excess tobacco and alcohol intake as well as genetics and age factors. Probiotics such as the lactic acid bacteria and Bifidobacterium as well as probiotic containing foods (kombucha, kefir, miso etc) have received lots of attention as anticancer agents for prevention and treatment. The effects of the administration of probiotics to patients with colorectal cancer is the primary goal of this systematic review. The overall aim is to assess how the use of probiotics in patients with colorectal cancer helps in the management of colorectal cancer and its effect on the diversity of gut microbiota. The final systematic review will provide a comprehensive evidence base for the use and efficacy of probiotics in patient with colorectal cancer care. METHODS AND ANALYSIS The systematic review, will be conducted by extensively searching different databases such as PubMed, Web of Science, Scopus, Wiley and ProQuest to identify randomised controlled trials (with no time frame) which relate to the administration of probiotics to patients with colorectal cancer. The search strategy will include words like colorectal cancer, probiotics, Bifidobacterium, clinical trials etc. A systematic search of databases was performed between 17 and 20 January 2020. Two reviewers will independently review the studies and also search the reference lists of the eligible studies to obtain more references. Data will be extracted from the eligible studies using standardised data extraction form. After assessing the risk of bias, qualitative analysis will be used to synthesise the systematic review. ETHICS AND DISSEMINATION This is a protocol for a systematic review; therefore, it doesn't require any ethics approval. We intend to disseminate the protocol in a peer reviewed journal.
Collapse
Affiliation(s)
- Ifeoma Julieth Dikeocha
- Faculty of Medicine, University of Cyberjaya, Persiaran Bestari, Cyberjaya, Selangor, Malaysia
| | | | - Salasawati Hussin
- Faculty of Medicine, University of Cyberjaya, Persiaran Bestari, Cyberjaya, Selangor, Malaysia
| | | |
Collapse
|
94
|
Aindelis G, Chlichlia K. Modulation of Anti-Tumour Immune Responses by Probiotic Bacteria. Vaccines (Basel) 2020; 8:vaccines8020329. [PMID: 32575876 PMCID: PMC7350223 DOI: 10.3390/vaccines8020329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
There is a growing amount of evidence to support the beneficial role of a balanced intestinal microbiota, or distinct members thereof, in the manifestation and progression of malignant tumours, not only in the gastrointestinal tract but also in distant tissues as well. Intriguingly, bacterial species have been demonstrated to be indispensable modulatory agents of widely-used immunotherapeutic or chemotherapeutic regiments. However, the exact contribution of commensal bacteria to immunity, as well as to neoplasia formation and response to treatment, has not been fully elucidated, and most of the current knowledge acquired from animal models has yet to be translated to human subjects. Here, recent advances in understanding the interaction of gut microbes with the immune system and the modulation of protective immune responses to cancer, either naturally or in the context of widely-used treatments, are reviewed, along with the implications of these observations for future therapeutic approaches. In this regard, bacterial species capable of facilitating optimal immune responses against cancer have been surveyed. According to the findings summarized here, we suggest that strategies incorporating probiotic bacteria and/or modulation of the intestinal microbiota can be used as immune adjuvants, aiming to optimize the efficacy of cancer immunotherapies and conventional anti-tumour treatments.
Collapse
|
95
|
Shuwen H, Xi Y, Yuefen P, Jiamin X, Quan Q, Haihong L, Yizhen J, Wei W. Effects of postoperative adjuvant chemotherapy and palliative chemotherapy on the gut microbiome in colorectal cancer. Microb Pathog 2020; 149:104343. [PMID: 32562813 DOI: 10.1016/j.micpath.2020.104343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The gut microbiome changes are related to the colorectal cancer (CRC). Chemotherapy is one of the main treatment methods for CRC. PURPOSE To explore the effect of chemotherapy on the gut bacteria and fungi in CRC. METHODS Total of 11 advanced CRC patients treated with the FOLFIRI regimen, 15 postoperative CRC patients treated with the XELOX regimen, and corresponding CRC patients without surgery and chemotherapy were recruited. The 16S ribosomal RNA and ITS sequences were sequenced, and bioinformatics analysis was executed to screen for the distinctive gut microbiome. RESULTS The abundances of Veillonella, Humicola, Tremellomycetes and Malassezia were increased in postoperative CRC patients treated with the XELOX regimen. The abundances of Faecalibacterium, Clostridiales, phascolarctobacterium, Humicola and Rhodotorula were decreased, and the abundances of Candida, Magnusiomyces, Tremellomycetes, Dipodascaceae, Saccharomycetales, Malassezia and Lentinula were increased in advanced CRC patients treated with the FOLFIRI regimen. The abundances of Humicola, Rhodotorula, and Magnusiomyces were decreased, and the abundances of Candida, Tremellomycetes, Dipodascaceae, Saccharomycetales, Malassezia and Lentinula were increased in advanced CRC patients treated with the FOLFIRI regimen combined with cetuximab compared with those treated with the FOLFIRI regimen alone. CONCLUSIONS The community structure of gut bacteria and fungi changes in chemotherapy on CRCs.
Collapse
Affiliation(s)
- Han Shuwen
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University. Address: 198 Hongqi Rd, Huzhou, Zhejiang, China
| | - Yang Xi
- Department of Intervention and Radiotherapy, Huzhou Central Hospital, Address: No. 198 Hongqi Road, Huzhou, Zhejiang Province, 313000, China.
| | - Pan Yuefen
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University. Address: 198 Hongqi Rd, Huzhou, Zhejiang, China.
| | - Xu Jiamin
- Graduate School of Nursing, Huzhou University, Address: No. 1 Bachelor Road, Huzhou, Zhejiang Province, 313000, China.
| | - Qi Quan
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University. Address: 198 Hongqi Rd, Huzhou, Zhejiang, China.
| | - Liao Haihong
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University. Address: 198 Hongqi Rd, Huzhou, Zhejiang, China.
| | - Jiang Yizhen
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University. Address: 198 Hongqi Rd, Huzhou, Zhejiang, China.
| | - Wu Wei
- Department of Gastroenterology, Huzhou Central Hospital, Address: No. 198 Hongqi Road, Huzhou, Zhejiang Province, 313000, China.
| |
Collapse
|
96
|
Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene 2020; 39:4925-4943. [PMID: 32514151 PMCID: PMC7314664 DOI: 10.1038/s41388-020-1341-1] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
Research about the role of gut microbiome in colorectal cancer (CRC) is a newly emerging field of study. Gut microbiota modulation, with the aim to reverse established microbial dysbiosis, is a novel strategy for prevention and treatment of CRC. Different strategies including probiotics, prebiotics, postbiotics, antibiotics, and fecal microbiota transplantation (FMT) have been employed. Although these strategies show promising results, mechanistically by correcting microbiota composition, modulating innate immune system, enhancing gut barrier function, preventing pathogen colonization and exerting selective cytotoxicity against tumor cells, it should be noted that they are accompanied by risks and controversies that can potentially introduce clinical complications. During bench-to-bedside translation, evaluation of risk-and-benefit ratio, as well as patient selection, should be carefully performed. In view of the individualized host response to gut microbiome intervention, developing personalized microbiome therapy may be the key to successful clinical treatment.
Collapse
|
97
|
Yang YJ, Chen PC, Lai FP, Tsai PJ, Sheu BS. Probiotics-Containing Yogurt Ingestion and H. pylori Eradication Can Restore Fecal Faecalibacterium prausnitzii Dysbiosis in H. pylori-Infected Children. Biomedicines 2020; 8:biomedicines8060146. [PMID: 32492860 PMCID: PMC7344718 DOI: 10.3390/biomedicines8060146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
This study investigated the compositional differences in fecal microbiota between children with and without H. pylori infection and tested whether probiotics-containing yogurt and bacterial eradication improve H. pylori-related dysbiosis. Ten H. pylori-infected children and 10 controls ingested probiotics-containing yogurt for 4 weeks. Ten-day triple therapy plus yogurt was given to the infected children on the 4th week. Fecal samples were collected at enrollment, after yogurt ingestion, and 4 weeks after successful H. pylori eradication for cytokines and microbiota analysis using ELISA and metagenomic sequencing of the V4 region of the 16S rRNA gene, respectively. The results showed H. pylori-infected children had significantly higher levels of fecal TGF-β1 than those who were not infected. Eight of 295 significantly altered OTUs in the H. pylori-infected children were identified. Among them, the abundance of F. prausnitzii was significantly lower in the H. pylori-infected children, and then increased after yogurt ingestion and successful bacterial eradication. We further confirmed probiotics promoted F. prausnitzii growth in vitro and in ex vivo using real-time PCR. Moreover, F. prausnitzii supernatant significantly ameliorated lipopolysaccharide-induced IL-8 in HT-29 cells. In conclusions, Probiotics-containing yogurt ingestion and H. pylori eradication can restore the decrease of fecal F. prausnitzii in H. pylori-infected children.
Collapse
Affiliation(s)
- Yao-Jong Yang
- Departments of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-J.Y.); (F.-P.L.)
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan;
| | - Peng-Chieh Chen
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan;
| | - Fu-Ping Lai
- Departments of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan; (Y.-J.Y.); (F.-P.L.)
| | - Pei-Jane Tsai
- Departments of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Bor-Shyang Sheu
- Departments of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
- Internal Medicine & Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535 (ext. 5368); Fax: +886-6-237-0941
| |
Collapse
|
98
|
Panebianco C, Latiano T, Pazienza V. Microbiota Manipulation by Probiotics Administration as Emerging Tool in Cancer Prevention and Therapy. Front Oncol 2020; 10:679. [PMID: 32523887 PMCID: PMC7261958 DOI: 10.3389/fonc.2020.00679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
A growing body of literature indicates that microbiota plays a significant role in the development and curability of cancer, essentially due to the microbial ability to modulate immune and inflammatory responses to cancer and therapeutic treatments. Probiotics consumption, either in the form of food or supplements, is an easy and feasible way to manipulate microbiota composition and a number of recent researches have shown that it may represent a valid approach to prevent cancer onset and progression, to improve the clinical efficacy of the current anticancer treatments, and to mitigate the harmful adverse events of chemo- and radiotherapy, which often lead to scale drug doses, to delay or interrupt treatments. In this review, we gather the main in vivo studies on the current topic, focusing on the beneficial effects and underlying mechanisms provided by bacterial and yeast probiotics and their combination, in the setting of various types of cancers and different therapeutic protocols. These findings will likely open the way to consider, in future, regular probiotics intake as an adjuvant strategy in cancer prevention and management.
Collapse
Affiliation(s)
- Concetta Panebianco
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tiziana Latiano
- Oncology Department, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
99
|
Bars-Cortina D, Martínez-Bardají A, Macià A, Motilva MJ, Piñol-Felis C. Consumption evaluation of one apple flesh a day in the initial phases prior to adenoma/adenocarcinoma in an azoxymethane rat colon carcinogenesis model. J Nutr Biochem 2020; 83:108418. [PMID: 32592950 DOI: 10.1016/j.jnutbio.2020.108418] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 03/17/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023]
Abstract
Colorectal cancer (CRC) is the fourth cancer with the most new cases reported in 2018 worldwide. Consumption of fruit and vegetables is a protective factor against the risk of CRC. Beyond this, flavonoids could orchestrate these healthy effects. Apart from containing the typical apple flavonoids, red-fleshed apples also contain anthocyanins, mainly cyanidin-3-O-galactoside (Cy3Gal). Through an azoxymethane rat carcinogenesis model, a study was carried out in order to assess the possible protective effects of apple polyphenols, with special attention to anthocyanins. In addition, apart from negative and positive controls, a group with chemotherapy with 5-fluorouracil (5FU) was included to compare their performance against the output collected from the animal treatments with white-fleshed apple (WF), red-fleshed apple (RF) and Cy3Gal (AE). Although the 5FU group presented the best performance towards aberrant crypt foci (ACF) inhibition (70.1%), rats fed with white-fleshed apples ('Golden Smoothee') were able to achieve 41.3% ACF inhibition, while none of the challenged treatments (WF, RF and AE) suffered mucin depletion in their colonocytes. Expression changes of 17 genes related to CRC were assessed. In detail, the ACF inhibition phenotype detected in 5FU and WF groups could be explained through the expression changes detected in the apoptosis-related genes of Aurka, p53 and Cox2. Moreover, in the apple consumption groups (WF and RF), a reduced protein expression of matrix metalloproteinases with gelatinase activity (MMP-2 and 9) was detected. Overall, our study suggests an effect of apple polyphenols and apple anthocyanin Cy3Gal against colon carcinogenesis, retarding/diminishing the appearance of the precancerous markers studied.
Collapse
Affiliation(s)
- David Bars-Cortina
- Food Technology Department, XaRTA-TPV, Agrotecnio Center, Escola Tècnica Superior d'Enginyeria Agrària, Universitat de Lleida, Lleida, Catalonia, Spain; Department of Medicine, Universitat de Lleida, Lleida, Catalonia, Spain.
| | | | - Alba Macià
- Food Technology Department, XaRTA-TPV, Agrotecnio Center, Escola Tècnica Superior d'Enginyeria Agrària, Universitat de Lleida, Lleida, Catalonia, Spain
| | - María-Jose Motilva
- Instituto de Ciencias de la Vid y del Vino (ICVV) (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de la Rioja, Gobierno de la Rioja), Logroño, La Rioja, Spain.
| | - Carme Piñol-Felis
- Department of Medicine, Universitat de Lleida, Lleida, Catalonia, Spain; Institut de Recerca Biomèdica de Lleida, Fundació Dr. Pifarré-IRBLleida, Lleida, Catalonia, Spain.
| |
Collapse
|
100
|
Behrouzi A, Ashrafian F, Mazaheri H, Lari A, Nouri M, Riazi Rad F, Hoseini Tavassol Z, Siadat SD. The importance of interaction between MicroRNAs and gut microbiota in several pathways. Microb Pathog 2020; 144:104200. [PMID: 32289465 DOI: 10.1016/j.micpath.2020.104200] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
The human gut harbors diverse microbes that play a fundamental role in the well-being of their host. Microbiota disruption affects the immune function, metabolism, and causes several diseases. Therefore, understanding how the microbiome is adjusted, and identifying methods for manipulating it is critical. Studies have found that there is an inverse association between MicroRNAs (miRNAs) abundance and microbe abundance. miRNAs are known to be engaged in post-transcription regulation of cell-autonomous gene expression. Recently, they have gained great attention for their proposed roles in cell-to-cell communication, and as biomarkers for human disease. Here, we review recent studies on the role of miRNAs as a component of outer membrane vesicles (OMVs) in the composition of gut microbiota and their significance in the human situation of health and diseases and discuss their effect on inflammatory responses and dysbiosis. Further, we explain how probiotics exert influence on the expression of miRNAs.
Collapse
Affiliation(s)
- Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Ashrafian
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Hoora Mazaheri
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Arezou Lari
- Systems Biomedicine Unit, Pasteur Institute of Iran, Tehran, Iran
| | - Matineh Nouri
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Riazi Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Hoseini Tavassol
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|