51
|
Kar F, Hacioglu C, Senturk H, Donmez DB, Kanbak G, Uslu S. Curcumin and LOXblock-1 ameliorate ischemia-reperfusion induced inflammation and acute kidney injury by suppressing the semaphorin-plexin pathway. Life Sci 2020; 256:118016. [PMID: 32603817 DOI: 10.1016/j.lfs.2020.118016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022]
Abstract
AIMS Ischemia/reperfusion (I/R) is one of the most important causes of acute kidney injury (AKI), a clinical syndrome with kidney dysfunction and high mortality rates. New diagnostic biomarkers need to be defined to better illuminate the pathophysiology of AKI. For the first time, we aim to investigate the protective effects of Curcumin which is known for its antioxidant and anti-inflammatory properties and 12/15 lipoxygenase inhibitor LOXblock-1 on I/R induced AKI by modulating inflammatory processes, oxidative stress, apoptosis and semaphorin-plexin pathway. MAIN METHODS The rats were divided into five groups, with eight animals per group: Sham, I/R, I/R + DMSO (1%, i.p.), I/R + Curcumin (100 mg/kg, i.p.), I/R + LOXblock-1 (2 μg/kg, i.p.). KEY FINDINGS The renal function biomarkers (BUN, CREA and UA) in serum were significantly increased in the I/R group. The inflammatory (TNF-α, IL-6 and MCP-1), apoptotic (CYCS and CASP3) and oxidative stress parameters (MDA, MPO, TAS and TOS) measured by ELISA were significantly increased in the I/R group. In histopathological analysis, it was observed that I/R caused serious damage to kidney tissue. SEMA3A was found to increase both serum level and mRNA expression in I/R group. It was observed that curcumin and LOXblock-1 reduce inflammatory processes, oxidative stress and apoptosis via the semaphorin-plexin pathway by both measurements and histopathological analysis. Curcumin was proved more effective than LOXblock-1 with its antioxidant feature in I/R injury. SIGNIFICANCE The current study reveals the protective effects of Curcumin and LOXblock-1 on acute kidney injury by suppressing SEMA3A as a new biomarker.
Collapse
Affiliation(s)
- Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Ceyhan Hacioglu
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey.
| | - Hakan Senturk
- Department of Biology, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Dilek Burukoglu Donmez
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Gungor Kanbak
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Sema Uslu
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
| |
Collapse
|
52
|
Chu S, Niu Z, Guo Q, Bi H, Li X, Li F, Zhang Z, He W, Cao P, Chen N, Sun X. Combination of monoammonium glycyrrhizinate and cysteine hydrochloride ameliorated lipopolysaccharide/galactosamine-induced acute liver injury through Nrf2/ARE pathway. Eur J Pharmacol 2020; 882:173258. [PMID: 32544505 DOI: 10.1016/j.ejphar.2020.173258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022]
Abstract
Combination of monoammonium glycyrrhizinate and cysteine hydrochloride (MG-CH) has been used for treatment of chronic liver damage in clinic for several years, however, the effect of MG-CH on acute liver injury (ALI) is still obscure. In this study, we aimed to investigate the effect of MG-CH on ALI induced by co-injection of lipopolysaccharide (LPS) and d-galactosamine (GalN). Our results found that MG-CH produced the optimal therapeutic effect at the ratio of 2:1, as manifested by the increased survival percentage, decreased ALT and AST level and improved hepatic pathology. Both oxidative stress and inflammation induced by LPS/GalN were attenuated by MG-CH. Mechanism study showed that MG-CH promoted the nuclear accumulation of Nrf2 and its transcriptional activity, as well as improved Nrf2-target genes' expression. It was also found that activation of Nrf2 is dependent on the MG, not CH. Blockade of Nrf2 abolished the anti-inflammatory effect of MG-CHinduced by LPS/GalN, while inhibition of NFκB showed no effect on its anti-oxidative effect, though the inhibited phosphorylation of IκB and NFκB were detected in liver. The protective effect of MG-CH against ALI was abolished in Nrf2-/- mice. All of these results suggested that MG-CH ameliorated LPS/GalN induced ALI through Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ziquan Niu
- Beijing Aohe Pharmaceutical Research Institute Co., Ltd., Beijing, 101113, China
| | - Qingxin Guo
- Beijing Aohe Pharmaceutical Research Institute Co., Ltd., Beijing, 101113, China
| | - Haozhi Bi
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Xinyu Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Fangfang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenbin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Peng Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Xiaoyun Sun
- Beijing Aohe Pharmaceutical Research Institute Co., Ltd., Beijing, 101113, China.
| |
Collapse
|
53
|
Abstract
BACKGROUND Adiponectin is the most abundant adipokines that plays critical roles in the maintenance of energy homeostasis as well as inflammation regulation. The half-life of adiponectin is very short and the small-molecule adiponectin receptor agonist has been synthesized recently. In the present study, the potential roles of AdipoRon, an adiponectin receptor agonist, in a mouse model of lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced acute hepatitis was explored. METHODS BALB/c mice (n = 144, male) were divided into three sets. In set 1, 32 mice were randomized into four groups: the control group, the AdipoRon group, the LPS/D-Gal group, and the AdipoRon + LPS/D-Gal group. The mice in set 1 were sacrificed after LPS/D-Gal treatment, and the plasma samples were collected for detection of tumor necrosis factor-alpha (TNF-α). In set 2, the 32 mice were also divided into four groups similar to that of set 1. The mice were sacrificed 6 h after LPS/D-Gal injection and plasma samples and liver were collected. In set 3, 80 mice (divided into four groups, n = 20) were used for survival observation. The survival rate, plasma aminotransferases, histopathological damage were measured and compared between these four groups. RESULTS AdipoRon suppressed the elevation of plasma aminotransferases (from 2106.3 ± 781.9 to 286.8 ± 133.1 U/L for alanine aminotransferase, P < 0.01; from 566.5 ± 243.4 to 180.1 ± 153.3 U/L for aspartate aminotransferase, P < 0.01), attenuated histopathological damage and improved the survival rate (from 10% to 60%) in mice with LPS/D-Gal-induced acute hepatitis. Additionally, AdipoRon down-regulated the production of TNF-α (from 328.6 ± 121.2 to 213.4 ± 52.2 pg/mL, P < 0.01), inhibited the activation of caspase-3 (from 2.04-fold to 1.34-fold of the control), caspase-8 (from 2.03-fold to 1.31-fold of the control), and caspase-9 (from 2.14-fold to 1.43-fold of the control), and decreased the level of cleaved caspase-3 (0.28-fold to that of the LPS/D-Gal group). The number of terminal deoxynucleotidyl transferase-mediated nucleotide nick-end labeling-positive apoptotic hepatocytes in LPS/D-Gal-exposed mice also reduced. CONCLUSIONS These data indicated that LPS/D-Gal-induced acute hepatitis was effectively attenuated by the adiponectin receptor agonist AdipoRon, implying that AdipoRon might become a new reagent for treatment of acute hepatitis.
Collapse
|
54
|
Hu Z, Du R, Xiu L, Bian Z, Ma C, Sato N, Hattori M, Zhang H, Liang Y, Yu S, Wang X. Protective effect of triterpenes of Ganoderma lucidum on lipopolysaccharide-induced inflammatory responses and acute liver injury. Cytokine 2020; 127:154917. [DOI: 10.1016/j.cyto.2019.154917] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/16/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
|
55
|
Zhou XL, Wu X, Zhu RR, Xu H, Li YY, Xu QR, Liu S, Lai SQ, Xu X, Wan L, Wu QC, Liu JC. Notch1-Nrf2 signaling crosstalk provides myocardial protection by reducing ROS formation. Biochem Cell Biol 2020; 98:106-111. [PMID: 32069075 DOI: 10.1139/bcb-2018-0398] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Both the Notch1 and Keap1-Nrf2 signaling pathways have cardioprotective effects, but the role of Notch1-Nrf2 crosstalk in myocardial ischemia-reperfusion injury is unclear. In this study, we established hypoxia-reoxygenation in neonate rat myocardial cells and employed γ-secretase inhibitor and curcumin to inhibit and activate the Notch1 and Keap1-Nrf2 signaling pathways, respectively. We found that the combined action of the Notch1 and Keap1-Nrf2 signaling pathways significantly increased cardiomyocyte viability, inhibited cardiomyocyte apoptosis, reduced the formation of reactive oxygen species, and increased antioxidant activities. In conclusion, these findings suggest that Notch1-Nrf2 crosstalk exerts myocardial protection by reducing the formation of reactive oxygen species.
Collapse
Affiliation(s)
- Xue-Liang Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xia Wu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Rong-Rong Zhu
- Department of Obstetrics and Gynecology, Jiangxi Province hospital of integrated traditional Chinese and Western medicine, Nanchang, China
| | - Hua Xu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Yun-Yun Li
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Qi-Rong Xu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Sheng Liu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Song-Qing Lai
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xinping Xu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Li Wan
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Qi-Cai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Ji-Chun Liu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
56
|
Cao S, Wang C, Yan J, Li X, Wen J, Hu C. Curcumin ameliorates oxidative stress-induced intestinal barrier injury and mitochondrial damage by promoting Parkin dependent mitophagy through AMPK-TFEB signal pathway. Free Radic Biol Med 2020; 147:8-22. [PMID: 31816386 DOI: 10.1016/j.freeradbiomed.2019.12.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/23/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022]
Abstract
The gut epithelial is known as the most critical barrier for protection against harmful antigens and pathogens. Oxidative stress has been implicated in the dysfunction of the intestine barrier. Hence, effective and safe therapeutic approaches for maintaining intestinal redox balance are urgently needed. Curcumin has gained attention for its vast beneficial biological function via antioxidative stress. However, whether the curcumin can relief intestine damage and mitochondrial injury induced by oxidative stress is still unclear. In this study, we found that curcumin can effectively ameliorate hydrogen peroxide (H2O2)-induced oxidative stress, intestinal epithelial barrier injury and mitochondrial damage in porcine intestinal epithelial cells (IPEC-J2 cells) in a PTEN-induced putative kinase (PINK1)-Parkin mitophagy dependent way. Mechanistically, depletion of Parkin (a mitophagy related protein) abolished curcumin's protective action on anti-oxidative stress, improving intestinal barrier and mitochondrial function in porcine intestinal epithelial cells (IPEC-J2) induced by H2O2. Consistently, the protective effect of curcumin was not found in cells transfected with GFP-ParkinΔUBL, which encodes a mutant Parkin protein without the ubiquitin E3 ligase activity, indicating that the ubiquitin E3 ligase of Parkin is required for curcumin's protective effects. On the other hand, we also found that the protective function of curcumin was diminished when PRKAA1 was depleted in IPEC-J2 cells treated with H2O2. Immunofluorescence and luciferase assay showed that curcumin dramatically enhanced nuclear translocation and transcriptional activity of transcription factor EB (TFEB) in IPEC-J2 cells treated with H2O2, and it was ameliorated by co-treated with compound C, an Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) inhibitor, which means curcumin promotes TFEB transcript via AMPK signal pathway. Consistent with in vitro data, dietary curcumin protected intestinal barrier function, improved redox status, alleviated mitochondrial damage, triggered mitophagy and influenced AMPK-TFEB signal pathway in a well-established pig oxidative stress model by challenging with diquat. Taken together, these results unveil that curcumin ameliorates oxidative stress, enhances intestinal barrier function and mitochondrial function via the induction of Parkin dependent mitophagy through AMPK activation and subsequent TFEB nuclear translocation.
Collapse
Affiliation(s)
- Shuting Cao
- Animal Science College, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Chunchun Wang
- Animal Science College, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Jintao Yan
- Glasgow college, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xin Li
- Animal Science College, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Jiashu Wen
- Animal Science College, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Caihong Hu
- Animal Science College, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China.
| |
Collapse
|
57
|
Li F, Lu DY, Zhong Q, Tan F, Li W, Liao W, Zhao X. Lactobacillus fermentum HFY06 reduced CCl4-induced hepatic damage in Kunming mice. RSC Adv 2020; 10:1-9. [PMID: 35492553 PMCID: PMC9048285 DOI: 10.1039/c9ra08789c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/12/2019] [Indexed: 01/02/2023] Open
Abstract
This study was conducted to investigate the preventative effect of Lactobacillus fermentum HFY06 on carbon tetrachloride (CCl4)-induced liver injury in Kunming mice. Mice were treated with HFY06, then liver damage was induced using CCl4. Evaluation indicators included the activities of aspartate aminotransferase (AST), triglycerides (TG), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) in serum; cytokines levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) in serum; and related gene expressions of nuclear factor-κB (NF-κB), TNF-α, cyclooxygenase-2 (COX-2), copper/zinc superoxide dismutase (Cu/Zn-SOD), manganese superoxide dismutase (Mn-SOD), and catalase (CAT). Liver tissue was stained with hematoxylin and eosin for pathological analysis. Compared with the model group, HFY06 reduced the liver index, increased the serum SOD and GSH-Px activities, and reduced the AST, TG, and MDA activities in the mice. Inflammation-related IL-6, TNF-α and IFN-γ levels were also reduced after treatment with a high dose of HFY06. Pathological observation showed that CCl4 damaged the mouse livers, which were significantly improved after treatment with silymarin and HFY06. qPCR also confirmed that the high dose of HFY06 (109 colony-forming units [CFU] per kg per day) upregulated the mRNA expression of the antioxidant genes, Cu/Zn-SOD, Mn-SOD, and CAT, in the liver tissue and downregulated the mRNA expression of the inflammatory factors, NF-κB, TNF-α and COX-2, but HFY06 was less effective than silymarin. These findings indicate that HFY06 prevented CCl4-induced liver damage in vivo but was less effective than silymarin. Thus, HFY06 may have a potential role in treating liver diseases. This study was conducted to investigate the preventative effect of Lactobacillus fermentum HFY06 on carbon tetrachloride (CCl4)-induced liver injury in Kunming mice.![]()
Collapse
Affiliation(s)
- Fang Li
- Chongqing Collaborative Innovation Center for Functional Food
- Chongqing University of Education
- Chongqing 400067
- P. R. China
- Chongqing Engineering Research Center of Functional Food
| | - De-Yun Lu
- Department of Gastroenterology
- Chengdu First People's Hospital
- Chengdu 610041
- P. R. China
| | - Qiu Zhong
- Chongqing Collaborative Innovation Center for Functional Food
- Chongqing University of Education
- Chongqing 400067
- P. R. China
- Chongqing Engineering Research Center of Functional Food
| | - Fang Tan
- Department of Public Health
- Our Lady of Fatima University
- Valenzuela 838
- Philippines
| | - Wenfeng Li
- School of Life Science and Biotechnology
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Wei Liao
- Chongqing Collaborative Innovation Center for Functional Food
- Chongqing University of Education
- Chongqing 400067
- P. R. China
- Department of Public Health
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food
- Chongqing University of Education
- Chongqing 400067
- P. R. China
- Chongqing Engineering Research Center of Functional Food
| |
Collapse
|
58
|
Uzunhisarcikli M, Aslanturk A. Hepatoprotective effects of curcumin and taurine against bisphenol A-induced liver injury in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:37242-37253. [PMID: 31745802 DOI: 10.1007/s11356-019-06615-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is an estrogenic endocrine disrupting chemical to which humans are frequently exposed during routine daily life. Curcumin and taurine are natural products that have also been used as antioxidants against different environmental toxin-induced hepatotoxicity. Furthermore, they have protective and therapeutic effects against various diseases. The present investigation has been conducted to evaluate the therapeutic potential of curcumin (100 mg kg-1) and taurine (100 mg kg-1) for their hepatoprotective efficacy against BPA (130 mg kg-1)-induced liver injury in rat. BPA significantly elevated the levels of malondialdehyde (MDA), while it reduced the activities of catalase (CAT), total glutathione S-transferase (GST), total glutathione peroxidase (GPx), and total superoxide dismutase (SOD). Besides, these biochemical changes were accompanied by histopathological alterations marked by the destruction of normal liver structure. The histological examinations showed that exposure of BPA caused dilatation of sinusoids, inflammatory cell infiltration, congestion, and necrosis in liver parenchyma. The BPA-induced histopathological alterations in liver were minimized by curcumin and taurine treatment. Furthermore, no necrosis was observed in the liver tissues of curcumin plus BPA and taurine plus BPA-treated rats. Oral administration of curcumin and taurine to BPA-exposed rats significantly reversed the content of lipid peroxidation products, as well as enhanced the activities of GPx and GST, CAT, and SOD enzymes. These findings have indicated that curcumin and taurine might have a protective effect against BPA-induced hepatotoxicity in rats.
Collapse
Affiliation(s)
| | - Ayse Aslanturk
- Gazi University, Vocational High School of Health Services, Ankara, Turkey
| |
Collapse
|
59
|
Mărgăoan R, Stranț M, Varadi A, Topal E, Yücel B, Cornea-Cipcigan M, Campos MG, Vodnar DC. Bee Collected Pollen and Bee Bread: Bioactive Constituents and Health Benefits. Antioxidants (Basel) 2019; 8:antiox8120568. [PMID: 31756937 PMCID: PMC6943659 DOI: 10.3390/antiox8120568] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
Bee products were historically used as a therapheutic approach and in food consumption, while more recent data include important details that could validate them as food supplements due to their bioproperties, which support their future use as medicines. In this review data, data collected from bee pollen (BP) and bee bread (BB) essays will be discussed and detailed for their nutritional and health protective properties as functional foods. Dietary antioxidants intake derived from BP and BB have been associated with the prevention and clinical treatment of multiple diseases. The beneficial effects of BP and BB on health result from the presence of multiple polyphenols which possess anti-inflammatory properties, phytosterols and fatty acids, which play anticancerogenic roles, as well as polysaccharides, which stimulate immunological activity. From the main bioactivity studies with BP and BB, in vitro studies and animal experiments, the stimulation of apoptosis and the inhibition of cell proliferation in multiple cell lines could be one of the major therapeutic adjuvant effects to be explored in reducing tumor growth. Tables summarizing the main data available in this field and information about other bio-effects of BP and BB, which support the conclusions, are provided. Additionally, a discussion about the research gaps will be presented to help further experiments that complete the tree main World Health Organization (WHO) Directives of Efficiency, Safety and Quality Control for these products.
Collapse
Affiliation(s)
- Rodica Mărgăoan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Mirela Stranț
- Association Health with CasaBIO, 400015 Cluj-Napoca, Romania; (M.S.); (A.V.)
| | - Alina Varadi
- Association Health with CasaBIO, 400015 Cluj-Napoca, Romania; (M.S.); (A.V.)
| | - Erkan Topal
- Apiculture Section, Aegean Agricultural Research Institute, İzmir 35661, Turkey;
| | - Banu Yücel
- Department of Animal Science, Faculty of Agriculture, Ege University, İzmir 35100, Turkey;
| | - Mihaiela Cornea-Cipcigan
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Correspondence: (M.C.-C.); (M.G.C.)
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-370 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3000-370 Coimbra, Portugal
- Correspondence: (M.C.-C.); (M.G.C.)
| | - Dan C. Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
60
|
Alhusaini A, Fadda L, Hasan IH, Zakaria E, Alenazi AM, Mahmoud AM. Curcumin Ameliorates Lead-Induced Hepatotoxicity by Suppressing Oxidative Stress and Inflammation, and Modulating Akt/GSK-3β Signaling Pathway. Biomolecules 2019; 9:biom9110703. [PMID: 31694300 PMCID: PMC6920970 DOI: 10.3390/biom9110703] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Lead (Pb) is a toxic heavy metal pollutant with adverse effects on the liver and other body organs. Curcumin (CUR) is the principal curcuminoid of turmeric and possesses strong antioxidant and anti-inflammatory activities. This study explored the protective effect of CUR on Pb hepatotoxicity with an emphasis on oxidative stress, inflammation and Akt/GSK-3β signaling. Rats received lead acetate and CUR and/or ascorbic acid (AA) for seven days and samples were collected for analyses. Pb(II) induced liver injury manifested by elevated serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), as well as histopathological alterations, including massive hepatocyte degeneration and increased collagen deposition. Lipid peroxidation, nitric oxide, TNF-α and DNA fragmentation were increased, whereas antioxidant defenses were diminished in the liver of Pb(II)-intoxicated rats. Pb(II) increased hepatic NF-κB and JNK phosphorylation and caspase-3 cleavage, whereas Akt and GSK-3β phosphorylation was decreased. CUR and/or AA ameliorated liver function, prevented tissue injury, and suppressed oxidative stress, DNA damage, NF-κB, JNK and caspase-3. In addition, CUR and/or AA activated Akt and inhibited GSK-3β in Pb(II)-induced rats. In conclusion, CUR prevents Pb(II) hepatotoxicity via attenuation of oxidative injury and inflammation, activation of Akt and inhibition of GSK-3β. However, further studies scrutinizing the exact role of Akt/GSK-3β signaling are recommended.
Collapse
Affiliation(s)
- Ahlam Alhusaini
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.F.); (I.H.H.); (A.M.A.)
- Correspondence: (A.A.); (A.M.M.)
| | - Laila Fadda
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.F.); (I.H.H.); (A.M.A.)
| | - Iman H. Hasan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.F.); (I.H.H.); (A.M.A.)
| | - Enas Zakaria
- Pharmaceutics Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abeer M. Alenazi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.F.); (I.H.H.); (A.M.A.)
| | - Ayman M. Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Correspondence: (A.A.); (A.M.M.)
| |
Collapse
|
61
|
Jia R, Gu Z, He Q, Du J, Cao L, Jeney G, Xu P, Yin G. Anti-oxidative, anti-inflammatory and hepatoprotective effects of Radix Bupleuri extract against oxidative damage in tilapia (Oreochromis niloticus) via Nrf2 and TLRs signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2019; 93:395-405. [PMID: 31374313 DOI: 10.1016/j.fsi.2019.07.080] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Radix Bupleuri extract (RBE) is one of the most popular oriental herbal medicines, which has anti-oxidative and anti-inflammatory properties. However, its protective effects and underlying molecular mechanisms on oxidative damage in tilapia are still unclear. The aims of the study were to explore the anti-oxidative, anti-inflammatory and hepatoprotective effects of RBE against oxidative damage, and to elucidate underlying molecular mechanisms in fish. Tilapia received diet containing three doses of RBE (0, 1 and 3 g/kg diet) for 60 days, and then were given an intraperitoneal injection of H2O2 or saline. Before injection, RBE treatments improved growth performance and partial anti-oxidative capacity in tilapia. After oxidative damage, RBE pretreatments were able to signally reduce the higher serum aminotransferases, alkaline phosphatase (AKP) and liver necrosis. In serum and liver, the abnormal lipid peroxidation level and antioxidant status induced by H2O2 injection were restored by RBE treatments. Furthermore, RBE treatments activated erythroid 2-related factor 2 (Nrf2) signaling pathway, which promoted the gene expression of heme oxygenase 1 (HO-1), NAD(P) H:quinone oxidoreductase 1 (NQO-1), glutathione-S-transferase (GST) and catalase (CAT). Meanwhile, RBE treatments reduced inflammatory response by inhibiting TLRs-MyD88-NF-κB signaling pathway, accompanied by the lower interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-8 mRNA levels. In addition, RBE treatments upregulated complement (C3) gene expression and downregulated heat shock protein (HSP70) gene expression. In conclusion, the current study suggested that RBE pretreatments protected against H2O2-induced oxidative damage in tilapia. The beneficial activity of RBE may be due to the modulation of Nrf2/ARE and TLRs-Myd88-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Rui Jia
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxim, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Zhengyan Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Qin He
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxim, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxim, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Galina Jeney
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; National Agricultural Research Center, Research Institute for Fisheries and Aquaculture, Anna Light 8, Szarvas, 5440, Hungary
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxim, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Guojun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxim, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
62
|
Yang B, Yin C, Zhou Y, Wang Q, Jiang Y, Bai Y, Qian H, Xing G, Wang S, Li F, Feng Y, Zhang Y, Cai J, Aschner M, Lu R. Curcumin protects against methylmercury-induced cytotoxicity in primary rat astrocytes by activating the Nrf2/ARE pathway independently of PKCδ. Toxicology 2019; 425:152248. [PMID: 31330227 PMCID: PMC6710134 DOI: 10.1016/j.tox.2019.152248] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/07/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental toxicant that leads to long-lasting neurological deficits in animals and humans. Curcumin, a polyphenol obtained from the rhizome of turmeric, has well-known antioxidant functions. Here, we evaluated curcumin's efficacy in mitigating MeHg-induced cytotoxicity and further investigated the underlying mechanism of this neuroprotection in primary rat astrocytes. Pretreatment with curcumin (2, 5, 10 and 20 μM for 3, 6, 12 or 24 h) protected against MeHg-induced (5 μM for 6 h) cell death in a time and dose-dependent manner. Curcumin (2, 5, 10 or 20 μM) pretreatment for 12 h significantly ameliorated the MeHg-induced astrocyte injury and oxidative stress, as evidenced by morphological alterations, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) generation, and glutathione (GSH) and catalase (CAT) levels. Moreover, curcumin pretreatment increased Nrf2 nuclear translocation and downstream enzyme expression, heme oxygenase-1 (HO-1) and NADPH quinone reductase-1 (NQO1). Knockdown of Nrf2 with siRNA attenuated the protective effect of curcumin against MeHg-induced cell death. However, both the pan-protein kinase C (PKC) inhibitor, Ro 31-8220, and the selective PKCδ inhibitor, rottlerin, failed to suppress the curcumin-activated Nrf2/Antioxidant Response Element(ARE) pathway and attenuate the protection exerted by curcumin. Taken together, these findings confirm that curcumin protects against MeHg-induced neurotoxicity by activating the Nrf2/ARE pathway and this protection is independent of PKCδ activation. More studies are needed to understand the mechanisms of curcumin cytoprotection.
Collapse
Affiliation(s)
- Bobo Yang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Changsheng Yin
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yun Zhou
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiang Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuanyue Jiang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yu Bai
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hai Qian
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guangwei Xing
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Suhua Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Fang Li
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yun Feng
- Department of Pharmacology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yubin Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jiyang Cai
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77550-1106, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Center for Experimental Research, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215132, China.
| |
Collapse
|
63
|
Karimi A, Ghodsi R, Kooshki F, Karimi M, Asghariazar V, Tarighat-Esfanjani A. Therapeutic effects of curcumin on sepsis and mechanisms of action: A systematic review of preclinical studies. Phytother Res 2019; 33:2798-2820. [PMID: 31429161 DOI: 10.1002/ptr.6467] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/28/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Sepsis is a complex disease that begins with an infectious disorder and causes excessive immune responses. Curcumin is considered as an active component of turmeric that can improve the condition in sepsis due to its anti-inflammatory and antioxidant properties. PubMed, Embase, Google Scholar, Web of Science, and Scopus databases were searched. Searching was not limited to a specific publication period. Only English-language original articles, which had examined the effect of curcumin on sepsis, were included. At first, 1,098 articles were totally found, and 209 articles were selected after excluding duplicated data; 46 articles were remained due to the curcumin effects on sepsis. These included 23 in vitro studies and 23 animal studies. Our results showed that curcumin and various analogs of curcumin can have an inhibitory effect on sepsis-induced complications. Curcumin has the ability to inhibit the inflammatory, oxidative coagulation factors, and regulation of immune responses in sepsis. Despite the promising evidence of the therapeutic effects of curcumin on the sepsis complication, further studies seem necessary to investigate its effect and possible mechanisms of action in human studies.
Collapse
Affiliation(s)
- Arash Karimi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Ghodsi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fateme Kooshki
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozhdeh Karimi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Asghariazar
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
64
|
Tian Q, Wang G, Zhang Y, Zhang F, Yang L, Liu Z, Shen Z. Engeletin inhibits Lipopolysaccharide/d-galactosamine-induced liver injury in mice through activating PPAR-γ. J Pharmacol Sci 2019; 140:218-222. [PMID: 31473044 DOI: 10.1016/j.jphs.2019.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 01/07/2023] Open
Abstract
Liver injury is a serious clinical syndrome that characterized by inflammatory response. Engeletin is known to have anti-inflammatory activity. However, the effects of engeletin on liver injury remain unclear. We aimed to assess the protective effect of engeletin on Lipopolysaccharide (LPS)/d-galactosamine (D-gal)-induced liver injury in mice. Engeletin was administered intraperitoneally 1 h before and 12 h after LPS/D-gal treatment. The results showed that engeletin treatment on LPS/D-gal-induced liver injury in mice have a significant protective effect, as confirmed by the attenuation of liver histopathologic changes, MPO activity, and serum AST and ALT levels. At the meanwhile, it also showed that engeletin inhibited the levels of IL-β and TNF-α in serum and liver tissues. Besides, engeletin blocked the activation of NF-κB induced by LPS/D-gal and induced the expression of PPAR-γ in a dose-dependently manner. These findings suggested that engeletin may have a protective effect against liver injury.
Collapse
Affiliation(s)
- Qing Tian
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, China; Tianjin Clinical Research Center for Organ Transplantation, Tianjin 300192, China
| | - Guijie Wang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, China; Tianjin Clinical Research Center for Organ Transplantation, Tianjin 300192, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, China; Tianjin Clinical Research Center for Organ Transplantation, Tianjin 300192, China
| | - Fubo Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, China; Tianjin Clinical Research Center for Organ Transplantation, Tianjin 300192, China
| | - Long Yang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, China; Tianjin Clinical Research Center for Organ Transplantation, Tianjin 300192, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, China; Tianjin Clinical Research Center for Organ Transplantation, Tianjin 300192, China
| | - Zhongyang Shen
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, China; Tianjin Clinical Research Center for Organ Transplantation, Tianjin 300192, China.
| |
Collapse
|
65
|
Wei GJ, Chao YH, Tung YC, Wu TY, Su ZY. A Tangeretin Derivative Inhibits the Growth of Human Prostate Cancer LNCaP Cells by Epigenetically Restoring p21 Gene Expression and Inhibiting Cancer Stem-like Cell Proliferation. AAPS JOURNAL 2019; 21:86. [DOI: 10.1208/s12248-019-0345-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/27/2019] [Indexed: 12/21/2022]
|
66
|
Wang Q, Lu K, Li F, Lei L, Zhao J, Wu S, Yin R, Ming J. Polyphenols from Morchella angusticepes Peck attenuate D-galactosamine/lipopolysaccharide-induced acute hepatic failture in mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
67
|
Curcumin and α/ β-Adrenergic Antagonists Cotreatment Reverse Liver Cirrhosis in Hamsters: Participation of Nrf-2 and NF- κB. J Immunol Res 2019; 2019:3019794. [PMID: 31183386 PMCID: PMC6515016 DOI: 10.1155/2019/3019794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/02/2019] [Indexed: 12/20/2022] Open
Abstract
Liver cirrhosis is the result of an uncontrolled fibrogenetic process, due to the activation and subsequent differentiation into myofibroblasts of the hepatic stellate cells (HSC). It is known that HSC express adrenoreceptors (AR), and the use of AR antagonists protects experimental animals from cirrhosis. However, several studies suggest that the toxicity generated by metabolism of these antagonists would hinder its use in cirrhotic patients. In addition, liver fibrosis may be associated with a decrease of the antioxidant response of the nuclear factor erythroid 2-related factor 2 (Nrf-2) and the overregulation of the proinflammatory pathway of nuclear factor kappa B (NF-κB). Therefore, in the present work, the capacity of doxazosin (α1 antagonist), carvedilol (nonselective beta-adrenoceptor blocker with alpha 1-blocking properties), and curcumin (antioxidant and anti-inflammatory compound) to reverse liver cirrhosis and studying the possible modulation of Nrf-2 and NF-κB were evaluated. Hamsters received CCl4 for 20 weeks, and then treatments were immediately administered for 4 weeks more. The individual administration of doxazosin or carvedilol showed less ability to reverse cirrhosis in relation to concomitantly curcumin administration. However, the best effect was the combined effect of doxazosin, carvedilol, and curcumin, reversing liver fibrosis and decreasing the amount of collagen I (Sirius red stain) without affecting the morphology of hepatocytes (hematoxylin and eosin stain), showing normal hepatic function (glucose, albumin, AST, ALT, total bilirubin, and total proteins). In addition, carvedilol treatment and the combination of doxazosin with curcumin increased Nrf-2/NF-κB mRNA ratio and its protein expression in the inflammatory cells in the livers, possibly as another mechanism of hepatoprotection. Therefore, these results suggest for the first time that α/β adrenergic blockers with curcumin completely reverse hepatic damage, possibly as a result of adrenergic antagonism on HSC and conceivably by the increase of Nrf-2/NF-κB mRNA ratio.
Collapse
|
68
|
Curcumin Provides Hepatoprotection against Amoebic Liver Abscess Induced by Entamoeba histolytica in Hamster: Involvement of Nrf2/HO-1 and NF- κB/IL-1 β Signaling Pathways. J Immunol Res 2019; 2019:7431652. [PMID: 31275999 PMCID: PMC6561665 DOI: 10.1155/2019/7431652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Amoebic liver abscess (ALA) is the most common extraintestinal amoebiasis caused by Entamoeba histolytica (E. histolytica). However, despite current knowledge and scientific advances about this infection, there are no effective treatments to prevent it. Herein, the antiamoebic capacity of curcumin in a hamster model was evaluated. Curcumin (150 mg/kg, p.o., daily during 10 days before infection) considerably prevents liver damage induced at 12 and 48 h post-intrahepatic inoculation of trophozoites and decreases ALT, ALP, and γ-GTP activities, and macroscopic and microscopic observations were consistent with these results. On the other hand, after one week of intraportal inoculation, liver damage was prevented by curcumin (150 mg/kg, p.o., daily, 20 days before amoebic inoculation and during the week of infection); liver/body weight ratios and tissue and histological stains showed normal appearance; in addition, the increases in ALT, ALP, and γ-GTP activities were prevented; the depletion of glycogen content induced by the amoebic damage was partially but significantly prevented, while NF-κB activity was inhibited and the expression of IL-1β was reduced; Nrf2 production showed a tendency to increase it, and HO-1 protein was overexpressed. These results suggest for the first time that curcumin can be a compound with antiamoebic effect in the liver, suggesting that its daily use could help greatly decrease the incidence of this type of infection.
Collapse
|
69
|
Protective effects of phytochemicals of Capparis spinosa seeds with cisplatin and CCl4 toxicity in mice. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
70
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
71
|
Xu D, Xu M, Jeong S, Qian Y, Wu H, Xia Q, Kong X. The Role of Nrf2 in Liver Disease: Novel Molecular Mechanisms and Therapeutic Approaches. Front Pharmacol 2019; 9:1428. [PMID: 30670963 PMCID: PMC6331455 DOI: 10.3389/fphar.2018.01428] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress and inflammation are the most important pathogenic events in the development and progression of liver diseases. Nuclear erythroid 2-related factor 2 (Nrf2) is the master regulator of the cellular protection via induction of anti-inflammatory, antioxidant, and cyto-protective genes expression. Multiple studies have shown that activation or suppression of this transcriptional factor significantly affect progression of liver diseases. Comprehensive understanding the roles of Nrf2 activation/expression and the outcomes of its activators/inhibitors are indispensable for defining the mechanisms and therapeutic strategies against liver diseases. In this current review, we discussed recent advances in the function and principal mechanisms by regulating Nrf2 in liver diseases, including acute liver failure, hepatic ischemia-reperfusion injury (IRI), alcoholic liver disease (ALD), viral hepatitis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Dongwei Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Seogsong Jeong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yihan Qian
- School of Pharmacy, Fudan University, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoni Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
72
|
Cho BO, Che DN, Shin JY, Kang HJ, Kim SJ, Choi J, Kim SZ, Jang SI. Photoprotective properties of combined extracts from
Diospyros lotus
leaves and
Curcuma longa
rhizomes against chronic UVB‐induced photodamage. J Food Biochem 2018. [DOI: 10.1111/jfbc.12672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Byoung Ok Cho
- Department of Health Management Jeonju University Jeonju South Korea
- Research Institute Ato Q&A Co. Ltd Jeonju South Korea
| | - Denis Nchang Che
- Department of Food Science and Technology Chonbuk National University Jeonju South Korea
| | - Jae Young Shin
- Department of Health Management Jeonju University Jeonju South Korea
| | - Hyun Ju Kang
- Research Institute Ato Q&A Co. Ltd Jeonju South Korea
| | - Sang Jun Kim
- Functional Food (Drug) R&D Team Jeonju AgroBio‐Materials Institute Jeonju South Korea
| | - Jiwon Choi
- Department of Radiological Sciences Jeonju University Jeonju South Korea
| | - Sung Zoo Kim
- Department of Physiology, School of Medicine Chonbuk National University Jeonju South Korea
| | - Seon Il Jang
- Department of Health Management Jeonju University Jeonju South Korea
- Research Institute Ato Q&A Co. Ltd Jeonju South Korea
| |
Collapse
|
73
|
Xu L, Sang R, Yu Y, Li J, Ge B, Zhang X. The polysaccharide from Inonotus obliquus protects mice from Toxoplasma gondii-induced liver injury. Int J Biol Macromol 2018; 125:1-8. [PMID: 30445083 DOI: 10.1016/j.ijbiomac.2018.11.114] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/23/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
The study aimed to explore the protective effects and mechanism of Inonotus obliquus polysaccharide (IOP) on liver injury caused by Toxoplasma gondii (T. gondii) infection in mice. The results showed that treatment with IOP significantly decreased the liver coefficient, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA) and nitric oxide (NO), and increased the contents of antioxidant enzyme superoxide dismutase (SOD) and glutathione (GSH). IOP effectively decreased the expression of serum tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), interferon-γ (IFN-γ) and interluekin-4 (IL-4) in T. gondii-infected mice. In agreement with these observations, IOP also alleviated hepatic pathological damages caused by T. gondii. Furthermore, we found that IOP down-regulated the levels of toll-like receptor 2 (TLR2) and toll-like receptor 4 (TLR4), phosphorylations of nuclear factor-κappaB (NF-κB) p65 and inhibitor kappaBα (IκBα), whereas up-regulated the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). These findings suggest that IOP possesses hepatoprotective effects against T. gondii-induced liver injury in mice, and such protection is at least in part due to its anti-inflammatory effects through inhibiting the TLRs/NF-κB signaling axis and the activation of an antioxidant response by inducing the Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Lu Xu
- Department of Animal Medicine, Agricultural College, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Rui Sang
- Department of Animal Medicine, Agricultural College, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Yifan Yu
- Department of Animal Medicine, Agricultural College, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Jinxia Li
- Department of Animal Medicine, Agricultural College, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Bingjie Ge
- Department of Animal Medicine, Agricultural College, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Xuemei Zhang
- Department of Animal Medicine, Agricultural College, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| |
Collapse
|
74
|
Tian Y, Li Y, Li F, Zhi Q, Li F, Tang Y, Yang Y, Yin R, Ming J. Protective effects of Coreopsis tinctoria flowers phenolic extract against D-galactosamine/lipopolysaccharide -induced acute liver injury by up-regulation of Nrf2, PPARα, and PPARγ. Food Chem Toxicol 2018; 121:404-412. [DOI: 10.1016/j.fct.2018.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 12/27/2022]
|
75
|
Meta-analysis of randomized controlled trials of 4 weeks or longer suggest that curcumin may afford some protection against oxidative stress. Nutr Res 2018; 60:1-12. [PMID: 30527253 DOI: 10.1016/j.nutres.2018.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/04/2018] [Accepted: 08/17/2018] [Indexed: 01/10/2023]
Abstract
Oxidative stress (OS) is associated with aging and multiple diseases, yet the effects of curcumin in humans are not definite. We undertook a meta-analysis of the effects of curcumin on OS biomarkers. In January 2018, we searched PubMed, Books@Ovid, Journals@Ovid, EMBASE, MEDLINE(R), and Web of Science to identify randomized controlled trials conducted ≥4 weeks and investigating the effects of curcumin on OS biomarkers, including glutathione peroxidase (GPX) activity in red blood cells (RBC), serum malondialdehyde (MDA) concentrations, and superoxide dismutase (SOD) activity. The standardized mean difference (SMD) with a 95% confidence interval (CI) was used to present the results. The meta-analysis included eight clinical studies (626 patients). There was a significant reduction in circulating MDA concentrations (SMD = -0.769, 95% CI: -1.059 to -0.478) and a significant increase in SOD activity (SMD = 1.084, 95% CI: 0.487 to 1.680) following curcumin supplementation. There was no change in the GPX activity in RBC. There was no significant association between the MDA-lowering effect of curcumin with underlying diseases or treatment duration. However, curcumin showed the MDA-lowering effect at curcuminoids doses ≥600 mg/d (P < .0001). This effect was greater when combined with piperine than curcuminoids alone (SMD = -1.085, 95% CI: -1.357 to -0.813; SMD = -0.850, 95% CI: -1.158 to -0.542). Curcumin may play an anti-oxidative role by reducing circulating MDA concentrations and increasing SOD activity. Further research of curcumin in different populations with multiple biomarkers of redox status is required.
Collapse
|
76
|
Wang W, Zhang Y, Li H, Zhao Y, Cai E, Zhu H, Li P, Liu J. Protective Effects of Sesquiterpenoids from the Root of Panax ginseng on Fulminant Liver Injury Induced by Lipopolysaccharide/d-Galactosamine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7758-7763. [PMID: 29974747 DOI: 10.1021/acs.jafc.8b02627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is reported that sesquiterpenoids from Panax ginseng (SPG) possess various pharmacological activities, for example, antidepressant, antioxidative, and anti-inflammatory activities. The purpose of this study was to examine the hepatoprotective effects of SPG (2.5 and 10 mg/kg, i.g.) on fulminant liver injury induced by d-galactosamine (d-GalN) and lipopolysaccharide (LPS) and discuss its mechanisms of action. After 24 h of d-GalN (400 mg/kg, i.p.) and LPS (25 μg/kg, i.p.) exposure, the serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), hepatic malondialdehyde (MDA) level, hepatic activities of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), and hepatic tissue histology were measured. Expression levels of tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β) were detected by enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Moreover, the nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), sirtuin type 1 (Sirt 1), and heme oxygenase 1 (HO-1) were determined by western blotting. The results indicated that SPG evidently restrained the increase of serum ALT and AST levels induced by d-GalN/LPS. SPG obviously downregulated TNF-α and IL-1β levels and their mRNA expression in liver. In addition, d-GalN/LPS injection induced severe oxidative stress in liver by boosting the MDA level as well as decreasing CAT, GSH, and SOD capacities, and SPG reversed these changes. Meanwhile, SPG inhibited NF-κB activation induced by d-GalN/LPS and upregulated Sirt 1, Nrf2, and HO-1 expression levels. Therefore, SPG might protect against the fulminant liver injury induced by d-GalN/LPS via inhibiting inflammation and oxidative stress. The protective effect of SPG on fulminant liver injury induced by d-GalN/LPS might be mediated by the Sirt 1/Nrf2/NF-κB signaling pathway. All of these results implied that SPG might be a promising food additive and therapeutic agent for fulminant liver injury.
Collapse
Affiliation(s)
- Weidong Wang
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun , Jilin 130118 , People's Republic of China
| | - Yanguo Zhang
- Department of Anesthesiology , Changchun Shuangyang District Hospital , Changchun , Jilin 130600 , People's Republic of China
| | - Haijun Li
- Jilin University , Changchun , Jilin 130021 , People's Republic of China
| | - Yan Zhao
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun , Jilin 130118 , People's Republic of China
| | - Enbo Cai
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun , Jilin 130118 , People's Republic of China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun , Jilin 130118 , People's Republic of China
| | - Pingya Li
- Jilin University , Changchun , Jilin 130021 , People's Republic of China
| | - Jinping Liu
- Jilin University , Changchun , Jilin 130021 , People's Republic of China
| |
Collapse
|
77
|
Dhir A. Curcumin in epilepsy disorders. Phytother Res 2018; 32:1865-1875. [PMID: 29917276 DOI: 10.1002/ptr.6125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/01/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022]
Abstract
Curcumin, a principal curcuminoid present in turmeric, has an antioxidant, anti-inflammatory and neuroprotective properties. Preclinical studies have indicated its beneficial effect for the treatment of epilepsy disorders. The molecule has an anti-seizure potential in preclinical studies, including chemical and electrical models of acute and chronic epilepsy. Curcumin also possesses an anti-epileptogenic activity as it reduces spontaneous recurrent seizures severity in a kainate model of temporal lobe epilepsy. The antioxidant and anti-inflammatory nature of curcumin might be responsible for its observed anti-seizure effects; nevertheless, the exact mechanism is not yet clear. The poor availability of curcumin to the brain limits its use in clinics. The application of nanoliposome and liposome technologies has been tested to enhance its brain availability and penetrability. Unfortunately, there are no randomized, double-blinded controlled clinical trials validating the use of curcumin in epilepsy. The present article analyzes different preclinical evidence illustrating the effect of curcumin in seizure models. The review encourages carrying out clinical trials in this important area of research. In conclusion, curcumin might be beneficial in patients with epilepsy disorders, if its bioavailability issues are resolved.
Collapse
Affiliation(s)
- Ashish Dhir
- Department of Neurology, School of Medicine, University of California, Davis, CA, 95817
| |
Collapse
|
78
|
Zhi Q, Li Y, Li F, Tian Y, Li F, Tang Y, Yang Y, Yin R, Ming J. Polyphenols extracted from Coreopsis tinctoria buds exhibited a protective effect against acute liver damage. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
79
|
Liang J, Wu S, Xie W, He H. Ketamine ameliorates oxidative stress-induced apoptosis in experimental traumatic brain injury via the Nrf2 pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:845-853. [PMID: 29713142 PMCID: PMC5907785 DOI: 10.2147/dddt.s160046] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Ketamine can act as a multifunctional neuroprotective agent by inhibiting oxidative stress, cellular dysfunction, and apoptosis. Although it has been proven to be effective in various neurologic disorders, the mechanism of the treatment of traumatic brain injury (TBI) is not fully understood. The aim of this study was to investigate the neuroprotective function of ketamine in models of TBI and the potential role of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in this putative protective effect. Materials and methods Wild-type male mice were randomly assigned to five groups: Sham group, Sham + ketamine group, TBI group, TBI + vehicle group, and TBI + ketamine group. Marmarou’s weight drop model in mice was used to induce TBI, after which either ketamine or vehicle was administered via intraperitoneal injection. After 24 h, the brain samples were collected for analysis. Results Ketamine significantly ameliorated secondary brain injury induced by TBI, including neurological deficits, brain water content, and neuronal apoptosis. In addition, the levels of malondialdehyde (MDA), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were restored by the ketamine treatment. Western blotting and immunohistochemistry showed that ketamine significantly increased the level of Nrf2. Furthermore, administration of ketamine also induced the expression of Nrf2 pathway-related downstream factors, including hemeoxygenase-1 and quinine oxidoreductase-1, at the pre- and post-transcriptional levels. Conclusion Ketamine exhibits neuroprotective effects by attenuating oxidative stress and apoptosis after TBI. Therefore, ketamine could be an effective therapeutic agent for the treatment of TBI.
Collapse
Affiliation(s)
- Jinwei Liang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Shanhu Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Wenxi Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Hefan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| |
Collapse
|
80
|
Wang YY, Diao BZ, Zhong LH, Lu BL, Cheng Y, Yu L, Zhu LY. Maslinic acid protects against lipopolysaccharide/d-galactosamine-induced acute liver injury in mice. Microb Pathog 2018; 119:49-53. [PMID: 29627448 DOI: 10.1016/j.micpath.2018.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Acute liver injury is a life-threatening syndrome that often caused by hepatocyte damage. In this study, we investigated the protective effects of maslinic acid (MA) on lipopolysaccharide (LPS)/d-galactosamine (D-gal)-induced acute liver injury and clarified its mechanism. Mice acute liver injury model was induced by given LPS and D-gal and MA was given intraperitoneally 1 h before LPS and D-gal. Our results showed that MA protected against liver injury by attenuating liver histopathologic changes, serum AST and ALT levels. The increased inflammatory cytokines TNF-α and IL-6 in serum and liver tissues were also inhibited by MA. The level of MDA and the activity of MPO in liver tissues were up-regulated by LPS/D-gal and dose-dependently inhibited by MA. Furthermore, MA attenuated hepatic NF-κB protein expression and increased hepatic Nrf2 and HO-1 protein expression. Taken together, MA offers a protective role against LPS/D-gal-induced liver injury through suppressing NF-κB and activating Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Bao-Zhong Diao
- Department of Pharmaceutical Preparations, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, China
| | - Li-Hua Zhong
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Bao-Ling Lu
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yu Cheng
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Lei Yu
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| | - Li-Ying Zhu
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
81
|
Curcumin provides neuroprotection in model of traumatic brain injury via the Nrf2-ARE signaling pathway. Brain Res Bull 2018; 140:65-71. [PMID: 29626606 DOI: 10.1016/j.brainresbull.2018.03.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/01/2018] [Accepted: 03/30/2018] [Indexed: 11/20/2022]
Abstract
Curcumin has been found to play the protective role in many neurological disorders, however, its roles and the underlying molecular mechanisms in traumatic brain injury (TBI) are not fully understood. The aim of this study was to investigate the potential neuroprotection of curcumin and the possible role of Nrf2-ARE pathway in the weight-drop model of TBI. The administration of curcumin (100 mg/kg, i.p.) significantly ameliorated secondary brain injury induced by TBI, such as brain water content, oxidative stress, neurological severity score, and neuronal apoptosis. Curcumin possessed anti-apoptotic character evidenced by elevating Bcl-2 content and reducing that of cleaved caspase-3. Moreover, curcumin markedly enhanced the translocation of Nrf2 from the cytoplasm to the nucleus, proved by the results of western blot and immunofluorescence, subsequently increased the expression of downstream factors such as heme oxygenase 1 (HO1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) and prevented the decline of antioxidant enzyme activities. In conclusion, curcumin could increase the activities of antioxidant enzymes and attenuate brain injury in the model of TBI, possibly via the activation of the Nrf2-ARE pathway.
Collapse
|
82
|
|
83
|
Pastorelli D, Fabricio ASC, Giovanis P, D'Ippolito S, Fiduccia P, Soldà C, Buda A, Sperti C, Bardini R, Da Dalt G, Rainato G, Gion M, Ursini F. Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: Results of a prospective phase II trial. Pharmacol Res 2018; 132:72-79. [PMID: 29614381 DOI: 10.1016/j.phrs.2018.03.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 02/08/2023]
Abstract
A large body of biomedical evidence indicates that activation of Nrf2 by curcumin increases the nucleophilic tone and damps inflammation cumulatively supporting the malignant phenotype. Conversely, genetic analyses suggest a possible oncogenic nature of constitutive Nrf2 activation since an increased nucleophilic tone is alleged increasing chemoresistance of cancer cells. Aiming to contribute to solve this paradox, this study addressed the issue of safety and efficacy of curcumin as complementary therapy of gemcitabine on pancreatic cancer. This was a single centre, single arm prospective phase II trial. Patients received gemcitabine and Meriva®, a patented preparation of curcumin complexed with phospholipids. Primary endpoint was response rate, secondary endpoints were progression free survival, overall survival, tolerability and quality of life. Analysis of inflammatory biomarkers was also carried out. Fifty-two consecutive patients were enrolled. Forty-four (13 locally advanced and 31 metastatic) were suitable for primary endpoint evaluation. Median age was 66 years (range 42-87); 42 patients had Eastern Cooperative Oncology Group performance status 0-1. The median number of treatment cycle was 4.5 (range 2-14). We observed 27.3% of response rate and 34.1% of cases with stable disease, totalizing a disease control rate of 61.4%. The median progression free survival and overall survival were 8.4 and 10.2 months, respectively. Higher IL-6 and sCD40L levels before treatment were associated to a worse overall survival (p < 0.01). Increases in sCD40L levels after 1 cycle of chemotherapy were associated with a reduced response to the therapy. Grade 3/4 toxicity was observed (neutropenia, 38.6%; anemia, 6.8%). There were no significant changes in quality of life during therapy. In conclusion, the complementary therapy to gemcitabine with phytosome complex of curcumin is not only safe but also efficiently translate in a good response rate in first line therapy of advanced pancreatic cancer.
Collapse
Affiliation(s)
- Davide Pastorelli
- Rare Tumors Unit, Veneto Institute of Oncology IOV - IRCCS, Via Gattamelata 64, 35128 Padua (PD), Italy; Department of Oncology, S. Maria del Prato Hospital, Via Bagnols sur Ceze 3, 3203 Feltre (BL), Italy.
| | - Aline S C Fabricio
- Regional Center for Biomarkers, Department of Clinical Pathology and Transfusion Medicine, Azienda ULSS 3 Serenissima, Regional Hospital, Campo SS Giovanni e Paolo 6777, 30122 Venice (VE), Italy.
| | - Petros Giovanis
- Department of Oncology, S. Maria del Prato Hospital, Via Bagnols sur Ceze 3, 3203 Feltre (BL), Italy.
| | - Simona D'Ippolito
- Department of Oncology, S. Maria del Prato Hospital, Via Bagnols sur Ceze 3, 3203 Feltre (BL), Italy.
| | - Pasquale Fiduccia
- Clinical Trials and Biostatistics Unit, Veneto Institute of Oncology IOV - IRCCS, Via Gattamelata 64, 35128 Padua (PD), Italy.
| | - Caterina Soldà
- Medical Oncology Azienda ULSS 3 Serenissima, Ospedale dell'Angelo, Via Paccagnella 11, 30174 Mestre (VE), Italy.
| | - Andrea Buda
- Gastroenterology Unit, S. Maria del Prato Hospital, Via Bagnols sur Ceze 3, 32032 Feltre (BL), Italy.
| | - Cosimo Sperti
- Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Via Giustiniani 2, 35128 Padua (PD), Italy.
| | - Romeo Bardini
- Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Via Giustiniani 2, 35128 Padua (PD), Italy.
| | - Gianfranco Da Dalt
- Department of Surgery, Oncological and Gastroenterological Sciences, University of Padua, Via Giustiniani 2, 35128 Padua (PD), Italy.
| | - Giulia Rainato
- Veneto Institute of Oncology IOV - IRCCS, Via Gattamelata 64, 35128 Padua (PD), Italy.
| | - Massimo Gion
- Regional Center for Biomarkers, Department of Clinical Pathology and Transfusion Medicine, Azienda ULSS 3 Serenissima, Regional Hospital, Campo SS Giovanni e Paolo 6777, 30122 Venice (VE), Italy.
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padua, Viale C. Colombo, 3, 35121 Padua (PD), Italy.
| |
Collapse
|
84
|
Lee J, Mailar K, Yoo OK, Choi WJ, Keum YS. Marliolide inhibits skin carcinogenesis by activating NRF2/ARE to induce heme oxygenase-1. Eur J Med Chem 2018. [PMID: 29525432 DOI: 10.1016/j.ejmech.2018.02.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heme oxygenase-1 (HO-1) catalyzes the enzymatic degradation of heme to produce three anti-oxidant molecules: carbon monoxide (CO), ferrous ion (Fe2+), and biliverdin. Induction of HO-1 is currently considered as a feasible strategy to treat oxidative stress-related diseases. In the present study, we identified marliolide as a novel inducer of HO-1 in human normal keratinocyte HaCaT cells. Mechanism-based studies demonstrated that the induction of HO-1 by marliolide occurred through activation of NRF2/ARE via direct binding of marliolide to KEAP1. Structure-activity relationship revealed chemical moieties of marliolide critical for induction of HO-1, which renders a support for Michael reaction as a potential mechanism of action. Finally, we observed that marliolide significantly inhibited the papilloma formation in DMBA/TPA-induced mouse skin carcinogenesis model and this event was closely associated with lowering the formation of 8-OH-G and 4-HNE in vivo. Together, our study provides the first evidence that marliolide might be effective against oxidative stress-related skin disorders.
Collapse
Affiliation(s)
- June Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32 Dongguk-ro, Goyang, Gyeonggi-do 10326, South Korea
| | - Karabasappa Mailar
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32 Dongguk-ro, Goyang, Gyeonggi-do 10326, South Korea
| | - Ok-Kyung Yoo
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32 Dongguk-ro, Goyang, Gyeonggi-do 10326, South Korea
| | - Won Jun Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32 Dongguk-ro, Goyang, Gyeonggi-do 10326, South Korea.
| | - Young-Sam Keum
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32 Dongguk-ro, Goyang, Gyeonggi-do 10326, South Korea.
| |
Collapse
|
85
|
Peng X, Dai C, Liu Q, Li J, Qiu J. Curcumin Attenuates on Carbon Tetrachloride-Induced Acute Liver Injury in Mice via Modulation of the Nrf2/HO-1 and TGF-β1/Smad3 Pathway. Molecules 2018; 23:E215. [PMID: 29351226 PMCID: PMC6017508 DOI: 10.3390/molecules23010215] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 01/14/2023] Open
Abstract
This study aimed to investigate the protective effect of curcumin against carbon tetrachloride (CCl₄)-induced acute liver injury in a mouse model, and to explain the underlying mechanism. Curcumin at doses of 50, 100 and 200 mg/kg/day were administered orally once daily for seven days prior to CCl₄ exposure. At 24 h, curcumin-attenuated CCl₄ induced elevated serum transaminase activities and histopathological damage in the mouse's liver. Curcumin pre-treatment at 50, 100 and 200 mg/kg significantly ameliorated CCl₄-induced oxidative stress, characterized by decreased malondialdehyde (MDA) formations, and increased superoxide dismutase (SOD), catalase (CAT) activities and glutathione (GSH) content, followed by a decrease in caspase-9 and -3 activities. Curcumin pre-treatment significantly decreased CCl₄-induced inflammation. Furthermore, curcumin pre-treatment significantly down-regulated the expression of TGF-β1 and Smad3 mRNAs (both p < 0.01), and up-regulated the expression of nuclear-factor erythroid 2-related factor 2 (Nrf2) and HO-1 mRNA (both p < 0.01) in the liver. Inhibition of HO-1 attenuated the protective effect of curcumin on CCl₄-induced acute liver injury. Given these outcomes, curcumin could protect against CCl₄-induced acute liver injury by inhibiting oxidative stress and inflammation, which may partly involve the activation of Nrf2/HO-1 and inhibition of TGF-β1/Smad3 pathways.
Collapse
Affiliation(s)
- Xinyan Peng
- College of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai 264025, China.
| | - Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Quanwen Liu
- College of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai 264025, China.
| | - Junke Li
- College of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai 264025, China.
| | - Jingru Qiu
- College of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai 264025, China.
| |
Collapse
|
86
|
Li J, Chen B, Zhong L, Gao F, Zhu H, Wang F. AMP-activated protein kinase agonist N 6-(3-hydroxyphenyl)adenosine protects against fulminant hepatitis by suppressing inflammation and apoptosis. Cell Death Dis 2018; 9:37. [PMID: 29348606 PMCID: PMC5833387 DOI: 10.1038/s41419-017-0118-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/18/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
Both AMP-activated protein kinase (AMPK) agonist and inhibitor have been reported to protect against fulminant hepatitis, implying that AMPK may play a complicated role in the development of fulminant hepatitis. In this study, we exploited whether the novel AMPK agonist N6-(3-hydroxyphenyl)adenosine (named as M1) exerted protective effects on fulminant hepatitis and whether its beneficial effects were AMPK-dependent. Results showed that intraperitoneal injection of M1 improved liver function, ameliorated liver injury and finally raised the survival rate in d-galactosamine/lipopolysaccharide (GalN/LPS)-treated mice. These beneficial effects of M1 may attribute to the suppression of pro-inflammatory cytokines production and the prevention of hepatocyte apoptosis. Furthermore, M1 pretreatment mitigated LPS-stimulated TLR4 expression and NFκB activation in murine peritoneal macrophages and prevented actinomycin D (Act D)/tumor necrosis factor α (TNFα)-induced apoptosis by promoting protective autophagy in primary hepatocytes. Additionally, M1-induced AMPK activation was responsible both for its anti-inflammatory action in macrophages and for its anti-apoptotic action in hepatocytes. To our surprise, compared with the control AMPKα1lox/lox/AMPKα2lox/lox mice, liver-specific AMPKα1 knockout (AMPKα1LS−/−) mice were more sensitive to GalN/LPS administration but not AMPKα2LS−/−mice, and the beneficial effects of M1 on acute liver failure and the production of pro-inflammatory factors were dampened in AMPKα1LS−/− mice. Therefore, our study may prove that M1 could be a promising therapeutic agent for fulminant hepatitis, and targeting AMPK may be useful therapeutically in the control of LPS-induced hepatotoxicity.
Collapse
Affiliation(s)
- Jin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), 100193, Beijing, China
| | - Bo Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Liping Zhong
- Life Science College of Tarim University, 843300, Xinjiang, China
| | - Feng Gao
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), 100193, Beijing, China.
| |
Collapse
|
87
|
Dai J, Gu L, Su Y, Wang Q, Zhao Y, Chen X, Deng H, Li W, Wang G, Li K. Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways. Int Immunopharmacol 2018; 54:177-187. [PMID: 29153953 DOI: 10.1016/j.intimp.2017.11.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/29/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
Oxidative stress, Nrf2-HO-1 and TLR-MAPK/NF-κB signaling pathways have been proved to be involved in influenza A virus (IAV) replication and influenzal pneumonia. In the previous studies, we have performed several high-throughput drug screenings based on the TLR pathways. In the present study, through plaque inhibition test, luciferase reporter assay, TCID50, qRT-PCR, western blotting, ELISA and siRNA assays, we investigated the effect and mechanism of action of curcumin against IAV infection in vitro and in vivo. The results showed that curcumin could directly inactivate IAV, blocked IAV adsorption and inhibited IAV proliferation. As for the underlying mechanisms, we found that curcumin could significantly inhibit IAV-induced oxidative stress, increased Nrf2, HO-1, NQO1, GSTA3 and IFN-β production, and suppressed IAV-induced activation of TLR2/4/7, Akt, p38/JNK MAPK and NF-κB pathways. Suppression of Nrf2 via siRNA significantly abolished the stimulatory effect of curcumin on HO-1, NQO1, GSTA3 and IFN-β production and meanwhile blocked the inhibitory effect of curcumin on IAV M2 production. Oxidant H2O2 and TLR2/4, p38/JNK and NF-κB agonists could significantly antagonize the anti-IAV activity of curcumin in vitro. Additionally, curcumin significantly increased the survival rate of mice, reduced lung index, inflammatory cytokines and lung IAV titer, and finally improved pulmonary histopathological changes after IAV infection. In conclusion, curcumin can directly inactivate IAV, inhibits IAV adsorption and replication; and its inhibition on IAV replication may be via activating Nrf2 signal and inhibiting IAV-induced activation of TLR2/4, p38/JNK MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Jianping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, 22 Xingling Rd, Shantou 515041, China.
| | - Liming Gu
- Department of Microbiology and Immunology, Shantou University Medical College, 22 Xingling Rd, Shantou 515041, China
| | - Yun Su
- Department of Microbiology and Immunology, Shantou University Medical College, 22 Xingling Rd, Shantou 515041, China
| | - Qianwen Wang
- Department of Microbiology and Immunology, Shantou University Medical College, 22 Xingling Rd, Shantou 515041, China
| | - Ying Zhao
- Department of Microbiology and Immunology, Shantou University Medical College, 22 Xingling Rd, Shantou 515041, China
| | - Xiaoxua Chen
- Department of Microbiology and Immunology, Shantou University Medical College, 22 Xingling Rd, Shantou 515041, China
| | - Huixiong Deng
- Department of Microbiology and Immunology, Shantou University Medical College, 22 Xingling Rd, Shantou 515041, China
| | - Weizhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, Virginia-Maryland Regional College of Veterinary Medicine, 159 College Park Rd, MD 20742, USA
| | - Gefei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, 22 Xingling Rd, Shantou 515041, China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, 22 Xingling Rd, Shantou 515041, China
| |
Collapse
|
88
|
Ge J, Chen L, Yang Y, Lu X, Xiang Z. Sparstolonin B prevents lumbar intervertebral disc degeneration through toll like receptor 4, NADPH oxidase activation and the protein kinase B signaling pathway. Mol Med Rep 2017; 17:1347-1353. [PMID: 29115481 DOI: 10.3892/mmr.2017.7966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 08/10/2017] [Indexed: 02/05/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is the most common pathogeny of lumbago. It is the pathological basis for a series of spinal degenerative diseases. For a long time, the diagnosis and treatment of lumbago have rendered difficult, since the pathogeny has not been identified. Therefore, the present study aimed to investigate the protective effect of Sparstolonin B in preventing lumbar intervertebral disc degeneration, and explored its potential mechanism in rats. Firstly, Sparstolonin B effectively reduced the histological score of disc degeneration and increased endplate porosity of L2 superior endplates in a lumbar IVDD rat model. Sparstolonin B significantly inhibited the IVDD‑induced inflammatory factors tumor necrosis factor‑α, interleukin (IL)‑1β and IL‑6, oxidative stress factors (malondialdehyde), and superoxide dismutase and caspase‑3/9 activities. Treatment with Sparstolonin B significantly suppressed toll‑like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MyD88) and nuclear factor (NF)‑κB protein expression, inhibited NAPDH oxidase 2 protein expression and induced phosphoinositide 3‑kinase and phosphorylated protein kinase B protein expression in the IVDD rat model. These results demonstrated that Sparstolonin B prevents lumbar IVDD‑induced inflammation, oxidative stress and apoptosis through TLR4/MyD88/NF‑κB, NADPH oxidase activation and the phosphoinositide 3‑kinase/protein kinase B signaling pathway. These results implicate Sparstolonin B for use as a therapeutic agent for IVDD in clinical applications.
Collapse
Affiliation(s)
- Jianhua Ge
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Long Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yunkang Yang
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaobo Lu
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
89
|
Zhu M, Zhou X, Zhao J. Quercetin prevents alcohol-induced liver injury through targeting of PI3K/Akt/nuclear factor-κB and STAT3 signaling pathway. Exp Ther Med 2017; 14:6169-6175. [PMID: 29285175 DOI: 10.3892/etm.2017.5329] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022] Open
Abstract
Quercetin is a type of flavonoid compound, which has potent antioxidant and anti-inflammatory activities, capable of treating a variety of diseases including neurodegenerative diseases, tumors, diabetes and obesity. The present study selected alcohol-induced liver injury model mice and aimed at studying the protective role of quercetin in preventing alcohol-induced liver injury. In alcohol-induced liver injury mice treated with quercetin, it was demonstrated that levels of aspartate transaminase, alanine transaminase, total bilirubin and triglyceride were reduced. In addition to this, the activities of the antioxidant enzymes superoxide dismutase and glutathione peroxidase were increased, malondialdehyde was inhibited, and interleukin (IL)-1β, IL-6, IL-10 and inducible nitric oxide synthase were suppressed. Quercetin additionally suppressed the protein expression levels of B-cell lymphoma (Bcl)-2, Bcl-2 associated X apoptosis regulator, Caspase-3, poly ADP-ribose polymerase, and signal transducer and activator of transcription (STAT) 3 phosphorylation, nuclear factor (NF)-κB and protein kinase B (Akt) phosphorylation levels in alcohol-induced liver injured mice. These results suggested that the protective role of quercetin prevents alcohol-induced liver injury through the phosphoinositide 3-kinase/Akt/NF-κB and STAT3 pathway.
Collapse
Affiliation(s)
- Minglin Zhu
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xuefeng Zhou
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jinping Zhao
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
90
|
Huang H, Shen Z, Geng Q, Wu Z, Shi P, Miao X. Protective effect of Schisandra chinensis bee pollen extract on liver and kidney injury induced by cisplatin in rats. Biomed Pharmacother 2017; 95:1765-1776. [PMID: 28962082 DOI: 10.1016/j.biopha.2017.09.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023] Open
Abstract
Cisplatin (CP) has been used to cure numerous forms of cancers effectively in clinics, however, it could induce some toxic effects. Bee pollen is a natural compound, produced by honey bees. It is obtained from collected flower pollen and nectar, mixed with bee saliva. Bee pollen produced from Schisandra chinensis plants is described to exert potent antioxidant effects and to be a free radical scavenger. The purpose of this study was to investigate the effects of therapeutic treatment with Schisandra chinensis bee pollen extract (SCBPE) on liver and kidney injury induced by CP. The rats were intragastrically administrated with different doses of SCBPE (400mg/kg/day, 800mg/kg/day, 1200mg/kg/day) and vitamin C (400mg/kg/day, positive control group) for 12days, and the liver and kidney injury models were established by single intraperitoneal injection of CP (8mg/kg) at seventh day. The effect of SCBPE on CP toxicity was evaluated by measuring markers of liver and kidney injury in serum, levels of lipid peroxidation and antioxidants in liver and kidney, observing pathological changes of tissue, and quantified expression of NFκB, IL-1β, IL-6, cytochrome C, caspase3, caspase9, p53 and Bax in liver and kidney. Compared with the model group, the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and the content of blood urea nitrogen (BUN), creatinine (Cr) in serum all decreased in SCBPE high dose group. Meanwhile, the activities of superoxide dismutase (SOD), catalase (CAT) and the content of reduced glutathione (GSH) in liver and kidney increased, and the content of malondialdehyde (MDA) and inducible nitric oxide synthase (iNOS) decreased. In addition, the histopathologic aspects showed that the pathological changes of liver and kidney were found in the model group, and SCBPE group reduced to varying degrees. Moreover, the expression of NFκB, IL-1β, IL-6, cytochrome C, caspase3, caspase9, p53 and Bax in liver and kidney decreased. Therefore, SCBPE could reduce the damage of liver and kidney caused by CP by reducing the level of oxidative stress, and improving the antioxidant, anti-inflammatory and anti-apoptotic capacity of the body.
Collapse
Affiliation(s)
- Haibo Huang
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhuang Shen
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianqian Geng
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhong Wu
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peiying Shi
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoqing Miao
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|