51
|
Freitas-Silva LR, Ortega F. Biological determination of mental disorders: a discussion based on recent hypotheses from neuroscience. CAD SAUDE PUBLICA 2016; 32:e00168115. [PMID: 27580236 DOI: 10.1590/0102-311x00168115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/19/2016] [Indexed: 01/12/2023] Open
Abstract
Understanding the processes involved in the development of mental disorders has proven challenging ever since psychiatry was founded as a field. Neuroscience has provided new expectations that an explanation will be found for the development of mental disorders based on biological functioning alone. However, such a goal has not been that easy to achieve, and new hypotheses have begun to appear in neuroscience research. In this article we identify epigenetics, neurodevelopment, and plasticity as the principal avenues for a new understanding of the biology of mental phenomena. Genetic complexity, the environment's formative role, and variations in vulnerability involve important changes in the principal hypotheses on biological determination of mental disorders, suggesting a reconfiguration of the limits between the "social" and the "biological" in neuroscience research.
Collapse
Affiliation(s)
| | - Francisco Ortega
- Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
52
|
Bach SV, Hegde AN. The proteasome and epigenetics: zooming in on histone modifications. Biomol Concepts 2016; 7:215-27. [PMID: 27522625 DOI: 10.1515/bmc-2016-0016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
The proteasome is a structural complex of many proteins that degrades substrates marked by covalent linkage to ubiquitin. Many years of research has shown a role for ubiquitin-proteasome-mediated proteolysis in synaptic plasticity and memory mainly in degrading synaptic, cytoplasmic and nuclear proteins. Recent work indicates that the proteasome has wider proteolytic and non-proteolytic roles in processes such as histone modifications that affect synaptic plasticity and memory. In this review, we assess the evidence gathered from neuronal as well as non-neuronal cell types regarding the function of the proteasome in positive or negative regulation of posttranslational modifications of histones, such as acetylation, methylation and ubiquitination. We discuss the critical roles of the proteasome in clearing excess histone proteins in various cellular contexts and the possible non-proteolytic functions in regulating transcription of target genes. In addition, we summarize the current literature on diverse chromatin-remodeling machineries, such as histone acetyltransferases, deacetylates, methyltransferases and demethylases, as targets for proteasomal degradation across experimental models. Lastly, we provide a perspective on how proteasomal regulation of histone modifications may modulate synaptic plasticity in the nervous system.
Collapse
|
53
|
Xu S, Panikker P, Iqbal S, Elefant F. Tip60 HAT Action Mediates Environmental Enrichment Induced Cognitive Restoration. PLoS One 2016; 11:e0159623. [PMID: 27454757 PMCID: PMC4959735 DOI: 10.1371/journal.pone.0159623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/06/2016] [Indexed: 12/14/2022] Open
Abstract
Environmental enrichment (EE) conditions have beneficial effects for reinstating cognitive ability in neuropathological disorders like Alzheimer's disease (AD). While EE benefits involve epigenetic gene control mechanisms that comprise histone acetylation, the histone acetyltransferases (HATs) involved remain largely unknown. Here, we examine a role for Tip60 HAT action in mediating activity- dependent beneficial neuroadaptations to EE using the Drosophila CNS mushroom body (MB) as a well-characterized cognition model. We show that flies raised under EE conditions display enhanced MB axonal outgrowth, synaptic marker protein production, histone acetylation induction and transcriptional activation of cognition linked genes when compared to their genotypically identical siblings raised under isolated conditions. Further, these beneficial changes are impaired in both Tip60 HAT mutant flies and APP neurodegenerative flies. While EE conditions provide some beneficial neuroadaptive changes in the APP neurodegenerative fly MB, such positive changes are significantly enhanced by increasing MB Tip60 HAT levels. Our results implicate Tip60 as a critical mediator of EE-induced benefits, and provide broad insights into synergistic behavioral and epigenetic based therapeutic approaches for treatment of cognitive disorder.
Collapse
Affiliation(s)
- Songjun Xu
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Priyalakshmi Panikker
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Sahira Iqbal
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| |
Collapse
|
54
|
Preethi J, Singh HK, Rajan KE. Possible Involvement of Standardized Bacopa monniera Extract (CDRI-08) in Epigenetic Regulation of reelin and Brain-Derived Neurotrophic Factor to Enhance Memory. Front Pharmacol 2016; 7:166. [PMID: 27445807 PMCID: PMC4921742 DOI: 10.3389/fphar.2016.00166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 06/02/2016] [Indexed: 11/17/2022] Open
Abstract
Bacopa monniera extract (CDRI-08; BME) has been known to improve learning and memory, and understanding the molecular mechanisms may help to know its specificity. We investigated whether the BME treatment alters the methylation status of reelin and brain-derived neurotropic factor (BDNF) to enhance the memory through the interaction of N-methyl-D-aspartate receptor (NMDAR) with synaptic proteins. Rat pups were subjected to novel object recognition test following daily oral administration of BME (80 mg/kg) in 0.5% gum acacia (per-orally, p.o.; PND 15–29)/three doses of 5-azacytidine (5-azaC; 3.2 mg/kg) in 0.9% saline (intraperitoneally, i.p.) on PND-30. After the behavioral test, methylation status of reelin, BDNF and activation of NMDAR, and its interactions with synaptic proteins were tested. Rat pups treated with BME/5-azaC showed higher discrimination towards novel objects than with old objects during testing. Further, we observed an elevated level of unmethylated DNA in reelin and BDNF promoter region. Up-regulated reelin along with the splice variant of apolipoprotein E receptor 2 (ApoER 2, ex 19) form a cluster and activate NMDAR through disabled adopter protein-1 (DAB1) to enhance BDNF. Observed results suggest that BME regulate reelin epigenetically, which might enhance NMDAR interactions with synaptic proteins and induction of BDNF. These changes may be linked with improved novel object recognition memory.
Collapse
Affiliation(s)
- Jayakumar Preethi
- Behavioral Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University Tiruchirappalli, India
| | - Hemant K Singh
- Laboratories for CNS Disorder, Learning and Memory, Division of Pharmacology, Central Drug Research Institute Lucknow, India
| | - Koilmani E Rajan
- Behavioral Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University Tiruchirappalli, India
| |
Collapse
|
55
|
Maleszka R. Epigenetic code and insect behavioural plasticity. CURRENT OPINION IN INSECT SCIENCE 2016; 15:45-52. [PMID: 27436731 DOI: 10.1016/j.cois.2016.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 06/06/2023]
Abstract
Although the nature of the genetic control of adaptive behaviours in insects is a major unresolved problem it is now understood that epigenetic mechanisms, bound by genetic constraints, are prime drivers of brain plasticity arising from both developmental and experience-dependent events. With the recent advancements in methylomics and emerging analyses of histones and non-protein-coding RNAs, insect epigenetics is well positioned to ask more direct questions and importantly, address them experimentally. To achieve rapid progress, insect epigenetics needs to focus on mechanistic explanations of epigenomic dynamics and move beyond low-depth genome-wide analyses to cell-type specific epigenomics. One topic of a high priority is the impact of sequence variants on generating differential methylation patterns and their contribution to behavioural plasticity.
Collapse
Affiliation(s)
- Ryszard Maleszka
- The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
56
|
Pierce K, Marinero S, Hazin R, McKenna B, Barnes CC, Malige A. Eye Tracking Reveals Abnormal Visual Preference for Geometric Images as an Early Biomarker of an Autism Spectrum Disorder Subtype Associated With Increased Symptom Severity. Biol Psychiatry 2016; 79:657-66. [PMID: 25981170 PMCID: PMC4600640 DOI: 10.1016/j.biopsych.2015.03.032] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Clinically and biologically, autism spectrum disorder (ASD) is heterogeneous. Unusual patterns of visual preference as indexed by eye tracking are hallmarks; however, whether they can be used to define an early biomarker of ASD as a whole or leveraged to define a subtype is unclear. To begin to examine this issue, large cohorts are required. METHODS A sample of 334 toddlers from six distinct groups (115 toddlers with ASD, 20 toddlers with ASD features, 57 toddlers with developmental delay, 53 toddlers with other conditions [e.g., premature birth, prenatal drug exposure], 64 toddlers with typical development, and 25 unaffected toddlers with siblings with ASD) was studied. Toddlers watched a movie containing geometric and social images. Fixation duration and number of saccades within each area of interest and validation statistics for this independent sample were computed. Next, to maximize power, data from our previous study (n = 110) were added for a total of 444 subjects. A subset of toddlers repeated the eye-tracking procedure. RESULTS As in the original study, a subset of toddlers with ASD fixated on geometric images >69% of the time. Using this cutoff, sensitivity for ASD was 21%, specificity was 98%, and positive predictive value was 86%. Toddlers with ASD who strongly preferred geometric images had 1) worse cognitive, language, and social skills relative to toddlers with ASD who strongly preferred social images and 2) fewer saccades when viewing geometric images. Unaffected siblings of ASD probands did not show evidence of heightened preference for geometric images. Test-retest reliability was good. Examination of age effects suggested that this test may not be appropriate with children >4 years old. CONCLUSIONS Enhanced visual preference for geometric repetition may be an early developmental biomarker of an ASD subtype with more severe symptoms.
Collapse
Affiliation(s)
- Karen Pierce
- Department of Neurosciences, University of California, San Diego, La Jolla, California..
| | - Steven Marinero
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Roxana Hazin
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Benjamin McKenna
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Cynthia Carter Barnes
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Ajith Malige
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| |
Collapse
|
57
|
Sweatt JD. Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling. J Neurochem 2016; 137:312-30. [PMID: 26849493 DOI: 10.1111/jnc.13564] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/27/2016] [Accepted: 01/30/2016] [Indexed: 12/27/2022]
Abstract
Hebbian plasticity, including long-term potentiation and long-term depression, has long been regarded as important for local circuit refinement in the context of memory formation and stabilization. However, circuit development and stabilization additionally relies on non-Hebbian, homeostatic, forms of plasticity such as synaptic scaling. Synaptic scaling is induced by chronic increases or decreases in neuronal activity. Synaptic scaling is associated with cell-wide adjustments in postsynaptic receptor density, and can occur in a multiplicative manner resulting in preservation of relative synaptic strengths across the entire neuron's population of synapses. Both active DNA methylation and demethylation have been validated as crucial regulators of gene transcription during learning, and synaptic scaling is known to be transcriptionally dependent. However, it has been unclear whether homeostatic forms of plasticity such as synaptic scaling are regulated via epigenetic mechanisms. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously largely considered separately: DNA methylation, homeostatic plasticity, and glutamate receptor trafficking. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously considered separately: glutamate receptor trafficking, DNA methylation, and homeostatic plasticity.
Collapse
Affiliation(s)
- J David Sweatt
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
58
|
Schwartz TL, Santarsieri D. Neural Implications of Psychotherapy, Pharmacotherapy, and Combined Treatment in Major Depressive Disorder. Mens Sana Monogr 2016; 14:30-45. [PMID: 28031623 PMCID: PMC5179626 DOI: 10.4103/0973-1229.193079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Numerous clinical trials have been conducted to determine the utility of antidepressant treatment (ADT), psychotherapy, and combined psycho-pharmaco-psychotherapy (PPPT) in treating major depressive disorder (MDD). While all approaches have shown benefit over placebo to varying degrees, the parallel neurophysiological mechanisms that underlie their efficacy have received little attention. The authors will review and discuss a growing body of literature that relates the factors of treatment selection and response to the principles of neuromodulation, with emphasis regarding how neuroimaging and other experimental data reinforce the need for personalized MDD treatment. This manuscript and its theoretical approaches were supported by conducting relevant literature searches of MEDLINE and PubMed electronic databases, prioritizing systemic reviews, and randomized clinical trials using selected MeSH terms. The authors conclude that ADT, psychotherapy, and PPPT all create potentially observable neurofunctional changes and argue that additive and synergistic potentiation of these effects in PPPT may produce more sustained symptom relief than with monotherapy alone.
Collapse
Affiliation(s)
- Thomas L Schwartz
- MD. Professor and Vice Chair of Psychiatry, and Director of Medical Student Psychiatric Education at SUNY Upstate Medical University. Syracuse, NY, USA
| | - Daniel Santarsieri
- B.S., Medical Student at the State University of New York (SUNY) Upstate Medical University in Syracuse, New York, USA E-mail:
| |
Collapse
|
59
|
Stephan KE, Binder EB, Breakspear M, Dayan P, Johnstone EC, Meyer-Lindenberg A, Schnyder U, Wang XJ, Bach DR, Fletcher PC, Flint J, Frank MJ, Heinz A, Huys QJM, Montague PR, Owen MJ, Friston KJ. Charting the landscape of priority problems in psychiatry, part 2: pathogenesis and aetiology. Lancet Psychiatry 2016; 3:84-90. [PMID: 26573969 DOI: 10.1016/s2215-0366(15)00360-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 12/11/2022]
Abstract
This is the second of two companion papers proposing priority problems for research on mental disorders. Whereas the first paper focuses on questions of nosology and diagnosis, this Personal View concerns pathogenesis and aetiology of psychiatric diseases. We hope that this (non-exhaustive and subjective) list of problems, nominated by scientists and clinicians from different fields and institutions, provides guidance and perspectives for choosing future directions in psychiatric science.
Collapse
Affiliation(s)
- Klaas E Stephan
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich, Zurich, Switzerland; ETH Zurich, Zurich, Switzerland; The Wellcome Trust Centre for Neuroimaging, University College London, London, UK; Max Planck Institute for Metabolism Research, Cologne, Germany.
| | - Elisabeth B Binder
- Deptartment of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Metro North Mental Health Service, Brisbane, Australia
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Eve C Johnstone
- Department of Psychiatry, University of Edinburgh, Edinburgh, UK
| | | | - Ulrich Schnyder
- Department of Psychiatry and Psychotherapy, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA; Institute of Brain and Cognitive Science, NYU Shanghai, Shanghai, China
| | - Dominik R Bach
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland; The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jonathan Flint
- The Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, UK
| | - Michael J Frank
- Brown Institute for Brain Science, Brown University, Providence, RI, USA
| | - Andreas Heinz
- Department of Psychiatry, Humboldt University Berlin, Berlin, Germany
| | - Quentin J M Huys
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland; ETH Zurich, Zurich, Switzerland
| | - P Read Montague
- The Wellcome Trust Centre for Neuroimaging, University College London, London, UK; Computational Psychiatry Unit, Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK; Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Karl J Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| |
Collapse
|
60
|
Homberg JR, Kyzar EJ, Stewart AM, Nguyen M, Poudel MK, Echevarria DJ, Collier AD, Gaikwad S, Klimenko VM, Norton W, Pittman J, Nakamura S, Koshiba M, Yamanouchi H, Apryatin SA, Scattoni ML, Diamond DM, Ullmann JFP, Parker MO, Brown RE, Song C, Kalueff AV. Improving treatment of neurodevelopmental disorders: recommendations based on preclinical studies. Expert Opin Drug Discov 2015; 11:11-25. [DOI: 10.1517/17460441.2016.1115834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Evan J Kyzar
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
| | | | | | | | - David J Echevarria
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Department of Psychology, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Adam D Collier
- Department of Psychology, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Siddharth Gaikwad
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Neuroscience Graduate Hospital, China Medical University Hospital, Taichung, Taiwan
| | - Viktor M Klimenko
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Pavlov Physiology Department, Institute of Experimental Medicine, St. Petersburg, Russia
| | - William Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Julian Pittman
- Department of Biological and Environmental Sciences, Troy University, Troy, AL, USA
| | - Shun Nakamura
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mamiko Koshiba
- The International Stress and Behavior Society (ISBS), Kiev, Ukraine
- Departments of Pediatrics and Biochemistry, Saitama University Medical School, Saitama, Japan
| | - Hideo Yamanouchi
- Departments of Pediatrics and Biochemistry, Saitama University Medical School, Saitama, Japan
| | | | - Maria Luisa Scattoni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanita, Rome, Italy
| | - David M Diamond
- Department of Psychology, University of South Florida, Tampa, FL, USA
- Research and Development Service, J.A. Haley Veterans Hospital, Tampa, FL, USA
| | - Jeremy FP Ullmann
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew O Parker
- School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, UK
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Neuroscience Graduate Hospital, China Medical University Hospital, Taichung, Taiwan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Allan V Kalueff
- Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Institute of Chemical Technology and Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
61
|
Smart C, Strathdee G, Watson S, Murgatroyd C, McAllister-Williams RH. Early life trauma, depression and the glucocorticoid receptor gene--an epigenetic perspective. Psychol Med 2015; 45:3393-3410. [PMID: 26387521 DOI: 10.1017/s0033291715001555] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Hopes to identify genetic susceptibility loci accounting for the heritability seen in unipolar depression have not been fully realized. Family history remains the 'gold standard' for both risk stratification and prognosis in complex phenotypes such as depression. Meanwhile, the physiological mechanisms underlying life-event triggers for depression remain opaque. Epigenetics, comprising heritable changes in gene expression other than alterations of the nucleotide sequence, may offer a way to deepen our understanding of the aetiology and pathophysiology of unipolar depression and optimize treatments. A heuristic target for exploring the relevance of epigenetic changes in unipolar depression is the hypothalamic-pituitary-adrenal (HPA) axis. The glucocorticoid receptor (GR) gene (NR3C1) has been found to be susceptible to epigenetic modification, specifically DNA methylation, in the context of environmental stress such as early life trauma, which is an established risk for depression later in life. METHOD In this paper we discuss the progress that has been made by studies that have investigated the relationship between depression, early trauma, the HPA axis and the NR3C1 gene. Difficulties with the design of these studies are also explored. RESULTS Future efforts will need to comprehensively address epigenetic natural histories at the population, tissue, cell and gene levels. The complex interactions between the epigenome, genome and environment, as well as ongoing nosological difficulties, also pose significant challenges. CONCLUSIONS The work that has been done so far is nevertheless encouraging and suggests potential mechanistic and biomarker roles for differential DNA methylation patterns in NR3C1 as well as novel therapeutic targets.
Collapse
Affiliation(s)
- C Smart
- Institute of Neuroscience,Newcastle University,Newcastle upon Tyne,UK
| | - G Strathdee
- Northern Institute for Cancer Research,Newcastle University,Newcastle upon Tyne,UK
| | - S Watson
- Institute of Neuroscience,Newcastle University,Newcastle upon Tyne,UK
| | - C Murgatroyd
- School of Healthcare Science,Manchester Metropolitan University,Manchester,UK
| | | |
Collapse
|
62
|
Benoit J, Ayoub A, Rakic P. Epigenetic stability in the adult mouse cortex under conditions of pharmacologically induced histone acetylation. Brain Struct Funct 2015; 221:3963-3978. [PMID: 26526554 DOI: 10.1007/s00429-015-1138-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/23/2015] [Indexed: 11/27/2022]
Abstract
Histone acetylation is considered a major epigenetic process that affects brain development and synaptic plasticity, as well as learning and memory. The transcriptional effectors and morphological changes responsible for plasticity as a result of long-term modifications to histone acetylation are not fully understood. To this end, we pharmacologically inhibited histone deacetylation using Trichostatin A in adult (6-month-old) mice and found significant increases in the levels of the acetylated histone marks H3Lys9, H3Lys14 and H4Lys12. High-resolution transcriptome analysis of diverse brain regions uncovered few differences in gene expression between treated and control animals, none of which were plasticity related. Instead, after increased histone acetylation, we detected a large number of novel transcriptionally active regions, which correspond to long non-coding RNAs (lncRNAs). We also surprisingly found no significant changes in dendritic spine plasticity in layers 1 and 2/3 of the visual cortex using long-term in vivo two-photon imaging. Our results indicate that chronic pharmacologically induced histone acetylation can be decoupled from gene expression and instead, may potentially exert a post-transcriptional effect through the differential production of lncRNAs.
Collapse
Affiliation(s)
- Jamie Benoit
- Department of Psychology, Yale University, New Haven, CT, 06520, USA. .,Department of Brain and Cognitive Sciences, Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Albert Ayoub
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Pasko Rakic
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.,Kavli Institute for Neuroscience Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
63
|
EpiGenetic Algorithm for Optimization: Application to Mobile Network Frequency Planning. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2015. [DOI: 10.1007/s13369-015-1869-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
64
|
Frick KM, Kim J, Tuscher JJ, Fortress AM. Sex steroid hormones matter for learning and memory: estrogenic regulation of hippocampal function in male and female rodents. Learn Mem 2015; 22:472-93. [PMID: 26286657 PMCID: PMC4561402 DOI: 10.1101/lm.037267.114] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 01/24/2023]
Abstract
Ample evidence has demonstrated that sex steroid hormones, such as the potent estrogen 17β-estradiol (E2), affect hippocampal morphology, plasticity, and memory in male and female rodents. Yet relatively few investigators who work with male subjects consider the effects of these hormones on learning and memory. This review describes the effects of E2 on hippocampal spinogenesis, neurogenesis, physiology, and memory, with particular attention paid to the effects of E2 in male rodents. The estrogen receptors, cell-signaling pathways, and epigenetic processes necessary for E2 to enhance memory in female rodents are also discussed in detail. Finally, practical considerations for working with female rodents are described for those investigators thinking of adding females to their experimental designs.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jennifer J Tuscher
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
65
|
Klengel T, Binder EB. Epigenetics of Stress-Related Psychiatric Disorders and Gene × Environment Interactions. Neuron 2015; 86:1343-57. [PMID: 26087162 DOI: 10.1016/j.neuron.2015.05.036] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A deeper understanding of the pathomechanisms leading to stress-related psychiatric disorders is important for the development of more efficient preventive and therapeutic strategies. Epidemiological studies indicate a combined contribution of genetic and environmental factors in the risk for disease. The environment, particularly early life severe stress or trauma, can lead to lifelong molecular changes in the form of epigenetic modifications that can set the organism off on trajectories to health or disease. Epigenetic modifications are capable of shaping and storing the molecular response of a cell to its environment as a function of genetic predisposition. This provides a potential mechanism for gene-environment interactions. Here, we review epigenetic mechanisms associated with the response to stress and trauma exposure and the development of stress-related psychiatric disorders. We also look at how they may contribute to our understanding of the combined effects of genetic and environmental factors in shaping disease risk.
Collapse
Affiliation(s)
- Torsten Klengel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
66
|
Abstract
Among the many forms of brain plasticity, changes in synaptic strength and changes in synapse number are particularly prominent. However, evidence for neurotransmitter respecification or switching has been accumulating steadily, both in the developing nervous system and in the adult brain, with observations of transmitter addition, loss, or replacement of one transmitter with another. Natural stimuli can drive these changes in transmitter identity, with matching changes in postsynaptic transmitter receptors. Strikingly, they often convert the synapse from excitatory to inhibitory or vice versa, providing a basis for changes in behavior in those cases in which it has been examined. Progress has been made in identifying the factors that induce transmitter switching and in understanding the molecular mechanisms by which it is achieved. There are many intriguing questions to be addressed.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences & Kavli Institute for Brain and Mind, UCSD, La Jolla, CA 92093, USA.
| |
Collapse
|
67
|
Frick KM. Molecular mechanisms underlying the memory-enhancing effects of estradiol. Horm Behav 2015; 74:4-18. [PMID: 25960081 PMCID: PMC4573242 DOI: 10.1016/j.yhbeh.2015.05.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/25/2015] [Accepted: 05/01/2015] [Indexed: 11/18/2022]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Since the publication of the 1998 special issue of Hormones and Behavior on estrogens and cognition, substantial progress has been made towards understanding the molecular mechanisms through which 17β-estradiol (E2) regulates hippocampal plasticity and memory. Recent research has demonstrated that rapid effects of E2 on hippocampal cell signaling, epigenetic processes, and local protein synthesis are necessary for E2 to facilitate the consolidation of object recognition and spatial memories in ovariectomized female rodents. These effects appear to be mediated by non-classical actions of the intracellular estrogen receptors ERα and ERβ, and possibly by membrane-bound ERs such as the G-protein-coupled estrogen receptor (GPER). New findings also suggest a key role of hippocampally-synthesized E2 in regulating hippocampal memory formation. The present review discusses these findings in detail and suggests avenues for future study.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI 53211, USA.
| |
Collapse
|
68
|
Vieira PA, Korzus E. CBP-Dependent memory consolidation in the prefrontal cortex supports object-location learning. Hippocampus 2015; 25:1532-40. [PMID: 25941038 DOI: 10.1002/hipo.22473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2015] [Indexed: 01/12/2023]
Abstract
Recognition of an object's location in space is supported by hippocampus-dependent recollection. Converging evidence strongly suggests that the interplay between the prefrontal cortex and hippocampus is critical for spatial memory. Lesion, pharmacological, and genetic studies have been successful in dissecting the role of plasticity in the hippocampal circuit in a variety of neural processes relevant to spatial memory, including memory for the location of objects. However, prefrontal mechanisms underlying spatial memory are less well understood. Here, we show that an acute hypofunction of the cyclic-AMP regulatory element binding protein (CREB) Binding Protein (CBP) histone acetyltransferase (HAT) in the medial prefrontal cortex (mPFC) results in delay-dependent disruption of object-location memory. These data suggest that mechanisms involving CBP HAT-mediated lysine acetylation of nuclear proteins support selectively long-term encoding in the mPFC circuits. Evidence from the object-location task suggests that long-term memory encoding within the mPFC complements hippocampus-dependent spatial memory mechanisms and may be critical for broader network integration of information necessary for an assessment of subtle spatial differences to guide appropriate behavioral response during retrieval of spatial memories.
Collapse
Affiliation(s)
- Philip A Vieira
- Department of Psychology & Neuroscience Program, University of California Riverside, California
| | - Edward Korzus
- Department of Psychology & Neuroscience Program, University of California Riverside, California
| |
Collapse
|
69
|
Favre MR, La Mendola D, Meystre J, Christodoulou D, Cochrane MJ, Markram H, Markram K. Predictable enriched environment prevents development of hyper-emotionality in the VPA rat model of autism. Front Neurosci 2015; 9:127. [PMID: 26089770 PMCID: PMC4452729 DOI: 10.3389/fnins.2015.00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/27/2015] [Indexed: 12/27/2022] Open
Abstract
Understanding the effects of environmental stimulation in autism can improve therapeutic interventions against debilitating sensory overload, social withdrawal, fear and anxiety. Here, we evaluate the role of environmental predictability on behavior and protein expression, and inter-individual differences, in the valproic acid (VPA) model of autism. Male rats embryonically exposed (E11.5) either to VPA, a known autism risk factor in humans, or to saline, were housed from weaning into adulthood in a standard laboratory environment, an unpredictably enriched environment, or a predictably enriched environment. Animals were tested for sociability, nociception, stereotypy, fear conditioning and anxiety, and for tissue content of glutamate signaling proteins in the primary somatosensory cortex, hippocampus and amygdala, and of corticosterone in plasma, amygdala and hippocampus. Standard group analyses on separate measures were complemented with a composite emotionality score, using Cronbach's Alpha analysis, and with multivariate profiling of individual animals, using Hierarchical Cluster Analysis. We found that predictable environmental enrichment prevented the development of hyper-emotionality in the VPA-exposed group, while unpredictable enrichment did not. Individual variation in the severity of the autistic-like symptoms (fear, anxiety, social withdrawal and sensory abnormalities) correlated with neurochemical profiles, and predicted their responsiveness to predictability in the environment. In controls, the association between socio-affective behaviors, neurochemical profiles and environmental predictability was negligible. This study suggests that rearing in a predictable environment prevents the development of hyper-emotional features in animals exposed to an autism risk factor, and demonstrates that unpredictable environments can lead to negative outcomes, even in the presence of environmental enrichment.
Collapse
Affiliation(s)
- Mônica R Favre
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Deborah La Mendola
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Julie Meystre
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Dimitri Christodoulou
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Melissa J Cochrane
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Henry Markram
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Kamila Markram
- Laboratory of Neural Microcircuits, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| |
Collapse
|
70
|
Lanzillotta A, Porrini V, Bellucci A, Benarese M, Branca C, Parrella E, Spano PF, Pizzi M. NF-κB in Innate Neuroprotection and Age-Related Neurodegenerative Diseases. Front Neurol 2015; 6:98. [PMID: 26042083 PMCID: PMC4438602 DOI: 10.3389/fneur.2015.00098] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/21/2015] [Indexed: 12/20/2022] Open
Abstract
NF-κB factors are cardinal transcriptional regulators of inflammation and apoptosis, involved in the brain programing of systemic aging and in brain damage. The composition of NF-κB active dimers and epigenetic mechanisms modulating histone acetylation, finely condition neuronal resilience to brain insults. In stroke models, the activation of NF-κB/c-Rel promotes neuroprotective effects by transcription of specific anti-apoptotic genes. Conversely, aberrant activation of NF-κB/RelA showing reduced level of total acetylation, but site-specific acetylation on lysine 310, triggers the expression of pro-apoptotic genes. Constitutive knockout of c-Rel shatters the resilience of substantia nigra (SN) dopaminergic (DA) neurons to aging and induces a parkinsonian like pathology in mice. c-rel(-/-) mice show increased level of aberrantly acetylated RelA in the basal ganglia, neuroinflammation, accumulation of alpha-synuclein, and iron. Moreover, they develop motor deficits responsive to l-DOPA treatment and associated with loss of DA neurons in the SN. Here, we discuss the effect of unbalanced activation of RelA and c-Rel during aging and propose novel challenges for the development of therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Annamaria Lanzillotta
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
- IRCCS, San Camillo Hospital, Venice, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Marina Benarese
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Caterina Branca
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Edoardo Parrella
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Pier Franco Spano
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
- IRCCS, San Camillo Hospital, Venice, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, National Institute of Neuroscience, University of Brescia, Brescia, Italy
- IRCCS, San Camillo Hospital, Venice, Italy
| |
Collapse
|
71
|
Croston R, Branch CL, Kozlovsky DY, Roth TC, LaDage LD, Freas CA, Pravosudov VV. Potential Mechanisms Driving Population Variation in Spatial Memory and the Hippocampus in Food-caching Chickadees. Integr Comp Biol 2015; 55:354-71. [DOI: 10.1093/icb/icv029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
72
|
Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 2015; 16:332-44. [PMID: 25921815 DOI: 10.1038/nrn3818] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodevelopmental programming - the implementation of the genetic and epigenetic blueprints that guide and coordinate normal brain development - requires tight regulation of transcriptional processes. During prenatal and postnatal time periods, epigenetic processes fine-tune neurodevelopment towards an end product that determines how an organism interacts with and responds to exposures and experiences throughout life. Epigenetic processes also have the ability to reprogramme the epigenome in response to environmental challenges, such as maternal stress, making the organism more or less adaptive depending on the future challenges presented. Epigenetic marks generated within germ cells as a result of environmental influences throughout life can also shape future generations long before conception occurs.
Collapse
|
73
|
Córdova-Palomera A, Fatjó-Vilas M, Kebir O, Gastó C, Krebs MO, Fañanás L. Polymorphic variation in the epigenetic gene DNMT3B modulates the environmental impact on cognitive ability: a twin study. Eur Psychiatry 2015; 30:303-8. [PMID: 25530201 DOI: 10.1016/j.eurpsy.2014.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Though cognitive abilities in adulthood are largely influenced by individual genetic background, they have also been shown to be importantly influenced by environmental factors. Some of these influences are mediated by epigenetic mechanisms. Accordingly, polymorphic variants in the epigenetic gene DNMT3B have been linked to neurocognitive performance. Since monozygotic (MZ) twins may show larger or smaller intrapair phenotypic differences depending on whether their genetic background is more or less sensitive to environmental factors, a twin design was implemented to determine if particular polymorphisms in the DNMT3B gene may be linked to a better (worse) response to enriched (deprived) environmental factors. METHODS Applying the variability gene methodology in a sample of 54 healthy MZ twin pairs (108 individuals) with no lifetime history of psychopathology, two DNMT3B polymorphisms were analyzed in relation to their intrapair differences for either intellectual quotient (IQ) or working memory performance. RESULTS MZ twin pairs with the CC genotype for rs406193 SNP showed statistically significant larger intrapair differences in IQ than CT pairs. CONCLUSIONS Results suggest that DNMT3B polymorphisms may explain variability in the IQ response to either enriched or impoverished environmental conditions. Accordingly, the applied methodology is shown as a potentially valuable tool for determining genetic markers of cognitive plasticity. Further research is needed to confirm this specific result and to expand on other putative genetic markers of environmental sensitivity.
Collapse
Affiliation(s)
- A Córdova-Palomera
- Unitat d'Antropologia, Departament de Biologia Animal, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, avenue Diagonal, 643, 08028 Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - M Fatjó-Vilas
- Unitat d'Antropologia, Departament de Biologia Animal, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, avenue Diagonal, 643, 08028 Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - O Kebir
- Inserm, UMR 894, laboratoire de physiopathologie des maladies psychiatriques, centre de psychiatrie et neurosciences, université Paris-Descartes, PRES Paris Sorbonne Cité, 75014 Paris, France; Service hospitalo-universitaire, faculté de médecine Paris-Descartes, hôpital Sainte-Anne, 75014 Paris, France; GDR3557-institut de psychiatrie, 75014 Paris, France
| | - C Gastó
- Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Departamento de Psiquiatría, Instituto Clínico de Neurociencias (ICN), Hospital Clínico, Barcelona, Spain
| | - M O Krebs
- Inserm, UMR 894, laboratoire de physiopathologie des maladies psychiatriques, centre de psychiatrie et neurosciences, université Paris-Descartes, PRES Paris Sorbonne Cité, 75014 Paris, France; Service hospitalo-universitaire, faculté de médecine Paris-Descartes, hôpital Sainte-Anne, 75014 Paris, France; GDR3557-institut de psychiatrie, 75014 Paris, France
| | - L Fañanás
- Unitat d'Antropologia, Departament de Biologia Animal, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, avenue Diagonal, 643, 08028 Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
74
|
Prenderville JA, Kennedy PJ, Dinan TG, Cryan JF. Adding fuel to the fire: the impact of stress on the ageing brain. Trends Neurosci 2015; 38:13-25. [DOI: 10.1016/j.tins.2014.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
75
|
Bai G, Ren K, Dubner R. Epigenetic regulation of persistent pain. Transl Res 2015; 165:177-99. [PMID: 24948399 PMCID: PMC4247805 DOI: 10.1016/j.trsl.2014.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 02/09/2023]
Abstract
Persistent or chronic pain is tightly associated with various environmental changes and linked to abnormal gene expression within cells processing nociceptive signaling. Epigenetic regulation governs gene expression in response to environmental cues. Recent animal model and clinical studies indicate that epigenetic regulation plays an important role in the development or maintenance of persistent pain and possibly the transition of acute pain to chronic pain, thus shedding light in a direction for development of new therapeutics for persistent pain.
Collapse
Affiliation(s)
- Guang Bai
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD.
| | - Ke Ren
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD
| | - Ronald Dubner
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD
| |
Collapse
|
76
|
Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther 2014; 149:150-90. [PMID: 25550231 PMCID: PMC4380664 DOI: 10.1016/j.pharmthera.2014.12.004] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/24/2014] [Indexed: 12/20/2022]
Abstract
Pathological fear and anxiety are highly debilitating and, despite considerable advances in psychotherapy and pharmacotherapy they remain insufficiently treated in many patients with PTSD, phobias, panic and other anxiety disorders. Increasing preclinical and clinical evidence indicates that pharmacological treatments including cognitive enhancers, when given as adjuncts to psychotherapeutic approaches [cognitive behavioral therapy including extinction-based exposure therapy] enhance treatment efficacy, while using anxiolytics such as benzodiazepines as adjuncts can undermine long-term treatment success. The purpose of this review is to outline the literature showing how pharmacological interventions targeting neurotransmitter systems including serotonin, dopamine, noradrenaline, histamine, glutamate, GABA, cannabinoids, neuropeptides (oxytocin, neuropeptides Y and S, opioids) and other targets (neurotrophins BDNF and FGF2, glucocorticoids, L-type-calcium channels, epigenetic modifications) as well as their downstream signaling pathways, can augment fear extinction and strengthen extinction memory persistently in preclinical models. Particularly promising approaches are discussed in regard to their effects on specific aspects of fear extinction namely, acquisition, consolidation and retrieval, including long-term protection from return of fear (relapse) phenomena like spontaneous recovery, reinstatement and renewal of fear. We also highlight the promising translational value of the preclinial research and the clinical potential of targeting certain neurochemical systems with, for example d-cycloserine, yohimbine, cortisol, and L-DOPA. The current body of research reveals important new insights into the neurobiology and neurochemistry of fear extinction and holds significant promise for pharmacologically-augmented psychotherapy as an improved approach to treat trauma and anxiety-related disorders in a more efficient and persistent way promoting enhanced symptom remission and recovery.
Collapse
Affiliation(s)
- N Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - C Schmuckermair
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - N Whittle
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - A Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
77
|
Prenatal stress induces spatial memory deficits and epigenetic changes in the hippocampus indicative of heterochromatin formation and reduced gene expression. Behav Brain Res 2014; 281:1-8. [PMID: 25496779 DOI: 10.1016/j.bbr.2014.12.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/29/2014] [Accepted: 12/01/2014] [Indexed: 02/08/2023]
Abstract
Stress during pregnancy has a wide variety of negative effects in both human [1] and animal offspring [2]. These effects are especially apparent in various forms of learning and memory such as object recognition [3] and spatial memory [4]. The cognitive effects of prenatal stress (PNS) may be mediated through epigenetic changes such as histone acetylation and DNA methylation [5]. As such, the present study investigated the effects of chronic unpredictable PNS on memory and epigenetic measures in adult offspring. Mice that underwent PNS exhibited impaired spatial memory in the Morris water maze, as well as sex-specific changes in levels of DNA methyltransferase (DNMT) 1 protein, and acetylated histone H3 (AcH3) in the hippocampus, and serum corticosterone. Male mice exposed to PNS exhibited decreased hippocampal AcH3, whereas female PNS mice displayed a further reduction in AcH3, as well as heightened hippocampal DNMT1 protein levels and corticosterone levels. These data suggest that PNS may epigenetically reduce transcription in the hippocampus, particularly in females in whom this effect may be related to increased baseline stress hormone levels, and which may underlie the sexual dimorphism in rates of mental illness in humans.
Collapse
|
78
|
Silver H, Bilker WB. Social cognition in schizophrenia and healthy aging: differences and similarities. Schizophr Res 2014; 160:157-62. [PMID: 25468185 DOI: 10.1016/j.schres.2014.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 11/02/2014] [Accepted: 11/02/2014] [Indexed: 12/18/2022]
Abstract
UNLABELLED Social cognition is impaired in schizophrenia but it is not clear whether this is specific for the illness and whether emotion perception is selectively affected. To study this we examined the perception of emotional and non-emotional clues in facial expressions, a key social cognitive skill, in schizophrenia patients and old healthy individuals using young healthy individuals as reference. Tests of object recognition, visual orientation, psychomotor speed, and working memory were included to allow multivariate analysis taking into account other cognitive functions RESULTS Schizophrenia patients showed impairments in recognition of identity and emotional facial clues compared to young and old healthy groups. Severity was similar to that for object recognition and visuospatial processing. Older and younger healthy groups did not differ from each other on these tests. Schizophrenia patients and old healthy individuals were similarly impaired in the ability to automatically learn new faces during the testing procedure (measured by the CSTFAC index) compared to young healthy individuals. CONCLUSIONS Social cognition is distinctly impaired in schizophrenia compared to healthy aging. Further study is needed to identify the mechanisms of automatic social cognitive learning impairment in schizophrenia patients and healthy aging individuals and determine whether similar neural systems are affected.
Collapse
Affiliation(s)
- Henry Silver
- Brain Behavior Laboratory, Sha'ar Menashe Mental Health Center, Mobile Post Hefer 37806, Israel; Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel.
| | - Warren B Bilker
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
79
|
de Meireles LCF, Bertoldi K, Elsner VR, Moysés FDS, Siqueira IR. Treadmill exercise alters histone acetylation differently in rats exposed or not exposed to aversive learning context. Neurobiol Learn Mem 2014; 116:193-6. [DOI: 10.1016/j.nlm.2014.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
|
80
|
Jarome TJ, Lubin FD. Epigenetic mechanisms of memory formation and reconsolidation. Neurobiol Learn Mem 2014; 115:116-27. [PMID: 25130533 PMCID: PMC4250295 DOI: 10.1016/j.nlm.2014.08.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Memory consolidation involves transcriptional control of genes in neurons to stabilize a newly formed memory. Following retrieval, a once consolidated memory destabilizes and again requires gene transcription changes in order to restabilize, a process referred to as reconsolidation. Understanding the molecular mechanisms of gene transcription during the consolidation and reconsolidation processes could provide crucial insights into normal memory formation and memory dysfunction associated with psychiatric disorders. In the past decade, modifications of epigenetic markers such as DNA methylation and posttranslational modifications of histone proteins have emerged as critical transcriptional regulators of gene expression during initial memory formation and after retrieval. In light of the rapidly growing literature in this exciting area of research, we here examine the most recent and latest evidence demonstrating how memory acquisition and retrieval trigger epigenetic changes during the consolidation and reconsolidation phases to impact behavior. In particular we focus on the reconsolidation process, where we discuss the already identified epigenetic regulators of gene transcription during memory reconsolidation, while exploring other potential epigenetic modifications that may also be involved, and expand on how these epigenetic modifications may be precisely and temporally controlled by important signaling cascades critical to the reconsolidation process. Finally, we explore the possibility that epigenetic mechanisms may serve to regulate a system or circuit level reconsolidation process and may be involved in retrieval-dependent memory updating. Hence, we propose that epigenetic mechanisms coordinate changes in neuronal gene transcription, not only during the initial memory consolidation phase, but are triggered by retrieval to regulate molecular and cellular processes during memory reconsolidation.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
81
|
Abstract
Disruption of epigenetic gene control mechanisms in the brain causes significant cognitive impairment that is a debilitating hallmark of most neurodegenerative disorders, including Alzheimer's disease (AD). Histone acetylation is one of the best characterized of these epigenetic mechanisms that is critical for regulating learning- and memory- associated gene expression profiles, yet the specific histone acetyltransferases (HATs) that mediate these effects have yet to be fully characterized. Here, we investigate an epigenetic role for the HAT Tip60 in learning and memory formation using the Drosophila CNS mushroom body (MB) as a well-characterized cognition model. We show that Tip60 is endogenously expressed in the Kenyon cells, the intrinsic neurons of the MB, and in the MB axonal lobes. Targeted loss of Tip60 HAT activity in the MB causes thinner and shorter axonal lobes while increasing Tip60 HAT levels cause no morphological defects. Functional consequences of both loss and gain of Tip60 HAT levels in the MB are evidenced by defects in immediate-recall memory. Our ChIP-Seq analysis reveals that Tip60 target genes are enriched for functions in cognitive processes, and, accordingly, key genes representing these pathways are misregulated in the Tip60 HAT mutant fly brain. Remarkably, we find that both learning and immediate-recall memory deficits that occur under AD-associated, amyloid precursor protein (APP)-induced neurodegenerative conditions can be effectively rescued by increasing Tip60 HAT levels specifically in the MB. Together, our findings uncover an epigenetic transcriptional regulatory role for Tip60 in cognitive function and highlight the potential of HAT activators as a therapeutic option for neurodegenerative disorders.
Collapse
|
82
|
Fortress AM, Frick KM. Epigenetic regulation of estrogen-dependent memory. Front Neuroendocrinol 2014; 35:530-49. [PMID: 24878494 PMCID: PMC4174980 DOI: 10.1016/j.yfrne.2014.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 02/09/2023]
Abstract
Hippocampal memory formation is highly regulated by post-translational histone modifications and DNA methylation. Accordingly, these epigenetic processes play a major role in the effects of modulatory factors, such as sex steroid hormones, on hippocampal memory. Our laboratory recently demonstrated that the ability of the potent estrogen 17β-estradiol (E2) to enhance hippocampal-dependent novel object recognition memory in ovariectomized female mice requires ERK-dependent histone H3 acetylation and DNA methylation in the dorsal hippocampus. Although these data provide valuable insight into the chromatin modifications that mediate the memory-enhancing effects of E2, epigenetic regulation of gene expression is enormously complex. Therefore, more research is needed to fully understand how E2 and other hormones employ epigenetic alterations to shape behavior. This review discusses the epigenetic alterations shown thus far to regulate hippocampal memory, briefly reviews the effects of E2 on hippocampal function, and describes in detail our work on epigenetic regulation of estrogenic memory enhancement.
Collapse
Affiliation(s)
- Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| |
Collapse
|
83
|
Rosales-Reynoso MA, Ochoa-Hernández AB, Juárez-Vázquez CI, Barros-Núñez P. Epigenetic mechanisms in the development of memory and their involvement in certain neurological diseases. Neurologia 2014; 31:628-638. [PMID: 25217064 DOI: 10.1016/j.nrl.2014.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/17/2014] [Accepted: 02/02/2014] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Today, scientists accept that the central nervous system of an adult possesses considerable morphological and functional flexibility, allowing it to perform structural remodelling processes even after the individual is fully developed and mature. In addition to the vast number of genes participating in the development of memory, different known epigenetic mechanisms are involved in normal and pathological modifications to neurons and therefore also affect the mechanisms of memory development. DEVELOPMENT This study entailed a systematic review of biomedical article databases in search of genetic and epigenetic factors that participate in synaptic function and memory. CONCLUSIONS The activation of gene expression in response to external stimuli also occurs in differentiated nerve cells. Neural activity induces specific forms of synaptic plasticity that permit the creation and storage of long-term memory. Epigenetic mechanisms play a key role in synaptic modification processes and in the creation and development of memory. Changes in these mechanisms result in the cognitive and memory impairment seen in neurodegenerative diseases (Alzheimer disease, Huntington disease) and in neurodevelopmental disorders (Rett syndrome, fragile X, and schizophrenia). Nevertheless, results obtained from different models are promising and point to potential treatments for some of these diseases.
Collapse
Affiliation(s)
- M A Rosales-Reynoso
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jalisco, México
| | - A B Ochoa-Hernández
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS , Guadalajara, Jalisco, México
| | - C I Juárez-Vázquez
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jalisco, México
| | - P Barros-Núñez
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS , Guadalajara, Jalisco, México.
| |
Collapse
|
84
|
Itzhak Y, Perez-Lanza D, Liddie S. The strength of aversive and appetitive associations and maladaptive behaviors. IUBMB Life 2014; 66:559-71. [PMID: 25196552 DOI: 10.1002/iub.1310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 12/22/2022]
Abstract
Certain maladaptive behaviors are thought to be acquired through classical Pavlovian conditioning. Exaggerated fear response, which can develop through Pavlovian conditioning, is associated with acquired anxiety disorders such as post-traumatic stress disorders (PTSDs). Inflated reward-seeking behavior, which develops through Pavlovian conditioning, underlies some types of addictive behavior (e.g., addiction to drugs, food, and gambling). These maladaptive behaviors are dependent on associative learning and the development of long-term memory (LTM). In animal models, an aversive reinforcer (fear conditioning) encodes an aversive contextual and cued LTM. On the other hand, an appetitive reinforcer results in conditioned place preference (CPP) that encodes an appetitive contextual LTM. The literature on weak and strong associative learning pertaining to the development of aversive and appetitive LTM is relatively scarce; thus, this review is particularly focused on the strength of associative learning. The strength of associative learning is dependent on the valence of the reinforcer and the salience of the conditioned stimulus that ultimately sways the strength of the memory trace. Our studies suggest that labile (weak) aversive and appetitive LTM may share similar signaling pathways, whereas stable (strong) aversive and appetitive LTM is mediated through different pathways. In addition, we provide some evidence suggesting that extinction of aversive fear memory and appetitive drug memory is likely to be mediated through different signaling molecules. We put forward the importance of studies aimed to investigate the molecular mechanisms underlying the development of weak and strong memories (aversive and appetitive), which would ultimately help in the development of targeted pharmacotherapies for the management of maladaptive behaviors that arise from classical Pavlovian conditioning.
Collapse
Affiliation(s)
- Yossef Itzhak
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | |
Collapse
|
85
|
Effect of Resveratrol as Caloric Restriction Mimetic and Environmental Enrichment on Neurobehavioural Responses in Young Healthy Mice. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/545170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Caloric restriction and environmental enrichment have been separately reported to possess health benefits such as improvement in motor and cognitive functions. Resveratrol, a natural polyphenolic compound, has been reported to be caloric restriction mimetic. This study therefore aims to investigate the potential benefit of the combination of resveratrol as CR and EE on learning and memory, motor coordination, and motor endurance in young healthy mice. Fifty mice of both sexes were randomly divided into five groups of 10 animals each: group I animals received carboxymethylcellulose (CMC) orally per kg/day (control), group II animals were maintained on every other day feeding, group III animals received resveratrol 50 mg/kg, suspended in 10 g/L of (CMC) orally per kg/day, group IV animals received CMC and were kept in an enriched environment, and group V animals received resveratrol 50 mg/kg and were kept in EE. The treatment lasted for four weeks. On days 26, 27, and 28 of the study period, the animals were subjected to neurobehavioural evaluation. The results obtained showed that there was no significant change (P>0.05) in neurobehavioural responses in all the groups when compared to the control which indicates that 50 mg/kg of resveratrol administration and EE have no significant effects on neurobehavioural responses in young healthy mice over a period of four weeks.
Collapse
|
86
|
Logge W, Kingham J, Karl T. Do individually ventilated cage systems generate a problem for genetic mouse model research? GENES BRAIN AND BEHAVIOR 2014; 13:713-20. [DOI: 10.1111/gbb.12149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/30/2014] [Accepted: 06/10/2014] [Indexed: 12/16/2022]
Affiliation(s)
- W. Logge
- Neuroscience Research Australia (NeuRA); Randwick
- Schizophrenia Research Institute; Darlinghurst
| | - J. Kingham
- Garvan Institute of Medical Research; Darlinghurst
| | - T. Karl
- Neuroscience Research Australia (NeuRA); Randwick
- Schizophrenia Research Institute; Darlinghurst
- School of Medical Sciences; University of New South Wales; Sydney Australia
| |
Collapse
|
87
|
Smarr BL, Jennings KJ, Driscoll JR, Kriegsfeld LJ. A time to remember: the role of circadian clocks in learning and memory. Behav Neurosci 2014; 128:283-303. [PMID: 24708297 PMCID: PMC4385793 DOI: 10.1037/a0035963] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The circadian system has pronounced influence on learning and memory, manifesting as marked changes in memory acquisition and recall across the day. From a mechanistic perspective, the majority of studies have investigated mammalian hippocampal-dependent learning and memory, as this system is highly tractable. The hippocampus plays a major role in learning and memory, and has the potential to integrate circadian information in many ways, including information from local, independent oscillators, and through circadian modulation of neurogenesis, synaptic remodeling, intracellular cascades, and epigenetic regulation of gene expression. These local processes are combined with input from other oscillatory systems to synergistically augment hippocampal rhythmic function. This overview presents an account of the current state of knowledge on circadian interactions with learning and memory circuitry and provides a framework for those interested in further exploring these interactions.
Collapse
Affiliation(s)
- Benjamin L. Smarr
- Department of Psychology, University of California, Berkeley, CA, 94720 USA
| | | | - Joseph R. Driscoll
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720 USA
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California, Berkeley, CA, 94720 USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720 USA
| |
Collapse
|
88
|
The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology 2014; 80:115-32. [DOI: 10.1016/j.neuropharm.2014.01.013] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 02/06/2023]
|
89
|
Lutz PE, Turecki G. DNA methylation and childhood maltreatment: from animal models to human studies. Neuroscience 2014; 264:142-56. [PMID: 23933308 PMCID: PMC5293537 DOI: 10.1016/j.neuroscience.2013.07.069] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 11/21/2022]
Abstract
Childhood maltreatment (CM) has estimated prevalence among Western societies between 10% and 15%. As CM associates with increased risk of several psychiatric disorders, early age of illness onset, increased comorbidity and negative clinical outcome, it imposes a major public health, social and economic impact. Although the clinical consequences of CM are well characterized, a major challenge remains to understand how negative early-life events can affect brain function over extended periods of time. We review here both animal and human studies indicating that the epigenetic mechanism of DNA methylation is a crucial mediator of early-life experiences, thereby maintaining life-long neurobiological sequelae of CM, and strongly determining psychopathological risk.
Collapse
Affiliation(s)
- P-E Lutz
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montréal, Québec, Canada
| | - G Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montréal, Québec, Canada.
| |
Collapse
|
90
|
Valor LM, Viosca J, Lopez-Atalaya JP, Barco A. Lysine acetyltransferases CBP and p300 as therapeutic targets in cognitive and neurodegenerative disorders. Curr Pharm Des 2014; 19:5051-64. [PMID: 23448461 PMCID: PMC3722569 DOI: 10.2174/13816128113199990382] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/18/2013] [Indexed: 01/27/2023]
Abstract
Neuropsychiatric pathologies, including neurodegenerative diseases and neurodevelopmental syndromes, are frequently associated with dysregulation of various essential cellular mechanisms, such as transcription, mitochondrial respiration and protein degradation. In these complex scenarios, it is difficult to pinpoint the specific molecular dysfunction that initiated the pathology or that led to the fatal cascade of events that ends with the death of the neuron. Among the possible original factors, epigenetic dysregulation has attracted special attention. This review focuses on two highly related epigenetic factors that are directly involved in a number of neurological disorders, the lysine acetyltransferases CREB-binding protein (CBP) and E1A-associated protein p300 (p300). We first comment on the role of chromatin acetylation and the enzymes that control it, particularly CBP and p300, in neuronal plasticity and cognition. Next, we describe the involvement of these proteins in intellectual disability and in different neurodegenerative diseases. Finally, we discuss the potential of ameliorative strategies targeting CBP/p300 for the treatment of these disorders.
Collapse
Affiliation(s)
- Luis M Valor
- Instituto de Neurociencias, Av. Santiago Ramon y Cajal s/n. Sant Joan d'Alacant 03550, Alicante, Spain
| | | | | | | |
Collapse
|
91
|
|
92
|
Rudenko A, Tsai LH. Epigenetic modifications in the nervous system and their impact upon cognitive impairments. Neuropharmacology 2014; 80:70-82. [PMID: 24495398 DOI: 10.1016/j.neuropharm.2014.01.043] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 12/13/2022]
Abstract
Epigenetic regulation has been long considered to be a critical mechanism in the control of key aspects of cellular functions such as cell division, growth, and cell fate determination. Exciting recent developments have demonstrated that epigenetic mechanisms can also play necessary roles in the nervous system by regulating, for example, neuronal gene expression, DNA damage, and genome stability. Despite the fact that postmitotic neurons are developmentally less active then dividing cells, epigenetic regulation appears to provide means of both long-lasting and very dynamic regulation of neuronal function. Growing evidence indicates that epigenetic mechanisms in the central nervous system (CNS) are important for regulating not only specific aspects of individual neuronal metabolism but also for maintaining function of neuronal circuits and regulating their behavioral outputs. Multiple reports demonstrated that higher-level cognitive behaviors, such as learning and memory, are subject to a sophisticated epigenetic control, which includes interplay between multiple mechanisms of neuronal chromatin modification. Experiments with animal models have demonstrated that various epigenetic manipulations can affect cognition in different ways, from severe dysfunction to substantial improvement. In humans, epigenetic dysregulation has been known to underlie a number of disorders that are accompanied by mental impairment. Here, we review some of the epigenetic mechanisms that regulate cognition and how their disruption may contribute to cognitive dysfunctions. Due to the fact that histone acetylation and DNA methylation are some of the best-studied and critically important epigenomic modifications our research team has particularly strong expertise in, in this review, we are going to concentrate on histone acetylation, as well as DNA methylation/hydroxymethylation, in the mammalian CNS. Additional epigenetic modifications, not surveyed here, are being discussed in depth in the other review articles in this issue of Neuropharmacology.
Collapse
Affiliation(s)
- Andrii Rudenko
- Picower Institute for Learning and Memory, Howard Hughes Medical Institute, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Howard Hughes Medical Institute, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
93
|
Barquero LA, Davis N, Cutting LE. Neuroimaging of reading intervention: a systematic review and activation likelihood estimate meta-analysis. PLoS One 2014; 9:e83668. [PMID: 24427278 PMCID: PMC3888398 DOI: 10.1371/journal.pone.0083668] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 11/06/2013] [Indexed: 01/02/2023] Open
Abstract
A growing number of studies examine instructional training and brain activity. The purpose of this paper is to review the literature regarding neuroimaging of reading intervention, with a particular focus on reading difficulties (RD). To locate relevant studies, searches of peer-reviewed literature were conducted using electronic databases to search for studies from the imaging modalities of fMRI and MEG (including MSI) that explored reading intervention. Of the 96 identified studies, 22 met the inclusion criteria for descriptive analysis. A subset of these (8 fMRI experiments with post-intervention data) was subjected to activation likelihood estimate (ALE) meta-analysis to investigate differences in functional activation following reading intervention. Findings from the literature review suggest differences in functional activation of numerous brain regions associated with reading intervention, including bilateral inferior frontal, superior temporal, middle temporal, middle frontal, superior frontal, and postcentral gyri, as well as bilateral occipital cortex, inferior parietal lobules, thalami, and insulae. Findings from the meta-analysis indicate change in functional activation following reading intervention in the left thalamus, right insula/inferior frontal, left inferior frontal, right posterior cingulate, and left middle occipital gyri. Though these findings should be interpreted with caution due to the small number of studies and the disparate methodologies used, this paper is an effort to synthesize across studies and to guide future exploration of neuroimaging and reading intervention.
Collapse
Affiliation(s)
- Laura A. Barquero
- Department of Special Education, Peabody College, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Nicole Davis
- Department of Special Education, Peabody College, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, United States of America
| | - Laurie E. Cutting
- Department of Special Education, Peabody College, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
94
|
Saab BJ, Mansuy IM. Neurobiological disease etiology and inheritance: an epigenetic perspective. J Exp Biol 2014; 217:94-101. [DOI: 10.1242/jeb.089995] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic marks in mammals are essential to properly control the activity of the genome. They are dynamically regulated during development and adulthood, and can be modulated by environmental factors throughout life. Changes in the epigenetic profile of a cell can be positive and favor the expression of advantageous genes such as those linked to cell signaling and tumor suppression. However, they can also be detrimental and alter the functions of important genes, thereby leading to disease. Recent evidence has further highlighted that some epigenetic marks can be maintained across meiosis and be transmitted to the subsequent generation to reprogram developmental and cellular features. This short review describes current knowledge on the potential impact of epigenetic processes activated by environmental factors on the inheritance of neurobiological disease risk. In addition, the potential adaptive value of epigenetic inheritance, and relevant current and future questions are discussed.
Collapse
Affiliation(s)
- Bechara J. Saab
- Brain Research Institute, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Isabelle M. Mansuy
- Brain Research Institute, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
95
|
Khan ZU, Martín-Montañez E, Navarro-Lobato I, Muly EC. Memory deficits in aging and neurological diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:1-29. [PMID: 24484696 DOI: 10.1016/b978-0-12-420170-5.00001-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Memory is central to our ability to perform daily life activities and correctly function in society. Improvements in public health and medical treatment for a variety of diseases have resulted in longer life spans; however, age-related memory impairments have been significant sources of morbidity. Loss in memory function is not only associated with aging population but is also a feature of neurodegenerative diseases such as Alzheimer's disease and other psychiatric and neurological disorders. Here, we focus on current understanding of the impact of normal aging on memory and what is known about its mechanisms, and further review pathological mechanisms behind the cause of dementia in Alzheimer's disease. Finally, we discuss schizophrenia and look into abnormalities in circuit function and neurotransmitter systems that contribute to memory impairment in this illness.
Collapse
Affiliation(s)
- Zafar U Khan
- Laboratory of Neurobiology at CIMES, University of Málaga, Málaga, Spain; Department of Medicine at Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Elisa Martín-Montañez
- Laboratory of Neurobiology at CIMES, University of Málaga, Málaga, Spain; Department of Pharmacology at Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Irene Navarro-Lobato
- Laboratory of Neurobiology at CIMES, University of Málaga, Málaga, Spain; Department of Medicine at Faculty of Medicine, University of Málaga, Málaga, Spain
| | - E Chris Muly
- Atlanta Department of Veterans Affairs Medical Center, Decatur, Georgia, USA; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, USA; Division of Neuropharmacology and Neurological Diseases, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| |
Collapse
|
96
|
Abstract
Over the past 25 years, the broad field of epigenetics and, over the past decade in particular, the emerging field of neuroepigenetics have begun to have tremendous impact in the areas of learned behavior, neurotoxicology, CNS development, cognition, addiction, and psychopathology. However, epigenetics is such a new field that in most of these areas the impact is more in the category of fascinating implications as opposed to established facts. In this brief commentary, I will attempt to address and delineate some of the open questions and areas of opportunity that discoveries in epigenetics are providing to the discipline of neuroscience.
Collapse
|
97
|
Frick KM. Epigenetics, oestradiol and hippocampal memory consolidation. J Neuroendocrinol 2013; 25:1151-62. [PMID: 24028406 PMCID: PMC3943552 DOI: 10.1111/jne.12106] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/13/2013] [Accepted: 09/05/2013] [Indexed: 02/02/2023]
Abstract
Epigenetic alterations of histone proteins and DNA are essential for hippocampal synaptic plasticity and cognitive function, and contribute to the aetiology of psychiatric disorders and neurodegenerative diseases. Hippocampal memory formation depends on histone alterations and DNA methylation, and increasing evidence suggests that the regulation of these epigenetic processes by modulatory factors, such as environmental enrichment, stress and hormones, substantially influences memory function. Recent work from our laboratory suggests that the ability of the sex-steroid hormone 17β-oestradiol (E2 ) to enhance novel object recognition memory consolidation in young adult female mice is dependent on histone H3 acetylation and DNA methylation in the dorsal hippocampus. Our data also suggest that enzymes mediating DNA methylation and histone acetylation work in concert to regulate the effects of E2 on memory consolidation. These findings shed light on the epigenetic mechanisms that influence hormonal modulation of cognitive function, and may have important implications for understanding how hormones influence cognition in adulthood and ageing. The present review provides a brief overview of the literature on epigenetics and memory, describes in detail our findings demonstrating that epigenetic alterations regulate E2 -induced memory enhancement in female mice, and discusses future directions for research on the epigenetic regulation of E2 -induced memory enhancement.
Collapse
Affiliation(s)
- Karyn M. Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| |
Collapse
|
98
|
Effect of long-term stress on H3Ser10 histone phosphorylation in neuronal nuclei of the sensorimotor cortex and midbrain reticular formation in rats with different nervous system excitability. Bull Exp Biol Med 2013; 155:373-5. [PMID: 24137607 DOI: 10.1007/s10517-013-2157-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effects of long-term mental and pain stress on H3Ser10 histone phosphorylation in neurons of the the sensorimotor corex and midbrain reticular formation were studied 24 h, 2 weeks, and 2 months after exposure of rats differing by the nervous system excitability. Rats with high excitability threshold exhibited higher basal level of H3Ser10 histone phosphorylation in the midbrain reticular formation neurons than rats with low excitability threshold. The sensorimotor cortical neurons of the two strains did not differ by this parameter. Stress led to a significant increase in the counts of immunopositive neuronal nuclei in rats with low excitability threshold: the parameter increased significantly in the sensorimotor cortex 24 h after exposure and normalized in 2 weeks after neurotization. In the midbrain reticular formation of this rat strain stress stimulated H3Ser10 histone phosphorylation after 24 h and after 2 weeks; the parameter normalized after neurotization in 2 months. Hence, genetically determined level of the nervous system excitability was essential for the basal level of neuron phosphorylation and for the time course of this process after long-term exposure to mental and pain stress, depending on the brain structure. A probable relationship between H3Ser10 histone phosphorylation process and liability to obsessive compulsive mental disorders in humans was discussed.
Collapse
|
99
|
Woo J, Shin KO, Park SY, Jang KS, Kang S. Effects of exercise and diet change on cognition function and synaptic plasticity in high fat diet induced obese rats. Lipids Health Dis 2013; 12:144. [PMID: 24098984 PMCID: PMC3851938 DOI: 10.1186/1476-511x-12-144] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/17/2013] [Indexed: 01/07/2023] Open
Abstract
Background Nutritional imbalance-induced obesity causes a variety of diseases and in particular is an important cause of cognitive function decline. This study was performed on Sprague Dawley (SD) rats with 13-weeks of high fat diet-induced obesity in connection to the effects of regular exercise and dietary control for 8 weeks on the synaptic plasticity and cognitive abilities of brain. Methods Four weeks-old SD rats were adopted classified into normal-normal diet-sedentary (NNS, n = 8), obesity-high fat diet-sedentary (OHS, n = 8), obesity-high fat diet-training (OHT, n = 8), obesity-normal diet-sedentary (ONS, n = 8) and obesity- normal diet-training (ONT, n = 8). The exercise program consisted of a treadmill exercise administered at a speed of 8 m/min for 1–4 weeks, and 14 m/min for 5–8 weeks. The Western blot method was used to measure the expression of NGF, BDNF, p38MAPK and p-p38MAPK proteins in hippocampus of the brain, and expressions of NGF, BDNF, TrkA, TrkB, CREB and synapsin1 mRNA were analyzed through qRT-PCR. Results The results suggest cognitive function-related protein levels and mRNA expression to be significantly decreased in the hippocampus of obese rats, and synaptic plasticity as well as cognitive function signaling sub-pathway factors were also significantly decreased. In addition, 8-weeks exercises and treatment by dietary change had induced significant increase of cognitive function-related protein levels and mRNA expression as well as synaptic plasticity and cognitive function signaling sub-pathway factors in obese rats. In particular, the combined treatment had presented even more positive effect. Conclusions Therefore, it was determined that the high fat diet-induced obesity decreases plasticity and cognitive function of the brain, but was identified as being improved by exercises and dietary changes. In particular, it is considered that regular exercise has positive effects on memory span and learning capacity unlike dietary control.
Collapse
Affiliation(s)
- Jinhee Woo
- Department of Physical Education, Laboratory of Exercise Physiology, College of Sports Science, Dong-A University, 840 Hadan2-dong, Saha-gu, Busan, Korea.
| | | | | | | | | |
Collapse
|
100
|
Abstract
Spinal cord injury results from an insult inflicted on the spinal cord that usually encompasses its 4 major functions (motor, sensory, autonomic, and reflex). The type of deficits resulting from spinal cord injury arise from primary insult, but their long-term severity is due to a multitude of pathophysiological processes during the secondary phase of injury. The failure of the mammalian spinal cord to regenerate and repair is often attributed to the very feature that makes the central nervous system special-it becomes so highly specialized to perform higher functions that it cannot effectively reactivate developmental programs to re-build novel circuitry to restore function after injury. Added to this is an extensive gliotic and immune response that is essential for clearance of cellular debris, but also lays down many obstacles that are detrimental to regeneration. Here, we discuss how the mature chromatin state of different central nervous system cells (neural, glial, and immune) may contribute to secondary pathophysiology, and how restoring silenced developmental gene expression by altering histone acetylation could stall secondary damage and contribute to novel approaches to stimulate endogenous repair.
Collapse
Affiliation(s)
- Elisa M. York
- Department of Zoology (Life Sciences Institute), Brain Research Institute and International Collaboration on Repair Discoveries (iCORD), University of British Columbia, 2350 Health Sciences Blvd, V6T 1Z3 Vancouver, Canada
| | - Audrey Petit
- Department of Zoology (Life Sciences Institute), Brain Research Institute and International Collaboration on Repair Discoveries (iCORD), University of British Columbia, 2350 Health Sciences Blvd, V6T 1Z3 Vancouver, Canada
| | - A. Jane Roskams
- Department of Zoology (Life Sciences Institute), Brain Research Institute and International Collaboration on Repair Discoveries (iCORD), University of British Columbia, 2350 Health Sciences Blvd, V6T 1Z3 Vancouver, Canada
| |
Collapse
|