51
|
Widge AS, Zhang F, Gosai A, Papadimitrou G, Wilson-Braun P, Tsintou M, Palanivelu S, Noecker AM, McIntyre CC, O’Donnell L, McLaughlin NCR, Greenberg BD, Makris N, Dougherty DD, Rathi Y. Patient-specific connectomic models correlate with, but do not reliably predict, outcomes in deep brain stimulation for obsessive-compulsive disorder. Neuropsychopharmacology 2022; 47:965-972. [PMID: 34621015 PMCID: PMC8882183 DOI: 10.1038/s41386-021-01199-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
Deep brain stimulation (DBS) of the ventral internal capsule/ventral striatum (VCVS) is an emerging treatment for obsessive-compulsive disorder (OCD). Recently, multiple studies using normative connectomes have correlated DBS outcomes to stimulation of specific white matter tracts. Those studies did not test whether these correlations are clinically predictive, and did not apply cross-validation approaches that are necessary for biomarker development. Further, they did not account for the possibility of systematic differences between DBS patients and the non-diagnosed controls used in normative connectomes. To address these gaps, we performed patient-specific diffusion imaging in 8 patients who underwent VCVS DBS for OCD. We delineated tracts connecting thalamus and subthalamic nucleus (STN) to prefrontal cortex via VCVS. We then calculated which tracts were likely activated by individual patients' DBS settings. We fit multiple statistical models to predict both OCD and depression outcomes from tract activation. We further attempted to predict hypomania, a VCVS DBS complication. We assessed all models' performance on held-out test sets. With this best-practices approach, no model predicted OCD response, depression response, or hypomania above chance. Coefficient inspection partly supported prior reports, in that capture of tracts projecting to cingulate cortex was associated with both YBOCS and MADRS response. In contrast to prior reports, however, tracts connected to STN were not reliably correlated with response. Thus, patient-specific imaging and a guideline-adherent analysis were unable to identify a tractographic target with sufficient effect size to drive clinical decision-making or predict individual outcomes. These findings suggest caution in interpreting the results of normative connectome studies.
Collapse
Affiliation(s)
- Alik S. Widge
- grid.17635.360000000419368657Department of Psychiatry, University of Minnesota, Minneapolis, MN USA
| | - Fan Zhang
- grid.62560.370000 0004 0378 8294Department of Radiology, Brigham and Womens Hospital, Boston, MA USA
| | - Aishwarya Gosai
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - George Papadimitrou
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Peter Wilson-Braun
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Magdalini Tsintou
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Senthil Palanivelu
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Angela M. Noecker
- grid.67105.350000 0001 2164 3847Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
| | - Cameron C. McIntyre
- grid.67105.350000 0001 2164 3847Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
| | - Lauren O’Donnell
- grid.62560.370000 0004 0378 8294Department of Radiology, Brigham and Womens Hospital, Boston, MA USA
| | - Nicole C. R. McLaughlin
- grid.40263.330000 0004 1936 9094Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI USA ,grid.273271.20000 0000 8593 9332Butler Hospital, Providence, RI USA
| | - Benjamin D. Greenberg
- grid.40263.330000 0004 1936 9094Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI USA ,grid.273271.20000 0000 8593 9332Butler Hospital, Providence, RI USA ,Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI USA
| | - Nikolaos Makris
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Darin D. Dougherty
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Yogesh Rathi
- grid.62560.370000 0004 0378 8294Department of Radiology, Brigham and Womens Hospital, Boston, MA USA ,grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| |
Collapse
|
52
|
Connectomic approaches to deep brain stimulation for OCD. Neuropsychopharmacology 2022; 47:801-802. [PMID: 34845310 PMCID: PMC8882179 DOI: 10.1038/s41386-021-01243-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/12/2021] [Indexed: 11/08/2022]
|
53
|
Giampiccolo D, Nunes S, Cattaneo L, Sala F. Functional Approaches to the Surgery of Brain Gliomas. Adv Tech Stand Neurosurg 2022; 45:35-96. [PMID: 35976447 DOI: 10.1007/978-3-030-99166-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the surgery of gliomas, recent years have witnessed unprecedented theoretical and technical development, which extensively increased indication to surgery. On one hand, it has been solidly demonstrated the impact of gross total resection on life expectancy. On the other hand, the paradigm shift from classical cortical localization of brain function towards connectomics caused by the resurgence of awake surgery and the advent of tractography has permitted safer surgeries focused on subcortical white matter tracts preservation and allowed for surgical resections within regions, such as Broca's area or the primary motor cortex, which were previously deemed inoperable. Furthermore, new asleep electrophysiological techniques have been developed whenever awake surgery is not an option, such as operating in situations of poor compliance (including paediatric patients) or pre-existing neurological deficits. One such strategy is the use of intraoperative neurophysiological monitoring (IONM), enabling the identification and preservation of functionally defined, but anatomically ambiguous, cortico-subcortical structures through mapping and monitoring techniques. These advances tie in with novel challenges, specifically risk prediction and the impact of neuroplasticity, the indication for tumour resection beyond visible borders, or supratotal resection, and most of all, a reappraisal of the importance of the right hemisphere from early psychosurgery to mapping and preservation of social behaviour, executive control, and decision making.Here we review current advances and future perspectives in a functional approach to glioma surgery.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Institute of Neurosciences, Cleveland Clinic London, London, UK
| | - Sonia Nunes
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
| | - Luigi Cattaneo
- Center for Mind and Brain Sciences (CIMeC) and Center for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy.
| |
Collapse
|
54
|
Deep brain stimulation of the "medial forebrain bundle": a strategy to modulate the reward system and manage treatment-resistant depression. Mol Psychiatry 2022; 27:574-592. [PMID: 33903731 DOI: 10.1038/s41380-021-01100-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/21/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023]
Abstract
The medial forebrain bundle-a white matter pathway projecting from the ventral tegmental area-is a structure that has been under a lot of scrutinies recently due to its implications in the modulation of certain affective disorders such as major depression. In the following, we will discuss major depression in the context of being a disorder dependent on multiple relevant networks, the pathological performance of which is responsible for the manifestation of various symptoms of the disease which extend into emotional, motivational, physiological, and also cognitive domains of daily living. We will focus on the reward system, an evolutionarily conserved pathway whose underperformance leads to anhedonia and lack of motivation, which are key traits in depression. In the field of deep brain stimulation (DBS), different "hypothesis-driven" targets have been chosen as the subject of clinical trials on efficacy in the treatment-resistant depressed patient. The "medial forebrain bundle" is one such target for DBS, and has had remarkably rapid success in alleviating depressive symptoms, improving anhedonia and motivation. We will review what we have learned from pre-clinical animal studies on defining this white matter tract, its connectivity, and the complex molecular (i.e., neurotransmitter) mechanisms by which its modulation exerts its effects. Imaging studies in the form of tractographic depictions have elucidated its presence in the human brain. Such has led to ongoing clinical trials of DBS targeting this pathway to assess efficacy, which is promising yet still lack in sufficient numbers. Ultimately, one must confirm the mechanism of action and validate proof of antidepressant effect in order to have such treatment become mainstream, to promote widespread improvement in the quality of life of suffering patients.
Collapse
|
55
|
Haber SN, Liu H, Seidlitz J, Bullmore E. Prefrontal connectomics: from anatomy to human imaging. Neuropsychopharmacology 2022; 47:20-40. [PMID: 34584210 PMCID: PMC8617085 DOI: 10.1038/s41386-021-01156-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022]
Abstract
The fundamental importance of prefrontal cortical connectivity to information processing and, therefore, disorders of cognition, emotion, and behavior has been recognized for decades. Anatomic tracing studies in animals have formed the basis for delineating the direct monosynaptic connectivity, from cells of origin, through axon trajectories, to synaptic terminals. Advances in neuroimaging combined with network science have taken the lead in developing complex wiring diagrams or connectomes of the human brain. A key question is how well these magnetic resonance imaging (MRI)-derived networks and hubs reflect the anatomic "hard wiring" first proposed to underlie the distribution of information for large-scale network interactions. In this review, we address this challenge by focusing on what is known about monosynaptic prefrontal cortical connections in non-human primates and how this compares to MRI-derived measurements of network organization in humans. First, we outline the anatomic cortical connections and pathways for each prefrontal cortex (PFC) region. We then review the available MRI-based techniques for indirectly measuring structural and functional connectivity, and introduce graph theoretical methods for analysis of hubs, modules, and topologically integrative features of the connectome. Finally, we bring these two approaches together, using specific examples, to demonstrate how monosynaptic connections, demonstrated by tract-tracing studies, can directly inform understanding of the composition of PFC nodes and hubs, and the edges or pathways that connect PFC to cortical and subcortical areas.
Collapse
Affiliation(s)
- Suzanne N. Haber
- grid.412750.50000 0004 1936 9166Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642 USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478 USA
| | - Hesheng Liu
- grid.259828.c0000 0001 2189 3475Department of Neuroscience, Medical University of South Carolina, Charleston, SC USA ,grid.38142.3c000000041936754XDepartment of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Jakob Seidlitz
- grid.25879.310000 0004 1936 8972Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Ed Bullmore
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Cambridge Biomedical Campus, Cambridge, CB2 0SZ UK
| |
Collapse
|
56
|
Provenza NR, Sheth SA, Dastin-van Rijn EM, Mathura RK, Ding Y, Vogt GS, Avendano-Ortega M, Ramakrishnan N, Peled N, Gelin LFF, Xing D, Jeni LA, Ertugrul IO, Barrios-Anderson A, Matteson E, Wiese AD, Xu J, Viswanathan A, Harrison MT, Bijanki KR, Storch EA, Cohn JF, Goodman WK, Borton DA. Long-term ecological assessment of intracranial electrophysiology synchronized to behavioral markers in obsessive-compulsive disorder. Nat Med 2021; 27:2154-2164. [PMID: 34887577 PMCID: PMC8800455 DOI: 10.1038/s41591-021-01550-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023]
Abstract
Detection of neural signatures related to pathological behavioral states could enable adaptive deep brain stimulation (DBS), a potential strategy for improving efficacy of DBS for neurological and psychiatric disorders. This approach requires identifying neural biomarkers of relevant behavioral states, a task best performed in ecologically valid environments. Here, in human participants with obsessive-compulsive disorder (OCD) implanted with recording-capable DBS devices, we synchronized chronic ventral striatum local field potentials with relevant, disease-specific behaviors. We captured over 1,000 h of local field potentials in the clinic and at home during unstructured activity, as well as during DBS and exposure therapy. The wide range of symptom severity over which the data were captured allowed us to identify candidate neural biomarkers of OCD symptom intensity. This work demonstrates the feasibility and utility of capturing chronic intracranial electrophysiology during daily symptom fluctuations to enable neural biomarker identification, a prerequisite for future development of adaptive DBS for OCD and other psychiatric disorders.
Collapse
Affiliation(s)
- Nicole R Provenza
- Brown University School of Engineering, Providence, RI, USA
- Charles Stark Draper Laboratory, Cambridge, MA, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Raissa K Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Yaohan Ding
- Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory S Vogt
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Michelle Avendano-Ortega
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Nithya Ramakrishnan
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Noam Peled
- MGH/HST Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | | | - David Xing
- Brown University School of Engineering, Providence, RI, USA
| | - Laszlo A Jeni
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Itir Onal Ertugrul
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, the Netherlands
| | | | - Evan Matteson
- Brown University School of Engineering, Providence, RI, USA
| | - Andrew D Wiese
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Psychology, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Junqian Xu
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Ashwin Viswanathan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Kelly R Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Eric A Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey F Cohn
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wayne K Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - David A Borton
- Brown University School of Engineering, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
- Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of Veterans Affairs, Providence, RI, USA.
| |
Collapse
|
57
|
Baldermann JC, Schüller T, Kohl S, Voon V, Li N, Hollunder B, Figee M, Haber SN, Sheth SA, Mosley PE, Huys D, Johnson KA, Butson C, Ackermans L, Bouwens van der Vlis T, Leentjens AFG, Barbe M, Visser-Vandewalle V, Kuhn J, Horn A. Connectomic Deep Brain Stimulation for Obsessive-Compulsive Disorder. Biol Psychiatry 2021; 90:678-688. [PMID: 34482949 DOI: 10.1016/j.biopsych.2021.07.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/17/2023]
Abstract
Obsessive-compulsive disorder is among the most disabling psychiatric disorders. Although deep brain stimulation is considered an effective treatment, its use in clinical practice is not fully established. This is, at least in part, due to ambiguity about the best suited target and insufficient knowledge about underlying mechanisms. Recent advances suggest that changes in broader brain networks are responsible for improvement of obsessions and compulsions, rather than local impact at the stimulation site. These findings were fueled by innovative methodological approaches using brain connectivity analyses in combination with neuromodulatory interventions. Such a connectomic approach for neuromodulation constitutes an integrative account that aims to characterize optimal target networks. In this critical review, we integrate findings from connectomic studies and deep brain stimulation interventions to characterize a neural network presumably effective in reducing obsessions and compulsions. To this end, we scrutinize methodologies and seemingly conflicting findings with the aim to merge observations to identify common and diverse pathways for treating obsessive-compulsive disorder. Ultimately, we propose a unified network that-when modulated by means of cortical or subcortical interventions-alleviates obsessive-compulsive symptoms.
Collapse
Affiliation(s)
- Juan Carlos Baldermann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Thomas Schüller
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sina Kohl
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Valerie Voon
- Department of Psychiatry, Cambridge University, Cambridge, United Kingdom
| | - Ningfei Li
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| | - Barbara Hollunder
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany; Einstein Center for Neurosciences, Charité - University Medicine Berlin, Berlin, Germany; Faculty of Philosophy, Humboldt University of Berlin, Berlin School of Mind and Brain, Berlin, Germany
| | - Martijn Figee
- Department of Psychiatry, Mount Sinai Hospital, New York, New York
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York; Basic Neuroscience Division, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Philip E Mosley
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kara A Johnson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Christopher Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Linda Ackermans
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | - Albert F G Leentjens
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Michael Barbe
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Psychiatry, Psychotherapy and Psychosomatic, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
58
|
Figee M, Mayberg H. Deep Brain Stimulation for Obsessive-Compulsive Disorder: Why Anatomy Matters. Biol Psychiatry 2021; 90:662-663. [PMID: 34674799 DOI: 10.1016/j.biopsych.2021.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Helen Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
59
|
Keuken MC, Alkemade A, Stevenson N, Innes RJ, Forstmann BU. Structure-function similarities in deep brain stimulation targets cross-species. Neurosci Biobehav Rev 2021; 131:1127-1135. [PMID: 34715147 DOI: 10.1016/j.neubiorev.2021.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/24/2022]
Abstract
Deep Brain Stimulation (DBS) is an effective neurosurgical treatment to alleviate motor symptoms of advanced Parkinson's disease. Due to its potential, DBS usage is rapidly expanding to target a large number of brain regions to treat a wide range of diseases and neuropsychiatric disorders. The identification and validation of new target regions heavily rely on the insights gained from rodent and primate models. Here we present a large-scale automatic meta-analysis in which the structure-function associations within and between species are compared for 21 DBS targets in humans. The results indicate that the structure-function association for the majority of the 21 included subcortical areas were conserved cross-species. A subset of structures showed overlapping functional association. This can potentially be attributed to shared brain networks and might explain why multiple brain areas are targeted for the same disease or neuropsychiatric disorder.
Collapse
Affiliation(s)
- Max C Keuken
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, The Netherlands.
| | - Anneke Alkemade
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, The Netherlands
| | - Niek Stevenson
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, The Netherlands
| | - Reilly J Innes
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, The Netherlands; Newcastle Cognition Lab, University of Newcastle, Callaghan, NSW, Australia
| | - Birte U Forstmann
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, The Netherlands
| |
Collapse
|
60
|
Coenen VA, Döbrössy MD, Teo SJ, Wessolleck J, Sajonz BEA, Reinacher PC, Thierauf-Emberger A, Spittau B, Leupold J, von Elverfeldt D, Schlaepfer TE, Reisert M. Diverging prefrontal cortex fiber connection routes to the subthalamic nucleus and the mesencephalic ventral tegmentum investigated with long range (normative) and short range (ex-vivo high resolution) 7T DTI. Brain Struct Funct 2021; 227:23-47. [PMID: 34482443 PMCID: PMC8741702 DOI: 10.1007/s00429-021-02373-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Uncertainties
concerning anatomy and function of cortico-subcortical projections have arisen during the recent years. A clear distinction between cortico-subthalamic (hyperdirect) and cortico-tegmental projections (superolateral medial forebrain bundle, slMFB) so far is elusive. Deep Brain Stimulation (DBS) of the slMFB (for major depression, MD and obsessive compulsive disorders, OCD) has on the one hand been interpreted as actually involving limbic (prefrontal) hyperdirect pathways. On the other hand slMFB’s stimulation region in the mesencephalic ventral tegmentum is said to impact on other structures too, going beyond the antidepressant (or anti OCD) efficacy of sole modulation of the cortico-tegmental reward-associated pathways. We have here used a normative diffusion MRT template (HCP, n = 80) for long-range tractography and augmented this dataset with ex-vivo high resolution data (n = 1) in a stochastic brain space. We compared this data with histological information and used the high resolution ex-vivo data set to scrutinize the mesencephalic tegmentum for small fiber pathways present. Our work resolves an existing ambiguity between slMFB and prefrontal hyperdirect pathways which—for the first time—are described as co-existent. DBS of the slMFB does not appear to modulate prefrontal hyperdirect cortico-subthalamic but rather cortico-tegmental projections. Smaller fiber structures in the target region—as far as they can be discerned—appear not to be involved in slMFB DBS. Our work enfeebles previous anatomical criticism and strengthens the position of the slMFB DBS target for its use in MD and OCD.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany. .,Medical Faculty of Freiburg University, Freiburg, Germany. .,Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany. .,Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany.
| | - Máté D Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany.,Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
| | - Shi Jia Teo
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Johanna Wessolleck
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
| | - Bastian E A Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany.,Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Annette Thierauf-Emberger
- Medical Faculty of Freiburg University, Freiburg, Germany.,Institute of Forensic Medicine, Medical Center of Freiburg University, Freiburg, Germany
| | - Björn Spittau
- Anatomy and Cell Biology, Medical School OWL, Bielefeld University, Bielefeld, Germany.,Institute for Anatomy and Cell Biology, Department of Molecular Embryologie, Faculty of Medicine, Freiburg University, Freiburg, Germany
| | - Jochen Leupold
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas E Schlaepfer
- Medical Faculty of Freiburg University, Freiburg, Germany.,Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany.,Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical Center of Freiburg University, Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
61
|
Acevedo N, Bosanac P, Pikoos T, Rossell S, Castle D. Therapeutic Neurostimulation in Obsessive-Compulsive and Related Disorders: A Systematic Review. Brain Sci 2021; 11:brainsci11070948. [PMID: 34356182 PMCID: PMC8307974 DOI: 10.3390/brainsci11070948] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 01/16/2023] Open
Abstract
Invasive and noninvasive neurostimulation therapies for obsessive-compulsive and related disorders (OCRD) were systematically reviewed with the aim of assessing clinical characteristics, methodologies, neuroanatomical substrates, and varied stimulation parameters. Previous reviews have focused on a narrow scope, statistical rather than clinical significance, grouped together heterogenous protocols, and proposed inconclusive outcomes and directions. Herein, a comprehensive and transdiagnostic evaluation of all clinically relevant determinants is presented with translational clinical recommendations and novel response rates. Electroconvulsive therapy (ECT) studies were limited in number and quality but demonstrated greater efficacy than previously identified. Targeting the pre-SMA/SMA is recommended for transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS). TMS yielded superior outcomes, although polarity findings were conflicting, and refinement of frontal/cognitive control protocols may optimize outcomes. For both techniques, standardization of polarity, more treatment sessions (>20), and targeting multiple structures are encouraged. A deep brain stimulation (DBS) 'sweet spot' of the striatum for OCD was proposed, and CBT is strongly encouraged. Tourette's patients showed less variance and reliance on treatment optimization. Several DBS targets achieved consistent, rapid, and sustained clinical response. Analysis of fiber connectivity, as opposed to precise neural regions, should be implemented for target selection. Standardization of protocols is necessary to achieve translational outcomes.
Collapse
Affiliation(s)
- Nicola Acevedo
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- Correspondence:
| | - Peter Bosanac
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Toni Pikoos
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
| | - David Castle
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
- Centre for Addiction and Mental Health, 252 College Street, Toronto, ON M5T 1R7, Canada
| |
Collapse
|
62
|
Arumugham SS, Srinivas D, Narayanaswamy JC, Jaisoorya TS, Kashyap H, Domenech P, Palfi S, Mallet L, Venkatasubramanian G, Reddy YJ. Identification of biomarkers that predict response to subthalamic nucleus deep brain stimulation in resistant obsessive-compulsive disorder: protocol for an open-label follow-up study. BMJ Open 2021; 11:e047492. [PMID: 34158304 PMCID: PMC8220486 DOI: 10.1136/bmjopen-2020-047492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/26/2021] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Deep brain stimulation (DBS) of bilateral anteromedial subthalamic nucleus (amSTN) has been found to be helpful in a subset of patients with severe, chronic and treatment-refractory obsessive-compulsive disorder (OCD). Biomarkers may aid in patient selection and optimisation of this invasive treatment. In this trial, we intend to evaluate neurocognitive function related to STN and related biosignatures as potential biomarkers for STN DBS in OCD. METHODS AND ANALYSIS Twenty-four subjects with treatment-refractory OCD will undergo open-label STN DBS. Structural/functional imaging, electrophysiological recording and neurocognitive assessment would be performed at baseline. The subjects would undergo a structured clinical assessment for 12 months postsurgery. A group of 24 healthy volunteers and 24 subjects with treatment-refractory OCD who receive treatment as usual would be recruited for comparison of biomarkers and treatment response, respectively. Baseline biomarkers would be evaluated as predictors of clinical response. Neuroadaptive changes would be studied through a reassessment of neurocognitive functioning, imaging and electrophysiological activity post DBS. ETHICS AND DISSEMINATION The protocol has been approved by the National Institute of Mental Health and Neurosciences Ethics Committee. The study findings will be disseminated through peer-reviewed scientific journals and scientific meetings.
Collapse
Affiliation(s)
- Shyam Sundar Arumugham
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Dwarakanath Srinivas
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Janardhanan C Narayanaswamy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - T S Jaisoorya
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Himani Kashyap
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Philippe Domenech
- Univ Paris-Est Créteil, DMU CARE - Département Médical-Universitaire de Chirurgie et Anesthésie réanimation, DMU IMPACT, Département Médical-Universitaire de Psychiatrie et d'Addictologie, Hôpitaux Universitaires Henri Mondor, Creteil, France
- Univ of Paris 12 UPEC, Faculté de médecine, INSERM U955, Creteil, France
| | - Stéphane Palfi
- Univ Paris-Est Créteil, DMU CARE - Département Médical-Universitaire de Chirurgie et Anesthésie réanimation, DMU IMPACT, Département Médical-Universitaire de Psychiatrie et d'Addictologie, Hôpitaux Universitaires Henri Mondor, Creteil, France
- Univ of Paris 12 UPEC, Faculté de médecine, INSERM U955, Creteil, France
| | - Luc Mallet
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Department of Mental Health and Psychiatry, University of Geneva, Geneva, Switzerland
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Yc Janardhan Reddy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
63
|
Abstract
Obsessive-compulsive disorder (OCD) is a common, chronic, and oftentimes disabling disorder. The only established first-line treatments for OCD are exposure and response prevention, and serotonin reuptake inhibitor medications (SRIs). However, a subset of patients fails to respond to either modality, and few experience complete remission. Beyond SRI monotherapy, antipsychotic augmentation is the only medication approach for OCD with substantial empirical support. Our incomplete understanding of the neurobiology of OCD has hampered efforts to develop new treatments or enhance extant interventions. This review focuses on several promising areas of research that may help elucidate the pathophysiology of OCD and advance treatment. Multiple studies support a significant genetic contribution to OCD, but pinpointing the specific genetic determinants requires additional investigation. The preferential efficacy of SRIs in OCD has neither led to discovery of serotonergic abnormalities in OCD nor to development of new serotonergic medications for OCD. Several lines of preclinical and clinical evidence suggest dysfunction of the glutamatergic system in OCD, prompting testing of several promising glutamate modulating agents. Functional imaging studies in OCD show consistent evidence for increased activity in brain regions that form a cortico-striato-thalamo-cortical (CSTC) loop. Neuromodulation treatments with either noninvasive devices (e.g., transcranial magnetic stimulation) or invasive procedures (e.g., deep brain stimulation) provide further support for the CSTC model of OCD. A common substrate for various interventions (whether drug, behavioral, or device) may be modulation (at different nodes or connections) of the CSTC circuit that mediates the symptoms of OCD.
Collapse
Affiliation(s)
- Wayne K. Goodman
- Menninger Department of Psychiatry and Behavioral Sciences (all authors) and Department of Neurosurgery (Sheth), Baylor College of Medicine, Houston
| | - Eric A. Storch
- Menninger Department of Psychiatry and Behavioral Sciences (all authors) and Department of Neurosurgery (Sheth), Baylor College of Medicine, Houston
| | - Sameer A. Sheth
- Menninger Department of Psychiatry and Behavioral Sciences (all authors) and Department of Neurosurgery (Sheth), Baylor College of Medicine, Houston
| |
Collapse
|
64
|
Monosov IE, Haber SN, Leuthardt EC, Jezzini A. Anterior Cingulate Cortex and the Control of Dynamic Behavior in Primates. Curr Biol 2020; 30:R1442-R1454. [PMID: 33290716 PMCID: PMC8197026 DOI: 10.1016/j.cub.2020.10.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The brain mechanism for controlling continuous behavior in dynamic contexts must mediate action selection and learning across many timescales, responding differentially to the level of environmental uncertainty and volatility. In this review, we argue that a part of the frontal cortex known as the anterior cingulate cortex (ACC) is particularly well suited for this function. First, the ACC is interconnected with prefrontal, parietal, and subcortical regions involved in valuation and action selection. Second, the ACC integrates diverse, behaviorally relevant information across multiple timescales, producing output signals that temporally encapsulate decision and learning processes and encode high-dimensional information about the value and uncertainty of future outcomes and subsequent behaviors. Third, the ACC signals behaviorally relevant information flexibly, displaying the capacity to represent information about current and future states in a valence-, context-, task- and action-specific manner. Fourth, the ACC dynamically controls instrumental- and non-instrumental information seeking behaviors to resolve uncertainty about future outcomes. We review electrophysiological and circuit disruption studies in primates to develop this point, discuss its relationship to novel therapeutics for neuropsychiatric disorders in humans, and conclude by relating ongoing research in primates to studies of medial frontal cortical regions in rodents.
Collapse
Affiliation(s)
- Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA; Department of Electrical Engineering, Washington University, St. Louis, MO 63130, USA; Department of Neurosurgery School of Medicine, Washington University, St. Louis, MO 63110, USA; Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14627, USA; Basic Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Eric C Leuthardt
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA; Department of Neurosurgery School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Ahmad Jezzini
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
65
|
Smith AH, Choi KS, Waters AC, Aloysi A, Mayberg HS, Kopell BH, Figee M. Replicable effects of deep brain stimulation for obsessive-compulsive disorder. Brain Stimul 2020; 14:1-3. [PMID: 33130018 DOI: 10.1016/j.brs.2020.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/06/2023] Open
Affiliation(s)
- Andrew H Smith
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine, New York, NY, United States
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine, New York, NY, United States
| | - Allison C Waters
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine, New York, NY, United States
| | - Amy Aloysi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine, New York, NY, United States
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine, New York, NY, United States
| | - Brian H Kopell
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine, New York, NY, United States
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine, New York, NY, United States.
| |
Collapse
|