51
|
Lei L, Xu C, Dong X, Ma B, Chen Y, Hao Q, Zhao C, Liu H. Continuous Glucose Monitoring in Hypoxic Environments Based on Water Splitting-Assisted Electrocatalysis. CHEMOSENSORS 2023; 11:149. [DOI: 10.3390/chemosensors11020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Conventional enzyme-based continuous glucose sensors in interstitial fluid usually rely on dissolved oxygen as the electron-transfer mediator to bring electrons from oxidase to electrode while generating hydrogen peroxide. This may lead to several problems. First, the sensor may provide biased detection results owing to fluctuation of oxygen in interstitial fluid. Second, the polymer coatings that regulate the glucose/oxygen ratio can affect the dynamic response of the sensor. Third, the glucose oxidation reaction continuously produces corrosive hydrogen peroxide, which may compromise the long-term stability of the sensor. Here, we introduce an oxygen-independent nonenzymatic glucose sensor based on water splitting-assisted electrocatalysis for continuous glucose monitoring. For the water splitting reaction (i.e., hydrogen evolution reaction), a negative pretreatment potential is applied to produce a localized alkaline condition at the surface of the working electrode for subsequent nonenzymatic electrocatalytic oxidation of glucose. The reaction process does not require the participation of oxygen; therefore, the problems caused by oxygen can be avoided. The nonenzymatic sensor exhibits acceptable sensitivity, reliability, and biocompatibility for continuous glucose monitoring in hypoxic environments, as shown by the in vitro and in vivo measurements. Therefore, we believe that it is a promising technique for continuous glucose monitoring, especially for clinically hypoxic patients.
Collapse
Affiliation(s)
- Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chengtao Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xing Dong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Biao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yichen Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qing Hao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
52
|
Tian S, Wang M, Fornasiero P, Yang X, Ramakrishna S, Ho SH, Li F. Recent advances in MXenes-based glucose biosensors. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
53
|
Dey S, Dolci M, Zijlstra P. Single-Molecule Optical Biosensing: Recent Advances and Future Challenges. ACS PHYSICAL CHEMISTRY AU 2023; 3:143-156. [PMID: 36968450 PMCID: PMC10037498 DOI: 10.1021/acsphyschemau.2c00061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023]
Abstract
In recent years, the sensitivity and specificity of optical sensors has improved tremendously due to improvements in biochemical functionalization protocols and optical detection systems. As a result, single-molecule sensitivity has been reported in a range of biosensing assay formats. In this Perspective, we summarize optical sensors that achieve single-molecule sensitivity in direct label-free assays, sandwich assays, and competitive assays. We describe the advantages and disadvantages of single-molecule assays and summarize future challenges in the field including their optical miniaturization and integration, multimodal sensing capabilities, accessible time scales, and compatibility with real-life matrices such as biological fluids. We conclude by highlighting the possible application areas of optical single-molecule sensors that include not only healthcare but also the monitoring of the environment and industrial processes.
Collapse
Affiliation(s)
- Swayandipta Dey
- Eindhoven University of Technology, Department of Applied Physics, Eindhoven 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, 5600 MB, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven, 5600 MB, The Netherlands
| | - Mathias Dolci
- Eindhoven University of Technology, Department of Applied Physics, Eindhoven 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, 5600 MB, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven, 5600 MB, The Netherlands
| | - Peter Zijlstra
- Eindhoven University of Technology, Department of Applied Physics, Eindhoven 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, 5600 MB, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
54
|
Zhu Y, Qi Y, Xu M, Luo J. Flexible Biosensor Based on Signal Amplification of Gold Nanoparticles-Composite Flower Clusters for Glucose Detection in Sweat. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
55
|
Macdonald AR, Charlton F, Corrigan DK. Accelerating the development of implantable neurochemical biosensors by using existing clinically applied depth electrodes. Anal Bioanal Chem 2023; 415:1137-1147. [PMID: 36456747 PMCID: PMC9899734 DOI: 10.1007/s00216-022-04445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022]
Abstract
In this study, an implantable stereo-electroencephalography (sEEG) depth electrode was functionalised with an enzyme coating for enzyme-based biosensing of glucose and L-glutamate. This was done because personalised medicine could benefit from active real-time neurochemical monitoring on small spatial and temporal scales to further understand and treat neurological disorders. To achieve this, the sEEG depth electrode was characterised using cyclic voltammetry (CV), differential pulse voltammetry (DPV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS) using several electrochemical redox mediators (potassium ferri/ferrocyanide, ruthenium hexamine chloride, and dopamine). To improve performance, the Pt sensors on the sEEG depth electrode were coated with platinum black and a crosslinked gelatin-enzyme film to enable enzymatic biosensing. This characterisation work showed that producing a useable electrode with a good electrochemical response showing the expected behaviour for a platinum electrode was possible. Coating with Pt black improved the sensitivity to H2O2 over unmodified electrodes and approached that of well-defined Pt macro disc electrodes. Measured current showed good dependence on concentration, and the calibration curves report good sensitivity of 29.65 nA/cm2/μM for glucose and 8.05 nA/cm2/μM for L-glutamate with a stable, repeatable, and linear response. These findings demonstrate that existing clinical electrode devices can be adapted for combined electrochemical and electrophysiological measurement in patients and obviate the need to develop new electrodes when existing clinically approved devices and the associated knowledge can be reused. This accelerates the time to use and application of in vivo and wearable biosensing for diagnosis, treatment, and personalised medicine.
Collapse
Affiliation(s)
- Alexander R Macdonald
- Department of Biomedical Engineering, University of Strathclyde, 106 Rottenrow East, Glasgow, UK
| | - Francessca Charlton
- Department of Biomedical Engineering, University of Strathclyde, 106 Rottenrow East, Glasgow, UK
| | - Damion K Corrigan
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, UK.
| |
Collapse
|
56
|
Okuda-Shimazaki J, Yoshida H, Lee I, Kojima K, Suzuki N, Tsugawa W, Yamada M, Inaka K, Tanaka H, Sode K. Microgravity environment grown crystal structure information based engineering of direct electron transfer type glucose dehydrogenase. Commun Biol 2022; 5:1334. [PMID: 36473944 PMCID: PMC9727119 DOI: 10.1038/s42003-022-04286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The heterotrimeric flavin adenine dinucleotide dependent glucose dehydrogenase is a promising enzyme for direct electron transfer (DET) principle-based glucose sensors within continuous glucose monitoring systems. We elucidate the structure of the subunit interface of this enzyme by preparing heterotrimer complex protein crystals grown under a space microgravity environment. Based on the proposed structure, we introduce inter-subunit disulfide bonds between the small and electron transfer subunits (5 pairs), as well as the catalytic and the electron transfer subunits (9 pairs). Without compromising the enzyme's catalytic efficiency, a mutant enzyme harboring Pro205Cys in the catalytic subunit, Asp383Cys and Tyr349Cys in the electron transfer subunit, and Lys155Cys in the small subunit, is determined to be the most stable of the variants. The developed engineered enzyme demonstrate a higher catalytic activity and DET ability than the wild type. This mutant retains its full activity below 70 °C as well as after incubation at 75 °C for 15 min - much higher temperatures than the current gold standard enzyme, glucose oxidase, is capable of withstanding.
Collapse
Affiliation(s)
- Junko Okuda-Shimazaki
- grid.10698.360000000122483208Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC27599 USA
| | - Hiromi Yoshida
- grid.258331.e0000 0000 8662 309XDepartment of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793 Japan
| | - Inyoung Lee
- grid.10698.360000000122483208Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC27599 USA
| | - Katsuhiro Kojima
- grid.136594.c0000 0001 0689 5974Graduate School of Engineering, Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 Japan
| | - Nanoha Suzuki
- grid.136594.c0000 0001 0689 5974Graduate School of Engineering, Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 Japan
| | - Wakako Tsugawa
- grid.136594.c0000 0001 0689 5974Graduate School of Engineering, Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 Japan
| | - Mitsugu Yamada
- grid.62167.340000 0001 2220 7916JEM Utilization Center Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba-shi, Ibaraki 305-8505 Japan
| | - Koji Inaka
- grid.459744.fMaruwa Foods and Biosciences, 170-1 Tsutsui-cho, Yamato Koriyama-shi, Nara 639-1123 Japan
| | - Hiroaki Tanaka
- grid.459486.2Confocal Science Inc., Musashino Bldg, 5-14-15 Fukasawa, Setagaya-ku, Tokyo 158-0081 Japan
| | - Koji Sode
- grid.10698.360000000122483208Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC27599 USA
| |
Collapse
|
57
|
Dermawan D, Kenichi Purbayanto MA. An overview of advancements in closed-loop artificial pancreas system. Heliyon 2022; 8:e11648. [PMID: 36411933 PMCID: PMC9674553 DOI: 10.1016/j.heliyon.2022.e11648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/15/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Type 1 diabetes (T1D) is one of the world's health problems with a prevalence of 1.1 million for children and young adults under the age of 20. T1D is a health problem characterized by autoimmunity and the destruction of pancreatic cells that produce insulin. The available treatment is to maintain blood glucose within the desired normal range. To meet bolus and basal requirements, T1D patients may receive multiple daily injections (MDI) of fast-acting and long-acting insulin once or twice daily. In addition, insulin pumps can deliver multiple doses a day without causing injection discomfort in individuals with T1D. T1D patients have also monitored their blood glucose levels along with insulin replacement treatment using a continuous glucose monitor (CGM). However, this CGM has some drawbacks, like the sensor needs to be replaced after being inserted under the skin for seven days and needs to be calibrated (for some CGMs). The treatments and monitoring devices mentioned creating a lot of workloads to maintain blood glucose levels in individuals with T1D. Therefore, to overcome these problems, closed-loop artificial pancreas (APD) devices are widely used to manage blood glucose in T1D patients. Closed-loop APD consists of a glucose sensor, an insulin infusion device, and a control algorithm. This study reviews the progress of closed-loop artificial pancreas systems from the perspective of device properties, uses, testing procedures, regulations, and current market conditions.
Collapse
Affiliation(s)
- Doni Dermawan
- Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | | |
Collapse
|
58
|
Tackling the challenges of developing microneedle-based electrochemical sensors. Mikrochim Acta 2022; 189:440. [DOI: 10.1007/s00604-022-05510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
|
59
|
Subcutaneously implantable electromagnetic biosensor system for continuous glucose monitoring. Sci Rep 2022; 12:17395. [PMID: 36253418 PMCID: PMC9576697 DOI: 10.1038/s41598-022-22128-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 10/10/2022] [Indexed: 01/10/2023] Open
Abstract
Continuous glucose monitoring systems (CGMS) are becoming increasingly popular in diabetes management compared to conventional methods of self-blood glucose monitoring systems. They help understanding physiological responses towards nutrition intake, physical activities in everyday life and glucose control. CGMS available in market are of two types based on their working principle. Needle type systems with few weeks lifespan (e.g., enzyme-based Freestyle Libre) and implant type system (e.g., fluorescence-based Senseonics) with few months of lifespan are commercially available. An alternate to both working methods, herein, we propose electromagnetic-based sensor that can be subcutaneously implanted and capable of tracking minute changes in dielectric permittivity owing to changes in blood glucose level (BGL). Proof-of-concept of proposed electromagnetic-based implant sensor has been validated in intravenous glucose tolerance test (IVGTT) conducted on swine and beagle in a controlled environment. Sensor interface modules, mobile applications, and glucose mapping algorithms are also developed for continuous measurement in a freely moving beagle during oral glucose tolerance test (OGTT). The results of the short-term (1 h, IVGTT) and long-term (52 h, OGTT) test are summarized in this work. A close trend is observed between sensor frequency and BGL during GTT experiments on both animal species.
Collapse
|
60
|
Hassan RYA. Advances in Electrochemical Nano-Biosensors for Biomedical and Environmental Applications: From Current Work to Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22197539. [PMID: 36236638 PMCID: PMC9573286 DOI: 10.3390/s22197539] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 05/17/2023]
Abstract
Modern life quality is strongly supported by the advances made in biosensors, which has been attributed to their crucial and viable contribution in point-of-care (POC) technology developments. POC devices are exploited for the fast tracing of disease progression, rapid analysis of water, and food quality assessment. Blood glucose meters, home pregnancy strips, and COVID-19 rapid tests all represent common examples of successful biosensors. Biosensors can provide great specificity due to the incorporation of selective bio-recognition elements and portability at significantly reduced costs. Electrochemical biosensor platforms are one of the most advantageous of these platforms because they offer many merits, such as being cheap, selective, specific, rapid, and portable. Furthermore, they can be incorporated into smartphones and various analytical approaches in order to increase their sensitivity and many other properties. As a very broad and interdisciplinary area of research and development, biosensors include all disciplines and backgrounds from materials science, chemistry, physics, medicine, microbiology/biology, and engineering. Accordingly, in this state-of-the-art article, historical background alongside the long journey of biosensing construction and development, starting from the Clark oxygen electrode until reaching highly advanced wearable stretchable biosensing devices, are discussed. Consequently, selected examples among the miscellaneous applications of nanobiosensors (such as microbial detection, cancer diagnosis, toxicity analysis, food quality-control assurance, point of care, and health prognosis) are described. Eventually, future perspectives for intelligent biosensor commercialization and exploitation in real-life that is going to be supported by machine learning and artificial intelligence (AI) are stated.
Collapse
Affiliation(s)
- Rabeay Y. A. Hassan
- Applied Organic Chemistry Department, National Research Centre Dokki, Cairo 12622, Egypt; ; Tel.: +20-11292-16152
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| |
Collapse
|
61
|
Subcutaneous amperometric biosensors for continuous glucose monitoring in diabetes. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
62
|
Todaro B, Begarani F, Sartori F, Luin S. Is Raman the best strategy towards the development of non-invasive continuous glucose monitoring devices for diabetes management? Front Chem 2022; 10:994272. [PMID: 36226124 PMCID: PMC9548653 DOI: 10.3389/fchem.2022.994272] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
Diabetes has no well-established cure; thus, its management is critical for avoiding severe health complications involving multiple organs. This requires frequent glycaemia monitoring, and the gold standards for this are fingerstick tests. During the last decades, several blood-withdrawal-free platforms have been being studied to replace this test and to improve significantly the quality of life of people with diabetes (PWD). Devices estimating glycaemia level targeting blood or biofluids such as tears, saliva, breath and sweat, are gaining attention; however, most are not reliable, user-friendly and/or cheap. Given the complexity of the topic and the rise of diabetes, a careful analysis is essential to track scientific and industrial progresses in developing diabetes management systems. Here, we summarize the emerging blood glucose level (BGL) measurement methods and report some examples of devices which have been under development in the last decades, discussing the reasons for them not reaching the market or not being really non-invasive and continuous. After discussing more in depth the history of Raman spectroscopy-based researches and devices for BGL measurements, we will examine if this technique could have the potential for the development of a user-friendly, miniaturized, non-invasive and continuous blood glucose-monitoring device, which can operate reliably, without inter-patient variability, over sustained periods.
Collapse
Affiliation(s)
- Biagio Todaro
- NEST Laboratory, Scuola Normale SuperiorePisa, Italy
- Correspondence: Biagio Todaro, ; Stefano Luin,
| | - Filippo Begarani
- P.B.L. SRL, Solignano, PR, Italy
- Omnidermal Biomedics SRL, Solignano, PR, Italy
| | - Federica Sartori
- P.B.L. SRL, Solignano, PR, Italy
- Omnidermal Biomedics SRL, Solignano, PR, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale SuperiorePisa, Italy
- NEST, Istituto Nanoscienze, CNR, Pisa, Italy
- Correspondence: Biagio Todaro, ; Stefano Luin,
| |
Collapse
|
63
|
Nanoparticle–Hydrogel Based Sensors: Synthesis and Applications. Catalysts 2022. [DOI: 10.3390/catal12101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrogels are hydrophilic three-dimensional (3D) porous polymer networks that can easily stabilize various nanoparticles. Loading noble metal nanoparticles into a 3D network of hydrogels can enhance the synergy of the components. It can also be modified to prepare intelligent materials that can recognize external stimuli. The combination of noble metal nanoparticles and hydrogels to produce modified or new composite materials has attracted considerable attention as to the use of these materials in sensors. However, there is limited review literature on nanoparticle–hydrogel-based sensors. This paper presents the detailed strategies of synthesis and design of the composites, and the latest applications of nanoparticle–hydrogel materials in the sensing field. Finally, the current challenges and future development directions of nanoparticle–hydrogel-based sensors are proposed.
Collapse
|
64
|
Lee I, Wakako T, Ikebukuro K, Sode K. In Vitro Continuous 3 Months Operation of Direct Electron Transfer Type Open Circuit Potential Based Glucose Sensor: Heralding the Next CGM Sensor. J Diabetes Sci Technol 2022; 16:1107-1113. [PMID: 35466718 PMCID: PMC9445357 DOI: 10.1177/19322968221092449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND While continuous glucose monitoring (CGM) systems allow precise and real-time blood glucose control, current electrochemicalbased CGM technologies inherently harbor enzyme instability issues. The direct electron transfer (DET) type open circuit potential (OCP) based enzyme sensing principle can minimize the catalytic turnover of the enzyme reaction, thereby providing longer-term operational stability in future CGM glucose sensors. METHOD DET-type OCP based glucose sensors were constructed using gold disk electrodes with glucose dehydrogenase capable of DET which was immobilized using a self-assembled monolayer (SAM). The single enzyme layer prepared on the gold electrode was operated in the presence of glucose, using in vitro buffer solution, continuously for over 3 months with the OCP sensor signal monitored every 10 seconds at 25°C. RESULTS The DET-type OCP glucose sensor was continuously operated for more than 3 months without a significant decrease of the sensor signal and sensitivity (slope). These results suggest that the DET-type OCP glucose sensor is far more stable than the sensor constructed based on the amperometric principle. The long-term stability of DET-type OCP glucose sensor is attributed to the enzyme's minimized catalytic reaction during the operation, thereby extending the lifetime of enzyme. CONCLUSION The DET-type OCP glucose sensor can be continuously operated for more than 3 months at 25 °C, in vitro without significant decreases in sensor signal and sensitivity. While the further investigation will be required for in vivo validation, the DET-type OCP glucose sensor is ideal for next generation CGM's, especially in long duration implantable use cases.
Collapse
Affiliation(s)
- Inyoung Lee
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Tsugawa Wakako
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- Koji Sode, PhD, Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, 10202B Mary Ellen Jones Building, Campus Box 7575, Chapel Hill, NC 27599, USA.
| |
Collapse
|
65
|
Inoue Y, Kusaka Y, Shinozaki K, Lee I, Sode K. In Vitro Evaluation of Miniaturized Amperometric Enzyme Sensor Based on the Direct Electron Transfer Principle for Continuous Glucose Monitoring. J Diabetes Sci Technol 2022; 16:1101-1106. [PMID: 34986665 PMCID: PMC9445329 DOI: 10.1177/19322968211070614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The bacterial derived flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (FADGDH) is the most promising enzyme for the third-generation principle-based enzyme sensor for continuous glucose monitoring (CGM). Due to the ability of the enzyme to transfer electrons directly to the electrode, recognized as direct electron transfer (DET)-type FADGDH, although no investigation has been reported about DET-type FADGDH employed on a miniaturized integrated electrode. METHODS The miniaturized integrated electrode was formed by sputtering gold (Au) onto a flexible film with 0.1 mm in thickness and divided into 3 parts. After an insulation layer was laminated, 3 openings for a working electrode, a counter electrode and a reference electrode were formed by dry etching. A reagent mix containing 1.2 × 10-4 Unit of DET-type FADGDH and carbon particles was deposited. The long-term stability of sensor was evaluated by continuous operation, and its performance was also evaluated in the presence of acetaminophen and the change in oxygen partial pressure (pO2) level. RESULTS The amperometric response of the sensor showed a linear response to glucose concentration up to 500 mg/dL without significant change of the response over an 11-day continuous measurement. Moreover, the effect of acetaminophen and pO2 on the response were negligible. CONCLUSIONS These results indicate the superb potential of the DET-type FADGDH-based sensor with the combination of a miniaturized integrated electrode. Thus, the described miniaturized DET-type glucose sensor for CGM will be a promising tool for effective glycemic control. This will be further investigated using an in vivo study.
Collapse
Affiliation(s)
| | | | | | - Inyoung Lee
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- Koji Sode, PhD, Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA.
| |
Collapse
|
66
|
Tătaru I, Dragostin OM, Fulga I, Boros F, Carp A, Maftei A, Zamfir CL, Nechita A. The modern pharmacological approach to diabetes: innovative methods of monitoring and insulin treatment. Expert Rev Med Devices 2022; 19:581-589. [PMID: 35962571 DOI: 10.1080/17434440.2022.2113387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Diabetes mellitus, commonly known as just diabetes, is a group of metabolic disorders characterised by a high blood sugar level over a prolonged period of time. In order to maintain this blood glucose value in normal parameters, a careful monitoring of it and insulin administration are necessary. AREAS COVERED Thus, to facilitate this procedure, new blood glucose monitoring systems have been studied. The smart lens, the nano tattoo, non-invasive sensors based on reverse ionthophoresis and glucose oxidase - based continuous blood glucose monitoring systems, are the methods described in this study. Of course, not only is blood glucose monitoring important, but also the lifestyle of a drug or the way a drug is administered, especially in the cae of insulin. How insulin is administered is also a topic that we address in this article. In an attempt to promote compliance with the administration, we have discussed about new forms of administering insulin such as: oral, intranasal, administration on the oral mucosa and last but not least, transdermal administration. EXPERT OPINION Further, the attention of specialists should be directed to devices based on sensors, with a role in the interruption of insulin administration, in case of detection of hypoglycemia or the additional dose of insulin, if hyperglycemia is detected.
Collapse
Affiliation(s)
- Iulian Tătaru
- Faculty of Medicine, Department of Histology, University of Medicine and Pharmacy Grigore T. Popa, , 16 Universitatii Str 700115, Iasi, Romania
| | - Oana M Dragostin
- Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, Research Centre in the Medical-Pharmaceutical Field, 47 Domneasca Str, Galati, Romania
| | - Iuliu Fulga
- Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, Research Centre in the Medical-Pharmaceutical Field, 47 Domneasca Str, Galati, Romania
| | - Florentina Boros
- Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, Research Centre in the Medical-Pharmaceutical Field, 47 Domneasca Str, Galati, Romania
| | - Adelina Carp
- Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, Research Centre in the Medical-Pharmaceutical Field, 47 Domneasca Str, Galati, Romania
| | - Ariadna Maftei
- Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, Research Centre in the Medical-Pharmaceutical Field, 47 Domneasca Str, Galati, Romania
| | - Carmen L Zamfir
- Faculty of Medicine, Department of Histology, University of Medicine and Pharmacy Grigore T. Popa, , 16 Universitatii Str 700115, Iasi, Romania
| | - Aurel Nechita
- Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, Research Centre in the Medical-Pharmaceutical Field, 47 Domneasca Str, Galati, Romania
| |
Collapse
|
67
|
Estrada-Osorio D, Escalona-Villalpando RA, Gutiérrez A, Arriaga L, Ledesma-García J. Poly-L-lysine-modified with ferrocene to obtain a redox polymer for mediated glucose biosensor application. Bioelectrochemistry 2022; 146:108147. [DOI: 10.1016/j.bioelechem.2022.108147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022]
|
68
|
Jahromi R, Zahed K, Sasangohar F, Erraguntla M, Mehta R, Qaraqe K. Hypoglycemia Detection Using Hand Tremors: A Home Study in Patients with Type 1 Diabetes (Preprint). JMIR Diabetes 2022; 8:e40990. [PMID: 37074783 PMCID: PMC10157461 DOI: 10.2196/40990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/26/2023] [Accepted: 02/20/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Diabetes affects millions of people worldwide and is steadily increasing. A serious condition associated with diabetes is low glucose levels (hypoglycemia). Monitoring blood glucose is usually performed by invasive methods or intrusive devices, and these devices are currently not available to all patients with diabetes. Hand tremor is a significant symptom of hypoglycemia, as nerves and muscles are powered by blood sugar. However, to our knowledge, no validated tools or algorithms exist to monitor and detect hypoglycemic events via hand tremors. OBJECTIVE In this paper, we propose a noninvasive method to detect hypoglycemic events based on hand tremors using accelerometer data. METHODS We analyzed triaxial accelerometer data from a smart watch recorded from 33 patients with type 1 diabetes for 1 month. Time and frequency domain features were extracted from acceleration signals to explore different machine learning models to classify and differentiate between hypoglycemic and nonhypoglycemic states. RESULTS The mean duration of the hypoglycemic state was 27.31 (SD 5.15) minutes per day for each patient. On average, patients had 1.06 (SD 0.77) hypoglycemic events per day. The ensemble learning model based on random forest, support vector machines, and k-nearest neighbors had the best performance, with a precision of 81.5% and a recall of 78.6%. The results were validated using continuous glucose monitor readings as ground truth. CONCLUSIONS Our results indicate that the proposed approach can be a potential tool to detect hypoglycemia and can serve as a proactive, nonintrusive alert mechanism for hypoglycemic events.
Collapse
Affiliation(s)
- Reza Jahromi
- Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, United States
| | - Karim Zahed
- Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
| | - Farzan Sasangohar
- Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
- Center for Critical Care, Houston Methodist Hospital, Houston, TX, United States
| | - Madhav Erraguntla
- Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
| | - Ranjana Mehta
- Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
| | | |
Collapse
|
69
|
Xu NY, Nguyen KT, DuBord AY, Pickup J, Sherr JL, Teymourian H, Cengiz E, Ginsberg BH, Cobelli C, Ahn D, Bellazzi R, Bequette BW, Gandrud Pickett L, Parks L, Spanakis EK, Masharani U, Akturk HK, Melish JS, Kim S, Kang GE, Klonoff DC. Diabetes Technology Meeting 2021. J Diabetes Sci Technol 2022; 16:1016-1056. [PMID: 35499170 PMCID: PMC9264449 DOI: 10.1177/19322968221090279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diabetes Technology Society hosted its annual Diabetes Technology Meeting on November 4 to November 6, 2021. This meeting brought together speakers to discuss various developments within the field of diabetes technology. Meeting topics included blood glucose monitoring, continuous glucose monitoring, novel sensors, direct-to-consumer telehealth, metrics for glycemia, software for diabetes, regulation of diabetes technology, diabetes data science, artificial pancreas, novel insulins, insulin delivery, skin trauma, metabesity, precision diabetes, diversity in diabetes technology, use of diabetes technology in pregnancy, and green diabetes. A live demonstration on a mobile app to monitor diabetic foot wounds was presented.
Collapse
Affiliation(s)
- Nicole Y. Xu
- Diabetes Technology Society,
Burlingame, CA, USA
| | | | | | | | | | | | - Eda Cengiz
- University of California, San
Francisco, San Francisco, CA, USA
| | | | | | - David Ahn
- Mary & Dick Allen Diabetes Center
at Hoag, Newport Beach, CA, USA
| | | | | | | | - Linda Parks
- University of California, San
Francisco, San Francisco, CA, USA
| | - Elias K. Spanakis
- Baltimore VA Medical Center,
Baltimore, MD, USA
- University of Maryland, Baltimore,
MD, USA
| | - Umesh Masharani
- University of California, San
Francisco, San Francisco, CA, USA
| | - Halis K. Akturk
- Barbara Davis Center for Diabetes,
University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Sarah Kim
- University of California, San
Francisco, San Francisco, CA, USA
| | - Gu Eon Kang
- The University of Texas at Dallas,
Richardson, TX, USA
| | - David C. Klonoff
- Diabetes Research Institute,
Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
70
|
The development of micro-sized enzyme sensor based on direct electron transfer type open circuit potential sensing principle. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
71
|
Liao Y, Du Q, Sun S, Shi N, Yin G, Huang Z, Liao X. Quasi-aligned Cu 2S/Cu(OH) 2nanorod arrays anchored on Cu foam as self-supported electrode for non-enzymatic glucose detection. NANOTECHNOLOGY 2022; 33:385501. [PMID: 35667364 DOI: 10.1088/1361-6528/ac75f7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Self-supported Cu2S/Cu(OH)2composite nanorods for highly sensitive non-enzymatic glucose sensing werein situgrown on Cu foam by simple hydrothermal treatment of aligned Cu(OH)2nanorods. The physicochemical and electrochemical properties of the as-fabricated Cu2S/Cu(OH)2composite nanorods were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Raman spectroscope, x-ray photoelectron spectroscope, cyclic voltammetry, electrochemical impedance spectroscopy, amperometrici-tmeasurements. The mechanism of the composite nanorods produced on conductive substrates was also explored. The electrode exhibits a sensitivity of 9626.88μA mM-1cm-2towards glucose with good anti-interference ability, indicating it a promising electrode material for the enhanced non-enzymatic glucose detection.
Collapse
Affiliation(s)
- Yanxin Liao
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Qian Du
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Shupei Sun
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Nianfeng Shi
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| |
Collapse
|
72
|
Sol–gel-assisted synthesis of PVPO-TiO2 nanocomposites extended to bifunctionality as efficient electrode for enzymeless D-( +)-glucose sensing and antimicrobial potential. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05216-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
73
|
Alhaddad AY, Aly H, Gad H, Al-Ali A, Sadasivuni KK, Cabibihan JJ, Malik RA. Sense and Learn: Recent Advances in Wearable Sensing and Machine Learning for Blood Glucose Monitoring and Trend-Detection. Front Bioeng Biotechnol 2022; 10:876672. [PMID: 35646863 PMCID: PMC9135106 DOI: 10.3389/fbioe.2022.876672] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is characterized by elevated blood glucose levels, however patients with diabetes may also develop hypoglycemia due to treatment. There is an increasing demand for non-invasive blood glucose monitoring and trends detection amongst people with diabetes and healthy individuals, especially athletes. Wearable devices and non-invasive sensors for blood glucose monitoring have witnessed considerable advances. This review is an update on recent contributions utilizing novel sensing technologies over the past five years which include electrocardiogram, electromagnetic, bioimpedance, photoplethysmography, and acceleration measures as well as bodily fluid glucose sensors to monitor glucose and trend detection. We also review methods that use machine learning algorithms to predict blood glucose trends, especially for high risk events such as hypoglycemia. Convolutional and recurrent neural networks, support vector machines, and decision trees are examples of such machine learning algorithms. Finally, we address the key limitations and challenges of these studies and provide recommendations for future work.
Collapse
Affiliation(s)
- Ahmad Yaser Alhaddad
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| | - Hussein Aly
- KINDI Center for Computing Research, Qatar University, Doha, Qatar
| | - Hoda Gad
- Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Abdulaziz Al-Ali
- KINDI Center for Computing Research, Qatar University, Doha, Qatar
| | | | - John-John Cabibihan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| | | |
Collapse
|
74
|
An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat Biomed Eng 2022; 6:1214-1224. [PMID: 35534575 DOI: 10.1038/s41551-022-00887-1] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022]
Abstract
Implementations of wearable microneedle-based arrays of sensors for the monitoring of multiple biomarkers in interstitial fluid have lacked system integration and evidence of robust analytical performance. Here we report the development and testing of a fully integrated wearable array of microneedles for the wireless and continuous real-time sensing of two metabolites (lactate and glucose, or alcohol and glucose) in the interstitial fluid of volunteers performing common daily activities. The device works with a custom smartphone app for data capture and visualization, comprises reusable electronics and a disposable microneedle array, and is optimized for system integration, cost-effective fabrication via advanced micromachining, easier assembly, biocompatibility, pain-free skin penetration and enhanced sensitivity. Single-analyte and dual-analyte measurements correlated well with the corresponding gold-standard measurements in blood or breath. Further validation of the technology in large populations with concurrent validation of sensor readouts through centralized laboratory tests should determine the robustness and utility of real-time simultaneous monitoring of several biomarkers in interstitial fluid.
Collapse
|
75
|
Zamani M, Furst AL. Electricity, chemistry and biomarkers: an elegant and simple package: The potential of electrochemical biosensors for developing novel point-of-care diagnostics: The potential of electrochemical biosensors for developing novel point-of-care diagnostics. EMBO Rep 2022; 23:e55096. [PMID: 35446476 PMCID: PMC9066060 DOI: 10.15252/embr.202255096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 12/23/2022] Open
Abstract
Electrochemical sensors to measure biomarkers from complex samples are a tried and tested technology with large untapped potential for addressing important public health needs.
Collapse
Affiliation(s)
- Marjon Zamani
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Ariel L Furst
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
76
|
Wang H, Zhou Y, Wang Y, Cai T, Hu Y, Jing T, Ding B, Su X, Li H, Ma J. Basal Insulin Reduces Glucose Variability and Hypoglycaemia Compared to Premixed Insulin in Type 2 Diabetes Patients: A Study Based on Continuous Glucose Monitoring Systems. Front Endocrinol (Lausanne) 2022; 13:791439. [PMID: 35574003 PMCID: PMC9092280 DOI: 10.3389/fendo.2022.791439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Aims To examine the glycaemic variability and safety of basal and premixed insulin by using continuous glucose monitoring (CGM) systems. Methods 393 patients with type 2 diabetes mellitus (T2DM) treated with basal or premixed insulin for more than 3 months were enrolled. Patients were classified into a basal insulin group or premixed insulin group according to their insulin regimens. CGMs were used for 72 h with their previous hypoglycaemic regimen unchanged. The following glycaemic parameters were calculated for each 24 h using CGM data. Results Despite similar HbA1c and fasting C-peptide concentrations, glycaemic variability (GV), including the mean amplitude of glycaemic excursion (MAGE), standard deviation (SD) and coefficient of variation (CV), and the time below range (TBR) were significantly lower in the basal insulin group than these in the premixed insulin group. Night-time hypoglycaemia was lower in the basal insulin group than that in the premixed insulin group (p<0.01). Among participants with haemoglobin A1c (HbA1c) < 7%, the GV and TBR were higher in the premixed insulin group than that in the basal insulin group. Conclusion Compared with basal insulin, the patients who use premixed insulin had higher GV, smaller TIR and an increased incidence of hypoglycaemia. For patients who use premixed insulin and with HbA1c < 7%, more attention needs to be given to hypoglycaemic events and asymptomatic hypoglycaemia. Clinical Trial Registration ClinicalTrials.gov, identifier NCT03566472.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huiqin Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
77
|
Moscardó V, Garcia A, Bondia J, Diaz J, Ramos-Prol A, Rossetti P. Effect of Ethanol Consumption on the Accuracy of a Glucose Oxidase-Based Subcutaneous Glucose Sensor in Subjects with Type 1 Diabetes. SENSORS (BASEL, SWITZERLAND) 2022; 22:3101. [PMID: 35590791 PMCID: PMC9104985 DOI: 10.3390/s22093101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Continuous glucose monitors (CGM) have improved the management of patients with type 1 diabetes (T1D), with glucose oxidase (GOx)-based sensors being the most used. However, they are potentially subject to both electrochemical and enzymatic interferences, including those related to changes of pH. The objective of this study is to investigate the effect of ethanol, given as beer along with a mixed meal, on the accuracy of a commercial GOx-CGM. Data from 12 T1D participants in a randomized crossover trial to evaluate the effect of meal composition and alcohol consumption on postprandial glucose concentration were used. Absolute error (AE) and mean absolute relative difference (MARD) were calculated. The differences between the alcohol and nonalcohol scenarios were assessed using the Mann−Whitney U and Wilcoxon signed-rank tests. The AE in the alcohol study was low, but significantly greater as compared to the study without alcohol (p-value = 0.0418). The MARD was numerically but not significantly greater. However, both variables were greater at pH < 7.36 and significantly affected by time only in the alcohol arm. In T1D, alcohol consumption affects the accuracy of a GOx-CGM. This effect could be at least partially related to the ethanol-induced changes in pH.
Collapse
Affiliation(s)
- Vanessa Moscardó
- Facultad de Ciencia y Tecnología, Universidad Internacional de Valencia, 46002 Valencia, Spain
| | - Alia Garcia
- Department of Endocrinology, University Hospital of La Ribera, 46600 Alzira, Spain;
| | - Jorge Bondia
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, 46022 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)—Grupo CB17/08/00004, Instituto de Salud Carlos III, 41092 Madrid, Spain;
| | - Julián Diaz
- Hospital Francesc de Borja, 46702 Gandia, Spain; (J.D.); (A.R.-P.)
| | | | - Paolo Rossetti
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)—Grupo CB17/08/00004, Instituto de Salud Carlos III, 41092 Madrid, Spain;
- Department of Endocrinology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| |
Collapse
|
78
|
Kim YJ, Chinnadayyala SR, Le HTN, Cho S. Sensitive Electrochemical Non-Enzymatic Detection of Glucose Based on Wireless Data Transmission. SENSORS (BASEL, SWITZERLAND) 2022; 22:2787. [PMID: 35408401 PMCID: PMC9003393 DOI: 10.3390/s22072787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022]
Abstract
Miniaturization and wireless continuous glucose monitoring are key factors for the successful management of diabetes. Electrochemical sensors are very versatile and can be easily miniaturized for wireless glucose monitoring. The authors report a microneedle-based enzyme-free electrochemical wireless sensor for painless and continuous glucose monitoring. The microneedles (MNs) fabricated consist of a 3 × 5 sharp and stainless-steel electrode array configuration. Each MN in the 3 × 5 array has 575 µm × 150 µm in height and width, respectively. A glucose-catalyzing layer, porous platinum black, was electrochemically deposited on the tips of the MNs by applying a fixed cathodic current of 2.5 mA cm-2 for a period of 200 s. For the non-interference glucose sensing, the platinum (Pt)-black-coated MN was carefully packaged into a biocompatible ionomer, nafion. The surface morphologies of the bare and modified MNs were studied using field-emission scanning electron microscopy (FESEM) and energy-dispersive X-ray analysis (EDX). The wireless glucose sensor displayed a broad linear range of glucose (1→30 mM), a good sensitivity and higher detection limit of 145.33 μA mM-1 cm-2 and 480 μM, respectively, with bare AuMN as a counter electrode. However, the wireless device showed an improved sensitivity and enhanced detection limit of 445.75, 165.83 μA mM-1 cm-2 and 268 μM, respectively, with the Pt-black-modified MN as a counter electrode. The sensor also exhibited a very good response time (2 s) and a limited interference effect on the detection of glucose in the presence of other electroactive oxidizing species, indicating a very fast and interference-free chronoamperometric response.
Collapse
Affiliation(s)
- Young-Joon Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea
| | - Somasekhar R Chinnadayyala
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hien T Ngoc Le
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea
- Gachon Advanced Institute for Health Science & Technology, Gachon University, 155 Gaetbeol-ro, Incheon 21999, Korea
| |
Collapse
|
79
|
Ouyang Y, Zheng X, Li Q, Ye N, Mo G. ZIFs derived polyhedron with cobalt oxide nanoparticles as novel nanozyme for the biomimetic catalytic oxidation of glucose and non-enzymatic sensor. Anal Chim Acta 2022; 1209:339839. [DOI: 10.1016/j.aca.2022.339839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 01/04/2023]
|
80
|
Continuous Glucose Monitoring System Based on Percutaneous Microneedle Array. MICROMACHINES 2022; 13:mi13030478. [PMID: 35334773 PMCID: PMC8949222 DOI: 10.3390/mi13030478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
A continuous blood glucose monitoring system (CGMS) which include a microneedle-array blood glucose sensor, a circuit module, and a transmission module placed in a wearable device is developed in this research. When in use, the wearable device is attached to the human body with the microneedle array inserted under the skin for continuous blood glucose sensing, and the measured signals are transmitted wirelessly to a mobile phone or computer for analysis. The purpose of this study is to replace the conventionally used method of puncture for blood collection and test strips are used to measure the blood glucose signals. The microneedle sensor of this CGMS uses a 1 mm length needle in a 3 mm × 3 mm microneedle array for percutaneous minimally invasive blood glucose measurement. This size of microneedle does not cause bleeding damage to the body when used. The microneedle sensor is placed under the skin and their solutions are discussed. The blood glucose sensor measured the in vitro simulant fluid with a glucose concentration range of 50~400 mg/dL. In addition, a micro-transfer method is developed to accurately deposit the enzyme onto the tip of the microneedle, after which cyclic voltammetry (CV) is used to measure the glucose simulation solution to verify whether the difference in the amount of enzyme on each microneedle is less than 10%. Finally, various experiments and analyses are carried out to reduce the size of the device, test effective durability (approximately 7 days), and the feasibility of minimally invasive CGMS is evaluated by tests on two persons.
Collapse
|
81
|
Tummalapalli M, Singh S, Sanwaria S, Gurave PM. Design and development of advanced glucose biosensors via tuned interactions between marine polysaccharides and diagnostic elements – A survey. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
82
|
Tinikul R, Trisrivirat D, Chinantuya W, Wongnate T, Watthaisong P, Phonbuppha J, Chaiyen P. Detection of cellular metabolites by redox enzymatic cascades. Biotechnol J 2022; 17:e2100466. [PMID: 35192744 DOI: 10.1002/biot.202100466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Abstract
Detection of cellular metabolites that are disease biomarkers is important for human healthcare monitoring and assessing prognosis and therapeutic response. Accurate and rapid detection of microbial metabolites and pathway intermediates is also crucial for the process optimization required for development of bioconversion methods using metabolically engineered cells. Various redox enzymes can generate electrons that can be employed in enzyme-based biosensors and in the detection of cellular metabolites. These reactions can directly transform target compounds into various readout signals. By incorporating engineered enzymes into enzymatic cascades, the readout signals can be improved in terms of accuracy and sensitivity. This review critically discusses selected redox enzymatic and chemoenzymatic cascades currently employed for detection of human- and microbe-related cellular metabolites including, amino acids, d-glucose, inorganic ions (pyrophosphate, phosphate, and sulfate), nitro- and halogenated phenols, NAD(P)H, fatty acids, fatty aldehyde, alkane, short chain acids, and cellular metabolites.
Collapse
Affiliation(s)
- Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Duangthip Trisrivirat
- Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, School of Biomolecular Science and Engineering, Rayong, Thailand
| | - Wachirawit Chinantuya
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thanyaporn Wongnate
- Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, School of Biomolecular Science and Engineering, Rayong, Thailand
| | - Pratchaya Watthaisong
- Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, School of Biomolecular Science and Engineering, Rayong, Thailand
| | - Jittima Phonbuppha
- Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, School of Biomolecular Science and Engineering, Rayong, Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, School of Biomolecular Science and Engineering, Rayong, Thailand
| |
Collapse
|
83
|
Continuous Lactate Monitoring System Based on Percutaneous Microneedle Array. SENSORS 2022; 22:s22041468. [PMID: 35214368 PMCID: PMC8874548 DOI: 10.3390/s22041468] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
Abstract
Lactate measurement is important in the fields of sports and medicine. Lactate accumulation can seriously affect an athlete’s performance. The most common problem caused by lactate accumulation in athletes is muscle soreness due to excessive exercise. Moreover, from a medical viewpoint, lactate is one of the main prognostic factors of sepsis. Currently, blood sampling is the most common approach to lactate measurement for lactate sensing, and continuous measurement is not available. In this study, a low-cost continuous lactate monitoring system (CLMS) is developed based on a percutaneous microneedle array that uses a three-electrode lactate sensor. The working electrode has an area of 10 mm × 6 mm, including a 3 × 3 array of stainless-steel microneedles. The length, width, and thickness of each needle are 1 mm, 0.44 mm, and 0.03 mm, respectively. The working electrode is then plated with gold, polyaniline, lactate enzyme, Nafion, and Poly(2-hydroxyethyl methacrylate) (poly HEMA). The reference electrode is a 2 × 1 array covered with AgCl, and the counter electrode is a 2 × 1 array plated with gold. The sensor is incorporated into the CLMS and connected to a smartphone application and the cloud. The CLMS was tested on 40 human subjects who rode indoor bicycles, starting at 100 W and increasing in steps of 25 W at intervals of 5 min until exhaustion. The data acquired from the app connected to the CLMS were analyzed to determine the subjects’ lactate response to exercise and the feasibility of assessing exercise performance and training exercise intensity by using the proposed system.
Collapse
|
84
|
Lasserre P, Balansethupathy B, Vezza VJ, Butterworth A, Macdonald A, Blair EO, McAteer L, Hannah S, Ward AC, Hoskisson PA, Longmuir A, Setford S, Farmer ECW, Murphy ME, Flynn H, Corrigan DK. SARS-CoV-2 Aptasensors Based on Electrochemical Impedance Spectroscopy and Low-Cost Gold Electrode Substrates. Anal Chem 2022; 94:2126-2133. [PMID: 35043638 PMCID: PMC8790822 DOI: 10.1021/acs.analchem.1c04456] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 diagnostic practices broadly involve either quantitative polymerase chain reaction (qPCR)-based nucleic amplification of viral sequences or antigen-based tests such as lateral flow assays (LFAs). Reverse transcriptase-qPCR can detect viral RNA and is the gold standard for sensitivity. However, the technique is time-consuming and requires expensive laboratory infrastructure and trained staff. LFAs are lower in cost and near real time, and because they are antigen-based, they have the potential to provide a more accurate indication of a disease state. However, LFAs are reported to have low real-world sensitivity and in most cases are only qualitative. Here, an antigen-based electrochemical aptamer sensor is presented, which has the potential to address some of these shortfalls. An aptamer, raised to the SARS-CoV-2 spike protein, was immobilized on a low-cost gold-coated polyester substrate adapted from the blood glucose testing industry. Clinically relevant detection levels for SARS-CoV-2 are achieved in a simple, label-free measurement format using sample incubation times as short as 15 min on nasopharyngeal swab samples. This assay can readily be optimized for mass manufacture and is compatible with a low-cost meter.
Collapse
Affiliation(s)
- Perrine Lasserre
- Department
of Biomedical Engineering, University of
Strathclyde, 106 Rottenrow East, Glasgow G4 0NW, U.K.
| | | | - Vincent J. Vezza
- Department
of Biomedical Engineering, University of
Strathclyde, 106 Rottenrow East, Glasgow G4 0NW, U.K.
| | - Adrian Butterworth
- Department
of Biomedical Engineering, University of
Strathclyde, 106 Rottenrow East, Glasgow G4 0NW, U.K.
| | - Alexander Macdonald
- Department
of Biomedical Engineering, University of
Strathclyde, 106 Rottenrow East, Glasgow G4 0NW, U.K.
| | - Ewen O. Blair
- Department
of Biomedical Engineering, University of
Strathclyde, 106 Rottenrow East, Glasgow G4 0NW, U.K.
| | - Liam McAteer
- Department
of Biomedical Engineering, University of
Strathclyde, 106 Rottenrow East, Glasgow G4 0NW, U.K.
| | - Stuart Hannah
- Department
of Biomedical Engineering, University of
Strathclyde, 106 Rottenrow East, Glasgow G4 0NW, U.K.
| | - Andrew C. Ward
- Department
of Civil and Environmental Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, U.K.
| | - Paul A. Hoskisson
- Strathclyde
Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.
| | - Alistair Longmuir
- LifeScan
Scotland Ltd, Beechwood Park North, Inverness IV2 3ED, U.K.
| | - Steven Setford
- LifeScan
Scotland Ltd, Beechwood Park North, Inverness IV2 3ED, U.K.
| | - Eoghan C. W. Farmer
- NHS GGC,
Department of Microbiology, Glasgow Royal
Infirmary, NEW Lister Building, Glasgow G31 2ER, United Kingdom
| | - Michael E. Murphy
- NHS GGC,
Department of Microbiology, Glasgow Royal
Infirmary, NEW Lister Building, Glasgow G31 2ER, United Kingdom
- School
of Medicine, Dentistry & Nursing, College of Medical Veterinary
& Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Harriet Flynn
- Aptamer
Group, Suite 2.78−2.91,
Bio Centre, Innovation Way, Heslington, York YO10 5NY, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral
Street, Glasgow, G1 1XL, United Kingdom
| | - Damion K. Corrigan
- Department
of Biomedical Engineering, University of
Strathclyde, 106 Rottenrow East, Glasgow G4 0NW, U.K.
| |
Collapse
|
85
|
Liu J, Fang X, Zhang Z, Liu Z, Liu J, Sun K, Yuan Z, Yu J, Chiu DT, Wu C. Long-Term In Vivo Glucose Monitoring by Polymer-Dot Transducer in an Injectable Hydrogel Implant. Anal Chem 2022; 94:2195-2203. [PMID: 35034435 DOI: 10.1021/acs.analchem.1c04730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Optical sensors have attracted a great deal of interest for glucose detection. However, their practical applications for continuous glucose monitoring are still constrained by operational reliability in subcutaneous tissues. Here, we show an implantable hydrogel platform embedded with luminescent polymer dots (Pdots) for sensitive and long-term glucose monitoring. We use Pdot transducer in a polyacrylamide hydrogel matrix to construct an implantable platform. The hydrogel-Pdot transducer showed bright luminescence with ratiometric response to glucose changes. The in vitro and in vivo sensitivities of the hydrogel implant were enhanced by varying the enzyme concentration and injection volume. After implantation, the hydrogel with Pdot transducer remained at the implanted site without migration for 1 month and can be removed from the subcutaneous tissue for further analysis. Our results indicate that the hydrogel-Pdot platform maintains the intrinsic sensing property with excellent stability during 1 month implantation, while fibrous capsule formation on the implant in some cases needs to be solved for long-term continuous glucose monitoring.
Collapse
Affiliation(s)
- Jing Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.,Faculty of Health Science, University of Macau, Taipa, Macau SAR 999078, China
| | - Xiaofeng Fang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Zhe Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Zhihe Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jie Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Kai Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Zhen Yuan
- Faculty of Health Science, University of Macau, Taipa, Macau SAR 999078, China
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Daniel T Chiu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
86
|
Xue Y, Thalmayer AS, Zeising S, Fischer G, Lübke M. Commercial and Scientific Solutions for Blood Glucose Monitoring-A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:425. [PMID: 35062385 PMCID: PMC8780031 DOI: 10.3390/s22020425] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/25/2022]
Abstract
Diabetes is a chronic and, according to the state of the art, an incurable disease. Therefore, to treat diabetes, regular blood glucose monitoring is crucial since it is mandatory to mitigate the risk and incidence of hyperglycemia and hypoglycemia. Nowadays, it is common to use blood glucose meters or continuous glucose monitoring via stinging the skin, which is classified as invasive monitoring. In recent decades, non-invasive monitoring has been regarded as a dominant research field. In this paper, electrochemical and electromagnetic non-invasive blood glucose monitoring approaches will be discussed. Thereby, scientific sensor systems are compared to commercial devices by validating the sensor principle and investigating their performance utilizing the Clarke error grid. Additionally, the opportunities to enhance the overall accuracy and stability of non-invasive glucose sensing and even predict blood glucose development to avoid hyperglycemia and hypoglycemia using post-processing and sensor fusion are presented. Overall, the scientific approaches show a comparable accuracy in the Clarke error grid to that of the commercial ones. However, they are in different stages of development and, therefore, need improvement regarding parameter optimization, temperature dependency, or testing with blood under real conditions. Moreover, the size of scientific sensing solutions must be further reduced for a wearable monitoring system.
Collapse
Affiliation(s)
| | | | | | - Georg Fischer
- Institute for Electronics Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 9, 91058 Erlangen, Germany; (Y.X.); (A.S.T.); (S.Z.)
| | - Maximilian Lübke
- Institute for Electronics Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 9, 91058 Erlangen, Germany; (Y.X.); (A.S.T.); (S.Z.)
| |
Collapse
|
87
|
Yong G, Jing Q, Yao Q, Yang K, Ye X. Changing Meal Sequence Affects Glucose Excursions in Gestational Diabetes Mellitus. J Diabetes Res 2022; 2022:7083106. [PMID: 35915720 PMCID: PMC9338731 DOI: 10.1155/2022/7083106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Studies on nutrient sequences during meals suggest that consuming carbohydrates last lowers postprandial glucose excursions more than consuming carbohydrates first. However, this phenomenon has not been studied in gestational diabetes mellitus (GDM). Ten women with GDM consumed the same caloric foods in different sequences over five successive days: (A) dish first, followed by carbohydrate and soup last; (B) carbohydrate first, followed by dish and soup last; (C) soup first, followed by dish and carbohydrate last; (D) three meals a day ad libitum; and (E) six meals a day as ad libitum. Continuous glucose monitoring (CGM) was used to assess diurnal glycemia. Decreases in mean glucose levels and the largest glucose levels in A were similar to group C. The peak glucose of breakfast and lunch in group B was more significant than in groups A and C. The B meal pattern showed more marked glycemic excursions than groups A and C. Increasing the number of meals reduced the peak glucose level and the glycemic excursions with the same total calories. Changing meal sequences or increasing the number of meals may reduce glycemic excursions in GDM. Our trial was registered retrospectively and the trial registration number is ChiCTR2200057044.
Collapse
Affiliation(s)
- Guangjin Yong
- Department of Endocrinology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Qian Jing
- Department of Endocrinology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Qing Yao
- Department of Endocrinology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Kechun Yang
- Department of Endocrinology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Xinhua Ye
- Department of Endocrinology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
88
|
Zhu R, Zhao Z, Cao J, Li H, Ma L, Zhou K, Yu Z, Wei Q. Effect of Pt-Ni deposition sequence on the bimetal-modified boron-doped diamond on catalytic performance for glucose oxidation in neutral media. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
89
|
Zhu J, Zhou Y, Huang J, Zhou A, Chen Z. Noninvasive Blood Glucose Concentration Measurement Based on Conservation of Energy Metabolism and Machine Learning. SENSORS 2021; 21:s21216989. [PMID: 34770294 PMCID: PMC8588061 DOI: 10.3390/s21216989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Blood glucose (BG) concentration monitoring is essential for controlling complications arising from diabetes, as well as digital management of the disease. At present, finger-prick glucometers are widely used to measure BG concentrations. In consideration of the challenges of invasive BG concentration measurements involving pain, risk of infection, expense, and inconvenience, we propose a noninvasive BG concentration detection method based on the conservation of energy metabolism. In this study, a multisensor integrated detection probe was designed and manufactured by 3D-printing technology to be worn on the wrist. Two machine-learning algorithms were also applied to establish the regression model for predicting BG concentrations. The results showed that the back-propagation neural network model produced better performance than the multivariate polynomial regression model, with a mean absolute relative difference and correlation coefficient of 5.453% and 0.936, respectively. Here, about 98.413% of the predicted values were within zone A of the Clarke error grid. The above results proved the potential of our method and device for noninvasive glucose concentration detection from the human wrist.
Collapse
Affiliation(s)
- Jianming Zhu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; (J.Z.); (Y.Z.); (A.Z.)
| | - Yu Zhou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; (J.Z.); (Y.Z.); (A.Z.)
| | - Junxiang Huang
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China;
| | - Aojie Zhou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; (J.Z.); (Y.Z.); (A.Z.)
| | - Zhencheng Chen
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China;
- Correspondence:
| |
Collapse
|
90
|
Alvarado-Ramírez L, Rostro-Alanis M, Rodríguez-Rodríguez J, Sosa-Hernández JE, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Enzyme (Single and Multiple) and Nanozyme Biosensors: Recent Developments and Their Novel Applications in the Water-Food-Health Nexus. BIOSENSORS 2021; 11:410. [PMID: 34821626 PMCID: PMC8615953 DOI: 10.3390/bios11110410] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023]
Abstract
The use of sensors in critical areas for human development such as water, food, and health has increased in recent decades. When the sensor uses biological recognition, it is known as a biosensor. Nowadays, the development of biosensors has been increased due to the need for reliable, fast, and sensitive techniques for the detection of multiple analytes. In recent years, with the advancement in nanotechnology within biocatalysis, enzyme-based biosensors have been emerging as reliable, sensitive, and selectively tools. A wide variety of enzyme biosensors has been developed by detecting multiple analytes. In this way, together with technological advances in areas such as biotechnology and materials sciences, different modalities of biosensors have been developed, such as bi-enzymatic biosensors and nanozyme biosensors. Furthermore, the use of more than one enzyme within the same detection system leads to bi-enzymatic biosensors or multi-enzyme sensors. The development and synthesis of new materials with enzyme-like properties have been growing, giving rise to nanozymes, considered a promising tool in the biosensor field due to their multiple advantages. In this review, general views and a comparison describing the advantages and disadvantages of each enzyme-based biosensor modality, their possible trends and the principal reported applications will be presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (L.A.-R.); (M.R.-A.); (J.R.-R.); (J.E.S.-H.); (E.M.M.-M.); (H.M.N.I.)
| |
Collapse
|
91
|
Ghaffari R, Yang DS, Kim J, Mansour A, Wright JA, Model JB, Wright DE, Rogers JA, Ray TR. State of Sweat: Emerging Wearable Systems for Real-Time, Noninvasive Sweat Sensing and Analytics. ACS Sens 2021; 6:2787-2801. [PMID: 34351759 DOI: 10.1021/acssensors.1c01133] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin-interfaced wearable systems with integrated colorimetric assays, microfluidic channels, and electrochemical sensors offer powerful capabilities for noninvasive, real-time sweat analysis. This Perspective details recent progress in the development and translation of novel wearable sensors for personalized assessment of sweat dynamics and biomarkers, with precise sampling and real-time analysis. Sensor accuracy, system ruggedness, and large-scale deployment in remote environments represent key opportunity areas, enabling broad deployment in the context of field studies, clinical trials, and recent commercialization. On-body measurements in these contexts show good agreement compared to conventional laboratory-based sweat analysis approaches. These device demonstrations highlight the utility of biochemical sensing platforms for personalized assessment of performance, wellness, and health across a broad range of applications.
Collapse
Affiliation(s)
- Roozbeh Ghaffari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60202, United States
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
| | - Da Som Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
| | - Joohee Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
| | - Amer Mansour
- Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637, United States
| | - John A. Wright
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
| | - Jeffrey B. Model
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
| | - Donald E. Wright
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60202, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60202, United States
- Epicore Biosystems, Inc., Cambridge, Massachusetts 02139, United States
- Departments of Materials Science and Engineering, Mechanical Engineering, Electrical and Computer Engineering, and Chemistry, Northwestern University, Evanston, Illinois 60202, United States
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Tyler R. Ray
- Department of Mechanical Engineering, University of Hawai’i at Ma̅noa, Honolulu, Hawaii 96822, United States
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai’i at Ma̅noa, Honolulu, Hawaii 96813, United States
| |
Collapse
|
92
|
Svigelj R, Dossi N, Grazioli C, Toniolo R. Deep Eutectic Solvents (DESs) and Their Application in Biosensor Development. SENSORS (BASEL, SWITZERLAND) 2021; 21:4263. [PMID: 34206344 PMCID: PMC8271379 DOI: 10.3390/s21134263] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/29/2022]
Abstract
Deep Eutectic Solvents (DESs) are a new class of solvents characterized by a remarkable decrease in melting point compared to those of the starting components. The eutectic mixtures can be simply prepared by mixing a Hydrogen Bond Acceptor (HBA) with a Hydrogen Bond Donor (HBD) at a temperature of about 80 °C. They have found applications in different research fields; for instance, they have been employed in organic synthesis, electrochemistry, and bio-catalysis, showing improved biodegradability and lower toxicity compared to other solvents. Herein, we review the use of DESs in biosensor development. We consider the emerging interest in different fields of this green class of solvents and the possibility of their use for the improvement of biosensor performance. We point out some promising examples of approaches for the assembly of biosensors exploiting their compelling characteristics. Furthermore, the extensive ability of DESs to solubilize a wide range of molecules provides the possibility to set up new devices, even for analytes that are usually insoluble and difficult to quantify.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Cotonificio 108, 33100 Udine, Italy; (N.D.); (C.G.)
| | | | | | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Cotonificio 108, 33100 Udine, Italy; (N.D.); (C.G.)
| |
Collapse
|